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Abstract

DNA methylation is the most well studied of the epigenetic regulators in re-
lation to environmental exposures. To date, numerous studies have detailed
the manner by which DNA methylation is influenced by the environment,
resulting in altered global and gene-specific DNA methylation. These stud-
ies have focused on prenatal, early-life, and adult exposure scenarios. The
present review summarizes currently available literature that demonstrates a
relationship between DNA methylation and environmental exposures. It in-
cludes studies on aflatoxin B1, air pollution, arsenic, bisphenol A, cadmium,
chromium, lead, mercury, polycyclic aromatic hydrocarbons, persistent or-
ganic pollutants, tobacco smoke, and nutritional factors. It also addresses
gaps in the literature and future directions for research. These gaps include
studies of mixtures, sexual dimorphisms with respect to environmentally as-
sociated methylation changes, tissue specificity, and temporal stability of the
methylation marks.
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INTRODUCTION

The Epigenome: An Overview

Epigenetic machinery influences gene expression [messenger RNA (mRNA)] and subsequent
protein expression levels but does not alter primary DNA sequence (83). In this way, epigenetic
regulation allows for an immediate organism-level adaptation to the environment (176). Three
major epigenetic regulators have been described. These include histone modifications, cytosine-
phosphate-guanine (CpG) DNA methylation, and noncoding RNA expression (83). This review
details studies on DNA methylation alterations in humans assessed in relation to prenatal en-
vironmental exposures, as well as studies of chronic adult exposure. We describe the state of
the literature on environmental triggers for CpG methylation in human populations. We also
highlight current gaps in research and future areas for study (see the sidebar titled Terms and
Definitions for further explanation of terms used throughout this article).

DNA Methylation

DNA methylation is the addition of a methyl group at the fifth carbon position of the cyto-
sine base (Figure 1). Typically, 5-methylcyotine (5-mC) bases are often proximal to guanine,

TERMS AND DEFINITIONS

Alu methylation: a measure of global methylation at Alu transposable elements
CpG: cytosine-phosphate-guanine
CpG methylation: addition of a methyl group to a cytosine at the 5′ position
mC: a methyl (-CH3) mark added to the 5′ position of cytosine
hmC: a hydroxymethyl (-HOCH3) mark added to the 5′ position of cytosine; the first step in the active demethy-

lation process
fmC: a formylmethyl mark added to the 5′ position of cytosine; the second step of the active demethylation

process
cmC: a carboxymethyl mark added to the 5′ position of cytosine; the final step of the active demethylation process
CpG loci: specific locations within the genome at which methylation of cytosine is altered
DNA: deoxyribonucleic acid; the carrier of the genetic code
DNA methylation: an epigenetic mark where a methyl group is added to the 5′ position of cytosine
DNMT: DNA methyltransferase; the enzyme family responsible for DNA methylation
In utero: prenatal
In vitro: experiments conducted in cell culture
In vivo: experiments conducted in live animals
LC/MS methylation: a measure of global methylation using liquid chromatography/mass spectrometry
LINE-1 methylation: a measure of global methylation utilizing methylation patterning at long interspersed

nuclear elements (LINEs)
mRNA: messenger RNA, also called transcript or gene expression
RNA: ribonucleic acid; the copy of DNA that is used to create proteins
SAM: S-adenosylmethionine; the substrate needed for DNA methylation
TDG: thymine-DNA glycosylase; the primary enzyme responsible for removal of fmC and cmC
TET: ten-eleven translocation protein; the enzyme family responsible for active DNA demethylation
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Figure 1
The diagram depicts the process of DNA methylation, namely the addition of a methyl group at the fifth
carbon position of the cytosine base. The process of adding methyl groups to cytosine is carried out by the
DNA methyltransferase (DNMT) enzyme family. As well as the process of the addition of methyl groups to
DNA, there is also a process of active demethylation. This process is mediated by the ten eleven
translocation (TET) enzyme family. Active demethylation is a multistep process whereby 5-methylcytosine
is converted to 5-hydroxymethylcytosine (5-hmC), which is converted to 5-formylcytosine (5-fC) and finally
5-carboxylcytosine (5-caC). This process readies the sites for thymine-DNA glycosylase (TDG) to remove
both 5-fC and 5-caC. Additional abbreviations: BER, base excision repair; OG, oxoglutarate; SAH,
S-adenosyl-L-homocysteine; SAM, S-adenosyl-L-methionine.

i.e., CpG methylation, and occur within regions of the genome with a high cytosine-guanine
(CG) content. These high CG content regions are often referred to as CpG islands. Sequences
immediately flanking and up to two kilobases away from the islands are known as shores. The pro-
cess of adding methyl groups to cytosine is carried out by the DNA methyltransferase (DNMT)
enzyme family. This addition requires the cofactor S-adenosylmethionine (SAM). Within this
family of enzymes, three are responsible for catalyzing the reactions of CpG methylation, namely
DNMT3A, DNMT3B, and DNMT1 (92). DNMT3A and DNMT3B are responsible for de novo
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methylation, e.g., methylation at sites that were not previously methylated (92). DNMT1 is pri-
marily a maintenance methyltransferase, responsible for maintaining methyl marks during the
mitotic process (92). In this way, the DNMT enzyme family adds and maintains CpG methyla-
tion across the genome.

Methyl groups can be actively removed (demethylated) from DNA, as well as added
(Figure 1). The process of demethylation is mediated by the ten-eleven translocation (TET)
enzyme family (106). Active demethylation is a multistep process characterized first by the con-
version of 5-methylcytosine to 5-hydroxymethylcytosine (5-hmC) (106). Subsequently, 5-hmC is
converted to 5-formylcytosine (5-fmC) and finally 5-carboxylcytosine (5-CmC) (106). This pro-
cess readies the sites for thymine-DNA glycosylase (TDG) to remove both 5-fmC and 5-CmC
(106). Active demethylation of the genome has been implicated as a regulatory feature that is
responsible for fine-tuning CpG regulatory methylation marks.

Global DNA Methylation

Both active methylation and demethylation are responsible for creating and maintaining the CpG
methylation patterns across the genome. The TET and DNMT enzymes are active during early
development and also remain active throughout the life course (92, 106). Large-scale alterations
of processes governing methylation, due to environmental exposure, nutritional status, or dis-
ease, are generally associated with global losses or gains of methylation particularly in early de-
velopment (92). Specifically, alterations of methylation have been associated with differences in
functional consequences on chromatin structure and gene expression (92). Global measures of
methylation are often assessed using technologies such as LINE1, liquid chromatography–mass
spectrometry (LC/MS), and Alu methylation (92). Global loss of methylation is generally as-
sociated with genomic instability and is a common phenotype of aging and cancer (56, 196).
Conversely, gains in global levels of methylation, specifically in the placenta, have been associ-
ated with developmental defects, including down syndrome and gestational diabetes (91, 156).
Together these show the importance of the balance of DNA methylation as it pertains to human
health.

Gene-Specific Methylation

Current technologies enable the assessment of site-specific methylation, in addition to global
methylation. Results of these studies have provided key insights into disease development and
susceptibility because they allow for a focused study of potentially causal marks (92). For example,
in the landmark Agouti mouse study that examined the effects of environmental contaminants
and nutritional supplementation on methylation profiles, investigators demonstrated that meth-
ylation of the agouti coat color gene, as well as nine other CpG loci, are linked to adult health and
disease susceptibility (46). Similar to global methylation, gene-specific alterations in methylation
patterning have been linked to environmental exposures, especially those that occur during the
prenatal period (125, 161, 189). The study by Heijmans et al. (71) was the first in a human popu-
lation to show that alteration of methylation at a single gene locus resulted in changes to disease
susceptibility and adult outcomes. The researchers investigated the impacts of prenatal exposure
to famine during the Dutch Hunger Winter on insulin growth factor 2 (IGF2) methylation. This
methylation was associated with lowered birth weight and a predisposition to obesity and adverse
metabolic health outcomes later in life (189). These data suggest that alterations to DNA methyl-
ation that occur during the prenatal window result in later-life disease, supporting the underlying
developmental origins of health and disease hypothesis (189).
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Figure 2
Diagram of the transcription factor occupancy theory. This hypothesis posits that presence or absence of
transcription factors on the DNA denies or allows access to the DNA methylation machinery. In this way,
transcription factors triggered by environmental exposure may influence the observed site-specific patterns
of methylation. (a) Activation of transcription factors in response to an environmental contaminant as a
mechanism of cellular defense/adaptation. The binding of the transcription factor may inhibit DNA
methyltransferase (DNMT) from accessing the DNA for methylation of a particular gene, resulting in
gene-specific hypomethylation. (b) Repression of transcription factors in response to an environmental
contaminant. The lack of the transcription factor binding may allow DNMT access to particular genomic
locations, resulting in gene-specific hypermethylation. Adapted from Martin & Fry 2016 (125). Additional
abbreviations: TF, transcription factor; TSS, transcription start site.

Mechanisms Underlying Gene-Specific Alterations

Two often described hypotheses have been proposed to underlie environmental-induced effects
on the global changes in DNA methylation. First, evidence has demonstrated the direct action of
environmental chemicals on the function of DNMT and TET enzyme families. Second, evidence
has also shown that chemicals may change the availability of SAM. Still, what drives gene-specific
DNA methylation patterns is less clear. One hypothesis is the transcription factor occupancy
theory, which proposes that presence or absence of transcription factors on the DNA denies or
allows access to the DNA methylation machinery (125, 202). In this way, transcription factors trig-
gered by environmental exposure may influence the observed site-specific patterns of methylation
(Figure 2).

ENVIRONMENTAL TRIGGERS FOR DNA METHYLATION
ALTERATIONS

Here, we detail numerous environmental triggers that have been associated with either global
or site-specific DNA methylation alterations. Chemical exposures are the most widely studied
class of environmental triggers of methylation, but nutritional status is another important factor.
The studies summarized here represent currently available evidence demonstrating a relationship
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between exposure to a contaminant and alteration of methylation. The studies have assessed both
global and gene-specific alterations to methylation and assessed the impacts of exposure during
the prenatal period and chronic exposure. In addition, many of the exposures described result
in alterations of genes related to specific biological pathways of interest. They include aflatoxin
B1, air pollution, arsenic, bisphenol A, cadmium, chromium, lead, mercury, polycylic aromatic
hydrocarbons, persistent organic pollutants, tobacco smoke, nutritional factors, and nonchemical
stressors (Table 1).

Table 1 Summary of exposures assessed within this review

Exposures Global methylation
Gene-specific
methylation

Exposure-associated
health impact Relevant citations

Aflatoxin B1 Hypomethylation associated
with exposure

71 CpG sites
associated with
prenatal exposure

Hepatocellular
carcinomas, reduced
growth, immune
deficiencies

73, 75, 185, 197

Air pollution Hypomethylation typically
associated with exposure in
adults, prenatal exposure is
associated with both hypo-
and hypermethylation

MAPK pathway
members, ACE,
iNOS, ICAM-1,
TLR2, IL-6, TET1

Accelerated lung aging,
loss of lung capacity,
asthma, bronchitis,
emphysema, and cancer

19, 20, 28, 31, 32, 36,
39, 44, 45, 63, 69, 79,
87, 88, 98, 112, 120,
165, 168, 183

Arsenic Hypomethylation associated
with exposure with
sex-specific directionality
shown as well

KCNQ1, SQSTM1,
sex-specific profiles

Cancer lung conditions
and diabetes in adults;
prenatal exposure is
associated with
increased incidence of
infection,
neurocognitive effects,
and increased neonatal
mortality

2, 6, 9, 13, 15, 29, 33, 34,
47, 50, 54, 65, 76, 77,
84, 97, 105, 110, 121,
136, 137, 151–153,
155, 159, 177, 184, 199

Bisphenol A Hypomethylation associated
with exposure in females,
potential nonmonotonic
dose responses

SNORD, SULT2A1,
COMT

Neurocognitive effects,
increased incidence of
cancer, and heart
conditions from
prenatal exposure

52, 53, 70, 99, 133, 134

Cadmium Hypomethylation associated
with exposure

DNMT1 Cancer, lung, bone, and
kidney disease,
developmental toxicity

51, 70, 78, 103, 129,
169, 170, 187, 188

Chromium Hypermethylation
associated with exposure

Not assessed at
present

Cancer 3, 192

Lead Not assessed at present Alterations in
imprinted genes,
sex-specific
response

Neurotoxicity,
developmental toxicity

64, 70, 114, 138,
172–174

Mercury Not assessed at present EMID2, sex-specific
profiles

Neurotoxicity 14, 34, 35, 62, 70, 119

Polycyclic aromatic
hydrocarbons

Hypomethylation associated
with exposure

HIN1, ESR1,
TWIST1

Cancer 48, 72, 74, 101, 112,
146, 149, 194, 195, 198

(Continued)
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Table 1 (Continued)

Exposures Global methylation
Gene-specific
methylation

Exposure-associated
health impact Relevant citations

Persistent organic
pollutants

Nonmonotonic association
with exposure

IGF2, TNF-α,
NR3C1

Various health effects 40, 71, 82, 100, 116,
128, 141, 162, 201

Tobacco smoke Hypomethylation associated
with exposure

AHRR, CNTNAP2,
MYO1G

Cancer, developmental
toxicity, cardiovascular
disease, chronic
respiratory conditions

26, 27, 37, 55, 67, 86,
89, 94, 118, 148, 157,
175, 181, 182

Nutritional factors Hypermethylation
associated with exposure

IGF2, RXR-α,
PLAG1

Proper development 1, 17, 22, 23, 71, 93,
126, 131, 142, 154

Nonchemical
stressors

Not assessed at present BDNF, IGF2 Various health effects 7, 24, 66, 102, 117, 135,
139, 180

Abbreviations: ACE, angiotensin-converting enzyme; AHRR, aryl hydrocarbon receptor repressor; BDNF, brain-derived neurotrophic factor; CNTNAP2,
contactin-associated protein-like 2; COMT, catechol-O-methyltransferase; CpG, cytosine-phosphate-guanine; DNMT1, DNA methyltransferase; EMID2,
collagen type XXVI alpha 1 chain; ESR1, estrogen receptor 1; HIN1, high in normal-1; ICAM-1, intercellular adhesion molecule 1; IGF2, insulin growth
factor 2; IL-6, interleukin 6; iNOS, nitric oxide synthase; KCNQ1, potassium voltage-gated channel subfamily Q member 1; MAPK, mitogen-activated
protein kinase; MYO1G, myosin IG; NR3C1, nuclear receptor subfamily 3 group C member 1; PLAG1, PLAG1 Zinc Finger; RXR-α, retinoid X receptor
alpha; SNORD, small nucleolar RNA; SQSTM1, sequestosome 1; SULT2A1, sulfotransferase family 2A member 1; TET1, tet methylcytosine dioxygenase;
TLR2, toll-like receptor 2; TNF-α, tumor necrosis factor alpha; TWIST1, twist family BHLH transcription factor 1.

Aflatoxin B1

Aflatoxin B1 (AFB1) is a mycotoxin that can contaminate foods such as peanuts, grain, and corn
(185). It is one of the most potent hepatic carcinogens and is known to induce specific DNA lesions
leading to subsequent mutation and resulting in hepatocellular carcinoma (197, 200). Interestingly,
hepatocellular carcinomas are known to have altered DNA methylation profiles, so investigation
of AFB1 as an epimutagen has been of interest (197, 200). To this end, studies showed that adults in
two separate Taiwanese populations who were exposed to AFB1 had lower levels of methylation in
white blood cells (197, 200). These results are consistent with broader findings in cancer biology
that suggest that genomic instability is a hallmark of cancer. In line with this proposition, the
authors suggest that epigenetic alterations may provide an accurate way to assess cancer risk in
AFB1-exposed populations. In addition to chronic exposure and global measures, researchers have
assessed gene-specific alterations in DNA methylation in response to prenatal AFB1 exposure in
Gambia. A total of 71 CpG sites related to immune response and growth factors were identified
to be altered in association with AFB1 in white blood cells (73). These data suggest that reduced
growth and immune deficiencies associated with prenatal AFB1 exposure could be mediated by
methylation (185), but more research is needed to understand the impacts of AFB1-associated
methylation on a wider range of health effects.

Air Pollution

Air pollutants include a broad array of different environmental exposures, including particulate
matter (PM) of various sizes and composition, ozone, nitrogen oxides, sulfur oxides, carbon monox-
ide, diesel exhaust fumes, and a wide variety of toxic chemicals such as benzene. In addition to
these specific contaminants, broader descriptors such as urban development and traffic-related air
pollution are commonly used to classify exposure in the field. These studies emphasize the effects
of toxic air pollutant mixtures on the epigenome. For example, Carmona et al. (36) showed that
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alterations in blood DNA methylation levels of the mitogen-activated protein kinase (MAPK)
pathway are associated with exposure to generalized measures of air pollution in human popu-
lations. Furthermore, Bind et al. (19) demonstrated that exposure to air pollutants can result in
functional changes to blood-based measures of protein expression and that altered DNA methyl-
ation may be indicative of susceptibility to these changes.

In addition to studies of general air pollutants, specific air pollutants have been a subject
of interest. The constituents of the different types of air pollution, such as the composition
of PM or ozone content, likely impact the observed relationship with gene-specific methyla-
tion patterns (31, 79). However, in adults, different constituents and pollution types are gener-
ally associated with global hypomethylation (12, 18, 44, 45, 69, 120). More recent studies have
sought to differentiate the effects of hmC from mC and found that PM smaller than or equal to
10 microns in length (PM10), PM smaller than or equal to 2.5 microns in diameter (PM2.5), and
elemental composition of PM are associated with 5hmC but not with 5mC (168). PM2.5 expo-
sure is associated with decreased methylation of the angiotensin-converting enzyme (ACE) gene
(190), the nitric oxide synthase (iNOS) gene (98, 166), and hypermethylation of the mitochondrial
genome (32), providing a potential mechanistic link between elevated blood pressure and PM ex-
posure. Additionally, coagulation factor II (F2), intercellular adhesion molecule 1 (ICAM-1), and
toll-like receptor 2 (TLR-2) display hypomethylation in association with air pollution constituents,
and interferon gamma (IFN-γ ) and interleukin 6 (IL-6) are associated with hypermethylation (20).
Of great interest is the finding that traffic-related air pollution can influence methylation at the
tet methylcytosine dioxygenase 1 (TET1) gene, a key enzyme in DNA demethylation, resulting in
changes to gene expression (178).

Prenatal exposure to air pollution appears to differentially affect methylation patterns depend-
ing on the developmental window of exposure. Specifically, exposure during the first trimester is
associated with decreased LINE-1 methylation, whereas exposure later in pregnancy is associated
with increased LINE-1 methylation (28, 88). In addition to these global measures, researchers
have investigated the relationship between pollutants and gene-specific methylation. For exam-
ple, prenatal exposure to airborne vanadium has been linked to alteration of DNA methylation in
genes interleukin 4 (IL-4) and INF-γ (95). Prenatal exposure to PM2.5 has been associated with
hypomethylation of the leptin gene (165), sites around poly(ADP-ribose) polymerase 1 (PARP1)
promoter (4), and the mitochondrial genome (87). In addition to these findings, untargeted analy-
ses of the genome have revealed associations between prenatal air exposure and CpG methylation
related to xenobiotic metabolism and oxygen and gas transport (63). In utero exposure to diesel
exhaust and allergens has been linked to alterations in CpG methylation related to cell adhesion,
protein metabolism, and vascular development (39). DNA methylation alterations accumulated
later in life that are associated with air pollution found in peripheral blood do not appear to be sta-
ble, as compared with those accumulated during the prenatal period and during childhood, which
do appear to be stable (183). Taken together, these data suggest the potential for developmental
reprogramming of the epigenome with respect to in utero air pollution.

Arsenic

Arsenic exposure is currently impacting the lives of hundreds of millions around the globe (38).
Arsenic has been associated with altered methylation patterns in both chronically exposed adults
and prenatally exposed infants. Global measures of methylation in blood samples from adults,
children, and infants exposed in utero have been negatively associated with increased arsenic
exposure. These data support the role of arsenic in global hypomethylation (15, 76, 84, 97, 110).
In contrast with these studies, some have demonstrated that arsenic exposure is associated with
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global hypermethylation (121, 136, 153), including one study conducted in children (2), and
another focused on CD-4-positive T cell profiling (50). More recent studies have demonstrated
that arsenic is associated with global methylation changes in a sex-dependent manner. Two studies
of cord blood from prenatally exposed infants in Bangladesh found a positive association between
methylation and arsenic exposure in male infants and a negative relationship between methylation
and arsenic exposure in female infants (137, 152). Furthermore, studies in adults have shown
that female adults display an inverse relationship between exposure and LINE-1 methylation, but
males display a nonsignificant relationship (76). In addition to sex dependence, emerging research
is focusing on differentiating the effects of arsenic on hmC and mC. At present, a single study from
a US-based cohort found that both blood profiles of hmC and mC displayed negative correlations
in association with arsenic (184).

In addition to studies of global methylation, numerous studies have been conducted on gene-
specific DNA methylation alterations in adults chronically exposed to arsenic (9, 13, 155, 177, 199),
as well as infants exposed to arsenic in utero (29, 33, 34, 65, 105, 159). The majority of these studies
have assessed methylation patterns in blood; however, two studies have assessed the relationship
between exposure and methylation in potential target tissues: placenta (33, 65) and exfoliated
urothelial cells (155). In addition, one study has examined the relationship between methylation
and gene expression, suggesting that not all methylation marks have functional consequences
(159). Additionally, there is no overlap among the genes that have been identified as targets of
arsenic exposure in utero (8, 125) and those identified in adults (8). The majority of these studies
have found that most of the loci are hypermethylated in association with arsenic (6). These studies
have implicated genes that influence arsenic-associated birth and health outcomes. As a specific
example, methylation of potassium voltage-gated channel subfamily Q member 1 (KCNQ1) has
been associated with lower birth weight (159). Methylation of p16 and p53 has been associated with
various cancers (77, 84), and altered sequestosome 1 (SQSTM1) methylation has been associated
with diabetes (9). As detailed in this section, the current body of epigenetic literature focused on
arsenic exposure includes assessment of the impacts of sex, functional consequence, and tissue
specificity on DNA methylation response. Taken together these studies suggest that arsenic-
associated methylation may result in genomic instability and may play a role in arsenic-associated
disease development in the context of both prenatal and chronic exposure.

Bisphenol-A

Bisphenol A (BPA) is an endocrine-disrupting chemical of public health concern because of its
ubiquitous exposure and accumulation in the environment (42). Given the unclear nature of the
health effects and dose–response relationship, BPA has been an area of active investigation. In stud-
ies of blood-based methylation alterations, it appears that BPA induces hypomethylation in women
(70) and in young girls (99); however, its effects in males are unclear. Further complicating the
study of DNA methylation and BPA exposure, fetal liver methylation alterations associated with
prenatal exposure to BPA display a nonmonotonic association with BPA level (53). In gene-specific
analyses of CpG methylation as it relates to prenatal BPA exposure, altered methylation patterns
were observed in diverse tissues, including placenta, fetal liver and fetal kidney. Among the differ-
entially methylated loci associated with BPA were the small nucleolar RNA (SNORD) complex of
genes (53), sulfotransferase family 2A member 1 (SULT2A1), and catechol-O-methyltransferase
(COMT ) (133). Methylation patterning associated with BPA may be specific to different tissue
types (134). Generally, BPA has also been shown to induce hypomethylation of CpG targets on
the X chromosome (99) and alter methylation associated with immune function, transport activ-
ity, and metabolism (52, 53, 99, 133, 134). Taken together, the present evidence supports sexual
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dimorphism and a nonmonotonic dose response of DNA methylation associated with BPA, re-
sulting in a need for more research to understand the complicated functional consequences of
BPA-associated DNA methylation alterations.

Cadmium

Cadmium exposure is of concern because it has a long half-life, ranging up to three decades, and is
associated with numerous health effects, including kidney dysfunction, pregnancy and reproductive
disorders, developmental toxicity, and cancer (170). Additionally, exposure is of concern because
it accumulates in the bones over an individual’s life course and is released during pregnancy. This
phenomenon magnifies prenatal exposure to cadmium and increases risk for cadmium-associated
pregnancy disorders (170). In general, cadmium has been inversely associated with blood-based
measures of LINE-1 methylation in women from the Argentinean Andes (78) and in prena-
tally exposed infants from the United States (22). More specifically, cadmium has been linked to
blood-based methylation alterations in key genes related to DNA methylation machinery, includ-
ing DNMT1, observed in adult cohorts in Thailand and Argentina (78, 188). Prenatal cadmium
exposure in a US-based cohort has been associated with alterations in placental methylation that
could drive observed differences in fetal growth (51). Exposure to cadmium has also been as-
sociated with sex-specific differences in methylation alterations, and a subset of the marks are
associated with alterations in birth size (103, 129, 187). In addition to focusing on either maternal
or fetal outcomes, one US-based study looked at cadmium-associated DNA methylation patterns
in both infants and their mothers. The study found that cadmium-associated methylation profiles
in the infants differed from those in the mother (169). Taken together, specific gene targets of
epigenetic dysregulation by cadmium could provide a basis for understanding cadmium-associated
reproductive effects.

Chromium

Chromium, specifically hexavalent chromium, is a known carcinogen (30). Unlike most toxic met-
als, it is known to form mutagenic lesions (30). In addition, in contrast with most metals whereby
the carcinogenic effects are derived primarily from exposure through ingestion, chromium is pri-
marily an inhaled carcinogen; limited evidence suggests carcinogenicity through ingestion routes
(30). A study of workers occupationally exposed to chromate showed increased accumulation in
peripheral red blood cells (192). Chromate was also associated with DNA hypomethylation, a
hallmark of cancer (192). The authors suggest that this association may be due to an interplay be-
tween chromate and folate, a donor to the SAM pool (192). The study suggests that chromate may
also be able to induce folate deficiency in conjunction with its action as a direct mutagen, increas-
ing its carcinogenic properties. In a separate cohort, lung cells from chromate-exposed workers
who developed lung cancer were associated with aberrant methylation patterns that differed from
methylation profiles of lung cancers from individuals who were not exposed to chromate (3).
Chromium-associated methylation remains an understudied area, and further research is needed
to investigate these relationships.

Lead

Lead is a known neurotoxicant, impacting the growth and development of children (138). Both
5-mC and 5-hmC are altered in response to prenatal lead exposure. There is a clear sex-specific
response, where a unique set of loci are differentially methylated in males and females in response
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to lead (64, 172, 173). Studies have also found that a core set of loci is changed in both males and
females who were exposed to lead in utero (64, 172, 173). In addition, children who were prenatally
exposed to lead in US-based cohorts display variable methylation patterns in imprinted genes, sug-
gesting an increased risk of childhood obesity and cardiometabolic disease in adulthood (64, 138).
A recent US-based study that utilized dried blood spots suggested that a grandmother’s exposure
to lead could leave imprints on her grandchild’s methylome, suggesting a role for transgenera-
tional inheritance of human epigenetic marks (174). Among adults, a general loss of methylation
in blood has been correlated with increased blood lead levels (114). Among women undergoing in
vitro fertilization, hypomethylation of collagen type I alpha 2 chain (COL1A2) has been observed
(70). In general, lead has been associated with an altered methylation pattern that has the poten-
tial to explain lead-associated health effects, particularly in the context of prenatal and early-life
exposures.

Mercury

As with lead, mercury exposure is of concern because it is a known neurotoxicant (35, 119).
Prenatal exposure to mercury can modulate methylation patterns in both infants (14, 34) and the
placenta (119). The alterations observed in blood are indicative of shifts in immune cell proportions
(14, 34), emphasizing the importance of controlling blood-based methylation for white blood cell
populations. In contrast, placental DNA methylation alterations associated with mercury have been
associated with adverse neurological outcomes, a relationship that is potentially mediated through
collagen type XXVI alpha 1 chain (EMID2). A recent study has similarly found that mercury-
associated alterations in methylation that persisted throughout childhood were also related to
cognitive performance during childhood (35). This study identified sex-specific differences in
altered methylation profiles as well as methylation changes that persisted into early childhood (35).
The sex specificity of methylation alterations associated with mercury has also been identified in
adults (62). The studies of mercury-associated alterations of CpG methylation are among the first
studies to assess the stability of epigenetic marks longitudinally, and they have also assessed sex
specificity. The present findings suggest a need for further investigation because a potential role
for methylation as a mediator of mercury-associated neurotoxicity has been identified.

Polycyclic Aromatic Hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants (POPs) and known
genotoxicants that have been associated with numerous adverse health outcomes. Prenatal expo-
sures to PAHs have been associated with decreased global methylation in China and the United
States (72, 112), as have adult exposures in China, Poland, and the United States (48, 140, 146,
147). In addition, methylation of key genes related to breast cancer, including retinoic acid recep-
tor beta (RARβ) and adenomatosis polyposis coli tumor suppressor (APC), has been associated
with the presence of PAH adducts in breast and breast tumor tissue as well as with various sources
of PAH exposure (194, 195). Specifically, synthetic log use has been associated with secretoglobin
family 3A member 1 (HIN1), environmental tobacco smoke was associated with estrogen recep-
tor 1 (ESR1), and current smoking status was associated with twist family BHLH transcription
factor 1 (TWIST1) (195). PAHs from tobacco smoke were also shown to alter methylation pat-
terns of genes associated with cardiovascular disease and cancer in a Chinese population (203).
Additional genes that display altered methylation in association with more general measures of
PAH exposures are associated with insulin resistance (101), childhood asthma status (74, 149), and
cancer (198). All the genes described above display hypermethylation in relationship with PAHs,
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suggesting a potential role for PAHs as an environmental factor that can silence gene expression
through epigenetic regulation at site-specific loci. The studies of PAH-associated modifications
of DNA methylation highlight the impact of hydrocarbon mixtures and suggest a role for the
epigenome in PAH-associated carcinogenicity.

Persistent Organic Pollutants

POPs are a class of compounds that persist long after their introduction into the environment.
Many of these chemicals are known to have toxic effects on wildlife and ecosystems, leading to
questions about effects on human health. Examples of these compounds include dichlorodiphenyl-
trichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE), as well as polybrominated
diphenyl (PBDEs), polychlorinated biphenyl (PBCs), perfluorooctanesulfonic acid (PFOS) and
perfluorooctanoic acid (PFOA). Exposure to POPs impacts global measures of methylation, specif-
ically Alu and LINE-1 elements. Prenatal, early-life, and later-life exposure to these compounds
may be associated with a global hypomethylation (82, 85, 100, 162), DNA hypermethylation
(40, 116, 193), and nonmonotonic associations (100, 141) in populations from the United States,
Korea, Europe, and the Arctic. Specifically, PBDEs have been linked to hypomethylation of tumor
necrosis factor alpha (TNF-α) in cord blood from a US-based cohort (43), IGF2 in placenta from
both a US-based cohort and a Chinese-based cohort (96, 201), and nuclear receptor subfamily
3 group C member 1 (NR3C1) in placentas from a Chinese-based cohort (201). Exposure is also
associated with hypomethylation in sperm cells with exposure to POPs and PFOAs, suggesting
that POPs are potential germline epimutagens and could be tied to preconception exposure (40,
113). In utero PFOA exposures also induce global hypomethylation in cord blood from a US-based
population (67) as well as induce hypomethylation of IGF2 in cord blood from a Japanese cohort
(104). Researchers found associations between methylation alterations associated with POPs and
neurological development in children (104). Supporting this finding, PCBs and PBDEs have been
associated with hypomethylation of genes associated with autism (49, 128). Taken together, the
existing literature supports the role of POPs-associated methylation as a potential mediator of
POP-associated health effects in humans.

Tobacco Smoke

Tobacco smoke is an exposure of concern because it is a known carcinogen, in addition to being
associated with cardiovascular disease and other chronic respiratory conditions. One of the means
of carcinogenicity is genomic instability and dysregulation of the epigenome. Specifically, tobacco
smoke has been associated with global hypomethylation for both in utero exposures (26, 55, 67, 89)
and adult exposures (41). Of the methylation targets of tobacco smoke, aryl hydrocarbon receptor
repressor (AHRR) has been identified as a reproducible biomarker of exposure across studies (68,
150, 157, 158, 175). The locus cg05575921 was shown to be hypomethylated across populations
and altered in response to prenatal tobacco smoke exposure (16, 68, 94, 150, 157, 158, 160, 175).
Additional targets include cancer, cell cycle, and metabolism-related genes (37, 59, 90, 115, 148,
167, 203). Prenatal exposure to tobacco smoke has been associated with alterations of genes related
to fetal growth restriction (86, 118), development (94, 123, 171), cancer and cell growth (160),
and other processes (26, 27, 181, 182, 191). Among these genes, contactin-associated protein-like
2 (CNTNAP2), cytochrome P450, family 1, member A1 (CYP1A1), and myosin IG (MYO1G) are
common across numerous studies (125). Further support for the effect of tobacco smoke on DNA
methylation comes from recent work that has demonstrated the stability of methylation patterns
at a subset of the genes identified as differentially methylated in response to prenatal exposure
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(27, 164). Of the assessed contaminants, the most overlap in gene-specific methylation patterns
was observed for tobacco smoke (108, 125), which suggests that the observed blood modifications
may be useful biomarkers in the future. Taken together, the data corroborate that tobacco smoke
has a strong effect on DNA methylation that is potentially related to exposure-associated health
outcomes.

Nutritional Factors

Among other environmental factors that alter CpG methylation, in addition to chemicals in the
environment, nutrition should be considered. Alterations of early-life and prenatal nutritional sta-
tus have been associated with developmental programming, resulting in later-life health outcomes
(16, 126). In addition, given the direct relationship between one-carbon metabolism and the pro-
cess of DNA methylation described earlier, it is highly likely that alterations to nutritional status
could directly impact the amount and patterns of DNA methylation. Specifically, methyl donor
nutrients such as methionine, folate, betaine, and choline have been implicated in alterations in
methylation patterns. These nutrients are directly related to one-carbon metabolism, the process
that generates SAM, the major substrate for DNA methylation.

In general, supplementation with methyl donors appears to increase global methylation levels
(154), and deficiency is associated with global hypomethylation (1). Similarly, intermediates of
one-carbon metabolism are also associated with decreased SAM levels (22, 58). Of these nutrients,
folate is a commonly added dietary supplement because it is important for fetal development. Folate
has been associated with global measures of methylation in infants (93), children (130), and adults
(17, 21). Similarly, a positive relationship exists between 5-hmC and methyl donors. This effect
appears to be limited to the third trimester of pregnancy (142). Meanwhile, increased paternal
intake of methyl donor nutrients has been associated with increased global methylation in the
cord blood of offspring (145), whereas increases in maternal methyl donors influence methylation
patterns related to infant metabolism and growth (143, 144). A key mediator of this relationship
may be the H19/IGF2 locus (57, 81, 179). This same locus was shown to be altered by exposure
to prenatal famine (71) and has been implicated in later-life obesity and diabetes. In addition
to H19/IGF2, retinoid X receptor alpha (RXR-α) appears to be modified in association with
maternal folate intake during the prenatal period (60), which is of key interest because RXR-α
is known to play a role in later-life obesity and metabolic disorders. Among the genes altered by
folate in adult pathways are those related to cancer (61, 107), inflammation (23), and fetal growth
and development (5, 80). Folate intake also appears to moderate the effects of environmental
contaminant exposure, including arsenic (153), chromium (192), hormonal markers (186), tobacco
smoke (16) and pesticides (163).

In addition to folate donor nutrients, other micronutrients are also critical for methylation
status. The vitamin B family are members of one-carbon metabolism, as well as micronutrients.
Homocysteine (58), choline (22), and vitamin B12 (127) are associated with alterations in global
methylation during the prenatal period. Methylation differences associated with these nutrients,
when investigated on a gene-specific level, are associated with differences in alterations in im-
printed genes, including PLAG1 Zinc Finger (ZAC1/PLAG1) (11, 80). For example, increased
maternal vitamin D is associated with hypermethylation tumor suppression genes in infants (131).
In addition, selenium, which has a sex-specific relationship (151), has been shown to alter meth-
ylation at genes related to Keshan disease, which arises from selenium deficiency. These results
suggest that micronutrients, as well as one-carbon metabolism indicators, are important to CpG
methylation alterations. Thus more consideration should be given to nutritional status during the
study of perturbations of CpG methylation associated with environmental exposures.
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Nonchemical Environmental Exposures

The field of epigenetics has generally focused on environmental factors such as chemical con-
taminants and nutrients. However, other factors related to the social environment are known
to play a role in alterations related to DNA methylation. For example, numerous studies have
demonstrated that socioeconomic status is related to adult (24, 109, 180) and prenatal (7, 63, 102,
109) alterations of DNA methylation. Socioeconomic status is environmental in nature because
it is related to social factors that affect individuals. Some research has suggested that childhood
adversity/socioeconomic status, as compared with that experienced in adulthood, is more strongly
tied to adult methylation patterns and health outcomes (24, 135). Additionally, it is important
to consider the mother’s general health/mental state, given that the mother is the environment
for the developing fetus. To this end, maternal mental health can impact methylation patterns
in infants. Specifically, maternal depression during the prenatal period has been linked to altered
methylation of brain-derived neurotrophic factor (BDNF) (25), and maternal anxiety during the
prenatal period is associated with hypomethylation of the IGF2/H19 loci (122). These changes
are further related to childhood anxiety and birth weight. More broadly, prenatal and early-life
social/location-based CpG alterations are related to immune function and inflammatory pathways
(7, 117, 135). These findings suggest the strong need to consider social and community impacts
along with more tangible measures of environmental exposure to contaminants and nutrients.

FUTURE DIRECTIONS

Environmental epigenetic studies have broadly categorized the relationship between exposure
and alterations in CpG methylation for numerous contaminants, nutrients, and social factors.
However, there are currently four major gaps in the scientific literature, which pertain to envi-
ronmental factors and the epigenome: (a) the assessment of mixtures and contaminant/nutrient
interactions, (b) sex-specific responses, (c) tissue-specific responses, and (d ) stability and func-
tional consequences of CpG methylation. One of the major limitations of the field at present is
the failure to consider environmental mixtures and the interactions of numerous environmental
factors. Numerous hypotheses have proposed that nutrition, exposure, and hormonal signaling can
all impact methylation (111). Studies have shown that the effects of numerous contaminants are
modulated by one-carbon metabolism nutrients (16, 110, 153, 163, 192). Furthermore, humans
are not exposed to a single contaminant. As detailed previously, only a handful of studies have
examined the relationship between multiple environmental factors and their impacts on DNA
methylation. In the future, nutritional assessment in conjunction with environmental assessment
as well as assessment of multiple contaminants are needed to advance the field.

In addition to multi-contaminant environmental mixtures, the sex of the exposed individual
may impact the relationship between environmental factors and DNA methylation. For example,
baseline differences in methylation patterns have been shown between placentas derived from
male pregnancies compared with those from female pregnancies (124). Given that many of these
differences pertain to metabolism and transport of environmental contaminants, these could un-
derlie some of the observed differences in health effects between males and females (124). In
support of this notion, differences in methylation patterns associated with environmental con-
taminants have been observed in males and females (2, 29, 82, 103, 129, 137, 172). Furthermore,
sex-based differences in DNA methylation should be considered because they may influence the
response to environmental exposure (152). Future studies can utilize both interaction models and
stratified modeling to understand the sex-specific effects of the contaminants as well as potential
disease susceptibility. Although this approach has become more standard in the study of some
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contaminants, such as in studies of arsenic and cadmium (29, 82, 103, 129, 137, 152), it is still not
as fully considered in others.

Tissue specificity is the third area in which improved understanding of methylation is important.
Many studies have focused on blood-based methylation as biomarkers for disease; however, the
meaning of these methylation marks is somewhat unclear. Although it is a readily accessible
biospecimen for the study of humans, it may not reflect changes in specific tissues of interest (10,
33). In the case of some specific biomarkers, such as decreased methylation of AHRR in smokers,
it is clear that this methylation pattern is conserved across tissue types, specifically blood and lung
tissue (175). In addition, some studies have shown that imprinted gene methylation is conserved
across tissue types, making these genes strong targets for study, as their methylation may represent
changes across tissues (132). However, future work should examine toxicological target tissues,
such as the placenta as an organ of reproductive toxicity, or use banked biopsies from target organs
such as livers and kidneys.

The final gap in the literature is centered around the stability of methylation marks and their
functional consequences. Only a handful of studies have assessed the stability of methylation
over time (35). Although more researchers are looking to understand functional consequences by
assessing gene expression, protein expression, or birth outcomes (119, 159), this is not standard
practice yet. Given that methylation is a mechanism for adaptation, it would be unsurprising if
methylation signatures changed over an individual’s life course depending on subsequent exposure.
However, given that previously described studies have shown stability of specific loci, it is possible
that some of the methylation patterns observed were preprogrammed during gestation. These
should be targets of further studies. To close this gap, prospective cohort studies with longitudinal
measures of methylation and gene expression should be established.
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