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Abstract

The United Nations has called on all nations to take immediate actions
to fight noncommunicable diseases (NCDs), which have become an in-
creasingly significant burden to public health systems around the world.
NCDs tend to be more common in developed countries but are also be-
coming of growing concern in low- and middle-income countries. Earth
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Geographic
information systems
(GIS): systems
designed to capture,
store, manipulate,
analyze, manage, and
present spatial or
geographic data

observation (EO) technologies have been used in many infectious disease studies but have been
less commonly employed in NCD studies. This review discusses the roles that EO data and tech-
nologies can play inNCD research, including (a) integrating natural and built environment factors
into NCD research, (b) explaining individual–environment interactions, (c) scaling up local studies
and interventions, (d) providing repeatedmeasurements for longitudinal studies including cohorts,
and (e) advancing methodologies in NCD research. Such extensions hold great potential for over-
coming the challenges of inaccurate and infrequent measurements of environmental exposure at
the level of both the individual and the population, which is of great importance to NCD research,
practice, and policy.

INTRODUCTION

Noncommunicable diseases (NCDs), also known as chronic diseases, are generally noninfectious
diseases or medical conditions that last for long periods of time and progress slowly (103). Accord-
ing to the United Nations and the World Health Organization, NCDs will become the leading
cause of death worldwide by 2030 (24, 102), as historically important infectious diseases such as
cholera,malaria, and tuberculosis are brought under control.NCDs have increasingly becomema-
jor sources of economic burden to health care systems already under pressure around the world
(34, 36, 80). Moreover, NCDs tend to be more common in developed countries but also are of
growing concern in low- and middle-income countries (LMICs), where nearly three-quarters
of global NCD deaths occurred over the past decade (approximately 28.5 million in 2012 and
39.5 million in 2015) (103, 104). In addition to experiencing a loss of quality of life due to NCDs,
NCD patients tend to be more susceptible to infectious diseases than are their healthy counter-
parts, due to a weakened immune system, and some infectious diseases (e.g.,HIV) now have a long
(chronic) duration owing to improved treatment (90). The considerable public health, socioeco-
nomic, and ecological impacts of NCDs are expected to continue and even increase, given our
current limited capacity to understand the multifactorial etiology of many complex NCDs, espe-
cially those of later life, which probably result from a combination of genetic and environmental
exposures over the course of a lifetime (41).

In recent years, emerging research has demonstrated that environmental factors, including
air pollution, temperature, green space, the built environment, and noise, may be important risk
factors for NCDs (9, 20, 22, 33). These spatial factors may provide meaningful targets for inter-
ventions to reduce NCD risk. Geographic information systems (GIS) can provide environmental
data products over large areas/populations, identify novel risk factors, and suggest potential ar-
eas for targeted interventions (3, 60, 61). Many creative and pioneering studies have already been
conducted using an integration of statistical and GIS techniques to understand the patterns and
mechanisms of NCDs, such as the visualization of NCD prevalence and risk factors (14, 108) as
well as examinations of associations between NCDs and their risk factors (16, 17).However,many
studies that measured multiple dimensions of environmental exposures over a long time period
and identified their association with NCDs have been carried out at local scales (1, 8, 13, 15, 20,
22, 28). Efforts to tackle NCDs through GIS approaches need to be scaled and sped up to keep
pace with the increasing global burden of NCDs (6, 7, 78, 87, 88, 93).

One method to improve GIS approaches to studying NCDs is by increasing the utilization of
earth observation (EO) technologies, which gather information about the earth’s physical, chemi-
cal, and biological systemsmainly via remote sensing (RS), supplemented by other earth-surveying
techniques (35). In contrast with onsite observation, RS generally acquires information by
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Pixel: the fundamental
unit of data collection;
represented in a
remotely sensed image
as a cell in an array of
data values

Exposome:
the measure of all the
exposures of an
individual in a lifetime
and how those
exposures relate to
health

spaceborne or airborne sensors, without making physical contact with the object or phenomenon.
RS data are stored in a raster format, which consists of a matrix of pixels (or cells) organized into
rows and columns (or a grid). Each pixel contains a value representing information, such as tem-
perature, at that location. EO technologies have enabled all-around environmental monitoring
of Earth, and RS data have been extensively applied in a wide range of fields, such as ecology,
agriculture, oceanography, geology, and archaeology (5, 65–67, 72, 98, 110). However, compared
with many large-scale and successful EO applications in infectious disease studies (44, 47, 52, 101),
many opportunities remain for NCD research and interventions offered by EO technologies for
researchers, decision makers, and other stakeholders (68). To date, a growing body of research
has used RS data to examine environmental factors and NCD risk. For instance, studies have
demonstrated associations between natural vegetation and mortality, cardiovascular disease, men-
tal health, and birth outcomes; air pollution and cardiovascular disease, respiratory disease, cancer,
and the mortality risks from these diseases; light at night and cancer; and temperature and cardio-
vascular and respiratory diseases (18, 25, 53–55, 57). That said, EO technologies hold still greater
potential for NCD research and practice, especially as more techniques and data become available.

To better use and position EO technologies for future NCD research and interventions, EO
scientists need to collaborate with epidemiologists and other researchers and practitioners in the
related biomedical fields to understand how the environmental factors measured by EO tech-
nologies may affect NCD risks, to identify new research areas, and to develop more informative
methods.However, such interdisciplinary collaboration requires researchers to reach outside their
fields of expertise, which can be challenging. To address this challenge, this review aims to iden-
tify current limitations in NCD research where EO technologies might improve the field and to
make EO-related recommendations for future NCD research. In addition, a complete list of satel-
lite sensors that have been used or that show significant potential for applications inNCD research
is provided as an important reference for NCD researchers. This review will help accelerate the
integration of EO technologies and NCD research as well as the development of interventions
and guidelines for NCD management and prevention.

RESEARCH GAPS AND CHALLENGES

The limited use of EO technologies accounts for a bottleneck in NCD research, which has likely
prevented us from fully characterizing an individual’s exposome, defined as the totality of an in-
dividual’s environmental exposures over the total life course (105). Although an individual’s time
activity patterns over long time periods can now be captured by global positioning systems (GPS),
GIS-based environmental data that temporally match individual movement patterns for better es-
timating individual exposures may not always be available. For the same reason,most studies using
GIS data have been carried out either at a large scale, but with limited accuracy (coarse spatial
resolution) and/or frequency (specific snapshots in time for the whole study period) of measure-
ments, or at a local scale, with still limited frequency in most cases. This is especially true for built
environment features relative to natural environment ones, due mainly to incomplete GIS-based
environmental data archives (61). It is difficult to build integratedmeasures of exposure at the indi-
vidual level, especially measurements of exposure to the built environment over long time periods;
variability in individual movement patterns makes this process even more challenging (24, 50, 51).

From the perspective of the public health sector, financial investment and resources targeted at
NCD prevention and control are limited relative to the high and sometimes prohibitive economic
costs, especially in developing countries (77). Furthermore, not all strategies for managing NCDs
will function equally or even toward the same positive direction in every setting. Tailoring these
strategies to local conditions to achieve maximum health impacts for minimal investment is one of
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Revisit time: the
time elapsed between
observations of the
same point on earth by
a satellite; depends on
the satellite’s orbit,
target location, and
swath of the sensor

the most significant challenges encountered by public health agencies (45). Addressing this chal-
lenge necessitates a deeper understanding of heterogeneity in the mechanisms that link NCDs
with population and environment at various places. Unfortunately, evidence for tailoring inter-
vention strategies appropriately has been limited so far owing to difficult, expensive, and hence
infrequent and localized data acquisition. If current NCD research and application cannot be ex-
panded and intensified, relevant technological advances (e.g., exposome measurements, GIS) will
not be able to keep pace with the global progression of NCDs.

RESEARCH OPPORTUNITIES

EO technologies, with simultaneous data acquisition capacity over a large scale and a short re-
visit time (i.e., the time elapsed between observations of the same location by a satellite) for the
majority of Earth’s landmasses, have been revolutionizing NCD research. For example, data from
high-resolution sensors operating aboard the series of Landsat satellites, launched in 1972, have
been vastly applied to broad environmental monitoring (43). When Landsat made its images free
of charge in 2008, more than 1 million images were downloaded in that first year, compared with
the previous peak of only about 25,000 images sold (106). Such high usagemay continue, driven by
the growing availability of high-resolution RS data—e.g., Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer (ASTER) data, which, with a spatial resolution of 15 m, have been
available to the public at no cost since April 1, 2016. Five major research opportunities brought
by EO technologies are described below in detail. A list of satellite sensors showing significant
potential for applications in NCD research by offering a range of useful environmental measure-
ments is presented as an important reference for public health researchers and agencies to choose
satellites and sensors in their own studies and surveillance efforts (Table 1).

Integrating Natural and Built Environment Factors into NCD Research

Research is growing on the natural and built environments in relation to NCD outcomes, espe-
cially behavior- or lifestyle-related NCDs (75, 82). The natural environment has been associated
with a broad array of NCDs, such as the relationships between temperature and stroke (18), alti-
tude and hypertension (79), and sunlight and skin cancer (73). Poor air and water quality, perhaps
not acute in the short term, may cause physical discomfort if people are chronically exposed to
them (e.g., gastrointestinal illness and seasonal allergic rhinitis) and eventually may lead to cardio-
vascular and respiratory diseases (27, 42, 99).To improve the predictability ofNCD risk factors and
facilitate the development of NCD prevention and control, it is necessary to deepen our knowl-
edge of the underlying NCD risk factors, where the natural environment may play an important,
although sometimes indirect, role. For example, frequent rainfall may reduce people’s outdoor
activity levels, even if individuals live in a highly walkable neighborhood (26). Thus, climate may
shape long-term dietary and activity behaviors in a given population, and weather can influence
energy balance dynamics during a short period (e.g., daily or weekly); these can all contribute to
NCDs.

EO technologies enable all-around surveillance of the natural environment by monitoring fac-
tors such as land cover, water bodies, volume of evaporation, proportion of pollutants in the air,
and concentrations of atmospheric particulate matter (PM) and carbon dioxide (CO2) (5, 35, 67,
72, 98). Therefore, RS data provide capabilities for describing the natural environment, which
complement built environment factors commonly used in NCD research. Furthermore, on the
basis of these data,many RS indicators and products for the natural environment have been devel-
oped for easy use, such as normalized difference vegetation index (NDVI), daily climate variables
(e.g., total precipitation, mean dew point temperature), and some bioclimatic variables (e.g., mean
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Table 1 Technical specifications of satellite sensors that have been used or show significant potential for applications
in noncommunicable disease (NCD) research

Satellite Sensor Band (number/order of bands)a

Spatial
resolution

(m)

Temporal
resolution

(day)
Launch
year

Year (to
be) taken
out of
service

Airbus Defense and Space (AIRBUS), France
SPOT-6/7 NAOMI V(3), N(1) 6 1–4 2012 2024

P 1.5

Centre national d’études spatiales (CNES), France
SPOT-1/2/3 HRV V(2), N(1) 20 1–4 1986 2009

P 10
SPOT-4 HRVIR V(2), N(1), S(1) 20 1–4 1998 2013

P 10
VGT V(2), N(1), S(1) 1,165

SPOT-5 HRG V(2), N(1) 10 1–4 2002 2015
S(1) 20
P 5

HRS P 10
VGT-2 Same as VGT onboard SPOT-4

Pléiades-1A/1B HiRI V(3), N(1) 2.8 26 2011 2017
P 0.7

China Meteorological Administration National Satellite Meteorological Center (CMA-NSMC)
Fengyun-1A/
1B/1C/1D

MVISR V(4), N(2), S(1), M(1), T(2) 1,100 12 1988 2012

Fengyun-2A S-VISSR VN(1) 1,250 0.5–1 1997 2006
M(1), T(1) 5,000

Fengyun-2C/
2D/2E/2F/
2G/2H

S-VISSR VN(1) 1,250 0.5–1 2004 2021

M(2), T(2) 5,000

Fengyun-
3A/3B/3C

IRAS VN(5), S(1), M(10), T(10) 17,000 6 2008 2018
MERSI-1 V(3), N(1), T(1) 250

V(7), N(6), S(2) 1,000
VIRR V(4), N(2), S(1), M(1), T(2) 1,100

Fengyun-3D HIRAS M/T(1,370) 16,000 6 2017 2022
MERSI-2 V(3), N(1), T(2) 250

V(7), N(6), S(2), M(3), T(1) 1,000
GAS V(1), S(3) 10,000

Fengyun-4A GIIRS V/M/T(1,650) 16,000 0.03–0.05 2016 2021
AGRI V(1) 500–1,000

V(1), N(1) 1,000
N(1), S(1), M(1) 2,000
S(1) 2,000–4,000
M(3), T(4) 4,000

(Continued)
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Table 1 (Continued)

Satellite Sensor Band (number/order of bands)a

Spatial
resolution

(m)

Temporal
resolution

(day)
Launch
year

Year (to
be) taken
out of
service

China National Space Administration (CNSA)
Gaofen-1 PMS V(3), N(1) 8 4 2013 2018

P 2
WFV V(3), N(1) 16

Gaofen-2/8/9 PMS-2 V(3), N(1) 4 5 2014 2023
P 1

Gaofen-4 GF-4
imager

M(1) 400 0.01 2015 2023

P 50

Orbital Imaging Corporation, USA (turned into GeoEye in 2006 and merged into DigitalGlobe in 2013)
OrbView-1 OTD N(1) 10,000 2 1995 2000

OrbView-2 SeaWiFS V(6), N(2) 11,000 1 1997 2010

OrbView-3 OHRIS V(3), N(1) 4 3 2003 2007
P 1

DigitalGlobe, USA
GeoEye-1 GIS V(3), N(1) 1.64 3 2008 2017

P 0.41

WorldView-1 WV60 P 0.5 1.7 2007 2017

WorldView-2 WV110 V(6), N(2) 1.85 1–3.7 2009 2017
WV60 P 0.46

WorldView-3 WV110 V(6), N(2) 1.24 1–4.5 2014 2021
S(8) 3.7
P 0.31

CAVIS V(Band 1–4), N(Band 5–7),
S(Band 8–12)

30

WorldView-4 SpaceView-
110

V(3), N(1) 1.24 1–4.5 2016 2023

P 0.31

IKONOS OSA V(3), N(1) 3.2 3 1999 2017
P 0.82

QuickBird BGIS-2000 V(3), N(1) 2.44 1–3.5 2001 2015
P 0.61

European Space Agency (ESA), France
Sentinel-2A MSI V(1), N(1), S(1) 60 10 2015 2022

V(3), N(1) 10
V(3), N(1), S(2) 20

Sentinel-2B MSI Same as MSI onboard Sentinel-2A 5 2017 2024

Meteosat-1/2/3 MVIRI V(1) 2,500 0.02 1977 1991
T(2) 5,000

(Continued)
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Table 1 (Continued)

Satellite Sensor Band (number/order of bands)a

Spatial
resolution

(m)

Temporal
resolution

(day)
Launch
year

Year (to
be) taken
out of
service

EUMETSAT, Germany
Meteosat-4/
5/3(ADC)/
3(XADC)/
6/7/5(IODC)/
7(IODC)/
6(IODC)

MVIRI V(1) 2,500 0.02 1989 2017

T(2) 5,000

Meteosat-
8/9/10/11/
8(IODC)

SEVIRI V(1), N(1), S(1), M(1), T(7) 3,000 0.01 2002 2022
P 1,000

GERB V(1) 42,000

Brazilian Institute of Space Research (INPE)
CBERS-1/2 HRCC V(3), N(1), P 20 26 1999 2007

IRMSS S(2), P 80
T(1) 160

WFI V(1), N(1) 260

CBERS-2B HRCC Same as HRCC onboard CBERS-1 26 2007 2010
HRPC P 2.7
WFI Same as WFI onboard CBERS-1

CBERS-4 MUXCAM V(3), N(1) 20 26 2014 2017
PANMUX V(2), N(1) 10

P 5
WFI-2 V(3), N(1) 73
IRMSS-2 VN(1), S(2) 40

T(1) 80

Korea Aerospace Research Institute (KARI)
KOMPSAT-1 EOC P 6.6 28 1999 2008

OSMI V(7), N(1) 1,000

KOMPSAT-2 MSC V(3), N(1) 4 28 2006 2017
P 1

KOMPSAT-3 AEISS V(3), N(1) 2.8 28 2012 2017
P 0.7

KOMPSAT-3A AEISS-A V(3), N(1) 2 28 2015 2019
P 0.5

IIP M(1) 5.5

National Aeronautics and Space Administration (NASA), USA
Landsat-1/2/3 MSS V(3), N(1) 79 16 1972 1983

Landsat-4/5 TM V(3), N(1), S(2) 30 16 1982 2013
T(1) 120

MSS Same as MSS onboard Landsat-1

(Continued)
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Table 1 (Continued)

Satellite Sensor Band (number/order of bands)a

Spatial
resolution

(m)

Temporal
resolution

(day)
Launch
year

Year (to
be) taken
out of
service

Landsat-7 ETM+ V(3), N(1), S(2) 30 16 1999 2017
T(1) 60
P 15

Landsat-8 OLI V(4), N(1), S(3) 30 16 2013 2018
P 15

TIRS T(2) 100

Terra MODIS V(Band 1), N(Band 2) 250 1–2 1999 2017
V(Band 3–4), N(Band 5), S(Band 6–7) 500
V(Band 8–15), N(Band 16–19), S(Band
26), M(Band 20–25), T(Band 27–36)

1,000

MISR V(3), N(1) 275 7–9
ASTER V(Band 1–2), N(Band 3) 15 5–16

S(Band 4–9) 30
T(Band 10–14) 90

Aqua AIRS V(Band 1–3), N(Band 4), M(Band 5),
T(Band 6–7)

13,500 0.5 2002 2017

MODIS Same as MODIS onboard Terra 1–2

EO-1 ALI V(Band 2–5), N(Band 6–7),
S(Band 8–10)

30 16 2000 2017

P 10
Hyperion V/N/S(242) 30
LAC N(256) 250

National Oceanic and Atmospheric Administration (NOAA)
TIROS-N/

NOAA-6/8/10
AVHRR V(1), N(1), S(1), T(1) 1,100 1 1978 2001

NOAA-7/9/
11–19

AVHRR/2 V(1), N(1), S(1), T(2) 1,100 1 1981 2017

NOAA-15 AVHRR/3 V(1) 500 1 1998 2017
N(2), S(1), T(2) 1,000

GOES-1/2/3 VISSR V(1) 900 1 1975 1993
T(1) 6,900

GOES-4/5/6/7 VAS V(1) 900 0.5–1 1980 1996
M(3), T(2) 13,800
T(8) 6,900

GOES-8/9/10/
11/12/9(GMS
backup)/13/
10(S-America)/
14/15/
12(S-America)

Imager V(Band 1) 1,000 0.02 1994 2020
M(Band 2), T(Band 4–5) 4,000
T(Band 3) 8,000

Sounder V(Band 19), M(Band 13–18),
T(Band 1–12)

8,000

(Continued)
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Table 1 (Continued)

Satellite Sensor Band (number/order of bands)a

Spatial
resolution

(m)

Temporal
resolution

(day)
Launch
year

Year (to
be) taken
out of
service

GOES-16 [R] ABI V(Band 2) 500 0.01 2016 2027
V(Band 1), N(Band 3), S(Band 5) 1,000
S(Band 4 and 6), M(Band 7),

T(Band 8–16)
2,000

Planet Labs, USA
RapidEye REIS V(4), N(1) 5 5.5 2008 2017

aM, mid-wavelength infrared (MWIR); N, near-infrared (NIR); P, panchromatic (PAN); S, short-wavelength infrared (SWIR); T, thermal infrared (TIR);
V, visible (VIS); VN, visible and near-infrared (VNIR).

temperature/precipitation of warmest/coldest quarter) (37, 48, 63, 64, 71, 86, 89). These indi-
cators are available at a spatial resolution of 0.25–1 km, mainly produced using data from TM
and ETM+ on Landsat, Advanced Very High Resolution Radiometer (AVHRR) onboard NOAA
(National Oceanic and Atmospheric Administration) satellites, andModerate Resolution Imaging
Spectroradiometer (MODIS) onboard NASA (National Aeronautics and Space Administration)
satellites. End users may further implement image processing and spatial analyses to customize
specific products on the basis of the existing variables (63).

Explaining Individual–Environment Interactions

Information fromRS data can provide better explanations for human behaviors and decision mak-
ing (96).Human behavior depends not only on what is in their surroundings, but also on what they
perceive and how they make decisions (23). Built environment data and GIS analysis tools provide
only the destinations that people tend to reach, and calculate the pathway with the shortest dis-
tance or travel time if speed limit information is available; location-aware technologies (e.g., GPS)
can further obtain actual routes of individuals (109). Additional information from EO technolo-
gies may help explain why they choose any particular route to reach a given destination, which
could alter the interaction with and exposure to the environment. For example, people may aban-
don the shortest path and instead be predisposed to taking another path through more vegetated
areas if there is not much impedance. This action could, in turn, expose them to better air quality.
Using satellite data on greenness indices (e.g., NDVI) and air pollutants may explain individuals’
behavior and measure the exposure to air pollution along travel routes (19). Also, using frequent
road network data extracted from high-resolution RS data (e.g., one scene of imagery per month)
may detect changes in road infrastructure and explain potentially correlated variation in the acces-
sibility of certain food outlets (obtained from GIS data) and subsequently in local dietary patterns
and NCD risk.

In urban settings, using EO technologies to better understand the relationship between urban
form andNCDs is only just coming to the fore. For example, urban form and structure impacts air
pollutant generation and dispersion, which impacts respiratory and cardiac illnesses. But consider
for a moment less obvious health issues such as mental health and well-being and how these could
be impacted by our urban environments (29, 40). The reasons for or determinants of those less
obvious health issues are concerned with not only the density or proximity of green and blue
spaces, which can be factors and have been measured by EO, but also issues such as the density of
residential areas, street layout, height of buildings, and segregation of different groups in society,
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Big data: data sets that
are so voluminous and
complex that
traditional
data-processing
application software is
inadequate to deal
with them

such as that related to varying socioeconomic statuses, ethnicities, and even age. EO can extract
information about urban structure and changes over a temporal scale frommonths to decades. EO
methods and algorithms have great utility to investigate changing urban structure within cities,
across continents, and particularly in areas of the world that are less accessible by ground survey
methods. Allied with health and GIS data collected through official government registries and
through citizen-science volunteered initiatives (38, 58), we can test hypotheses between a range
of NCD health outcomes and urban structure.

Hyperspectral, i.e., capable of capturing data in hundreds of contiguous narrow wavebands
(11), and very high spatial-resolution (VHR) satellite imagery can also provide a wealth of data
and useful methods for extraction of features/conditions favorable to NCDs, as well as support
explanation and prediction of individuals’ behaviors and decision making. For example, hyper-
spectral images from the Hyperion sensor onboard NASA’s Earth Observing-1 (EO-1) satellite,
with 220 wavebands at a relatively coarse spatial resolution (30 m), are extensively used for the
extraction of urban features (46). The data with the highest publicly available spatial resolution to
date that are useful for identifying urban features are obtained from commercial satellites, such
as WorldView-3/4 (0.31 m), GeoEye-1 (0.41 m), and QuickBird (0.61 m). These satellites are ca-
pable of collecting imagery from around the globe on a daily basis and have narrowed the gap
between satellite images and aerial photos. Furthermore, the increasing accessibility of these data
with declining costs—e.g., free public access to ASTER data since April 1, 2016—could herald a
new era of high-resolution RS data and provide a range of useful environmental measurements
for NCD studies at the lowest costs to date.

Scaling Up Local Studies and Interventions

The use of EO technologies offers possibilities for scaling up NCD research and management ef-
forts from local scales, as earth-observing satellites can provide an unprecedented view of the land
surface and global environment (37). Many current studies aiming to measure multiple dimen-
sions of individuals’ environmental exposure have been restricted to a local scale, owing mainly to
limited high-quality data (4, 74). To scale up individual-level measurements of exposure to both
natural and built environments, researchers require an economically feasible way to procure large
volumes of environmental data to overcome current data bottlenecks. For instance, some factors
such as air pollution, altitude, and light at night had been previously measured at a high cost using
traditional approaches (e.g., ground-level monitoring stations and ground surveying) (25, 54). EO
technologies feature a simultaneous data acquisition capacity at a large scale, over a short time pe-
riod, and in a manageable and affordable manner, which makes it possible to realize unparalleled
massive measurements while concomitantly reducing measurement errors. For example, covering
99% of Earth’s landmasses at a high spatial resolution from 15 to 90 m, ASTER data can provide
a range of useful environmental measurements in NCD contexts, such as land cover, vegetation,
and land surface temperature, which are available for any spot on Earth every 16 days. Further-
more, when a study exploring the local determinants of NCDs is scaled up to a large area, some
effects may be proven untrue (30). Some risk factors may cause NCDs only by working with other
factors under specific circumstances. In addition, EO technologies can capture a wide variety of
environmental factors at a large scale, which may allow us to generate and test novel hypotheses
as well as to map environmental profiles for finding similar areas to scale up interventions and for
tailoring efforts to different areas.

Furthermore, with advanced machine learning and other data science approaches, analyses of
such big data can be done faster, more accurately, and more creatively than ever before. For exam-
ple, the Google Earth Engine (GEE) is an online environmental data monitoring platform that
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incorporates data from the NASA Landsat program and uses Google’s cloud computing resources
to access and process these satellite data over its online system. GEE is designed to extend access
to petabyte-scale analysis-ready archives of RS data to researchers outside the RS field, to liberate
researchers from the difficulties and inefficiencies of working in a parallel processing environment,
and to help researchers easily disseminate their results to field-workers and policy makers (39).

Providing Repeated Measurements for Longitudinal Studies Including Cohorts

EO technologies can provide temporally abundant data in a cost-effective way to match individual
location and behavioral data, allowing us to measure individual environmental exposure over long
time spansmore accurately than by using only limitedGIS data products.This approach is suitable
for many longitudinal NCD studies that require repeated individual-level measurements of envi-
ronmental exposure regularly over long time periods (54). Also, historical archives of RS data may
be used to determine past environmental exposures, which can be linked with past cohort studies
and, in particular, hold great potential for designing more retrospective cohort studies (94). For
example, data from the NOAA’s AVHRR sensor going back to the 1980s are available and can be
used for producing the twice-daily NDVI, which is a measure of the amount of green vegetation
for a given area of the land surface (9). The Landsat data can also date back to the 1980s with a
spatial resolution of 30 m. This ability to “go back in time” could reconstruct a more complete
spectrum of environmental exposure for participants and may provide new explanations for the
outcomes of interest. Therefore, the high temporal resolution of EO technologies significantly
facilitates progress in life course measurements of human environmental exposure.

Moreover, RS satellite systems, especially those VHR systems, are usually designed to be pro-
grammable. Large-scale health surveys are often planned in advance. When neither the existing
RS data nor the current plans of data collection can meet the demand for measuring the exposure
of participants in planned studies, communication between spatial and health sectors at an early
stage will promote a better fit between data provision and needs for NCD research. In addition,
even though some types of built environment variables are available on a large scale, such as street
connectivity (available nationwide for the United States), these data sets are infrequently updated
and hence temporally insufficient to measure changes accurately in individual exposure to built
environments (100). The up-to-date maintenance of such large-scale data sets using RS technolo-
gies would provide significant benefits, especially considering the free, full, and open data policies
of many data sets (e.g., Landsat, Sentinel-2, and ASTER).

Advancing Methodologies in NCD Research

The incorporation of EO technologies into NCD research could trigger the application of some
advanced spatial analysis and modeling approaches from infectious disease to NCD studies. One
example is ecological niche modeling (ENM), a spatial approach that associates the occurrence
location of infectious diseases (i.e., presence of infected cases) with a set of environmental variables,
which would allow for the prediction of infection risk at an unknown location, on the basis of
environmental similarities to the location where infection occurred (63, 83). The ENM outputs
the prediction of geographic ranges for disease agents. In NCD contexts, location of NCD cases
or high prevalence or risk of NCDs, based on existing evidence, could be considered as presence
data to be linked with spatial data sets of sociodemographics, lifestyles/behaviors, and natural and
built environments (91).

The potential usage of ENM in NCD contexts highlights another problem with data format
often observed in existing studies: Most of the current GIS-based built environment indicators
are measured and stored in a vector format (i.e., lines or polygons). This format is not compatible
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with ENM inputs of environmental data and therefore needs to be converted into the raster
format. As each raster pixel is assigned a value that denotes relevant environmental characteristics
over that area, rasterized built environment data may provide more flexibility compared with the
vector data format in terms of spatial resolution (e.g., easy to change the spatial resolution of
environment data) to better describe the heterogeneity of the environment, especially in some
crowded metropolitan areas (e.g., Beijing, New York, and Tokyo).

In addition, the raster format technically allows for more accurate representation of exposure
to built environments, which used to be treated as a constant for all residents with access to the
same features or who live in the same geographic/administrative unit. Now, although most re-
searchers have moved beyond administrative units to assign exposure when individual addresses
are available [e.g., using straight-line or network-based buffer zones as the boundary to count how
many food outlets of each type exist within that unit (61)], each outlet is dichotomously consid-
ered to be either influential or not influential to an individual. The effect of each food outlet on
all who have it within their buffer zones is considered constant. This assumption is unlikely to
be true in reality. Increasing the distance to a given destination normally decreases the likelihood
of visiting that destination, which is known as the distance decay effect (69, 70). For each type of
built environment feature, a raster data layer can be created, incorporated with road network data,
and assigned the values that represent levels of real-world exposure to the corresponding features
at that location (i.e., within that raster pixel), with distance decay effects taken into consideration.
Therefore, the raster data format provides a supportive platform to refine vector-based measure-
ments of individual environmental exposure in a meaningful way, which is extremely important
for NCD studies but is difficult to estimate in a vector format.

Another quickly developing technology, unmanned aerial vehicles (UAVs) or drones, has been
successfully applied in public health areas, such as in delivering test samples from remote rural clin-
ics to national laboratories,monitoring human populationmovements, and providing spatially and
temporally accurate data for understanding the linkages between infectious disease transmission
and environmental factors (31). Monitoring equipment has been fitted to UAVs to collect infor-
mation on airborne radioactive particles, levels of environmental toxins and pollutants, land cover
and use, and other types of environmental data of public health relevance (21, 31, 85). Because
attainable RS imagery may lack coverage of certain areas for financial and/or technical reasons
(e.g., cloud cover), it is possible to employ UAVs to complement RS data under some circum-
stances, where environmental measurements during certain times and at certain locations are vital
to estimating human exposure in prospective cohort studies.

FUTURE APPLICATIONS IN NCD RESEARCH, PRACTICE, AND POLICY

Although applications of GIS in NCD research have made great strides in the past two decades,
EO technologies have not been fully applied.Much remains to be discovered in NCD contexts in
terms of the complex interrelationships between humans and the environment. Such knowledge
is essential to designing novel and effective interventions and mitigation measures for NCDs;
however, development of this knowledge has been restricted, owing to the limited capacity of
data acquisition in traditional NCD fields. Lack of frequently available environmental data also
prevents us frommeasuring the synergistic (e.g., additive or multiplicative) effects of various envi-
ronmental factors on NCD outcomes. Furthermore, NCD prevention and control could be even
more difficult compared with those for infectious diseases, as there are many stakeholders (e.g.,
businesses) and grassroots demands (of which some could be detrimental to public health) behind
the causative factors. This review identifies the advantages of EO technologies and summarizes
their applications at each stage of NCD research and practice (Figure 1).
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RS-based tools (e.g., EO sensors, Google Earth, Google Street View,
drones) can observe climate, weather, and neighborhood
environments, which may form new public health hypotheses
regarding their effects on NCDs.  

RS images with different resolutions, at different times, or even 
images from different sensors can be integrated into (new) spatial
indicators. The combination of image bands can also produce (new) 
predictive variables (data-driven approaches, e.g., NDVI).

RS data can be collected from historical archives since the satellite 
launch year, which can be matched with past cohort studies 
(especially holding great potential for more retrospective cohort 
studies), and can be used for conducting prospective analyses. 

RS data can provide more environment data to explain mechanisms 
of human–environment interaction at different scales. By observing 
large areas, RS may find sampling bias in terms of environmental 
variables.

RS can help to select sites for intervention design by evaluating the 
environmental profiles and physical accessibility.

RS can provide data in large areas and scale up research efforts 
efficiently. RS can also map environmental profiles in large areas and 
find similar areas to scale up interventions and tailor efforts to 
different areas.

EO technology can help public health agencies conduct surveillance 
of NCD risk by monitoring environmental changes reflected in RS 
data. The availability of RS data at certain moments in the future can 
also be manipulated to some extent.

Figure 1

Applications of EO technologies at each stage of NCD research and practice. Abbreviations: EO, earth
observation; NCD, noncommunicable disease; NDVI, normalized difference vegetation index; RS, remote
sensing.

EO technologies provide equal access to environmental information regardless of place, time,
and socioeconomic status, and thus they are especially vital in LMICs where, owing to a lack of
resources, regular ground-level surveying and monitoring are difficult to undertake or maintain
at a large scale. One example application of EO technologies is that much RS data has been used
to map environmental and socioeconomic similarities between existing Health and Demographic
Surveillance System (HDSS) sites and the rest of the LMICs (not covered byHDSS sites) in order
to extrapolate data and findings from HDSS sites to a larger area and population where HDSS
sites cannot be founded for various reasons (67).

Researchers from various fields have utilized RS data to ascertain the past, understand the
present, and predict the future. Earth-observing satellite data are becoming increasingly available
and accessible. Launched in 2013, Landsat-8 can collect more than 700 images per day, which
is a 14-fold increase over the acquisition capability of the 1980s (106). Also, the development
of new platforms and sensors is proceeding at a rapid pace, such as China’s Tiangong-2 Space
Laboratory,whichwas launched in September 2016.Therefore,EO technologies can play a pivotal
role in overcoming the current data bottlenecks in NCD research, moving this multidisciplinary
research area onto a big data stage.These data will provide new insights and explanations forNCD
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mechanisms and create solid evidence for NCD prevention and control. For example, human
migration and dietary patterns, both being disease risk factors, may be driven by climate change
and agricultural growth, which can be monitored by EO technologies (10, 32, 81).

There is usually a trade-off among spectral, spatial, and temporal resolution owing to techni-
cal constraints. Although this trade-off may limit the utilization of EO data in health research,
we can increasingly overcome these challenges through progress on satellite and sensor technolo-
gies. For instance, China’s TianGong-1 sensor, launched on September 29, 2011, has maintained
hyperspectral capabilities and further advanced the spatial resolution to 10–20 m, allowing for
more accurate extraction of urban information. Each scene image with a high spatial resolution
can usually cover a small area with a long revisit period, but the Sentinel-2 sensor, designed as
a two-satellite constellation (Sentinel-2A and -2B) with a 10-m spatial resolution and an initial
global imaging cycle of every ten days by Sentinel-2A alone, has now achieved a temporal reso-
lution of five days since February 17, 2018 (after Sentinel-2B became operational in orbit). That
said, with such a high spatial resolution, multiple images and subsequently high costs are needed
to cover a large area. This cost can rapidly increase if researchers order more than one snapshot
in time. Despite this knowledge, the general trend of such costs has been downward and some, as
mentioned above, have even become free of charge (e.g., ASTER data).

The choice of satellite images for NCD research should depend on answering specific research
questions. The research question can inform necessary compromises in terms of spectral, spatial,
and temporal resolution. For instance, if no specific spatial resolution is required, researchers may
choose images with medium spectral, spatial, and temporal resolutions (Table 1). In such a case,
special attention should be paid to the spectral resolution as it determines whether and to what
extent the variable(s) of interest could be identified and distinguished from other similar types
of variables under a major category (e.g., different species of vegetation). A clear emphasis on
one (or two) specific resolution(s) will lead to low resolution in other aspects. The sacrifice of a
spatial or temporal resolution could be compensated by spatial modeling approaches. The spatial
resolution of the variable of interest can be enhanced by modeling approaches on the basis of finer
ancillary data (spatial or ground truthing), also referred to as dasymetric mapping approaches
(62). In this way, original information at a coarse spatial resolution can be disaggregated onto
finer-scale grids for optimal estimation. The temporal frequency of the variable of interest can
also be increased by data fusion approaches, which incorporate high-temporal-frequency and
high-spatial-resolution satellite observations to generate synthetic observations with both high
spatial and high temporal resolutions (49).

The importance of other ancillary spatial data and techniques, such as ground-truth data,GPS,
and GIS, cannot be ignored. Ground-truth data are important for validating EO data, especially
natural environment factors, and for ensuring that EO data can supply accurate estimates for
environmental factors. Such sources include Surface PARTiculate mAtter Network (SPARTAN)
(95), Aerosol Robotic Network (AERONET) (51), and the Chinese Environmental Monitoring
Network (76) for monitoring the ground-level concentration of air pollutants. Although VHR
satellite data could be used for field validation of many built environment features, in light of the
cost of VHR data and the cloud cover issues in some regions, ground-truth data are still needed,
especially when the features of interest have complex spatial structures (e.g., slums) or operate
on a smaller scale than the spatial resolution of affordable medium- or high-resolution EO data.
GPS techniques (e.g., GPS devices, location-aware smartphone data) have been used to collect
geographic coordinates over a certain time interval, which can be used to infer individuals’ loca-
tions, movements, modes of transportation, and activities (2, 56). In combination with EO data
sets, GPS data can better approximate individual exposures and move us closer to characterizing
the exposome (81, 97). GIS techniques provide not only spatial data, but also a powerful platform
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to support data integration from multiple sources; thus, EO data could be used as crucial and
accurate input in exposure models through integration with ground-truth, GPS, and GIS data.

We foresee a promising future for using EO technologies in NCD research and practice. For
example, the recently launched Healthy Cities in China (107) and Preventive Medicine Initia-
tive (92) will bring high-level criteria and demand for quantification of the environment in or-
der to measure long-term environmental exposure at both the individual and population levels.
Additional higher-spatial-resolution, more-frequent-coverage (i.e., shorter revisit time or repeat
overpasses), and even freely available earth-observing satellite data are under way and planned for
the near future. For example, the planned Multi-Angle Imager for Aerosols (MAIA) will conduct
radiometric and polarimetric measurements for characterizing the sizes, compositions, and quan-
tities of PM in the air; Sentinel-2C/D are planned for 2022–2023 to further improve the quality of
Sentinel-2A/B data. These advances will offer public health researchers countless opportunities
to extend the usage of EO technologies to understand NCD risk. Both natural and built envi-
ronments will be quantified to an unprecedented degree of frequency and accuracy, enabling the
advancement of research for managing, alleviating, and ultimately preventing NCDs through the
integrated management of NCD ecology and epidemiology. Team science is the key to realiz-
ing this potential by building multidisciplinary research teams to work with EO technologies, in-
cluding public health researchers, geographers, climatologists, architects, city planners, and policy
makers. Some pioneering transdisciplinary collaborative endeavors, such as those by the US Envi-
ronmental Protection Agency (EPA) EnviroAtlas (84), theCanadianUrbanEnvironmentalHealth
Research Consortium (CANUE) (12), and the International Initiative on Spatial Lifecourse Epi-
demiology (ISLE) (59), have beenmade to facilitate the availability of EOdata in a partly processed
format to cohorts and health researchers; they can thus be easily linked to the extensive health
cohort and administrative health data. Greater efforts are needed in the future to train a new
generation of researchers and public health practitioners with interdisciplinary/transdisciplinary
training backgrounds and experiences to carry out this type of innovative work.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that
might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

Peng Jia, Director of the International Initiative on Spatial Lifecourse Epidemiology (ISLE),
thanks the Lorentz Center, the Netherlands Organization for Scientific Research, the Royal
Netherlands Academy of Arts and Sciences, the Chinese Center for Disease Control and Preven-
tion, the West China School of Public Health in Sichuan University, the International Journal of
Epidemiology, The Lancet Planetary Health, and Obesity Reviews for funding the ISLE and sup-
porting ISLE’s research activities. This study was supported in part by Open Foundation of the
State Key Laboratory of Urban and Regional Ecology of China (number SKLURE2018-2-5).We
also thank anonymous reviewers for very helpful comments.

LITERATURE CITED

1. Abbott G, Backholer K, Peeters A, Thornton L, Crawford D, Ball K. 2014. Explaining educational
disparities in adiposity: the role of neighborhood environments.Obesity 22:2413–19

www.annualreviews.org • Earth Observation and Chronic Diseases 99



PU40CH06_Jia ARjats.cls February 21, 2019 18:1

2. Almanza E, Jerrett M, Dunton G, Seto E, Pentz MA. 2012. A study of community design, greenness,
and physical activity in children using satellite, GPS and accelerometer data.Health Place 18:46–54

3. Anderson DJ, Rojas LF,Watson S, Knelson LP, Pruitt S, et al. 2017. Identification of novel risk factors
for community-acquired Clostridium difficile infection using spatial statistics and geographic information
system analyses. PLOS ONE 12:e0176285

4. Barnes TL, Colabianchi N, Hibbert JD, Porter DE, Lawson AB, Liese AD. 2016. Scale effects in food
environment research: implications from assessing socioeconomic dimensions of supermarket accessi-
bility in an eight-county region of South Carolina. Appl. Geogr. 68:20–27

5. Bastiaanssen WGM, Molden DJ, Makin IW. 2000. Remote sensing for irrigated agriculture: examples
from research and possible applications. Agric. Water Manag. 46:137–55

6. Beaglehole R, Bonita R, Alleyne G, Horton R, Li L, et al. 2011. UN high-level meeting on non-
communicable diseases: addressing four questions. Lancet 378:449–55

7. Beaglehole R, Bonita R, Horton R, Adams C, Alleyne G, et al. 2011. Priority actions for the non-
communicable disease crisis. Lancet 377:1438–47

8. Berge JM,Wall M, Larson N, Forsyth A, Bauer KW, Neumark-Sztainer D. 2014. Youth dietary intake
and weight status: healthful neighborhood food environments enhance the protective role of supportive
family home environments.Health Place 26:69–77

9. Bezold CP, Banay RF, Coull BA, Hart JE, James P, et al. 2018. The relationship between surrounding
greenness in childhood and adolescence and depressive symptoms in adolescence and early adulthood.
Ann. Epidemiol. 28:213–19

10. Bhavani P, Roy PS, Chakravarthi V, Kanawade VP. 2017. Satellite remote sensing for monitoring agri-
culture growth and agricultural drought vulnerability using long-term (1982–2015) climate variability
and socio-economic data set. PNAS India Sect. A Phys. Sci. 87:733–50

11. Blackburn GA. 2007. Hyperspectral remote sensing of plant pigments. J. Exp. Bot. 58:855–67
12. Brook JR, Setton EM, Seed E, Shooshtari M, Doiron D, Can. Urban Environ. Health Res. Consort.

2018. The Canadian Urban Environmental Health Research Consortium—a protocol for building a
national environmental exposure data platform for integrated analyses of urban form and health. BMC
Public Health 18:114

13. Burgoine T, Jones AP, Brouwer RJN, Neelon SEB. 2015. Associations between BMI and home, school
and route environmental exposures estimated using GPS and GIS: Do we see evidence of selective daily
mobility bias in children? Int. J. Health Geogr. 14:8

14. CDC (Cent. Dis. Control Prev.). 2018. Nutrition, physical activity and obesity: data, trends and maps.
Centers for Disease Control and Prevention. https://www.cdc.gov/nccdphp/dnpao/data-trends-maps/
index.html

15. Cerin E, Frank LD, Sallis JF, Saelens BE, Conway TL, et al. 2011. From neighborhood design and food
options to residents’ weight status. Appetite 56:693–703

16. Charreire H, Casey R, Salze P, Simon C, Chaix B, et al. 2010. Measuring the food environment using
geographical information systems: a methodological review. Public Health Nutr. 13:1773–85

17. Chen H-J, Wang Y. 2016. Changes in the neighborhood food store environment and children’s body
mass index at peripuberty in the United States. J. Adolesc. Health 58:111–18

18. Chen R,WangC,Meng X,ChenH,ThachTQ, et al. 2013.Both low and high temperaturemay increase
the risk of stroke mortality.Neurology 81:1064–70

19. Cole-Hunter T, Jayaratne R, Stewart I, Hadaway M,Morawska L, Solomon C. 2013. Utility of an alter-
native bicycle commute route of lower proximity to motorised traffic in decreasing exposure to ultra-fine
particles, respiratory symptoms and airway inflammation—a structured exposure experiment. Environ.
Health 12:29

20. Coombes E, Jones AP, Hillsdon M. 2010. The relationship of physical activity and overweight to objec-
tively measured green space accessibility and use. Soc. Sci. Med. 70:816–22

21. Corrigan CE, Roberts GC, Ramana MV, Kim D, Ramanathan V. 2007. Capturing vertical profiles of
aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles. Atmos.
Chem. Phys. Discuss. 7:11429–63

100 Jia et al.

https://www.cdc.gov/nccdphp/dnpao/data-trends-maps/index.html


PU40CH06_Jia ARjats.cls February 21, 2019 18:1

22. Crawford D, Cleland V, Timperio A, Salmon J, Andrianopoulos N, et al. 2010. The longitudinal influ-
ence of home and neighbourhood environments on children’s body mass index and physical activity over
5 years: the CLAN study. Int. J. Obes. 34:1177–87

23. Crawford TW, Jilcott Pitts SB, McGuirt JT, Keyserling TC, Ammerman AS. 2014. Conceptualizing
and comparing neighborhood and activity space measures for food environment research. Health Place
30:215–25

24. Dalal S, Beunza JJ, Volmink J, Adebamowo C, Bajunirwe F, et al. 2011. Non-communicable diseases in
sub-Saharan Africa: what we know now. Int. J. Epidemiol. 40:885–901

25. DiQ,WangY,Zanobetti A,WangY,Koutrakis P, et al. 2017.Air pollution andmortality in theMedicare
population.N. Engl. J. Med. 376:2513–22

26. Doak CM, Adair LS, Bentley M, Monteiro C, Popkin BM. 2005. The dual burden household and the
nutrition transition paradox. Int. J. Obes. 29:129–36

27. Dominici F, Peng RD, Bell ML, Pham L, McDermott A, et al. 2006. Fine particulate air pollution and
hospital admission for cardiovascular and respiratory diseases. JAMA 295:1127–34

28. Duncan DT, Sharifi M, Melly SJ, Marshall R, Sequist TD, et al. 2014. Characteristics of walkable built
environments and BMI z-scores in children: evidence from a large electronic health record database.
Environ. Health Perspect. 122:1359–65

29. Evans GW. 2003. The built environment and mental health. J. Urban Health 80:536–55
30. Floury M,Usseglio-Polatera P, Ferreol M,Delattre C, Souchon Y. 2013.Global climate change in large

European rivers: long-term effects on macroinvertebrate communities and potential local confounding
factors.Glob. Change Biol. 19:1085–99

31. Fornace KM, Drakeley CJ, William T, Espino F, Cox J. 2014. Mapping infectious disease landscapes:
unmanned aerial vehicles and epidemiology. Trends Parasitol. 30:514–19

32. Friel S, Bowen K, Campbell-Lendrum D, Frumkin H, McMichael AJ, Rasanathan K. 2011. Climate
change, noncommunicable diseases, and development: the relationships and common policy opportuni-
ties. Annu. Rev. Public Health 32:133–47

33. GanWQ,Davies HW,KoehoornM, Brauer M. 2012. Association of long-term exposure to community
noise and traffic-related air pollution with coronary heart disease mortality. Am. J. Epidemiol. 175:898–
906

34. GBD (Glob. Burd. Dis.) DALYs Hale Collab., Murray CJ, Barber RM, Foreman KJ, et al. 2015. Global,
regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life
expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet
386:2145–91

35. Giardina F, Franke J, Vounatsou P. 2015. Geostatistical modelling of the malaria risk in Mozambique:
effect of the spatial resolution when using remotely-sensed imagery.Geospat. Health 10:333

36. Glob. Burd. Dis. Cancer Collab., Fitzmaurice C, Dicker D, Pain A, Hamavid H, et al. 2015. The global
burden of cancer 2013. JAMA Oncol. 1:505–27

37. Goetz SJ, Prince SD, Small J. 2000. Advances in satellite remote sensing of environmental variables for
epidemiological applications. Adv. Parasitol. 47:289–307

38. Goodchild MF. 2007. Citizens as sensors: the world of volunteered geography. GeoJournal 69:211–
21

39. Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. 2017. Google Earth Engine:
planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202:18–27

40. Guite HF, Clark C, Ackrill G. 2006. The impact of the physical and urban environment on mental
well-being. Public Health 120:1117–26

41. Haines A, Amann M, Borgford-Parnell N, Leonard S, Kuylenstierna J, Shindell D. 2017. Short-lived
climate pollutant mitigation and the Sustainable Development Goals. Nat. Climate Change 7:863–
69

42. Hajat S, Haines A, Atkinson RW, Bremner SA, Anderson HR, Emberlin J. 2001. Association between
air pollution and daily consultations with general practitioners for allergic rhinitis in London, United
Kingdom. Am. J. Epidemiol. 153:704–14

www.annualreviews.org • Earth Observation and Chronic Diseases 101



PU40CH06_Jia ARjats.cls February 21, 2019 18:1

43. Hay SI. 2000. An overview of remote sensing and geodesy for epidemiology and public health applica-
tion. Adv. Parasitol. 47:1–35

44. Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW. 2004. The global distribution and population at
risk of malaria: past, present, and future. Lancet Infect. Dis. 4:327–36

45. Hay SI, Omumbo JA, Craig MH, Snow RW. 2000. Earth observation, geographic information systems
and Plasmodium falciparum malaria in sub-Saharan Africa. Adv. Parasitol. 47:173–215

46. Hegde G, Ahamed JM,Hebbar R, Raj U. 2014.Urban land cover classification using hyperspectral data.
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40:751

47. Herbreteau V,SalemG,SourisM,Hugot JP,Gonzalez JP. 2007.Thirty years of use and improvement of
remote sensing, applied to epidemiology: from early promises to lasting frustration.Health Place 13:400–
3

48. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate
surfaces for global land areas. Int. J. Climatol. 25:1965–78

49. Hilker T,Wulder MA, Coops NC, Linke J,McDermid G, et al. 2009. A new data fusion model for high
spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote
Sensing Environ. 113:1613–27

50. Hoek G, Beelen R, De Hoogh K, Vienneau D, Gulliver J, et al. 2008. A review of land-use regression
models to assess spatial variation of outdoor air pollution. Atmos. Environ. 42:7561–78

51. Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, et al. 1998. AERONET—a federated instrument
network and data archive for aerosol characterization. Remote Sens. Environ. 66:1–16

52. Hotez PJ,Kamath A. 2009.Neglected tropical diseases in sub-Saharan Africa: review of their prevalence,
distribution, and disease burden. PLOS Negl. Trop. Dis. 3:e412

53. Hu Z, Liebens J, Rao KR. 2008. Linking stroke mortality with air pollution, income, and greenness in
northwest Florida: an ecological geographical study. Int. J. Health Geogr. 7:20

54. James P, Bertrand KA,Hart JE, Schernhammer ES, Tamimi RM, Laden F. 2017. Outdoor light at night
and breast cancer incidence in the Nurses’ Health Study II. Environ. Health Perspect. 125:087010

55. James P, Hart JE, Banay RF, Laden F. 2016. Exposure to greenness and mortality in a nationwide
prospective cohort study of women. Environ. Health Perspect. 124:1344–52

56. James P, Hart JE, Hipp JA,Mitchell JA, Kerr J, et al. 2017. GPS-based exposure to greenness and walk-
ability and accelerometry-based physical activity. Cancer Epidemiol. Biomark. Prev. 26:525–32

57. Jerrett M, Turner MC, Beckerman BS, Pope CA, van Donkelaar A, et al. 2017. Comparing the health
effects of ambient particulate matter estimated using ground-based versus remote sensing exposure es-
timates. Environ. Health Perspect. 125:552–59

58. Jia P. 2018. Integrating kindergartener-specific questionnaires with citizen science to improve child
health. Front. Public Health 6:236

59. Jia P. 2019. Spatial lifecourse epidemiology. Lancet Planet. Health. 3(2):In press
60. Jia P, Anderson JD, Leitner M, Rheingans R. 2016. High-resolution spatial distribution and estimation

of access to improved sanitation in Kenya. PLOS ONE 11:e0158490
61. Jia P, Cheng X, Xue H,Wang Y. 2017. Applications of geographic information systems (GIS) data and

methods in obesity-related research. Obes. Rev. 18:400–11
62. Jia P, Gaughan AE. 2016. Dasymetric modeling: a hybrid approach using land cover and tax parcel data

for mapping population in Alachua County, Florida. Appl. Geogr. 66:100–8
63. Jia P, Joyner A. 2015. Human brucellosis occurrences in inner Mongolia, China: a spatio-temporal dis-

tribution and ecological niche modeling approach. BMC Infect. Dis. 15:36
64. Jia P, Joyner A, Sun Y. 2014. Short-term associations between accumulated rainfall and atmospheric

moisture during landfall of three Atlantic hurricanes.Geogr. Bull. 55:49–62
65. Jia P, Nie Y, Song G. 2010. Detection of underground remains by remote sensing and geophysics. In

2010 18th International Conference on Geoinformatics, pp. 1–6. New York: IEEE
66. Jia P, Nie Y, Yang L. 2010. Recognition and extraction of the ancient sites covered by thick vegetation

in Hainan Province of China. In 2010 IEEE International Geoscience Remote Sensing Symposium, pp. 3898–
901. New York: IEEE

102 Jia et al.



PU40CH06_Jia ARjats.cls February 21, 2019 18:1

67. Jia P, Sankoh O, Tatem AJ. 2015. Mapping the environmental and socioeconomic coverage of the
INDEPTH international health and demographic surveillance system network.Health Place 36:88–96

68. Jia P, Stein A. 2017. Using remote sensing technology to measure environmental determinants of non-
communicable diseases. Int. J. Epidemiol. 46:1343–44

69. Jia P, Wang F, Xierali IM. 2017. Delineating hierarchical hospital service areas in Florida. Geogr. Rev.
107:608–23

70. Jia P, Wang F, Xierali IM. 2017. Using a Huff-based model to delineate hospital service areas. Prof.
Geogr. 69:522–30

71. Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, et al. 2017. Climatologies at high resolution for
the earth’s land surface areas. Sci. Data 4:170122

72. Kerr JT, Ostrovsky M. 2003. From space to species: ecological applications for remote sensing. Trends
Ecol. Evol. 18:299–305

73. Leiter U, Garbe C. 2008. Epidemiology of melanoma and nonmelanoma skin cancer—the role of sun-
light. Adv. Exp. Med. Biol. 624:89–103

74. Li Y, Robinson LE, CarterWM,Gupta R. 2015. Childhood obesity and community food environments
in Alabama’s Black Belt region. Child Care Health Dev. 41:668–76

75. Lin G, Spann S, Hyman D, Pavlik V. 2007. Climate amenity and BMI. Obesity 15:2120–27
76. Liu J, Han Y, Tang X, Zhu J, Zhu T. 2016. Estimating adult mortality attributable to PM2.5 exposure in

China with assimilated PM2.5 concentrations based on a ground monitoring network. Sci. Total Environ.
568:1253–62

77. Lu Y, Jin H. 2005. Statistical methods in osteoporosis research. In Current Topics in Osteoporosis, ed.H-W
Deng, Y-Z Liu, pp. 201–60. Hackensack, NJ: World Sci. Publ.

78. Mayosi BM, Flisher AJ, Lalloo UG, Sitas F, Tollman SM, Bradshaw D. 2009. The burden of non-
communicable diseases in South Africa. Lancet 374:934–47

79. Mingji C, Onakpoya IJ, Perera R, Ward AM, Heneghan CJ. 2015. Relationship between altitude and
the prevalence of hypertension in Tibet: a systematic review.Heart 101:1054–60

80. Muka T, Imo D, Jaspers L, Colpani V, Chaker L, et al. 2015. The global impact of non-communicable
diseases on healthcare spending and national income: a systematic review. Eur. J. Epidemiol. 30:251–
77

81. Myers SS, SmithMR,Guth S,Golden CD,Vaitla B, et al. 2017.Climate change and global food systems:
potential impacts on food security and undernutrition. Annu. Rev. Public Health 38:259–77

82. NieuwenhuijsenMJ. 2016.Urban and transport planning, environmental exposures and health-new con-
cepts, methods and tools to improve health in cities. Environ. Health 15(Suppl. 1):38

83. Phillips SJ,DudíkM,Schapire RE.2004.Amaximumentropy approach to species distributionmodeling.
In Proceedings of the Twenty-First International Conference on Machine Learning, pp. 655–62. New York:
Assoc. Comput. Mach.

84. Pickard BR, Daniel J, Mehaffey M, Jackson LE, Neale A. 2015. EnviroAtlas: a new geospatial tool to
foster ecosystem services science and resource management. Ecosyst. Serv. 14:45–55

85. Pöllänen R, Toivonen H, Peräjärvi K, Karhunen T, Ilander T, et al. 2009. Radiation surveillance using
an unmanned aerial vehicle. Appl. Radiat. Isot. 67:340–44

86. PRISM Climate Group, Or. State Univ. 2015. Parameter-elevation regressions on independent
slopes model (PRISM) dataset. Data Catalog. https://catalog.data.gov/dataset/parameter-elevation-
regressions-on-independent-slopes-model-prism-dataset

87. Rabkin M, El-Sadr WM. 2011. Why reinvent the wheel? Leveraging the lessons of HIV scale-up to
confront non-communicable diseases.Glob. Public Health 6:247–56

88. Raviglione M, Marais B, Floyd K, Lönnroth K, Getahun H, et al. 2012. Scaling up interventions to
achieve global tuberculosis control: progress and new developments. Lancet 379:1902–13

89. Rogers DJ, Randolph SE, Snow RW,Hay SI. 2002. Satellite imagery in the study and forecast of malaria.
Nature 415:710–15

90. RohlederN. 2016.Chronic stress and disease. In Insights to Neuroimmune Biology, ed. I Berczi, pp. 201–14.
Amsterdam: Elsevier. 2nd ed.

www.annualreviews.org • Earth Observation and Chronic Diseases 103

https://catalog.data.gov/dataset/parameter-elevation-regressions-on-independent-slopes-model-prism-dataset


PU40CH06_Jia ARjats.cls February 21, 2019 18:1

91. RTI Int. 2015. The Neighborhood Map of U.S. Obesity. RTI International. http://synthpopviewer.rti.
org/obesity/

92. Sankar PL, Parker LS. 2017.The PrecisionMedicine Initiative’s All of Us Research Program: an agenda
for research on its ethical, legal, and social issues.Genet. Med. 19:743–50

93. Schmidt MI, Duncan BB, Azevedo e Silva G, Menezes AM, Monteiro CA, et al. 2011. Chronic non-
communicable diseases in Brazil: burden and current challenges. Lancet 377:1949–61

94. Schootman M, Nelson EJ, Werner K, Shacham E, Elliott M, et al. 2016. Emerging technologies to
measure neighborhood conditions in public health: implications for interventions and next steps. Int. J.
Health Geogr. 15:20

95. Snider G,Weagle CL,Martin RV, van Donkelaar A,Conrad K, et al. 2015. SPARTAN: a global network
to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health
applications. Atmos. Meas. Tech. 8:505–21

96. Stern PC. 2000. Toward a coherent theory of environmentally significant behavior. J. Soc. Issues 56:407–
24

97. Stingone JA, Buck Louis GM, Nakayama SF, Vermeulen RC, Kwok RK, et al. 2017. Toward greater
implementation of the exposome research paradigm within environmental epidemiology. Annu. Rev.
Public Health 38:315–27

98. Vincent RK. 1997.Fundamentals of Geological and Environmental Remote Sensing. Upper Saddle River,NJ:
Prentice Hall

99. Wade TJ, Calderon RL, Sams E, Beach M, Brenner KP, et al. 2006. Rapidly measured indicators of
recreational water quality are predictive of swimming-associated gastrointestinal illness. Environ. Health
Perspect. 114:24–28

100. Wang FH,WenM, Xu YQ. 2013. Population-adjusted street connectivity, urbanicity and risk of obesity
in the US. Appl. Geogr. 41:1–14

101. Wang J, Jia P, Cuadros DF, Xu M, Wang X, et al. 2017. A remote sensing data based artificial neural
network approach for predicting climate-sensitive infectious disease outbreaks: a case study of human
brucellosis. Remote Sens. 9:1018

102. WHO (WorldHealthOrgan.). 2014.Noncommunicable diseases country profiles 2014. Rep.,WHO,Geneva.
https://www.who.int/nmh/publications/ncd-profiles-2014/en/

103. WHO (World Health Organ.). 2015. Noncommunicable diseases prematurely take 16 million lives annu-
ally, WHO urges more action. News release, Jan. 19,WHO,Geneva. http://www.who.int/mediacentre/
news/releases/2015/noncommunicable-diseases/en/

104. WHO (World Health Organ.). 2017. NCD mortality and morbidity. Global Health Observatory (GHO)
Data. http://www.who.int/gho/ncd/mortality_morbidity/en/

105. Wild CP. 2005.Complementing the genome with an “exposome”: the outstanding challenge of environ-
mental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 14:1847–50

106. Wulder MA, Coops NC. 2014. Make Earth observations open access.Nature 513:30–31
107. Yang J, Siri JG, Remais JV, Cheng Q, Zhang H, et al. 2018. The Tsinghua-Lancet Commission on

Healthy Cities in China: unlocking the power of cities for a healthy China. Lancet 391:10135
108. Yiannakoulias N, Svenson LW, Schopflocher DP. 2009. An integrated framework for the geographic

surveillance of chronic disease. Int. J. Health Geogr. 8:69
109. Yin L, Raja S, Li X, Lai Y, Epstein L, Roemmich J. 2013. Neighbourhood for playing: using GPS, GIS

and accelerometry to delineate areas within which youth are physically active. Urban Stud. 50:2922–
39

110. Zhu J, Jia P,Nie Y. 2010. Analysis of the ancient river system in Loulan Period in Lop Nur Region. Proc.
SPIE 8203:820313

104 Jia et al.

http://synthpopviewer.rti.org/obesity/
https://www.who.int/nmh/publications/ncd-profiles-2014/en/
http://www.who.int/mediacentre/news/releases/2015/noncommunicable-diseases/en/
http://www.who.int/gho/ncd/mortality_morbidity/en/

