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Abstract

The complexity of the human exposome—the totality of environmental
exposures encountered from birth to death—motivates systematic, high-
throughput approaches to discover new environmental determinants of dis-
ease. In this review, we describe the state of science in analyzing the human
exposome and provide recommendations for the public health community to
consider in dealing with analytic challenges of exposome-based biomedical
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research. We describe extant and novel analytic methods needed to associate the exposome with
critical health outcomes and contextualize the data-centered challenges by drawing parallels to
other research endeavors such as human genomics research. We discuss efforts for training scien-
tists who can bridge public health, genomics, and biomedicine in informatics and statistics. If an
exposome data ecosystem is brought to fruition, it will likely play a role as central as genomic sci-
ence has had in molding the current and new generations of biomedical researchers, computational
scientists, and public health research programs.

INTRODUCTION

The human exposome is defined as the totality of environmental exposures encountered from
birth to death and includes a diverse mix of dietary nutrients, pharmaceutical drugs, infectious
agents, and pollutants (4, 33, 51, 68, 69). Much as human genetics has benefited from high-
throughput profiling in the form of genome-wide association studies (GWASs), exposome science
needs a systematic, high-throughput paradigm for systematically and reproducibly discovering the
environmental determinants of disease (42). Here we describe emerging analytics and informatics
efforts that enable systematic studies to associate exposures with disease. We describe new classes
of bioinformatics and biostatistics tools and methods that will be needed for future research, as well
as the cross-cutting training that exposome data scientists will need in bioinformatics, statistics,
computer science, and public health. We provide recommendations that address the data analytic
needs for exposome research (Table 1).

THE NEED FOR A NEW DISCOVERY-BASED PARADIGM

Environmental factors have long been implicated as major contributors to the global disease
burden. For example, data from several sources indicate that greater than 70% of the nonviolent
deaths in the United States can be attributed to cigarette smoking, dietary imbalance, air pollution,
adverse drug reactions, and infectious agents, acting alone or in concert with genetic or other host
susceptibility factors (7, 34). Yet identification of specific factors, their interactions, and their
effects on human health has remained elusive.

Family-based and genomic studies have shown that heritability, the proportion of phenotypic/
disease variance that can be ascribed to inherited factors, is often modest (46) and can be overes-
timated owing to shared exposures (50). For complex diseases such as cancer and type 2 diabetes,
heritability ranges from approximately 10% to greater than 50% (56). In a recent meta-analysis
across 50 years of twin studies and nearly 18,000 traits, heritability across all traits was 49% (46).
Therefore, a significant proportion of phenotypic and disease variance can likely be attributed to
nongenetic factors such as environmental exposures. However, aside from a handful of diseases
such as lung cancer (of which >80% can be attributed to smoking), we have yet to describe much
of the phenotypic variability for most complex diseases.

Humans encounter numerous exposures over the lifespan. For example, recent catalogues
contain up to 3,600 toxicants in the Toxic Exposome Database (71) and 13,000 in the Compar-
ative Toxicogenomics Database (9). Through the US Toxic Substances Control Act (TSCA),
the US Environmental Protection Agency (EPA) has compiled an inventory of 84,000 chemi-
cals (63). Curated exposures include small-molecule analytes that are by-products of metabolism
(e.g., endogenous exposures), nonchemical stressors such as radiation and climate, and complex
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Table 1 Data-related recommendations for a human exposome project

Recommendation Examples

1 Catalog contributions of environmental exposures to
disease risk (e.g., susceptibility, variance explained)
to strengthen the case for exposome research.

Develop requirements for an exposome-disease association catalog.

2 Identify high-throughput (e.g., ‘omics, sensor-based)
technologies and gaps to allow agnostic assessment
of the exposome.

Develop infrastructure to characterize the variability of the exposome
in various populations, akin to the NHANES.

3 Incentivize other parties (e.g., ‘omics investigators in
other disciplines, funding institutions, industrial
entities) to integrate the exposome in their
programs and develop high-throughput analytics
methods to analyze exposome data.

Develop big data analytics and visualization tools to accelerate
exposome-related research (e.g., exposome–phenome association
studies).

Identify how existing ‘omics statistical methods can be extended for
exposome research and identify gaps for new method development.

Encourage a shift in focus from “one exposure–one phenotype” to
multiple exposures, genes, and phenotypes.

Develop methods to link the internal and the external exposome.
Develop methods to support a variety of study designs (e.g.,
longitudinal studies) to strengthen inference and causality.

4 Identify data standards for high-throughput
exposome research.

Develop data and domain language standards to encourage reuse in
exposome-related research in future data collection and retrospective
annotation.

Formalize the role that ontologies play in integration/analysis.

5 Promote analytics standards and code reuse. Identify open-source software tools to jump-start exposome analyses.
Identify partners to extend existing infrastructure to host repositories

6 Integrate measurement, processing, modeling, and
analyses through global initiatives.

Identify requirements to support measurement and raw data analysis
workflows to measure individual-level exposomes e.g., connect
existing core facilities to measure the exposome, e.g., integrating over
NIH Commons initiatives (e.g., metabolomics, microbiome).

Determine possibilities for joint funding to assess the robustness
between environmental exposures and health status in large
populations.

7 Encourage data sharing for reproducible research. Evaluate strategies for exposome-related data sharing.
Work to engage all players involved in the research process, including
journal editors and funders.

8 Provide educational and outreach opportunities. Identify public example data sets for methods development.
Sponsor challenges and competitions to promote exposome-driven
data analytics development.

Develop exposome-related informatics training support akin to NIH
Common Fund BD2K K career awards.

Abbreviations: BD2K, Big Data to Knowledge; NHANES, National Health and Nutrition Examination Survey; NIH, National Institutes of Health.

mixtures such as air pollution. Following these efforts, our first recommendation is to sys-
tematically catalog all published associations between environmental exposures and disease
(Table 1, recommendation 1). A synthesis of the literature in the form of a catalog will enable the
scientific community (e.g., investigators and funding agencies) to understand the current state of
environmental health research, such as the sizes of associations (e.g., risks) between exposures and
disease.
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Figure 1
High-throughput data analyses in exposome-related research. (a) The exposome is a unified, multimodal, temporally dependent, and
comprehensive digital representation of external and internal environmental exposures linked to humans. Individual exposome
indicators are depicted in purple. Individual genomes are depicted in green (and are static, in contrast with the exposome). (b) Data
analytics of the exposome can be used to systematically discover relationships between mixtures of exposures, the genome, and (c) the
traits and diseases that make up the human phenome. Phenotypes of the phenome are depicted in blue. In a and c, diet and gut flora are
linked with genomic markers to type 2 diabetes (T2D) and blood pressure (BP). Analytic methods to discover exposures (EWAS),
genotypes (e.g., GWAS), and phenotypes (e.g., PheWAS) are depicted in purple, green, and blue, respectively.

WHAT IS THE HUMAN EXPOSOME DATA STRUCTURE?

First described in 2005, the exposome has been popularly defined as the “totality of environmental
exposures from birth onwards” and a “complement” of the genome (4, 28, 52, 68). Miller & Jones
(33) recently refined the definition of the exposome as the “cumulative measure of environmental
influences and associated biological responses throughout the lifespan, including exposures from
the environment, behavior, diet, and endogenous processes” connecting biological response and
exposure.

We use these abstract definitions to inform the characteristics and structure of exposome-
related data. Although an individual’s inherited genome is a largely static sequence of four nucleic
acid bases, exposome data have several notable differences: (a) measurement heterogeneity (e.g.,
biomarkers, external sensors) and type (e.g., continuous, categorical); (b) a denser correlation
structure; (c) time dependence; and (d ) spatial dependence (23, 41–43) (Figure 1a). These char-
acteristics may influence disease at different life stages, from in utero to adulthood.

One example of a successful effort is the National Health and Nutrition Examination Survey
(NHANES), a biannual health survey conducted by the US Centers for Disease Control and
Prevention. Measured factors include environmental exposures such as chemicals, nutrients, and
infectious agents (measured in human tissue such as blood serum, urine, and hair). For example,
quantitative measurements of nutrient (e.g., vitamins, carotenes) and pollutant levels (e.g., heavy
metals, polychlorinated biphenyls) in human tissue are obtained using comprehensive analytical
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techniques such as liquid chromatography and gas chromatography mass spectrometry. Infectious
agents (e.g., bacteria) are measured via immunological assays. The NHANES also includes other
indicators of environmental exposures such as self-reported nutrient consumption (based on a
food questionnaire), physical activity, and prescribed pharmaceutical drugs. Although these data
are an example of the complex array of human exposures, they are neither comprehensive across
all exposure domains nor longitudinal. For example, orthogonal external exposure data sources
such as air pollution sensors and cell phones generate a wealth of complementary data that present
opportunities for new analyses as well as shared challenges, including autocorrelation and missing
data. Some challenges and opportunities regarding the use of external sensors to assess the expo-
some are described in an accompanying review (61). We recommend that the scientific community
devote efforts to extend NHANES-like epidemiological biomonitoring surveys to ascertain base-
line and reference intervals of exposome-based measurements to capture the extent of variability
of the exposome in diverse populations (Table 1, recommendation 2).

The human exposome data structure is a high-dimensional collection of highly heteroge-
neous exposure variables that may change upon repeated sampling during an individual’s lifetime
(Figure 1a). Time-dependent and high-throughput genome-scaled phenotypic data types such as
gene expression, protein expression, or metabolomics data are similar in structure. For example,
to measure gene expression, an array of gene probes measures the amount of messenger RNA
expressed in a tissue or cell. Similarly, an exposome array would measure the amount of a mul-
titude of time-varying external exposures and biomarkers of exposures. However, we have yet to
develop an assay to operationalize an exposome-wide measurement (e.g., 100–1000s of exposures
measured with a single measurement platform). To this end, we recommend that the exposome
community expand on the integration of ‘omics technologies (e.g., metabolomics) that allow for
the comprehensive, agnostic, and high-throughput measurement of the personal exposome in hu-
mans (Table 1, recommendation 2). Notable challenges remain in the metabolomics field, such as
determining the exact chemical identity or structure of analytes that are detected in human tissue
from a mass spectrum.

Another nontrivial challenge involves the integration of data across the external and internal
exposome domains. For example, how do (a) sensor-based and physical measures (e.g., air
pollution or noise) or (b) individual-level sociodemographic factors influence the distribution
of internal exposome indicators? Data integration across these domains is often executed by
merging across spatiotemporal coordinates, a resource-intensive but usually straightforward
database task. There is a basis for data fusion in the environmental epidemiology literature [e.g.,
in the Handbook of Spatial Epidemiology (26)]; however, an outstanding challenge remains in how
to fuse multidimensional and longitudinal data streams emerging from external and internal
exposome measurements. Methods such as canonical correlation analysis or graphical least angle
regression (graphical LASSO) techniques can enable investigators to map one large data set (e.g.,
external exposures) to another (e.g., internal exposures) (13), but missing are methods to consider
longitudinal data. Computational methods enjoying a resurgence in the data science community,
such as neural networks, may also be harnessed to assimilate data over different dimensions (11).

SYSTEMATIC AND REPRODUCIBLE EXPOSOME-WIDE
ASSOCIATIONS

High-throughput data analytics methods can be used to systematically and reproducibly discover
relationships between exposures, the genome, and traits and diseases of interest (Figure 1a–c). We
recommend that significant research resources be devoted to the development of high-throughput
analytics methods to understand the connections between the exposome and the phenome
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(Table 1, recommendation 3). These efforts should include methods that enable the discovery of
relationships among multiple exposures and multiple phenotypes, allowing researchers to extend
the one-exposure-one-phenotype approach in a variety of study designs such as longitudinal and/or
case-control studies. Computational methods are also needed to establish associations between the
external and internal components of the exposome, providing greater depth to our understanding
of the nature of exposures in time and space as well as of their relation to biological dose.

Similarities and Differences Between Exposome and Genome Science

Much can be learned about design and analysis challenges in exposome association studies from
parallels with GWASs (23). From a design perspective, GWASs have highlighted the value of
data sharing and replication in independent data (25). From an analysis perspective, major con-
cerns include mitigating chances for false-positive findings incurred when executing multiple
statistical tests (known as multiple hypothesis testing) to achieve genome-wide significance (e.g.,
p < 5 × 10−8) and adjustment for the confounding effects of population stratification (47). From
a strategic perspective, a third major theme has involved leveraging external information now
available in numerous genomic and pathway databases (“ontologies”) such as gene set enrichment
analysis (57). These analytic lessons are equally applicable to exposome-wide association studies
(EWASs).

Identifying associations between the exposome and disease must overcome several analytical
challenges not encountered in GWAS. It is highly unlikely that there will ever be a single epi-
demiological study that monitors a cohort’s exposures continuously across an entire lifespan (thus
outliving the investigators). Instead, available data will typically comprise a few snapshots of ex-
posure, though often during critical windows of exposure. Repeated longitudinal exposure data
provide information about the time course of effects (e.g., modification by intensity, duration,
age at, and time since exposure) and about vulnerable ages at exposure and can help avoid the
problem of reverse causation. Thus, it is important to think not only in terms of simple dose–
response curves that describe disease risk as a function of some summary index of cumulative ex-
posure or average exposure intensity but also in terms of “exposure-time-response relationships”
(60).

Associating Exposures with Disease

“Environment-wide association studies” or equivalently “exposome-wide association studies,”
which are analogous methodologically to genome-wide association studies (GWASs), are a re-
cently proposed analytic approach to systematically associate exposures with disease (Figure 1b).
In EWASs, multiple exposures are assessed simultaneously for their association with a phenotype
or disease of interest. The false discovery rate (1) is controlled to adjust for multiple testing, and
significant associations are validated in independent data (38–40, 62). The main advantage of this
approach is that it systematically investigates an array of exposures and adjusts for multiple testing,
thus avoiding selective reporting while enabling discovery. Just as the literature for genetic asso-
ciations in disease has become more reproducible owing to standardized and extensively validated
analytical procedures (22, 64), we propose that an analogous process to associate the exposome
with disease and health outcomes will result in more robust environmental associations. EWASs
may be the tip of the analytic iceberg: Humans are a mixture of phenotypic traits (e.g., Figure 1b–c)
and perhaps emerging PheWAS [phenome-wide association study (e.g., 10, 18)] approaches
(Figure 1b–c) may be developed to understand how exposures are associated with multiple phe-
notypes and diseases simultaneously.
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While an EWAS produces a set of prioritized and possibly replicated individual correlates,
this study design does not typically yield causal factors. After an EWAS, experiments must still be
designed to infer causality.

Modeling Challenges

Analyzing multiple environmental exposures of the exposome in concert may enable investiga-
tors to consider mixtures versus individual components of the environment in relation to health.
Relating complex mixtures in the external environment to health outcomes has been recognized
as a major challenge in environmental health and public health policy for some time (12), and a
variety of statistical methods have been developed to address this problem (2, 58). The essential
difficulty is that with highly correlated variables, standard multiple regression models produce
highly unstable parameter estimates, and simple variable selection techniques such as stepwise
regression can select the wrong variables. Analyses that fail to correct for these issues could lead
to predictions that would support potentially counterproductive policy recommendations (e.g.,
regulating the wrong pollutant or source). Dimension reduction techniques such as regression
on principal components analysis, partial least squares, clustering, or kernel machine regression
offer some approaches to address these problems, but their interpretation is not straightforward.
However, variable selection methods that extend regression models while accounting for correla-
tion of variables, such as elastic net regression (73), may enable the selection of entire clusters of
correlated exposures with the interpretability of a simple regression model.

For some agents, the physiological processes involved are understood well enough to enable
sophisticated mathematical modeling of the toxicokinetic processes that determine their con-
centration in human tissues using information about external exposures and the toxicodynamic
processes that determine their health effects. These approaches are generally known as physiolog-
ically based pharmacokinetic (PBPK) or pharmacodynamic (PBPD) models. These approaches
have been extended to allow for interindividual variability in the underlying rate parameters
(66) and, more recently, to incorporate specific genetic determinants of these rates (6). A long-
term hurdle to the widespread use of PBPK models for exposure/risk assessment is the lack
of a standardized modeling framework. Several research groups are developing generic PBPK
models, either as standalone tools such as PK-Sim (70) and Indus-Chem (24) or incorporated
within integrated computational platforms for exposure assessment such as MENTOR (Model-
ing ENvironment for TOtal Risk Studies) (15). The development of generic and validated PBPK
models for many individual chemical exposures is supported by recent advances in quantitative
structure–property relationships (QSPRs) (45, 48, 53). However, the integration, validation, and
evaluation of these models into a multiple agent exposome profile are outstanding challenges.
For example, applying such approaches to the full spectrum of exposures of the exposome may
be metabolized by many different pathways, a challenging proposition for the state of the art
(36, 54).

Finally, the problem of exposure measurement error has been widely discussed in the statistical
and epidemiological literature (5). In the classical error model, in which the measurement errors
are uncorrelated with the true value of the exposure, the general effect in single exposure models
is to dilute a true association (biasing its magnitude toward the null and reducing power). A variety
of statistical methods are available to correct for this bias if the distribution of measurement errors
is known, although the loss of power generally cannot be recovered by purely statistical methods.
Further errors in measurement of a causal exposure can spill over into noncausal exposures, pro-
ducing spurious associations. This phenomenon is very likely to happen in exposome studies where
either the true exposures or their measurement errors are highly correlated (72). Study designs
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that include multiple measurements or reference substudies with gold standard measurement tools
may be essential to approach these problems. Validation through independent replication will be
critical in data-driven studies.

EXPOSOME MEETS GENOME: UNCOVERING INTERACTIONS
BETWEEN GENES AND EXPOSURE IN DISEASE

A portion of complex disease risk is likely due to the interaction of inherited genetic and non-
inherited environmental factors (known as G × E) (30, 59). To date, success has been limited in
finding specific G × E interactions in population-based studies. Large sample sizes and accurate
measurements of the exposome, genome, and disease are essential, even for studying a priori hy-
potheses about specific exposures and specific genes. These problems are magnified in the context
of agnostic scans across the entire genome for interactions with a specific exposure [genome-wide
interaction studies (GWISs)] and even more so for agnostic scans across the entire exposome
[gene–environment wide interaction studies (GEWISs)] (59). A systematic search of environmen-
tal exposures and genetic loci would consist of G × E tests with a corresponding multiple testing
burden and a reduction in statistical power.

Nevertheless, interaction effects have been an active area of statistical research, combining
advances in both design and analysis. From a design perspective, investigators have proposed
various two-step approaches that combine a preliminary scan for promising interactions (e.g.,
assuming gene–environment independence) followed by formal testing of interactions on a limited
subset of candidates using standard case-control methods (14, 21). From an analysis perspective,
investigators have developed empirical Bayes compromises between case-only and case-control
estimators that offer the power advantage of the former and the robustness of the latter (27, 35).
Still other approaches include selecting individual exposures and genes that have strong main
effects (e.g., from GWAS and EWAS, respectively) (39). The key advantage of this strategy, like
the two-step approaches above, is the stepwise paring down of the number of interactions to test
the increasing power of detection at the cost of missing interactions between factors that do not
have strong main effects (i.e., exposures and genetic factors that are not significant in EWAS
or GWAS). Furthermore, power assumptions and methods for these tests must be extended to
consider the breadth of possible environmental factors investigated in an interaction study.

An emerging area of relevance to human health that integrates exposome and genome science
is microbiomics. For example, David et al. (8) recently showed that the human gut microbiome
responds rapidly to dietary intake. Coupling these insights with external biological, environmental,
and clinical data (e.g., epigenetic profiling or gene expression) will give us a more complete
picture of a disease (e.g., type 2 diabetes) and modifiable intermediary (sub)clinical phenotypes
(e.g., obesity). Computational methods to integrate these disparate data types will be required to
extract signal from noise.

DATA STANDARDS AND INFRASTRUCTURE REQUIREMENTS
FOR HUMAN EXPOSOMIC STUDIES

The exposome presents new challenges to data integration and harmonization. With these chal-
lenges come new opportunities to leverage and apply legacy data with relevance to the exposome
and/or to align or build standards so that relevant studies performed in the future are accessible and
interoperable. We recommend implementing and enforcing data standards as a critical component
of exposome-related research (Table 1, recommendation 4). In developing the data infrastructure,
standards, and catalogs required for exposome research, one needs to consider the characteristics
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of the data being generated; the computing infrastructure needed to curate, anonymize, share, and
analyze the data; and the capabilities of existing technological infrastructure. Such infrastructure
needs to anticipate multiple types of investigators and data generators. For example, data genera-
tors, including epidemiologists or toxicologists, represent an inherently interdisciplinary group of
researchers who have historically worked independently or collaborated minimally and who may
not have anticipated the future application of their work to the exposome concept.

Lessons from Genomics

The critical role of standards is perhaps best demonstrated by the field of genomics, which largely
drove the establishment of official nomenclatures for biological entities as curated by the National
Center for Biotechnology Information (NCBI), such as gene names standardized by the HUGO
Gene Nomenclature Committee (HGNC). Data standards have fueled discovery via GWAS that
now have sample sizes that are >100,000 individuals, leading to reproducible discovery. Large
sample sizes are possible in GWASs owing to well-established genetics data standards. Investi-
gators can pool their data with one another to assemble large data sets powered for discovery.
Another example is MIAME (the Minimum Information About a Microarray Experiment), which
has become the de facto standard for microarray-based gene expression studies (3). Similar data
standards are needed to enable the integration of exposome measurements across cohort data sets
for large-scale analyses (42).

Genome science has also illustrated the value of open-source standardized analytic frameworks
such as PLINK (49). In addition, standardization in data representation and file formats [e.g.,
variant call format (VCF) files for sequencing data] has enabled widespread reuse of genomic data.
The development of similar analytical tools and resources for exposome science would standardize
and accelerate research efforts. To this end, we recommend the establishment of data analytics
standards and analytics code reuse (Table 1, recommendation 5). Specifically, we recommend
the creation of public software code repositories and the development of open-access software
libraries to conduct standardized exposome-wide association studies.

As some earlier efforts have shown, standards should not become a hurdle to exposome-related
researchers. For example, the >$300 million Cancer Bioinformatics Grid (caBIG), billed as an
open-access data network, imposed data standards that ultimately were not adopted by the cancer
genomics community (31). The caBIG one-size-fits-all policy was too onerous for its clients; it
imposed inflexible standards on complex data sets to ensure compatibility with their software tools.
What works best? According to Masys and colleagues (31), the best standards and resources are
those that are easy to adopt and that produce a benefit, especially when they represent a complex
system. Most importantly, standards must have buy-in from external clients/investigators who will
use the resource. Data analytics methods and standards should be simple and should clearly benefit
the clients of the data system. They must also change when uses of the data change. Therefore, at
present, we recommend a bottom-up approach to implementing data standards for the exposome.
In a bottom-up approach, standards are formulated iteratively using available data (as opposed to
data that could exist). The advantage of this approach is that it includes quick adoption of data
standards and immediate applications for addressing timely biomedical questions. However, to
accommodate new data modalities and ensure relevance, these standards need to be updated by
all players within the exposome research community, including data generators and consumers.

Creating and Sharing Resources to Benefit the Entire Exposome Community

Several human exposome projects have been established, including the EU-funded Human
Early-Life Exposome (HELIX) (65), the EU-funded Health and Environment-wide Associations
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based on Large population surveys (HEALS; http://www.heals-eu.eu), the EU-funded
EXPOsO-MICS (http://www.exposomicsproject.eu), the National Institutes of Health (NIH)-
funded Exposome Research Center (http://emoryhercules.com), and now the Children’s
Health Exposure Analysis Resource (CHEAR; http://www.niehs.nih.gov/research/supported/
exposure/chear/).

We recommend that significant investment be made, leveraging these ongoing projects, to
support the integration of existing, disparate platforms to build a unified human exposome mea-
surement platform across institutions and funding bodies (Table 1, recommendation 6). Such
an effort should include a network of core facilities that each exhibit expertise in measuring a
component of the exposome, such as metabolomics. For example, such an effort would support
exposome-related research that integrates data from platforms developed in the NIH Common
Fund initiatives such as the Core Metabolomics. We recommend that funding bodies, scientific
journals, investigators, and study participants consider methods and protocols for universal data
sharing to promote reproducible research (Table 1, recommendation 7). Specifically, many de-
tails will need to be understood and demonstrated to reproduce findings, including the data sets
used for analysis, the analysis method/software tools, and the analysis parameters. Computational
exposome research promises to be a complex exercise, and standardized measurement platforms
and data analytic provenance will be instrumental for the development of computational methods
and for reproducible research.

We recommend that studies akin to the NHANES establish background variability, geotem-
poral dependence, and prevalence of exposome factors of different populations around the world
(e.g., race/ethnicity groups, sex, age). Such data sets can also provide a substrate to develop data
standards and promote the development of analytical methods. For example, through efforts such
as the HapMap project (16), human geneticists have measured and cataloged the genetic diver-
sity of human populations. This characterization has enabled large-scale investigations such as
GWASs to understand the relationship between genes and disease. To understand the relation-
ship between the exposome and health, we must understand how the exposome varies through
space and time and in different segments of the human population. Such a resource should also
document how external environment indicators, such as sensor-based measures of air pollution or
individual socioeconomic differences, map to or associate with internal environmental exposure
dosage (40).

As discussed earlier, a simple first step toward sharing data includes sharing summarized find-
ings that emerge from exposome research such as EWASs and GEWISs, analogous to the National
Human Genome Research Institute (NHGRI)-hosted GWAS Catalog (67) (Table 1, recommen-
dation 1). By archiving experimental findings in one place, follow-up investigations can be quickly
planned, new meta-analyses can be performed, and a global view of exposome-related investiga-
tions can be attained. Because only summary-level information is being shared, individual-level
privacy concerns are avoided.

However, individual-level exposome data sets must also be archived and shared for their con-
tinued use and integration for data-driven discovery (e.g., 44). Progress in archiving and sharing
these types of data is dependent on the continued development, adoption, and dissemination of
standardized data dictionaries and ontologies that enable exposure nomenclature (analogous to
gene names) and that catalog how exposures are measured (e.g., Figure 2). One example of such
a catalog is the PhenX Toolkit (19). Such a tool kit provides standard measures for association
studies, including the name of the exposure (e.g., cigarette smoke), related exposures that may be
of interest, and protocols for an exposure’s measurement in a study. For example, a recent EWAS
of type 2 diabetes (17) successfully ascertained self-reported indicators of exposure by implement-
ing the measurements cataloged in PhenX. Although the current focus of PhenX is to disseminate

288 Manrai et al.

http://www.heals-eu.eu
http://www.exposomicsproject.eu
http://emoryhercules.com
http://www.niehs.nih.gov/research/supported/exposure/chear/
http://www.niehs.nih.gov/research/supported/exposure/chear/


PU38CH14-Patel ARI 17 March 2017 11:40

Chemical
(e.g., MeSH)

is an

interacts with

via an

is a

Interacts with
(e.g., CTD)

Interacts with
(e.g., CTD)

results in

Exposure stressor
(e.g., ExO)

Exposure receptor
(e.g., ExO)

Exposure event
(e.g., ExO,

ExpoCastDB)

Biological process,
molecular function,
cellular component

(e.g., gene ontology)
Genes Gene

products

interact via

occur within

assessed by

Partners, networks,
reactions

(e.g., KEGG, reactome)

Biological system
(e.g., functional model

of anatomy)

Exposure phenotype
outcome

(e.g., OMIM, MeSH)

Encode
Annotated with

Figure 2
High-level schematic of ExO integration within a broader biological context (adapted from Reference 32).
CTD, Comparative Toxicogenomics Database; ExO, exposure ontology; KEGG, Kyoto Encyclopedia of
Genes and Genomes; MeSH, Medical Subject Headings; OMIM, Online Mendelian Inheritance in Man.

self-reported standard instruments to assess exposure, this resource can be expanded to include
quantitative markers of the exposome.

Considerations for a Universal Data Repository to Support
Exposome-Related Investigation

In conceptualizing an approach and determining the feasibility and usefulness of a data repository
to share individual-level exposome data, all parties, be it funding bodies, researchers, and study
participants, need to consider issues common to sharing individual-level genomic information,
such as ownership and sustainability (e.g., who will own and maintain repositories), granularity
(e.g., which study data are stored and how to account for heterogeneity of multiple exposome
measurement platforms), and compliance (e.g., how will repositories guarantee confidentiality
and handle data use agreements). The NCBI hosts repositories [e.g., databases of genotypes and
phenotypes (dbGaP) (29)] which have taken some of these considerations into account, such as
data use compliance. However, it remains to be seen how both funding agencies and PIs will
support the use and dissemination of exposome data resources.

KNOWLEDGE RESOURCES TO SUPPORT THE INTERPRETATION
OF EXPOSOME-BASED FINDINGS

Information to support the interpretation of primary findings will require the continued devel-
opment of ontologies and databases that are relevant to the exposome. Two established databases
that will be instrumental for developing standards for nomenclature and toxicological knowledge
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are the Toxic Exposome Database (T3DB; http://www.t3db.ca) (71) and the Comparative
Toxicogenomics Database (CTD; http://ctdbase.org) (9). T3DB currently provides informa-
tion for more than 3,600 compounds and 2,000 targets, expression data sets for more than 15,000
genes, and extensive information on chemical concentrations in biofluids and referential chemical
spectra data. CTD aims to help elucidate the molecular mechanisms by which environmental expo-
sures contribute to disease etiologies by providing manually curated information about chemical–
gene–disease interactions. It is currently expanding its curated data to include comprehensive
information (>50 annotation fields) from exposure publications, including demographic details,
routes of exposure, exposure levels (where measured), and statistical metrics. Relevant ontologies
exist in areas that include genomics (e.g., gene ontology), pathways (e.g., Kyoto Encyclopedia of
Genes and Genomes), chemical (including T3DB classes), and even cigarette smoke (the Cigarette
Smoke Exposure Ontology) and the exposure ontology (ExO) (32). However, the current mech-
anisms to access and evaluate ontologies present several challenges for the exposure community,
including (a) assessing the degree to which existing ontologies adequately cover the full semantics
of the exposome (i.e., the exposome semantic space); (b) determining canonical ontologies and
sets of ontologies to cover the exposome semantic space; (c) harmonizing across ontologies; and
(d ) determining best practices for the community to maintain and update relevant ontologies,
including those not exclusive to the environmental health community. One significant challenge
for exposome-based research includes continuing to evolve, harmonize, and raise awareness of
the different standards for describing exposome data through community-driven processes that
promote consistent use and ongoing maintenance and development. Software repositories such
as GitHub (http://github.com), development tools such as WebProtege (20), and portals such as
BioPortal (37) and oboFoundry (55) are existing tools that can enable the communal and open-
source development of ontologies.

BIG DATA ANALYTICS AND THE EXPOSOME: IMPLICATIONS
FOR CROSS-CUTTING TRAINING

Discovery research with the human exposome is a big data analytics integration challenge that cuts
across statistics, computer science, biomedicine, and public health. Thus, data-driven exposome
research requires the training of a new breed of researchers who can bridge multiple fields of inves-
tigation and work in consortium/team science capacities. We recommend promoting exposome
research among scientists in these different fields through educational outreach programs admin-
istered by both research funders and institutions (Table 1, recommendation 8). Primary tasks for
outreach include identifying example and publicly available data sets (e.g., US NHANES) to de-
velop new methods and to support research in a classroom setting. If an exposome data ecosystem
is fully realized, it will likely be as impactful as genomic science has been in molding the current
and new generations of biomedical researchers, computational scientists, and research programs.
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