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Abstract

The field of environmental health has been dominated by modeling associa-
tions, especially by regressing an observed outcome on a linear or nonlinear
function of observed covariates. Readers interested in advances in policies
for improving environmental health are, however, expecting to be informed
about health effects resulting from, or more explicitly caused by, environ-
mental exposures. The quantification of health impacts resulting from the
removal of environmental exposures involves causal statements. Therefore,
when possible, causal inference frameworks should be considered for ana-
lyzing the effects of environmental exposures on health outcomes.

23

https://doi.org/10.1146/annurev-publhealth-040218-044048
http://www.annualreviews.org/toc/publhealth/40/1
https://annualreviews.org/doi/full/10.1146/annurev-publhealth-040218-044048


PU40CH03_Bind ARjats.cls February 25, 2019 12:7

1. INTRODUCTION

Estimating causal effects in the scientific field of environmental health is often difficult owing
to complications related to human subjects. One obvious reason is that it is often unethical to
randomize humans to possibly harmful environmental exposures. In many cases, it is also not
generally feasible to conduct multifactorial randomized clinical trials. Therefore, to answer causal
questions, epidemiologists relied for decades on retrospective data from case-control studies. Epi-
demiologists now typically collect time series data, manage prospective cohort studies that follow
participants over time, or conduct controlled indoor air experiments. Environmental scientists
have departed from studying detrimental exposures but instead have conducted creative human
experiments randomizing potentially beneficial exposures (e.g., physical activity, green and blue
spaces).

Because environmental exposures are nonrandomized in observational studies, there is no guar-
antee of the environmental exposure to be unconfounded with the (potential) health outcomes.
Several strategies have been developed to counter the issue of confounding in observational stud-
ies.Of course, if the randomization is not successful at balancing background characteristics across
exposure groups, even a randomized clinical trial suffers from the treatment assignment mecha-
nism being confounded with the potential outcomes.

Measures of association between environmental exposures and human health outcomes have
been estimated by environmental epidemiology studies (44, 49, 77, 105, 111), which consequently
often conclude that further toxicological and/or epidemiological studies are needed to address
causality. Whether these environmental health associations in humans are spurious or causal has
been discussed in the past (21, 82, 107). To address causality between an environmental exposure
and a health outcome, toxicologists have conducted animal studies (71, 104, 109). In contrast, envi-
ronmental epidemiologists have chosen to quantify the causal effects of environmental exposures
on health outcomes in observational human studies using causal inference methods that attempt
to tackle the issue of confounding due to the lack of randomized exposures (9, 38, 65). Some au-
thors have focused on reviewing existing causal methods used in environmental health (10, 75).
Lewis has discussed the impact of different causal models on estimated effects of disinfection by-
products on preterm birth (66). Other authors have discussed the weight of causal evidence for
the associations between an environmental exposure and a health outcome (46, 81, 89, 110).

In Section 2, this article proposes a historical perspective on causal modeling in environmental
health with a large focus on air pollution. Section 3 discusses fundamental concepts and potential
issues whenmodeling the observed data with regression. Section 4 presents a nonexhaustive review
of the causal modeling methods used in the field of environmental health, with again a focus on air
pollution epidemiology.Finally, Section 5 discusses the future of causal modeling in environmental
health in the era of big data, machine learning, and greatly improved computational power.

2. HISTORICAL PERSPECTIVE: WHY DID SUCCESSFUL
STRATEGIES DISAPPEAR?

2.1. First Milestones in Environmental Epidemiology

Modern environmental epidemiology is often proposed to have started in the 1850s with the physi-
cian John Snow, who was interested in cholera clustering. He identified the public water pump on
Broad Street as the source of the cholera outbreak (99). A century later, two major milestones in
epidemiology occurred. First, the Great Smog of London, which took place December 5–9, 1952,
preceded an unusual increase in mortality in the city, which led to the Clean Air Act of 1956.
Another milestone that is often taught in environmental epidemiology is the retrospective British
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Figure 1

Major milestones of environmental epidemiology. Photographs courtesy of Google Images, Wikipedia, The British Library, University
of Oxford, and Wikipedia, respectively (left to right).

Doctors Study published by Doll & Hill in 1954, which provided some evidence of an associa-
tion between tobacco smoking and increased risk of lung cancer (32). These major knowledge
advances that occurred more than one and a half centuries ago or decades ago, as illustrated in
the timeline in Figure 1, established modern environmental epidemiology as an attractive field
with the potential to discover new medical knowledge using data collected from nonexperimental
studies. Even though John Snow, Richard Doll, and Austin Bradford Hill got the right answers,
was it the right way to think about and address these causal questions?

2.2. Observational Studies and the Matched-Sampling Strategy

Epidemiological studies in biomedicine intend to elucidate whether exposure has some causal ef-
fect on health outcomes (17), but the assignment mechanism of these exposures to participants
is generally not random and often unknown. Consequently, in such studies, a difference in out-
comes between exposed and unexposed groups can be due to confounding by another variable
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that is unbalanced in the two groups. In the 1940s, sociologists used matching strategies (12, 47)
to limit confounding bias: The goal of matching strategies is to find control units that are similar
to exposed units. At that time, powerful computers were not available. Thus, researchers ran into
obvious computational difficulties to identify exact pairs of units, for instance one exposed and the
other serving as an exposure control. Ideally, the pairing needs to be performed with respect to all
confounding variables (101).

In the 1950s, Cochran (15) also suggested using matching to analyze observational studies.
Again, this method precedes the outcome analysis in the matched data set comprising the con-
trol population similar to the experimental population with respect to disturbing, also known as
confounding variables. In the 1960s, he explained how to design, analyze, and summarize observa-
tional studies (17).Cochran suggested that researchers design observational studies usingmatched
sampling (e.g., pair matching that consists of finding an approximate twin for each unit) and/or
blocking on variables to reduce initial differences between exposed and control groups. He also
argued for shifting the focus from estimates with small variance to estimates with small bias (16).
Cochran’s influence on causal analysis of observational studies was summarized in the 1980s by
Rubin (87).

2.3. The Prepersonalized Computer Era: Illustrated by Occupational
Epidemiology

In the 1970s, epidemiologists were using matched-sampling strategies to handle confounding in
cohort studies. For example, Tolenen et al. investigated whether exposure to carbon disulfide was
associated with coronary heart disease morbidity and mortality in viscose rayon workers (52, 103).
Before comparing (by hand) the means or proportions of health outcomes in workers who had
been exposed to rayon versus nonexposed workers, the authors formed cohorts of 343 men and
matched these workers with respect to age, district of birth, and similarity of work. Note, these
observational studies were not case-control studies, and thematching procedure was appropriately
performed with respect to the exposure (and not the outcome).

In the years preceding the 1980s, computing power consisted of centralized management of
remote systems; that is, the real computing power and data storage were not on personal desktops.
Statistical software created in the 1960s, such as Bio-Medical Data Package (BMDP) at the Uni-
versity of California, Los Angeles, and Statistical Analysis System (SAS) at North Carolina State
University, were first operated using batch computing, which explains why, in the prepersonalized
computer era, epidemiologists invested a large amount of time thinking about the relevant vari-
ables to match on (or to adjust for) before performing statistical analyses. At that time, statistical
analyses were tedious tasks, with and even more without, centralized computing power.

The fact that correlation does not imply causation has been a persistent concern in the field
of environmental epidemiology. The next section presents the evolution of statistical methods
that model conditional associations between air pollution exposures and health outcomes in a
nonexhaustive and fairly objective manner. Throughout Section 2.4, the first author’s primary
affiliation will be flagged if related to the industry for additional context. Let us now comprehend
how statistical modeling evolves in the personalized computer era.

2.4. The Personalized Computer Era: Illustrated by Air Pollution Epidemiology

Around 1984, there was a shift toward decentralized management of local systems; that is, com-
puting power was available on desktops, and the user managed both software and data storage.
Statistical software became increasingly more available on personalized desktops at universities.
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The availability of statistical software on personalized computers was a crucial determinant to
explain the shift in the 1980s in how researchers conducted statistical analyses in environmental
epidemiology. At that time, investigators transitioned away from careful thinking and away from
planning the statistical analyses toward easier and faster answers from statistical methods of an
observed health outcome regressed on an environmental exposure of interest and background
covariates.

In 1984, that is, at the beginning of the personalized computer era, Selvin et al. (96) examined
the influence of total suspended particulates, sulfur dioxide, and nitrogen dioxide on mortality
across US regions.The authors described fitting 24 linear regressions stratified by sex and adjusted
for a set of, what they called, control variables:

Mt, s |APt , Ct = β0, s + β1, sAPt + βT
C, s Ct + εt, s,

whereMt, s, APt , andCt represent the sex-specific daily mortality rate, the daily concentration of air
pollutant, and the set of control variables in a particular region, respectively, and εt, s ∼ N (0, σ 2).
Note, the authors chose a significance level equal to 0.02. Using time series to estimate the condi-
tional association between short-term air pollution and mortality comports some advantages. In a
time series setting, the compared units are days, and a major concern is whether days with high air
pollution are comparable to days with low pollution and comparable to days with moderate pol-
lution. The distributions of time-varying confounding variables, such as day of the week, month,
year, flu, and meteorological variables, are likely to be different across days with low, moderate,
and high pollution. However, city-specific distributions of smoking, obesity, medication use, di-
abetes, age, and sex across days with low, moderate, and high pollution can be assumed to be
similar. For example, one can compare mortality counts only between days that are proximate in
time.

In 1993, Dockery et al. (31) published the well-known Harvard Six Cities Study, which linked
air pollution to mortality using two covariate-adjusted Cox proportional-hazards models stratified
by sex and five-year age groups:

λi, s(t|Cityi, Cit ) = λ0, s(t ) exp(β1, 11i∈City1 + · · · + β1, 61i∈City6 + βT
C Cit )

λi, s(t|APCity, t , Cit ) = λ0, s(t ) exp[β1, 1(1i∈City=1APCity1, t ) + · · · + β1, 6(1i∈City6APCity6, t ) + βT
C Cit ],

where λi, s(t|Z = z), APi∈City, t , and Cit represent the hazard of dying at time t for individual i and
strata s conditional on Z = z, the annual city-specific air pollution level where subject i lives, and
the subject-specific control variables at time t, respectively.

In 1994, Schwartz (92) used a Poisson regression model that controlled for the year of study,
continuous time trend of very hot days, temperature, humidity, and winter temperature to estimate
the causal relationship between high air pollution exposure and daily mortality (denoted by Mt )
in Philadelphia:

log[E(Mt )] = β0 + β1APt + βT
C Ct and E(Mt ) = Var(Mt ).

The same year, Schwartz (91) then used an overdispersed Poisson regressionmodel to associate air
pollution exposure with respiratory hospital admissions for the elderly (denoted by Yt ) in Detroit,
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Michigan:

log[E(Yt )] = β0 + β1APt + βT
C Ct and E(Yt ) = � ∗Var(Yt ),

where � is an overdispersion parameter.
In 1996,Gamble & Lewis (43) reviewed the literature about the associations between air pollu-

tion (PM10) and health outcomes (e.g., cardiopulmonary morbidity and mortality, hospital admis-
sions for related diseases) and concluded that these associations were weak and that Hill’s causal
criteria (54) were not met (e.g., temporality, strength of the association, biological plausibility).
That year, Dunn & Kingham (35) also suggested that both epidemiological and toxicological ev-
idence are needed to establish a causal link between air quality and health. In 1997, Kuenzli et al.
(62) concluded that experimental studies needed to be conducted to investigate the pathophysi-
ological mechanisms involved in the associations between air pollution and health outcomes. In
1998, Bruce et al. (11) concluded (a) that intervention studies were required for a strong causal
link between indoor air pollution and health outcomes and (b) that the quantification of the ben-
eficial effects of the removal of the harmful exposure should be of interest. In 1998, Gamble (42)
published another article tackling the plausibility of the PM2.5–mortality association, arguing that
confounding factors (e.g., physical activity, lung function) could explain the spurious association
and that animal studies were not relevant to support an effect in humans because of the differ-
ent order of magnitudes between experimental conditions versus ambient air pollution levels. In
1999, Schwartz (93) found positive associations between PM10 exposure and hospital admissions
for heart disease in the elderly in eight US counties using Poisson regression models.

In 2000, Schwartz (93) and Samet et al. (90) attempted to address existent concerns specific
to the validity of environmental health studies. The authors introduced a time series setting with
copollutants, AP1, t , AP2, t , and a health outcome, Yt . They introduced a scenario in which AP1, t
may confound the AP2, t −Yt causal relationship:

AP1, t = α0 + α1, cityAP2, t + εAP1, t , 1.

Yt = β0 + β1AP1, t + β2AP2, t + εY , t , 2.

and Equations 1 and 2 are equivalent to

Yt = β0 + β1α0 + (β2 + β1 α1, city )AP2, t + β1 εAP1, t + εY , t . 3.

Schwartz and Samet et al. proposed to use two-stage regression, an approach that was popular in
social sciences at that time, to assess confounding by the copollutant AP1, t . First, in stage 1,Yt was
regressed against AP2, t for each city:

Yt = δ0 + δ2, cityAP2, t + ηY , t .

The estimated δ2, city has an expectation of β2 + β1α1, city. Then,α1, city is estimated using Equation 1.
Finally, in stage 2, δ2, city is regressed against α1, city:

δ2, city = θ0 + θ1α1, city + κcity.
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The two-stage regression approach assumes that θ0 and θ1 provide valid estimates of β2 and β1,
respectively. Schwartz and Samet et al. argued that a nonzero estimate of β1 suggests a confounded
AP2, t–Yt relationship. In 2001,Marcus&Kegler (69) argued against the two-stage regression strat-
egy by proposing counterexamples and simulations. For instance, he introduced a third variable
AP3, t such that the AP2, t–Yt relationship is confounded not only by AP1, t , but also by AP3, t . The
authors argued that in that third-confounder setting the two-stage approach would incorrectly
estimate the magnitude of the AP2, t–AP1, t–Yt pathway.

In 2002, Wong et al. (108) argued that there would be some causal evidence if effect esti-
mates were similar when modeling the association between air pollution and hospital admis-
sions in Hong Kong and London with the same Poisson regression model. The same year, Le
Tertre et al. (64) concluded in favor of a causal interpretation of the air pollution–mortality as-
sociation. Using overdispersed Poisson regression models, the authors estimated air pollution–
mortality conditional associations in nine French cities. After conducting a meta-analysis, they
obtained a significant and positive pooled estimate, even though the nine estimates were not always
significant.

In 2007, Pope & Burnett (80) disagreed with the argument proposed by Janes et al. (58), who,
after observing air pollution–mortality associations at the national scale but not at the local scale,
asserted that the association between long-term exposure to air pollution and mortality is more
likely to be confounded at the national scale than on the local scale. The same year, Brook (10)
also proposed his view on the causal question and concluded, on the basis of the existing epidemi-
ological studies, that the final evidence was now sufficient to implicate particulate matter exposure
as a cause of cardiovascular disease. Goldberg (45) also argued that standard epidemiological de-
signs could not uniquely identify any individual component of air pollution as a causal agent of a
health effect. He also suggested that researchers examine precisely the toxicity of mixtures of air
pollutants.He finally proposed toxicological studies and human controlled studies that capitalized
on multifactorial designs to study specific component(s) of the air pollution mixture.

In 2009, Knol et al. proposed an elicitation based on fourteen European experts, such as epi-
demiologists, toxicologists, and clinicians, to examine the likelihood of (a) a causal relationship and
(b) causal pathways between ultrafine particles and key health outcomes. The experts concluded a
medium-to-high likelihood for a causal relationship (61). The same year, to understand potential
causal mechanisms of the air pollution–cardiovascular relationship,Delfino et al. (27) conducted a
panel study on elderly participants with coronary artery disease and investigated whether traffic-
related pollutants were associated with inflammatory biomarkers. The authors reported statisti-
cally significant positive associations using mixed-effects models (27):

Yi j = β0 + ui + β1APi j + βT
C Ci j + εi j ,

where Yi j and ui represent a health outcome for subject i at visit j and random intercepts,
respectively.

In 2012, L.A. (Tony) Cox et al. examined the association between short-term exposure to air
pollution and daily mortality in 100 US cities. The authors concluded that the PM2.5–mortality
relationship was not causal because of nonlinear confounding by temperature when modeled with
splines (25). This study was a reanalysis of an earlier epidemiological study that found mortality
associations with PM2.5 and PM10 (33). The conclusions of Cox et al. using Bayesian model aver-
aging conflicted with the conditional associations estimated byDominici and colleagues (33) using
a Bayesian hierarchical model, including, in particular, smooth functions of same-day temperature
with six degrees of freedom. The same year, Devlin et al. (28) reported causal effects of ozone on
cardiovascular markers in human controlled exposure chambers. Padula et al. (76) also estimated
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the causal effects of traffic-related air pollution during pregnancy and birth weight usingmachine-
learning methods. They concluded that the absence of arbitrary model assumptions should result
in relatively unbiased estimates (76). In 2013,Cox (21) argued for the possibility of spurious spatial
exposure–response associations in environmental studies and against the causal interpretation of
linear regression coefficients in air pollution epidemiology (22). The same year, Jarjour et al. (59)
conducted a scripted exposure crossover study and found no change in lung function when com-
paring bikers cycling on low-traffic versus high-traffic routes. In 2014, Hackstadt et al. (50) used
principal stratification in a randomized air cleaner intervention trial to quantify the causal effects
of the intervention in the subgroup of units for which the air cleaner would have reduced indoor air
pollution. In 2015, Cox (20) used time series to assess whether historical air pollution concentra-
tions helped to predict and explain changes in cardiovascular and all-cause mortality, and he con-
cluded that reducing PM2.5 and O3 did not result in human longevity benefits. This strategy is of-
ten referred to in economics as conducting aGranger causality test (more on this below).However,
the authors found no evidence of an association between air pollution and mortality and incor-
rectly accepted the null hypothesis of no association.That same year, Schwartz et al. (94) estimated
positive causal effects of PM2.5 on mortality by capitalizing on an instrumental variable approach
that used back trajectories of air masses over Boston for a six-year period as random instruments.
Back trajectories are the most likely estimated paths of air masses, assuming no dispersion in the
atmosphere.

In 2016, after randomized mouse studies had demonstrated that secondhand smoke has some
causal effect on long interspersed nuclear element 1 (LINE-1) methylation (104), and after an
air pollution–methylation association had been observed in observational studies (5), Chen et al.
(14) performed a causal mediation analysis within a randomized crossover trial and estimated a
mediated effect of air pollution on cardiovascular markers via a decrease in LINE-1 DNA hy-
pomethylation. A creative epidemiological study reported positive associations between exposure
to ambient air pollution and mortality using observational data in cows (19). The authors con-
cluded that these findings reinforce the evidence on the plausibility of the causal health effects
of air pollution exposures. Wang et al. (106) also quantified the causal effect of long-term PM2.5

exposure on mortality using a difference-in-difference approach. Briefly, this popular method in
economics estimates the causal effect of an intervention (e.g., pollution reduction in Boston) on
a time series outcome in a population (mortality in Boston at time t) by estimating the miss-
ing potential outcome of no intervention using, for example, the mortality at time t of a sim-
ilar city that did not implement the intervention (similar with respect to the outcome time
trend).

In 2017, Schwartz et al. (95) used an instrumental variable approach again and estimated pos-
itive causal effects of local air pollution (PM2.5 and black carbon) on mortality. The authors used
Granger causality to assess residual confounding. The combination of the height of the planetary
boundary layers and wind speed was used to construct the instrument for PM2.5, black carbon, and
NO2. The same year, Sheldon & Sankaran (97) performed a two-stage least squares analysis and
concluded that Indonesian fires caused an increase in acute respiratory tract infections and acute
conjunctivitis. Makar et al. (68) also estimated the causal effect of low-level PM2.5 on hospitaliza-
tion using inverse probability weighting (IPW), a method used in survey sampling. Briefly, IPW
used the estimated propensity score to create a hypothetical population in which the exposure
assignment can be assumed to be independent of the potential outcomes given the confounding
variables.

Cox et al. (23) used machine-learning methods to examine the causal link between short-term
exposure to air pollution and cardiovascular-related hospital admissions among older adults.Using
random forest and Bayesian network learning, the authors concluded with strong statements that
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geographic location, time, and temperature, but not PM2.5, caused cardiovascular-related hospi-
tal admissions, again accepting the null hypothesis when failing to reject it. Although the authors
claimed strong causal conclusions regarding the etiology of cardiovascular-related hospital admis-
sions, they also concluded in their article (23) that better causal modeling methods are needed to
better comprehend how reducing air pollution would affect public health.

Bind et al. (8) used quantile mediation analysis and found evidence that the association be-
tween air pollution and fibrinogen may be mediated by interferon-γ methylation, but only for
specific quantiles of the mediator and outcome distributions. In 2018, Fiorito et al. (39) designed
a nested case-control study and conducted regression-based mediation analysis in nonsmokers.
They concluded that the air pollution associations with cardio- and cerebrovascular disease are
mediated by oxidative stress and inflammation.That same year, Zigler et al. (113) also performed a
causal analysis to quantify the impact of US ambient air quality standard nonattainment on health
outcomes.

In 2018, Cole-Hunter et al. (18) conducted a repeated measures study and quantified associa-
tions between air pollution and cardiopulmonary outcomes in healthy adults using multivariate-
adjusted linear mixed-effect models. Air pollution exposure was estimated at the participant’s res-
idential and occupational addresses. The authors performed mediation analyses and reported that
occupational-address noise and residential greenness (but not physical activity) mediated the air
pollution–cardiovascular associations. It is trendy now to conduct scripted exposure studies to es-
timate causal relationship in environmental epidemiology. Recently, Sinharay et al. (98) conducted
a crossover study randomizing elderly participants to a two-hour walk either along Oxford Street
in London or in an urban park. The authors reported that walking in areas with high levels of
traffic pollution induced adverse cardiopulmonary effects (98).

2.5. The Analysis of Comparable Groups Makes a Comeback

Balancing strategies, such as matching (17), can help create similar groups with respect to impor-
tant background variables. The construction of comparable groups is now facilitated by modern
computing power and available software (51, 117). In the past few years, statistical analysis of com-
parable groups has become popular again in environmental epidemiology. In 2012, Moore et al.
(72) illustrated the use of causal models for realistic individualized exposure rules (CMRIER) that
generalize marginal structural models to study the effect of ozone on asthma-related hospital dis-
charge. In 2015, Schwartz et al. (94) estimated a positive causal effect of air pollution on mortality
using a quasi-Poisson model within deciles of the estimated propensity scores. In 2017, Baccini
et al. (1) assessed the short-term impact of PM10 (dichotomized at 40 μg/m3) on the total number
of attributable deaths in Milan using propensity score matching. The same year, Bind & Rubin
(6) argued that the obtainment of comparable groups is a necessary step before comparing health
outcomes between exposed and unexposed. Before comparing children’s lung function, the au-
thors illustrated how to use matching strategies to create two similar groups of children (similar
with respect to age, sex, height): one composed of children with smoking parents and the other
composed of children with nonsmoking parents. The effort to compare apples to apples is crucial
in nonrandomized settings to depart from association and to address causation (100).

The achievement of covariate balance should be presented before estimating causal effects in
both randomized and nonrandomized studies to convince journal readers and policy makers (8,
86). Transparent balance checks allow constructive discussions. If a reader disagrees with the au-
thor’s conclusion, for instance, because a variable was omitted from the statistical analysis, the
opportunity exists to consider that particular variable in the next analysis and to present the sub-
sequent results at the next debate.
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2.6. Centralized Management of Remote Systems Also Makes a Comeback

History also repeats itself in terms of computing management. Some investigators have departed
from decentralized computing of local systems to return to centralized management of remote
systems.With the recent availability or collection of big data in environmental health, researchers
need an adapted computing platform, such as cloud computing, to harness the burden of high-
dimensional statistics analyses in biomedical research.Griebel et al. (48) review the recent increase
in cloud computing in health care studies.

3. REGRESSION: WHAT ARE YOU IMPLICITLY IMPUTING?

3.1. The Possible Danger of the Implied Imputation

Most environmental studies have directly modeled the observed outcome eschewing, for instance,
the definition of a causal estimand as a function of the potential outcomes, the comparison of com-
parable groups, and the consideration of a joint model for the potential outcomes. This common
analysis strategy can be problematic when obtaining valid causal conclusions.

3.1.1. Causal inference: a missing data problem. Causal inference is inherently a missing
data problem (55). Therefore, researchers interested in quantifying causal effects must somehow
impute the missing potential outcome for each unit. Modeling the observed outcome as a func-
tion of covariates and Gaussian noise can be erroneous because it misses the essential concept of
causal inference (i.e., being a missing data problem). Interesting papers have showed differences
in estimates of causal effects in settings where (a) the exposure was randomized (gold standard
setting); (b) the exposure was not randomized and a regression was fitted using the observed expo-
sure, covariates, and outcome (63); and (c) a data set was reconstructed so that the exposure could
be assumed to be randomized given covariates (26). Not surprisingly, the estimated causal effects
of the first and third strategies were close. The third strategy has an implicit imputation of the
missing potential outcomes capitalizing on the pairing of matched units.

3.1.2. The need for defining a causal estimand, a conceptual stage, and a design stage.
Environmental epidemiologists need to ponder and lock several considerations before attempting
to address causal questions: for example, How would I proceed if I could conduct a randomized
experiment in the population of interest? What is the causal estimand? How can the nonrandom-
ized data be described as collected from a randomized experiment? How can I use subject matter
knowledge to choose the variables to balance? Which design strategy will be performed? Which
statistical method should be used to compare the balanced exposed and unexposed groups?

Posing the causal question and defining the causal estimands as functions of the potential out-
comes are needed (86). In 2014, Zigler & Dominici (114) argued for well-defined actions in terms
of potential outcomes in air pollution epidemiology. In 2016, Zigler et al. (116) argued for the
use of the potential outcome framework to examine the causal effect of air quality regulations on
long-term health effects.

It is evident that a conceptual stage in environmental epidemiology is also needed. In 2017,
Bind & Rubin (6) advocated for a multistage strategy (i.e., with conceptual, design, statistical,
and summary stages) to emphasize how critical the conceptual stage is to draw statistical conclu-
sions. In particular, the authors argued that p-values originating from analysis of observational
studies have no scientific validity without embedding the observational study into a plausible hy-
pothetical randomized experiment; that is, epidemiologists should state a plausible randomization
mechanism before calculating a p-value.
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Rubin (88) has promoted for decades a separation of the design stage from the analysis stage in
observational studies and illustrated his strategy in the context of the US tobacco litigation. Using
propensity scorematching, he created two comparable groups ofmale current smokers and ofmale
never smokers, blindly of any outcome data (88). Dominici & Zigler (34) have also discussed how
to evaluate the evidence of causality in air pollution epidemiology.The authors proposed criteria to
evaluate evidence of causality in environmental epidemiology: (a) What actions or exposure levels
are being compared? (b) Was an adequate comparison group constructed? and (c) How closely do
these design decisions approximate an idealized randomized study? Each of these three points can
be thought as arguing for the need to, respectively, define a causal question in terms of potential
outcomes, have a successful design stage, and have a plausible conceptual stage.

3.2. Causal Estimands

Researchers typically use standard regression to model the mean of the observed outcome, often
restricting themselves to the selection of a causal estimand that is not necessarily of scientific inter-
est (e.g., average causal effect). In environmental epidemiology, some evidence has shown that the
associations can be stronger at the tail of the observed outcome distribution (4). Instead, scientists
that impute the missing potential outcomes can choose causal estimands of interest because any
function of the potential outcomes (that have been imputed) can then be calculated.

3.3. Finite versus Super-Population Interpretation and Generalizability

The frequentist approach assumes that the units consist of a random sample from an infinite pop-
ulation, whereas the joint Bayesian model of [Y(0),Y(1)] assumes that randomness comes from the
exposure assignment and therefore does not extrapolate its conclusions to a population beyond
the finite sample. Imbens & Rubin (57) discussed technical differences between (a) the frequentist
linear regression using the observed outcome and (b) the Bayesian model of the joint distribution
of the potential outcomes [Y(0),Y(1)]. Regression coefficients and their confidence intervals esti-
mated by the former approach have a superpopulation interpretation, and in contrast, the posterior
mode and credible interval obtained by the latter strategy have a finite population interpretation.
They also compared the assumptions of both approaches. For example, the Bayesian model can
be more flexible because it does not automatically constrain the residual variance to be the same
in the exposed and unexposed groups.

The difference in interpretation between finite and superpopulation leads inherently to the
topic of generalizability. Although randomized clinical trials are optimal to address causality in
humans, study populations of observational studies are generally chosen such that they can be
generalizable to an entire population of interest. Besides, observational studies are often the only
ethical and feasible design to study health effects of multiple environmental stressors or pollu-
tants in humans. Consequently, causal modeling has an important role to play in environmental
epidemiology.

4. CAUSAL MODELING METHODS TARGETING ENVIRONMENTAL
HEALTH SCIENTISTS

4.1. Experimental Studies

Even though randomized experiments are the gold standard for addressing causality, in practice
they can also suffer from covariate imbalance if the randomization was not successful.To avoid this
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issue, Morgan & Rubin (73) proposed a rerandomization strategy to improve covariate balance
in experiments. Air pollution chamber studies have been conducted in humans and analyzed with
mixed-effectsmodels andwith paired t-tests that assumeGaussian asymptotic distributions (28, 29,
112). In randomized experiments, an actual randomization occurred and should be incorporated
into the statistical analysis.Combining Bayesian and randomization-based inferences, as suggested
by Bind & Rubin (6), could also be useful in human experimental settings with a small number of
units. Although expertise in causal inference is important when conducting experimental studies,
mastering classical insights of experimental design and essential concepts in causal inference is
particularly crucial when conducting observational studies in which the environmental exposure
mechanism is unknown and nonrandomized.

4.2. Estimating Main Causal Effects in Observational Studies

We present the most common methodological strategies that have been used to estimate the
main effects of an environmental exposure on a health outcome. Some epidemiological studies
attempted to tackle the confounding issue capitalizing on the fact that “association is causation in
the absence of confounding”; others have attempted to obtain a setting in which plausible impu-
tations of the missing potential outcomes can be performed. We now present the most common
approaches that have been used to estimate the main effects of an environmental exposure on a
health outcome.

4.2.1. Directed acyclic graphs. In 2011, Flanders et al. (40) constructed an indicator that de-
tected residual confounding in nonrandomized studies based on directed acyclic graphs (DAGs)
and capitalized on regression coefficients estimated with a future exposure variable. In 2012, be-
fore obtaining an association between NO2 exposure and increased risk of ischemic heart disease,
Beckerman et al. (3) constructed a fairly comprehensive DAG to identify potential confounders,
such as socioeconomic status (see Figure 2). In 2015, Weisskopf et al. (107) used DAGs to argue

NO2

O3

PM2.5

SES Smoking

IHD

Gender
Diabetes

Buffer

Age

Figure 2

Example of a directed acyclic graph (DAG) in environmental epidemiology. Figure adapted from Beckerman
et al. (3). Abbreviations: IHD, ischemic heart disease; PM2.5, particulate matter with a diameter of 2.5 µm or
less; SES, socioeconomic status.
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that the air pollution–autism association was not confounded by time-invariant factors and con-
cluded that the causal association between air pollution and autism was increasingly compelling.

4.2.2. Propensity score. Because the exposure mechanism is unknown in observational studies,
researchers have attempted to estimate the distribution of the exposure. The propensity score is
the probability of a unit to be assigned to a particular exposure level given a set of covariates.
Matching units with respect to their estimated propensity score has been a successful strategy to
obtain balanced groups (88). In 2017, Baccini et al. (1) argued for this approach to address causality
in environmental epidemiology because it does not require any modeling of the confounder–
outcome relationship nor does it require model extrapolation.

4.2.3. g-methods. Instead of modeling the observed exposure, covariates, and outcome, the g-
estimation method models the potential outcomes under no exposure as a function of observed
exposure, covariates, and outcome (79, 84). Using this method,Moore et al. obtained a nonsignif-
icant estimate of the effect of ozone reductions on the proportion of asthma-related hospital dis-
charges (72).

4.2.4. Mendelian randomization. Mendelian randomization relies on the principle that if a
genetic variant has an effect on an environmentally modifiable exposure that itself has an effect on
a disease, then this genetic variant should also be related to the disease. Relton&Davey Smith (83)
suggest that there is a potential for several applications in environmental epidemiology because
DNA methylation has been associated with environmental exposures such as smoking, drinking,
arsenic, and ambient air pollution.

4.3. Methods Adapted from the Field of Economics

Environmental health studies that reported causal main effects also used causal methods that
emerged in economics.

4.3.1. Granger causality. In contrast with its name, the Granger causality approach is not a
proper causal inference method in the sense that it focuses on prediction and does not focus on the
imputation of the missing potential outcomes. The approach consists of testing whether one time
series can be used to predict another. In 2015, Farhani & Ozturk (37) were interested in testing
the environmental Kuznets curve (EKC) hypothesis, which postulates an inverted-U-shaped rela-
tionship between different pollutants and per capita income. The authors used an auto-regressive
distributed lag approach with Granger causality models to examine the causal relationship be-
tween CO2 emissions, real gross domestic product, energy consumption, financial development,
trade openness, and urbanization in Tunisia (37). In 2018,Chen et al. (13) used amodifiedGranger
causality test and generalized autoregressive conditional heteroscedastic (GARCH) models to ex-
amine the causal relationship between ambient fine particles and human influenza in Taiwan. In
2018, Jiang & Bai (60) conducted a Granger causality test to assess whether the air pollution con-
centration of a given Chinese city was affected by air pollution from neighboring cities.

4.3.2. Difference in differences. As mentioned in Section 2.4, difference-in-difference
estimators can be used to estimate causal effects on mortality at time t > T0 in the
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population of Boston of a pollution reduction intervention that occurred at time T0 de-
fined as τBoston, t = Ei∈Boston[Mi, t (intervention = 1) −Mi, t (intervention = 0)], for t > T0. Obviously,
Mi, t (intervention = 0) is a nonmeasurable potential outcome but can be estimated using the mor-
tality of another similar city at time t (similar with respect to outcome time trend). Wang et al.
(106) applied this approach and estimated the causal effects of long-term exposure to PM2.5 on
mortality in New Jersey using covariate-adjusted regression models.

4.3.3. Regression discontinuity. The regression discontinuity approach consists of studying
the effect of an exposure (dichotomized at a certain threshold) on an outcome; that is, two groups
of units are defined by their exposure level being either below or above a threshold. Units that
are close to the threshold can be assumed to be very similar and as if they would have been ran-
domized to one side or the other (102). This approach capitalizes on this approximated random-
ization to compare outcomes between units that are close to the threshold but on either side. In
2017, Ebenstein et al. (36) used the regression discontinuity design to estimate the effect of PM10

on life expectancy in China using the Huai River as the threshold, also known as the boundary
variable.

4.4. Intermediate Variables

Variables in the causal pathway between the exposure and outcome variables are often called in-
termediate or mediator variables. In practice, it is advised not to directly adjust for intermediate
variables in regression analysis to estimate unbiased main effects. However, the mediated effect
has been of interest in environmental health.

4.4.1. Principal stratification. Methods using instrumental variable are particular cases of prin-
cipal stratification, which considers an intermediate variable (in the sense of posttreatment vari-
able) in the statistical analysis (41).Zigler et al. (115) used principal stratification to “examine causal
effects of a regulation on health that are and are not associated with causal effects of the regulation
on air quality.” Hackstadt et al. (50) also used principal stratification in a randomized air cleaner
intervention trial to examine the extent to which an effect of an environmental intervention on
health outcomes coincides with its effect on indoor air pollution.

4.4.2. Mediation. In 2016, Bind et al. (7) derived mediation formulae for examining the me-
diated effect of exogenous exposures, such as air pollution. The authors illustrated the method
by estimating the mediated effect of two environmental exposures, air pollution and temperature,
on the intercellular adhesion molecule 1 (ICAM-1) via a change in ICAM-1 DNA methylation.
In 2017, Balte et al. (2) conducted a path analysis using linear mixed-effects models to examine
the causal pathways among prenatal and childhood factors that impact lung function later. Path
analysis is used to describe dependencies among variables and can be viewed as a special case of
structural equation modeling. In 2018, Cole-Hunter et al. (18) conducted a regression-based me-
diation analysis to examine occupational-address noise, residential-neighborhood greenness, and
total daily physical activity as possible mediators in the association between PM10 exposure and
cardiopulmonary outcomes. The same year, Hüls et al. (56) also conducted a regression-based
mediation analysis and concluded that the association between air pollution and impairment in
visuoconstruction performance (a measure of cognitive function) was mediated by lung function.
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5. THE FUTURE OF CAUSAL MODELING IN ENVIRONMENTAL
HEALTH

5.1. Examples of Outcomes Associated with Environmental Exposures
for Which Epidemiologists Need to Address Causality

In 2018, in the context of environmental exposure effects on autism, Hertz-Picciotto et al. (53)
discussed whether evidence from observational associations permits causal inference. Also in 2018,
Lu et al. (67) associated air pollution with criminal and unethical behaviors using a 9-year panel
of more than 9,000 US cities and conducted a psychological experiment to validate their findings.
Examining causal links between air pollution exposures and complex and still poorly understood
health outcomes, such as autism,multiple sclerosis, Parkinson’s disease, and types of dementia may
be the next challenge for environmental epidemiologists.

5.2. Big Data

In 2012, Padula et al. (76) quantified the causal effects of exposure to traffic-related air pollution
on birth weight using machine learning and targeted maximum likelihood estimation (TMLE),
which, instead of minimizing variance or mean square errors, targets the maximum likelihood
estimate but in a way that reduces bias. In 2013, Diaz & van der Laan (30) proposed to use in-
verse probability of treatment weighted (IPTW), augmented IPTW (a doubly robust estimator),
TLME, and stochastic interventions to assess causality. In 2014, Mauderly and coauthors (70,
71) performed a multiple additive regression tree analysis in a multipollutant air quality study
in rodents. In 2017, Oulhote et al. (74) combined ensemble learning (i.e., SuperLearner) and g-
computation to estimate the effect of chemical mixtures. In 2018,Golan et al. (44) discussed the big
data paradigm. In their paper, they performed regression-based analyses and provided association
estimates between environmental exposures and fetal growth. In 2017, Cox et al. used (a) non-
parametric models to avoid model misspecification and (b) ensemble modeling that averaged over
several model results. This strategy has become popular because it can yield estimates with lower
bias and variance (24). Comprehending the statistical properties of black box machine-learning
methods is currently an area of intense research and should lead to a better understanding of
which machine-learning methods to use in various causal inference settings.

5.3. Computational Power

Computers have become increasingly more powerful, leading to the possibility of returning to
exact causal inference instead of relying on asymptotics and modeling (78). As stated before, com-
bining Bayesian modeling with Fisherian exact inference (8) is now possible by harnessing greatly
improved computational power. Monte Carlo methods can now be used to compute in parallel
posterior distributions of more complex causal estimands.

Because of the emergence of approximate solvers in the past decade, existing solutions for
the old Monge–Kantorovich mass transportation problem can now be computed efficiently for
large data sets (78). In special cases, the Monge–Kantorovich problem is equivalent to the opti-
mal matching problem. In 2012, Rosembaum proposed to perform combinatorial optimization
and to use linear programming methods for optimal matching in causal inference (85). Software
is now available to perform the task (51, 117). Focusing on optimal balanced data sets may not
be as optimal for addressing causality in observational studies, and the statistical analyses of com-
bined nonoptimal matched data sets may provide better statistical properties such as coverage and
efficiency.
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6. CONCLUSION: WHY SHOULD YOU WORRY ABOUT CAUSATION
VERSUS ASSOCIATION?

Important concepts of experimental design and causal inference are needed for readers of envi-
ronmental epidemiology to evaluate the quality of papers and for epidemiologists to address causal
questions with success. Because of the lack of randomization, significant results from observational
studies should always be interpreted and evaluated with caution. In practice, the ignorability as-
sumption is often strong and unrealistic. Sensitivity analyses, such as tipping point analyses, should
be performed. Reproducibility of the findings, especially from observational studies, is also essen-
tial for causal inference modeling to draw conclusions, to intervene, and to change policies. In ad-
dition to learning regression models, environmental scientists should be trained in experimental
and quasi-experimental designs, as well as essential concepts of causal inference. Although there is
a need to address causality in environmental epidemiology, additional issues should be tackled. For
example, before considering causal modeling, environmental scientists should address the issues
of missing data (e.g., perform multiple imputation of the missing values, sensitivity analyses such
as tipping point analyses), measurement error, model selection, loss to follow-up, time-varying
confounding, multiple testing, and reproducibility. Researchers should also consider only models
that were predetermined in protocols avoiding the issue of p-value hacking during the model se-
lection phase. For decades, environmental epidemiology has focused on observational designs, and
therefore their findings suffered from the fact that association is not causation. Implementing the
multistage causal strategy coupled with interdisciplinary collaborations will be crucial to address
the next century’s challenges in environmental epidemiology.
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