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Abstract

Agriculture stands on the cusp of a digital revolution, and the same technolo-
gies that created the Internet and are transforming medicine are now being
applied in our farms and on our fields. Overall, this digital agricultural rev-
olution is being driven by the low cost of collecting data on everything from
soil conditions to animal health and crop development along with weather
station data and data collected by drones and satellites. The promise of these
technologies is more food, produced on less land, with fewer inputs and a
smaller environmental footprint. At present, however, barriers to realizing
this potential include a lack of ability to aggregate and interpret data in such
a way that it results in useful decision support tools for farmers and the need
to train farmers in how to use new tools. This article reviews the state of the
literature on the promise and barriers to realizing the potential for Big Data
to revolutionize agriculture.
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1. INTRODUCTION

Data on farm inputs, such as fertilizer application rates, and outputs, such as yields, have tradition-
ally been collected by farmers and others involved in agricultural production. Similarly, data on
the environmental impacts of production have traditionally been gathered by government agen-
cies to monitor ecological health. While data have always been the basis for making management
decisions, the amount of data collected on farms through sensors like yield monitors, portable
devices, drones, and smart phones has increased dramatically over the last decade. Not only are
there far more data, but their form has also changed, transitioning from simple numerical values
attached to variables (e.g., yield, water quality) to including more qualitative measures (e.g., type of
practice, odor). Both types of variables are being gathered more precisely and at a highly localized
scale.

Excitement over the potential ability of the upcoming digital agricultural revolution to increase
productivity while reducing the sector’s environmental impact has coincided with increased in-
vestment in agricultural data management by multinational corporations—firms that are typically
involved in other areas of agricultural production. For example, Monsanto purchased the hardware
and software company Precision Planting in 2012 and subsequently purchased the weather data
and modeling technology company The Climate Corporation the following year (Carolan 2017).
In addition, DuPont has partnered with John Deere to provide a wireless data transfer system and
then with the DTN company to provide market and weather information. In order to increase
the machine-learning capabilities of its farm equipment, John Deere has subsequently bought
Precision Planting from Monsanto and recently bought Blue River Technology (Lev-Ram 2017).
Broadly speaking, devices for gathering data in agriculture are projected to grow from 30 million
in 2015 to over 75 million devices by 2020 (Chi et al. 2017). Other entrepreneurs have followed
this wave of investment into digital services for the agricultural sector. Despite the huge amount
of interest, this much-heralded technological revolution has been slow to actually change agri-
cultural practices (Brown 2017). For instance, whereas venture capital investments in agri-food
have nearly doubled in each of the last two years, there has been a shift away from a focus on data
(Pitchbook 2017). The potential benefits from Big Data remain, particularly if the applications are
expanded to include genomics and traceability rather than precision agriculture alone. That said,
the shift in investment suggests the need to take stock and consider the potential role of policy in
this space.

The purpose of this article is to review the opportunities and challenges presented by Big
Data for the agricultural sector, with a focus on how the natural environment is affected by
agri-food digitalization. We focus primarily on the policy issues arising from the development of
Big Data and the associated analysis required to help address these policy issues. We begin by
defining Big Data and its potential application for agriculture in developed countries across three
domains: genomics, precision farming, and traceability. We do not extend the analysis to include
developing countries, although their benefits from Big Data are also potentially large, such as
through the collection of national statistics, enhanced banking services, and improved extension
delivery (Deichmann et al. 2016, Kshetri 2016).

2. BIG DATA AND AGRICULTURE 4.0

The emerging use of data in agriculture heralds a new digital agricultural revolution driven by a
number of innovations that have affected manufacturing more broadly for decades (Deichmann
et al. 2016). First, advances in robotics have allowed a far greater degree of automation than has
previously been possible (Faulkner & Cebul 2014, Wolfert et al. 2017). Second, the declining
cost of sensor technology has allowed farmers to monitor factors such as animal movement,
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soil health, and soil moisture in almost real-time conditions (Faulkner & Cebul 2014). Third,
computing power to analyze these data is now sufficiently accessible and affordable to allow the
creation of decision support tools such as on-tractor dashboards and mobile applications that help
farmers become more precise with their management practices, such as with input applications
(Antle et al. 2017, Krintz et al. 2016, Rose et al. 2016). All of this is possible because of emerging
Big Data analytical platforms, such as cloud computing and machine learning algorithms, that
drive artificial intelligence (Ali et al. 2016, Chen et al. 2014, Krintz et al. 2016, Wolfert et al.
2017).

Together, these technologies have allowed an exponential increase in the volume, velocity,
variety, and veracity of data generated in agriculture (De Mauro et al. 2016, Sonka 2014, Wolfert
et al. 2017). In turn, agricultural data are rapidly becoming a major driver not only of innovations
in output and the food chain but also in environmental management (Caron et al. 2014). Often
defined under the broad umbrella of precision agriculture, agriculture 4.0 technologies refer to
production systems that deploy robotics, sensors, and Big Data analytics to enable farmers to
manage their farms on much smaller, and thus more precise, spatial and temporal scales (Lesser
2014, Wolfert et al. 2017). Although precision agricultural technologies have been in use for
approximately a decade and generally take the form of yield monitors in cropping systems and
robotic milking parlors for dairy, the pace of innovation in this field has picked up as the cost of
sensors and robotics has fallen.

The technological innovations associated with Big Data herald a potentially profound change
to farming that, for 50 years, has been dominated by Green Revolution technologies. The Green
Revolution was based on the introduction of hybridized seeds, irrigation, mechanization, and
low-cost fertilizers and pesticides (Tilman 1998). These technologies had the effect of increasing
the scale of agriculture, in essence giving farmers the tools to boost yields by standardizing man-
agement practices across large areas of land (Duffy 2009, Matson et al. 1997). The same trends
occurred in the livestock industry where confined animal feeding operations, concentrated feeds,
yield-boosting genetics, and mechanization have led to economies of size, resulting in significant
increases in herds or flocks managed in essentially the same way (Weis 2013).

As noted above, the tools of agriculture 4.0, such as robotics, sensors, and Big Data analytics
platforms, will, when fully realized, allow farmers to be more precise in their application of inputs.
Therefore, in many ways, agriculture 4.0 represents a fundamentally different approach to farming
than the Green Revolution. In particular, artificial intelligence, decision support systems, sensors,
and robotics allow farmers the opportunity to tailor management at much finer scales. Ultimately,
these technologies may even allow farmers to manage the needs of individual animals or plants in
real time. For instance, smart tractors know where they are in the field, plant the right seed in the
right place, and give it the correct amount of fertilizer (Gebbers & Adamchuk 2010, Ramundo
et al. 2016, Wolfert et al. 2017). Similarly, smart livestock operations identify each animal as they
approach a feeding station and deliver a tailor-made ration designed to meet the needs of that
animal’s genetics, health, and life stage (Busse et al. 2015). In essence, the tools of agriculture 4.0
provide the equivalent of personalized medicine but applied to crops and livestock.

The third component of these technological developments—the Big Data analytics platforms—
underpin agriculture 4.0 and are therefore the most relevant for the purposes of this review. In
particular, the vast amounts of data being currently generated on farms by the robotic milkers and
yield monitors currently in use are useless unless those data can be curated in ways that can be
turned into useful decision support tools for farmers ( Janssen et al. 2017, Lindblom et al. 2017).
As a result, Big Data analytic platforms will need to act as the backbone of the new agricultural
revolution and will be essential to aligning and interpreting data, as well as to creating decision
support tools that support actors across the agri-food sector.
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3. OPPORTUNITIES FOR BIG DATA IN AGRICULTURE
AND THE ENVIRONMENT

Proponents of agriculture 4.0 suggest that it offers the potential for profound advances in agri-food
systems in a number of key dimensions.

� First, it is expected that these technologies will speed up and reduce the cost of improving
the genetics of our crops and livestock, not only by making breeding plants and animals more
precise but also through novel technologies such as gene editing. Improving the genetics
of our crops and livestock will have many benefits, such as providing the opportunity to
develop genotypes that are adapted to changing local conditions.

� Second, these technologies will likely offer some farmers the opportunity to produce more
food on less land with fewer environmental impacts, commonly referred to as sustainable
intensification (Garnett et al. 2013).

� Finally, these technologies offer the potential to create much greater transparency and trace-
ability in complex global food supply chains (Opara 2003). Each of these opportunities is
discussed in more detail below.

3.1. Genomics

Although farmers have been breeding plants and animals since the dawn of agriculture approxi-
mately 10,000 years ago, recent advances in genomic technology, and in particular, our newfound
ability to edit genes, provide us with an exponentially greater degree of control over the genotypes
that farmers utilize without raising the same ethical and environmental concerns as have been
common with transgenic organisms. In particular, cutting-edge gene editing technologies allow
plant and animal breeders, once they have identified a plant or animal with a specific trait, to
determine what alleles are responsible for that trait. Subsequently, by turning on or off relevant
genes, they use gene editing technology to ensure that the specific trait is present or absent in
future generations. This process greatly speeds up plant and animal breeding for specific traits,
such as pest resistance or feed efficiency, without introducing novel genetic material into a plant
or animal’s genotype (Ballenger et al. 2016, Goddard 2012). In essence, gene editing allows tra-
ditional plant breeding to proceed at a much faster pace and with far fewer regulatory, consumer,
health, or environmental concerns. In theory, this technology is also much cheaper to deploy than
more traditional biotechnology approaches [such as transgenic or genetic modification (GM)],
which may offer the opportunity for local biotech companies serving small markets to develop
tailor-made crop and livestock phenotypes suitable for local environments.

Additionally, by reducing the amount of time it takes to create new plant and livestock varia-
tions, gene editing may also offer the ability to adapt crops and livestock more quickly to changing
environmental conditions (Edwards 2016). In the future, where we expect existing farmland to be
subjected to more extreme weather conditions, as well as changes in temperatures and precipita-
tion, the opportunity to quickly adapt crops to local conditions may become extremely important.
Other environmental benefits from genetic improvements include the possibility of introducing
genes encoding nitrogenase directly into cereal crops, thereby giving these plants the ability to
fix their own nitrogen from the air (Beatty & Good 2011). The associated reduction in fertil-
izer use, and thus the potential reductions in nutrient emissions into either water bodies or the
atmosphere, could also be achieved through understanding how genotypic expression interacts
with environmental conditions to affect traits and impacts such as nitrogen emissions (Ng et al.
2016).
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3.2. Precision Agriculture

The overarching objective of precision agriculture is to increase agricultural management effi-
ciency through identifying ways to tailor planting, fertilizing, irrigating, and pesticide applications
to the spatial and temporal microclimates that exist on each farm. This represents a major depar-
ture from recent farm history. Nearly all farming systems used to be labor intensive, and farmers
managed the unique characteristics of their small operations differently according to their own
assessments. Since the 1940s, however, developments in mechanization, along with other Green
Revolution technologies such as hybridized seeds and relatively low-cost fertilizer and pesticides,
drove many farmers to increase farm size by replacing labor with capital. One consequence of
this was that the management of individual farms evolved into one in which the entire farm was
treated as a single unit with relatively uniform management practices (Sonka 2016). This has had
the consequence of creating extremely homogenous agricultural landscapes and has reduced the
biological, crop, and social diversity of rural North America.

Precision agriculture, which allows for much smaller-scale management, may theoretically
change this. On one hand, precision agriculture should facilitate a return to more intense agro-
ecological systems that allow for an increase in heterogeneity across space and time on the farm
by giving farmers the ability to manage at the level of the individual animal or within field vari-
ability. This is likely to increase both biodiversity and crop diversity. On the other hand, precision
agricultural technologies tend to be very capital intensive, which may lead to continued farm
consolidation and socioeconomic homogeneity (Wolfert et al. 2017).

Although the benefits of the digital agricultural revolution to individual farmers will likely be
recognized in the future, the promise of using these technologies to improve the environmental
management of our food system is real. For instance, in livestock operations, many animals in
any given herd typically have access to more feed than they can efficiently metabolize, and this
results in nutrients being lost to the environment through manure. Similarly, it is estimated that
large-scale crop systems in North America receive up to 50% more fertilizer than the plants can
absorb. These surplus nutrients from both crops and livestock operations end up either as a source
of water pollution or as a greenhouse gas (GHG) that contributes to global warming (Tilman et al.
2002). Therefore, one consequence of uniform management over a large scale and the subsequent
excess input use is that agriculture is the world’s largest contributor to global water pollution and
is responsible for more than 30% of global GHG emissions (IPCC 2014). Precision agriculture
should be able to address at least some of these issues. For instance, Balafoutis et al. (2017) present
a review of precision agriculture technologies and conclude that global positioning system (GPS)
guidance systems combined with variable-rate nutrient application can help limit the number of
times a tractor drives over a field, which will reduce GHG emissions.

But despite these obvious benefits, it must be noted that the value of the additional infor-
mation provided from precision agriculture relative to its cost is another likely barrier hinder-
ing its widespread adoption. In particular, the history of how farmers use technologies such as
yield monitors and variable application rate fertilizers suggests a relatively flat payoff function
for these technologies that in many cases means there is no real financial incentive for farmers
to invest. Hence, the existing evidence points to extremely varied uptake. In terms of livestock,
precision agricultural technologies that include robotic milkers and mobility trackers to identify
the estrous cycle are becoming commonplace in dairy operations. Regarding crop production,
studies across a number of jurisdictions ranging from Europe (http://www.cema-agri.org/page/
farming-40-future-agriculture), the US Midwest (Erickson & Widmar 2015), Kansas (Griffin
et al. 2017), and Ontario, Canada (Mitchell et al. 2018) have found widespread adoption of GPS
automated steering systems, yield monitors, and grid soil sampling. In contrast, these studies found
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that variable-rate technologies that can apply different rates of inputs (such as seed or fertilizer)
to different management zones across a field have not been adopted to the same level.

The GPS technologies are referred to as embodied-knowledge technologies because no addi-
tional skills are required to capture their value. Rather, such technologies rely on the knowledge
that farmers already possess regarding how to operate their machinery (Griffin et al. 2017). These
technologies either simplify the work (e.g., auto-steer systems) or passively collect data (e.g., yield
monitors). In contrast, information-intensive technologies (e.g., variable-rate technologies) use
data collected from the farm as input into a decision support system that generates a prescription
for the variable application of inputs to reap the benefits (Griffin et al. 2017).

The spatial detail captured by yield monitors that are now standard equipment on most com-
bines has increased significantly over the last two decades. These spatial maps indicate productivity
zones across a field based on previous years’ yields (hence, zones can vary across years depend-
ing on microconditions). Identifying high- and low-productivity management zones is useful and
should help farmers turn parts of their field that are chronically underproductive into set-asides,
while farming the highest quality zones most intensively. To reach such a potential, however, a
decision model along with other soil and weather data is necessary to determine whether a high-
or low-yielding area should receive more or less fertilizer than the uniform rate currently applied.
By contrast, such decision support systems are not required for precision agriculture technologies
such as GPS systems that increase the accuracy of input application by reducing overlap and un-
derlap. The adoption rates of these GPS technologies suggest that the benefit of easier operation,
in addition to the value of reducing input use by only applying inputs where necessary (no overlap)
or of ensuring that all locations or animals are sufficiently treated (no underlap), is greater than
the cost of adopting these technologies (Schimmelpfennig 2016).

The difficulty of generating significant information value from precision technologies is illus-
trated through two conclusions that emerged from a series of studies examining why farmers tend
to apply more than the recommended rates of fertilizer (Pannell 2006, Rajsic & Weersink 2008).
First, the response of yield to nitrogen is flat around the optimum within a given year, whereas
the decline in the yield is small for a large range of input levels around the rate that maximizes
profit. Thus, while different spatial units could receive significantly different rates of an input,
the differences in profit relative to applying a uniform rate are fairly small. Second, the response
function shifts depending on the year. The temporal variation in yield to a given nitrogen rate is
greater than the spatial variation; thus, adjusting rates from year to year is more important than
adjusting rates within a field or even between fields.

The value of Big Data for farmers may primarily accrue through the identification of problem
areas for a given site or through the development of improved analysis derived from the integration
of data across many production sites (Bennett 2015). The information from an individual pro-
ducer can be integrated with data from other farmers to enhance the value of those data through
the development of decision models such as dashboards, apps, and other software applications.
Because the production cycles in agriculture tend to be comparatively long, there are not enough
repeated observations from a single farm to generate a predictive model for that farm. However,
the inclusion of variables, such as soil quality, weather conditions, and management practices, from
a number of operations across a broader spatial and temporal scale than a single farm allows for a
more robust analysis of the factors determining yield (Sonka 2016). Achieving such an integration,
however, requires that numerous farmers use a range of different types of equipment to be able
to aggregate and pool their data. Currently, such integration is lacking, which represents another
likely reason why the potential environmental benefits of precision agricultural technologies have
not been fully realized to date.
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In the future, the core of any such decision model must be derived from the data collected
across a number of producers and will be a production function relating output to inputs and very
specific geographic conditions. Most agricultural and resource economists are well versed in the
importance of this technical relationship between inputs and outputs; a decision model would use
the estimated production function to suggest application rates depending on the specific objectives
of the producer. Economists are also aware that the production function is not deterministic but
inherently stochastic. Exogenous variables, such as soil moisture, may not have been measured
accurately at the appropriate time in the initial collection of the data, or they are not known when
the input decision has to be made; in turn, a forecast must be made. Even if the variables can be
observed or determined with certainty, the effect of these variables on production often depends
on a number of unobserved variables. This uncertainty influences the accuracy of the decision
model and the subsequent value of the information from precision agriculture.

The ability to derive decision rules in agriculture with high information value will be highest
for sectors with (a) valuable output (single animal versus single plant), (b) a short cycle (daily versus
annual), (c) small uncertainty in production, (d) high within-field or between-animal heterogeneity,
and (e) technologies to accurately and reliably measure that heterogeneity. For example, the value
of precision agriculture will likely be higher for feed use in hog production where feed comprises
70% of the costs of raising a hog than for nitrogen use in field corn production; hence, it would be
expected that the uptake of precision agriculture technologies would be faster among hog farmers
than corn producers. Within crop production, the net benefits of precision agriculture for nutrient
decisions will likely be higher for intense greenhouse-based systems than for field crop production.

Overall, the promise of precision agriculture is more food produced on less land and with fewer
inputs. As such, precision agriculture is one tool that farmers will use to sustainably intensify food
systems (Garnett et al. 2013). This harkens back to debates around agriculture and the fate of
wild nature from approximately 10 years ago when scholars debated whether it was better for the
environment to intensify agriculture, thereby sparing land from farming, or to adopt agricultural
management practices that tried to blend ecosystem services and food production [also known as
the land sharing strategy (Green et al. 2005, Luskin et al. 2018)]. While there was no specific reso-
lution to this sparing versus sharing debate, most scholars writing about sustainable intensification
suggest that the emerging agricultural technologies associated with precision agriculture will
help us intensify food production while reducing inputs (Benton et al. 2011, Phalan et al. 2016).

3.3. Traceability

Another major benefit of the emerging agricultural technologies is the opportunity to ensure
greater transparency across global food supply chains. Food system transparency is emerging as
a major issue for a number of reasons (Badia-Melis et al. 2015). First, there have been mounting
concerns over the past decade around issues such as food fraud, where inferior food is intention-
ally mislabeled (Aung & Chang 2014, Van Rijswijk & Frewer 2012). Issues around food fraud
entered the public’s consciousness in 2013 when it was discovered that horsemeat had been mixed
into ground beef in the European Union (Walker et al. 2013). Since then, issues around food
fraud have emerged with some regularity. For instance, research in Canada suggests that 25%
of seafood sold is mislabeled as a commercially more expensive product (Van Rijswijk & Frewer
2012, Wong & Hanner 2008). Similarly, increasingly discriminating middle-class consumers in
Asia are demanding guarantees about the identity and providence of their food. Finally, research
in North America suggests that consumers are increasingly demanding to know where their food
comes from and that the media plays a significant role in consumers’ perceptions (McCluskey
et al. 2015).
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As a result, genomic-based technologies, such as DNA barcoding, are increasingly used to verify
the origins of food within global supply chains (Pizzuti & Mirabelli 2015). Similarly, voluntary ac-
counting systems are becoming increasingly common as a way to offer the consumer guarantees as
to the identity of their food. In an increasingly fractured and competitive global marketplace, farm-
ers view such systems as a way of guaranteeing to consumers the identity and composition of their
food. Increasingly, industry players look to technologies such as IBM’s blockchain (https://www.
ibm.com/blockchain/), which refers to a system of bookkeeping that “chains” entries in a com-
puterized ledger in such a way that they cannot be tampered with. Therefore, they can be used by
a range of stakeholders to verify the authenticity of a product that has moved from producer to
processor to shipper to retailer. Because blockchain ledgers are stored on a range of cloud com-
puting servers, and multiple copies exist in multiple locations, there are no single points of failure
or vulnerability for a blockchain. This characteristic has led to the pioneering use of blockchain
to track cryptocurrency (e.g., bitcoin) transactions. The agri-food sector is just now considering
how to use blockchain to guarantee transparency; in one of the first applications of this to food,
blockchain is being pioneered by Walmart as a way of tracking pork chops (Popper & Lohr 2017).

The digital revolution in agriculture also allows expansion of the concept of traceability to
include characteristics associated with the process by which the food item has been produced
(Lusk 2017, Marvin et al. 2017). Niche markets have arisen for the delivery of characteristics
that are often associated with adjectives surrounding the food product, such as organic, local,
and free range. Economic growth has provided consumers with the opportunity to satisfy their
concerns about how their food is produced rather than just an assurance of low cost (Campbell
2009, Caracciolo et al. 2016). Currid-Halkett (2017) describes inconspicuous consumption as a
means for the elite to signal their difference from others through activities such as buying niche
products such as pasture-raised eggs and quinoa crackers. Information technology has not only
fostered the spread of awareness of alternative food products (as well as potential misinformation),
but it has also allowed producers to verify to consumers that the product contains the desired
attributes. In many cases, the desired attribute of the food is associated with production practices
that have relatively low environmental impacts, as discussed below.

4. CHALLENGES FOR BIG DATA IN AGRICULTURE
AND THE ENVIRONMENT

The challenges for Big Data and for achieving the potential benefits for agricultural productivity
and environmental health are classified by Wolfert et al. (2017) as technical or organizational. The
technical issues regarding the quality, accuracy, and compatibility of the data can be solved if the
costs of data acquisition continue to fall and value can be generated by innovations (Lesser 2014).
The organizational issues regarding data governance and market power from possessing the data
are discussed below.

4.1. Data Governance

The development of Big Data analytics platforms is extremely challenging. To move data from
equipment to servers, farms usually need access to the Internet, which is still challenging even
in many rural parts of North America, let alone across the Global South (Pant & Odame 2017).
Data must be collected in a consistent fashion and compliant with protocols that allow them to
be pooled into centralized servers that must be protected from cyber security attacks while hiding
the identity of individual farm managers (Chi et al. 2017). Ownership agreements between farm-
ers, app developers, and equipment manufacturers need to be established. There are, therefore,
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extremely challenging issues pertaining to the governance, oversight, ownership, and regulation
of agricultural and food data along with profound technical challenges to ensure widespread in-
teroperability (e.g., ensuring that the data collected from numerous individual operators can be
pooled consistently) (Banham 2014, Janssen et al. 2017, McAfee et al. 2012, Porter et al. 2014).
The difficulty in linking data across spatial and temporal scales is also a major challenge for using
Big Data to address environmental health issues (Fleming et al. 2017, Marden et al. 2016).

At present, there is a somewhat chaotic and fractured data ecosystem as major corporations,
government bodies, and universities all grapple with the challenge of establishing coherent data
regulation frameworks or standardized protocols to allow the promise of the technologies to
be realized. The interest in agricultural technology by large companies, such as Monsanto and
John Deere, presents both opportunities and challenges in this respect. Large vertically integrated
multinational enterprises could create much-needed integrated data systems to support agriculture
and food production. As demonstrated by Walmart’s use of blockchain in the pork sector (see
above), such companies have the resources and connectivity across the food value chain to establish
the large-scale data analytics framework that is needed. However, there are questions of equity, and
in particular, whether a corporate-controlled data analytics platform for agriculture is the most
efficient way of promoting the public good, protecting the consumer, and helping the world’s
small-scale farmers who have already been marginalized and stand to be further disenfranchised
by this new wave of data-intensive technologies.

It is the role of policy, therefore, to proactively identify and address such equity issues and
potential market failures (Shin & Choi 2015). We note that the GODAN (Global Open Data
for Agriculture and Nutrition) (https://www.godan.info) initiative is attempting to create an
open data platform for agriculture and nutrition based on the partnership of both public and
private players. In Canada, work is underway between the University of Guelph and a range of
government agencies along with IBM to provide a Canadian-made solution to the challenge of
data integration and the need for a Big Data analytics platform for the food and agriculture sector.
Towards Precision Farming 2.0 is a collaborative effort in the Netherlands involving several
universities, government, and industry to integrate data collection, management, analysis, and
decision making at the farm level. Similarly, Woodard (2016) proposes a single comprehensive
data warehouse that would coordinate the aggregation, sourcing, and distribution of the increasing
amount of economic and environmental data on the agri-food sector.

Another barrier that inhibits precision agriculture relates to rural connectivity. Across many
rural areas of North America and Europe, there is a lack of broadband (Pant & Odame 2017).
This is particularly pronounced in Canada where the government has identified rural connectivity
as a major priority (Gov. Can. 2016). Additionally, demographic trends may also be a barrier
(Pierpaoli et al. 2013). In particular, older farmers are less likely than younger farmers to utilize the
Internet and therefore adopt precision agriculture technologies involving accessing the Internet
and analyzing data (Tey & Brindal 2012). Given that the average age of farmers across North
America and Europe is around 55 years of age and increasing, an aging farm population may
present a barrier to adoption (Stat. Can. 2017).

4.2. Asymmetric Market Information

Monsanto’s acquisition of The Climate Corporation and John Deere’s purchase of Blue River
Technology are recent examples of mergers within the realm of Big Data, but these deals are part
of a bigger trend within the agricultural sector (Clapp & Fuchs 2009, Howard 2016). In recent
years, the chemical company Bayer purchased Monsanto, DuPont and Dow Chemical merged,
and Syngenta was purchased by ChemChina. Altogether, these mergers and acquisitions have
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led to significant industry concentration, with the percentage of global corn and cotton seeds
accountable by the largest of companies growing from 60% to 85% for corn and 50% to 75% for
soybeans (MacDonald 2016).

Increased concentration at both producer and retail ends of the agri-food supply chain has led
to concern about corporate control over data flows (Bronson & Knezevic 2016). For example,
Monsanto’s Integrated Farming Systems platform collects information for farmers on variables
such as soil health and pest pressures, but these data could also be used by the company to
promote their own pesticides and to identify new R&D needs. Similarly, at the other end of the
chain, food processors and retailers monitor social media to predict consumer trends and attributes
valued by the marketplace. The information collected on production costs and market demand has
implications for market power between players in the food system. The extent of the asymmetry in
market information and its potential impact on the distributional impacts of the digital revolution
are the impetus for the negotiations regarding data ownership alluded to in the previous section.

5. POLICY ISSUES

5.1. Agricultural Policy

Agricultural policy was initially designed to help improve the financial well-being of the farm
family and subsequently the rural economy (Gardner 1992, Schmitz 2010). Given the historic
homogeneity of the farm sector, in which a single farm tended to be operated by a single farmer
and supported a single farm family, policies such as extension efforts or commodity price support
programs were effective at enhancing farm family income (Poon & Weersink 2014). The distri-
bution of farm size tended to be normal; for example, the average and median herd size for dairy
farms in Ontario was approximately 40 cows in the early 1990s. Technical innovations including
the digital revolution have led to a significant reduction in the number of farms, with the decline
largely occurring in mid-sized units and resulting in farm size distribution (Weersink 2018).

In addition to changes in the number of farms and their size (horizontal boundaries), the
degree of specialization (vertical boundaries) and the resulting structure of the sector have also
been altered by the reductions in the cost of monitoring production. Farms generally perform
a number of activities internally; for example, many livestock farms have grown and harvested
their own feed. The gains from specialization, such as harvesting feed or raising livestock, have
been limited due to the short and infrequent production stages in farming and from the greater
efficiencies of farmers doing the work themselves due to the cost of monitoring hired labor and
the stochastic nature of farm production (Allen & Lueck 2004). However, the emerging Big Data
revolution is in the process of reducing measurement cost of operations and, given the associated
fall in transaction costs, farms have become more specialized. These larger, more specialized farms
may or may not be selling into niche markets that have arisen with developments in information
and communication technologies, as discussed earlier. The net result is a continuation of the
trend from many homogeneous farms to fewer that are more heterogeneous (when compared
with other farms) but more specialized in terms of the specific actions and practices employed in
a single operation.

The growing differentiation of the farm sector fostered by the digital revolution complicates
the assessment and design of farm policy. In North America, the rapidly declining number of
mid-sized farms, combined with a growing share of farms producing for niche markets as well
as the rise of very large farms producing for commodity markets, means that it is difficult to
define the average farmer or an average farm (Weersink 2018). Whereas the average numbers
generated through statistical databases were representative of the typical producer a generation
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ago, this is less and less true as mid-sized operations decrease (Lyson et al. 2008). Thus, assessing
the economic conditions for farmers, and the consequent need for agricultural policy, requires
looking beyond the average numbers.

Whereas one-size-fits-all programs were perhaps more appropriate when farms were similar,
the growing heterogeneity requires targeting programs to particular producers to deliver policies
that effectively support farms of all scales. The policy objective of improving the livelihood of
farmers has shifted toward improving the competitiveness of the sector, but for which of its
components: the farm or farmer, the small or large farm, the owner or operator, or the niche or
commodity producer? Traditional North American support programs that address commodity
production and price risk may need to be complemented by other programs that address market
and supply chain risks associated with farming for niche markets. The growth in niche markets
and specialization has meant that exchange is now done through contracts between growers and
processors to ensure the timing and quality of delivery (Adjemian et al. 2016). In turn, risk has
subsequently shifted from price risk to contract risk.

The trend toward greater farm-sector heterogeneity is likely to continue and, in turn, so will the
internal and external support for any policies targeted toward the farm sector. Regardless of the ob-
jective and subsequent target of the policy, any evaluation of that policy will have to extend the tra-
ditional welfare analysis approach to examine its distributional effects given the growing diversity of
the farm sector along with the increased concentration through the agri-food sector and the grow-
ing reliance on vertical coordination to supply products with the desired attributes (Sexton 2012).

Crop insurance is another policy that helps reduce the risk of crop failure for all participating
farmers regardless of size. In North America, crop insurance programs are financially supported by
government through subsidized premiums, yet many farmers do not insure despite the inherent
uncertainty in crop production (Ker et al. 2017). Big Data offers the potential to increase the
efficiency of the program by reducing adverse selection and moral hazard issues plaguing current
designs. Improved understanding of the reasons for yield differences and better measurement
of the actual yields by site will allow premiums to be appropriately set for individual producers,
thereby either increasing the overall demand for crop insurance where governments have not been
involved or reducing the financial burden of governments where premiums have been subsidized
(Coble et al. 2016). Enhanced measurement could also potentially reduce moral hazard behavior,
such as not fully harvesting a crop that yields below the coverage level, thereby further improving
the financial viability of the risk management program.

In this way, Big Data and Big Data analytics platforms should also aid the expansion of crop
and production insurance options available to farmers. An efficient weather insurance program
requires measurable data on a climatic variable that directly influences output. However, spatial
differences in the variable, such as rainfall or frost, result in significant basis risk using random
weather station data. The increased ability to measure weather data at a small local scale at relatively
low cost reduces basis risk and thus increases the efficiency of weather insurance (Castillo et al.
2016). Similarly, the feasibility of livestock production insurance increases with the ability to
measure factors affecting disease and its actual prevalence (Koontz et al. 2006).

With advances in communication and information technologies, government’s role in enhanc-
ing human capital will also be increased. Advances in automation and artificial intelligence will
require a demanding new skill set. As a result, education programs will be needed to prepare work-
ers to fill this demand (Rainie & Anderson 2017). Disruption in the labor market and the associated
demand for skills training are occurring in all sectors but are particularly acute in agri-food. There
is currently a labor shortage within the sector for unskilled and skilled workers across developed
countries. For instance, there are over 50,000 unfilled jobs in Canadian agriculture (Conf. Board
Can. 2016).
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5.2. Agri-Environmental Policy

The design of environmental policy to deal with residuals from the agricultural sector, such as
GHG emissions or nitrates, has been complicated by the nature of the production process gener-
ating those negative environmental impacts. Like many of the environmental problems associated
with farming, there are many small potential contributors to most environmental problems in
agriculture, making it costly to measure specific problems such as GHG emissions from each indi-
vidual farm. Confounding these issues is the fact that the environmental impact of everything from
GHGs to water pollution and antibiotic use depends on site-specific characteristics, such as soil
type, management practice, and distance to nearby water bodies. Hence, the specific relationship
between a farm, the farm’s management practices, and the environmental impact of those practices
is also stochastic and influenced by variables such as climate that are outside the farmer’s control.
Even if there was a direct relationship between actions and emissions, many farming practices,
such as the timing or rate of nutrient application, are costly for an outside policy agency to observe
and hence regulate. The net result of these complications is that a range of policy options has been
implemented with varying degrees of success.

For instance, in North America, the most common means of encouraging farmers to change
on-farm practices has been through voluntary cost-share programs for a suite of beneficial man-
agement practices (BMPs) deemed to reduce the negative impacts of agricultural production (see
Baumgart-Getz et al. 2012 for a review of the drivers of BMP adoption). These design-based
programs are common because of both their political feasibility and their focus on observable
practices, sidestepping the often high uncertainty around the correlation between the BMP and
the environmental objective. Here again, we see the potential for technological developments
associated with Big Data to create new opportunities for policy, but these have yet to be fully
realized. For instance, using sensors to monitor GHG emissions or water pollution on a sample of
farms should make it possible to create predictive algorithms that are able to handle the stochas-
ticity of local environmental microniches. Such tools will become more widely used and will allow
policy makers to stop subsidizing BMPs in a more targeted whole-farm approach that focuses on
directly reducing specific impacts such as GHG emissions.

In addition to identifying who should be targeted through the agri-environmental policy while
also facilitating a shift from design-based management (e.g., management governed by the adop-
tion of BMPs) to performance-based management (e.g., management driven by emission targets),
the digital revolution may also alter the choice of mechanism. That said, governments must decide
on who should bear the cost of any program. Governments have tended to provide payments to
farmers (hence adoption of a beneficiary-pays principle) to change their existing practices, and
they generally only use polluter-pays mechanisms (such as penalties or taxes) when attempting
to prevent farmers from using environmentally harmful practices (Weersink & Pannell 2017).
Subsidizing the adoption of BMPs reflects the political support the farm sector has garnered over
time. However, the increasing use of robotics in farming systems has shifted the public’s view
of commodity agriculture from a family-operated traditional farm to an anonymously operated
industrial business. This shift in community perception may also shift the political feasibility of
beneficiary-pays programs for agricultural producers and cause a shift toward policies based on
the polluter-pays principle.

Advances in traceability further enhance the feasible choice of agri-environmental policy op-
tions. Labeling allows firms or governments to both signal and create a demand for environmental
performance. A market is thereby created that allows those desiring such an improvement to pay
for it. The clearest current example is the marketing of organic products. Producer organizations
and/or governments across many countries have established criteria for products to be sold as
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organic at a price premium. Farmers can then voluntarily decide whether to produce according to
those standards and thus sell their products for a premium as organic. In order for the organic pro-
duce market to develop, information and verification systems were required to ensure compliance
to the organic standard. Part of the externality associated with excess pesticide use is internalized,
allowing consumers who desire a reduction in pesticide use to pay farmers to do so through their
purchase of organic products.

Methods designed to enhance food system traceability also allow the certification of goods in
terms of either their direct environmental performance (i.e., carbon footprint) or the practices
used to produce them (i.e., organic, free range). Messer et al. (2017) suggest that governments
should encourage the labeling of food processes but only mandate labeling if the process results
in a food that could harm human health. It is important to note, however, that the ability to use
labeling to enhance the ecological benefits of the agri-food sector will be greater for those further
along the food supply chain (e.g., producers selling fruit at a farmers’ market) than for farmers
selling a bulk commodity farm removed from final consumption. Consumer demand may also
be greater for attributes that are consumptive (e.g., organic) as opposed to nonconsumptive (e.g.,
farming methods that improve wildlife habitat). For any environmental performance attribute,
Big Data should reduce the cost of providing enhanced traceability once the tracking systems are
in place, thereby ensuring that food claiming certain attributes is actually delivered by the farmer
to the consumer, lowering the transaction costs of certification. Thus, the likelihood is that Big
Data will allow a growth of farms who use self-regulation to meet the consumer demands for
improved environmental performance increases.

Big Data can further extend the list of viable environmental policy options to include litigation,
which has typically been limited to acute polluting events involving significant damages and a small
number of parties. Moreover, in such cases, the linkages between cause and effect are often well
understood (Weersink et al. 1998). A potential example of Big Data’s role in litigation is the case of
the herbicide dicamba. Specifically, Big Data may aid in determining who and what is responsible
for damages caused to soybeans from the drift of dicamba in 2017; official injury investigations are
underway on approximately 2.5 million acres in the US Midwest (Bradley 2017). Using data on
the rate and timing of dicamba application from farmers and agricultural retailers, combined with
weather data, scouting reports, and in-season plant tissue maps of soybean crops, fields can be
linked to postharvest yield maps to help determine responsibility for the damage ( Janzen 2017).

Many farm groups are concerned about environmental groups or government regulatory agen-
cies using data collected on farm operations against farms who fail to comply with regulations,
particularly with regard to nutrient management (Coble et al. 2016). However, the digitalization
of data may also aid farms in demonstrating more clearly and precisely how their management plan
satisfies external sustainability certifications, thereby reducing litigation risk (Coble et al. 2016).
For instance, recent studies indicate that nutrient loadings are likely caused by a few individuals
rather than all producers as a group. Accordingly, documentation using data may aid more farm-
ers and groups in verifying environmental compliance generally while exposing the small number
of farmers who are polluting the environment. This would thus create a naming and shaming
approach to environmental management where peer pressure is an important tool in promoting
best practices (Leslie et al. 2017).

Although the digital revolution reduces some of the complexities associated with designing
environmental policy for the agri-food sector, the use of digital technologies has also fostered the
growing separation between ownership and management at the farm level, as farmland owners
can monitor the activities and output of farmer tenants. When combined with the growing attrac-
tiveness of farmland as an investment by nonfarmers, there has been a continual increase in the
amount of farmland that is rented: Approximately 40% of farmland is rented in the United States
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and Canada, and much of it is on a cash rent basis (Bigelow et al. 2016, Bryan et al. 2015). Under
this tenure relationship, tenants make the management decisions regarding practices for which
agri-environmental policies are typically applied, but the farmland owners are the ones who may
receive the payments from policy. The potential disconnect between the incentives of the program
and the tenant/owner can lead to limited uptake of the policy and thus limited agri-environmental
accountability (Rotz et al. 2017). For example, Palm-Forster et al. (2016) found the participation
rate in a conservation auction to reduce phosphates into Lake Erie to be particularly low on rented
farmland.

6. SUMMARY

As documented by Cukier & Mayer-Schoenberger (2013), the digital revolution has already trans-
formed how we live, work, and think. This is beginning to include the agri-food sector, where
there is a huge amount of optimism among the industry as well as policy makers and environ-
mental activists that, in the future, food will be produced with a smaller environmental footprint.
Bioinformatics advances are speeding up the processes by which we breed plants and animals and
are doing so at significantly lower cost. Precision agriculture technologies are allowing farmers to
better apply inputs by giving them the tools to manage the spatial and temporal variation existing
on their farm. The developments in information and communication technology are creating sys-
tems that allow for exponentially greater transparency and traceability throughout the food chain,
which should not only improve environmental and human health but also allow the industry to
develop markets around those performance attributes that increasingly discriminating consumers
are demanding.

However, the opportunities created by digital tools to boost both productivity and environ-
mental improvement are limited by a number of issues, including data governance, a lack of skills
in how to handle and interpret data at the farm level, and an unclear return on investment for
farmers who may consider investing in new technologies. More specifically, at present, our ability
to generate data exceeds our ability to manage, analyze, and use those data. This is made clear by
the relative rate of adoption of GPS technologies, which require no additional skills, versus the
adoption of variable-rate application technologies, which require new skills and decision-making
models. In effect, the value added from precision agriculture technologies has not, in all cases,
exceeded the costs. Because the agricultural production process is biological and subject to un-
certainty, a range of information is necessary to understand the underlying science and develop
a decision model. These huge amounts of data need to be gathered consistently and accurately
across a range of scales and then analyzed and interpreted using tools such as deep learning and
artificial intelligence. Finally, the interpreted data must be presented back to producers in the
form of decision support tools. The difficulty of constructing, maintaining, analyzing, and sharing
such data limits the opportunity to derive effective decision rules with high information value to
producers. Thus, these barriers limit the potential of Big Data across the entire sector.

Relatedly, as data are increasingly seen as a significant input to innovation and production,
major questions are currently being asked about who owns data and who will ultimately benefit
from the potential of Big Data analysis. The pace of industrial mergers in the past few years signals
that major industry players are positioning themselves to take advantage of these opportunities,
which leads many to wonder if a small number of tech-savvy companies reap all of the rewards. Or
will the benefits of this new revolution be widespread and socially inclusive? More critical voices in
this debate point to lessons from the Green Revolution that provided significant gains to consumers
and a bonus for farmers who could take advantage of new capital-intensive technology but likely
marginalized small farmers unable to adapt. Will the same thing happen with the digital agricultural
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revolution? More specifically, because many of the technologies discussed in this review require
little in the way of human labor, will their adoption spell a decline in our rural communities?
Although these issues are relevant to North America, they take on even greater significance in the
Global South, where many economies are still structurally dependent on agricultural labor. If the
urban economy is not sufficiently developed to provide meaningful jobs for people, will a decline
in rural labor simply spell an increase in urban slums? It will partially fall to policy makers to
determine the extent to which we steer a course toward a greater democratization of technology
and promote widespread public benefits.

There is also a question of training. A recent report by the Canadian Government’s Advisory
Council on Economic Growth identified that investing in agriculture and agricultural technologies
is a solid strategy to boost middle-class incomes and create jobs (http://www.budget.gc.ca/aceg-
ccce/pdf/key-sectors-secteurs-cles-eng.pdf ). But it is important to note that these new jobs do
not necessarily look like traditional farm jobs. Although animal husbandry and crop science will
continue to be important, in addition to understanding how to maintain healthy soil, the upcoming
jobs in the new digital agricultural economy are more related to software engineering, database
management, and robotics. It will also be important to have workers with appropriate legal and
policy expertise to develop and adjudicate new data-sharing arrangements. Consequently, colleges
and universities need to quickly revise their training curricula to ensure that the next generation
of agri-entrepreneurs has the skills it needs to take advantage of the opportunities afforded by
technology.

To close, the digital revolution has accelerated the changes in farm structure, with consequences
for agricultural policy. The growing heterogeneity in the farm sector means that traditional support
programs in North America that address production and price risk may need to be complemented
by other programs that address market and supply chain risks associated with farming for niche
markets. As it stands, the external benefits from the digital revolution may be greater than the
on-farm benefits, and thus there is a role for public policy, depending on the extent of those
benefits. The range of agri-environmental policy options has increased with the reduction in cost
of monitoring and the ability to ensure that the use of environmentally beneficial practices is
employed.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that
might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

Funding for this paper came from a range of sources, including The Canada First Research
Excellence Fund’s Food from Thought Initiative, The Canada Research Chair Program, and the
Ontario Ministry of Agriculture, Food and Rural Affairs. We would also like to thank Graeme
Doole and an anonymous journal reviewer for timely, encouraging, and thoughtful critiques of an
early draft of this paper.

LITERATURE CITED

Adjemian MK, Brorsen BW, Hahn W, Saitone TL, Sexton RJ. 2016. Thinning markets in US agriculture. Econ.
Inf. Bull. 148, Econ. Res. Serv., US Dep. Agric., Washington, DC

www.annualreviews.org • Big Data in Agricultural and Environmental Analysis 33

http://www.budget.gc.ca/aceg-ccce/pdf/key-sectors-secteurs-cles-eng.pdf
http://www.budget.gc.ca/aceg-ccce/pdf/key-sectors-secteurs-cles-eng.pdf


RE10CH02_Weersink ARI 25 August 2018 15:21

Ali A, Qadir J, ur Rasool R, Sathiaseelan A, Zwitter A, Crowcroft J. 2016. Big data for development: applications
and techniques. Big Data Anal. 1(1):2

Allen DW, Lueck D. 2004. The Nature of the Farm: Contracts, Risk, and Organization in Agriculture. Cambridge,
MA: MIT Press

Antle JM, Jones JW, Rosenzweig C. 2017. Next generation agricultural system models and knowledge prod-
ucts: synthesis and strategy. Agric. Syst. 155:179–85

Aung MM, Chang YS. 2014. Traceability in a food supply chain: safety and quality perspectives. Food Control
39:172–84

Badia-Melis R, Mishra P, Ruiz-Garcı́a L. 2015. Food traceability: new trends and recent advances. A review.
Food Control 57:393–401

Balafoutis A, Beck B, Fountas S, Vangeyte J, Wal TVD, et al. 2017. Precision agriculture technologies positively
contributing to GHG emissions mitigation, farm productivity and economics. Sustainability 9(8):1339–67

Ballenger N, Bastian C, Cammack K, Feuz B, Griffith G, Schaffer J. 2016. 30 and Daisy: Where’s the economics
in beef cattle DNA testing? Choices 31(2):1–10

Banham R. 2014. Who owns farmers’ big data? Forbes, July 8. http://www.forbes.com/sites/emc/2014/
07/08/who-owns-farmers-big-data/#211977e53ce7

Baumgart-Getz A, Stalker L, Floress K. 2012. Why farmers adopt best management practice in the United
States: a meta-analysis of the adoption literature. J. Environ. Manag. 96(1):17–25

Beatty PH, Good AG. 2011. Future prospects for cereals that fix nitrogen. Science 333(6041):416–17
Bennett JM. 2015. Agricultural Big Data: utilisation to discover the unknown and instigate practice change.

Farm Policy J. 12(1):43–50
Benton TG, Dougill AJ, Fraser EDG, Howlett DJB. 2011. The scale for managing production versus the

scale required for ecosystem service production. World Agric. 2(1):14–21
Bigelow D, Borchers A, Hubbs T. 2016. U.S. farmland ownership, tenure, and transfer. Econ. Inf. Bull. 161,

Econ. Res. Serv., US Dep. Agric., Washington, DC
Bradley K. 2017. Ag Industry, Do we have a problem yet? Integr. Pest. Manag., Univ. Mo. https://ipm.missouri.

edu/IPCM/2017/7/Ag_Industry_Do_we_have_a_problem_yet/
Bronson K, Knezevic I. 2016. Big Data in food and agriculture. Big Data Soc. 3(1). https://doi.org/10.1177/

2053951716648174
Brown E. 2017. Why big data hasn’t yet made a dent on farms. Wall Street J., May 15. https://www.wsj.

com/articles/why-big-data-hasnt-yet-made-a-dent-on-farms-1494813720
Bryan J, Deaton BJ, Weersink A. 2015. Do landlord-tenant relationships influence rental contracts for farmland

or the cash rental rate? Land Econ. 91(4):650–63
Busse M, Schwerdtner W, Siebert R, Doernberg A, Kuntosch A, et al. 2015. Analysis of animal monitoring

technologies in Germany from an innovation system perspective. Agric. Syst. 138:55–65
Campbell H. 2009. Breaking new ground in food regime theory: Corporate environmentalism, ecological

feedbacks and the ‘food from somewhere’ regime? Agric. Hum. Values 26:309–19
Caracciolo F, Cicia G, Del Guidince T, Cembalo L, Krystallis A, et al. 2016. Human values and preferences

for cleaner livestock production. J. Clean. Prod. 112:121–30
Carolan M. 2017. Publicising food: big data, precision agriculture, and co-experimental techniques of addition.

Sociol. Rural. 57(2):135–54
Caron P, Bienabe E, Hainzelin E. 2014. Making transition towards ecological intensification of agriculture a

reality: the gaps in and the role of scientific knowledge. Curr. Opin. Environ. Sustain. 8:44–52
Castillo MJ, Boucher S, Carter M. 2016. Index insurance: using public data to benefit small-scale agriculture.

Int. Food Agribus. Manag. Rev. 19(A):93–114
Chen M, Mao S, Liu Y. 2014. Big data: a survey. Mobile Netw. Appl. 19(2):171–209
Chi H, Welch S, Vasserman E, Kalaimannan E. 2017. A framework of cybersecurity approaches in precision

agriculture. In Proceedings of the ICMLG2017 5th International Conference on Management Leadership and
Governance, pp. 90–95. Reading, UK: Acad. Conf. Publ. Int.

Clapp J, Fuchs D. 2009. Corporate Power in Global Agrifood Governance. Cambridge, MA: MIT Press
Coble K, Griffin T, Ahearn A, Ferrell S, McFadden J, et al. 2016. Advancing U.S. agricultural competitiveness

with Big Data and agricultural economic market information, analysis, and research. Rep., Counc. Food Agric.
Resour. Econ., Washington, DC

34 Weersink et al.

http://www.forbes.com/sites/emc/2014/07/08/who-owns-farmers-big-data/#211977e53ce7
http://www.forbes.com/sites/emc/2014/07/08/who-owns-farmers-big-data/#211977e53ce7
https://ipm.missouri.edu/IPCM/2017/7/Ag_Industry_Do_we_have_a_problem_yet/
https://ipm.missouri.edu/IPCM/2017/7/Ag_Industry_Do_we_have_a_problem_yet/
https://doi.org/10.1177/2053951716648174
https://doi.org/10.1177/2053951716648174
https://www.wsj.com/articles/why-big-data-hasnt-yet-made-a-dent-on-farms-1494813720
https://www.wsj.com/articles/why-big-data-hasnt-yet-made-a-dent-on-farms-1494813720


RE10CH02_Weersink ARI 25 August 2018 15:21

Conf. Board Can. 2016. Sowing the seeds of growth: temporary foreign workers in agriculture. Rep., Conf. Board
Can., Ottawa. Dec. 1. http://www.conferenceboard.ca/e-library/abstract.aspx?did=8363

Cukier K, Mayer-Schoenberger V. 2013. The rise of Big Data: how it’s changing the way we think about the
world. Foreign Aff. 92(2):28–40

Currid-Halkett E. 2017. The Sum of Small Things: Culture and Consumption in the 21st Century. Princeton, NJ:
Princeton Univ. Press

Deichmann U, Goyal A, Mishra D. 2016. Will digital technologies transform agriculture in developing coun-
tries? Agric. Econ. 47:21–33

De Mauro A, Greco M, Grimaldi M. 2016. A formal definition of Big Data based on its essential features.
Libr. Rev. 65(3):122–35

Duffy M. 2009. Economies of size in production agriculture. J. Hunger Environ. Nutr. 4(3–4):375–92
Edwards D. 2016. The impact of genomics technology on adapting plants to climate change. In Plant Genomics

and Climate Change, ed. D Edwards, J Batley, pp. 173–78. New York: Springer
Erickson B, Widmar DA. 2015. Precision agricultural services dealership survey results. Work. Pap., Purdue

Univ., West Lafayette, IN. http://agribusiness.purdue.edu/files/resources/2015-crop-life-purdue-
precision-dealer-survey.pdf

Faulkner A, Cebul K. 2014. Agriculture gets smart: the rise of data and robotics. Rep., Cleantech Group, San
Francisco

Fleming L, Tempini N, Gordon-Brown H, Nichols GL, Sarran C, et al. 2017. Big Data in environment and hu-
man health. Oxf. Res. Encycl. Environ. Sci. https://doi.org/10.1093/acrefore/9780199389414.013.541

Gardner BL. 1992. Changing economic perspectives on the farm problem. J. Econ. Lit. 30(1):62–101
Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG, et al. 2013. Sustainable intensification in

agriculture: premises and policies. Science 341(6141):33–34
Gebbers R, Adamchuk VI. 2010. Precision agriculture and food security. Science 327(5967):828–31
Goddard ME. 2012. Uses of genomics in livestock agriculture. Anim. Prod. Sci. 52(3):73–77
Gov. Can. 2016. CRTC establishes fund to attain new high-speed Internet targets. News Release, Dec. 21.

https://www.canada.ca/en/radio-television-telecommunications/news/2016/12/crtc-establishes-
fund-attain-new-high-speed-internet-targets.html

Green RE, Cornell SJ, Scharlemann JP, Balmford A. 2005. Farming and the fate of wild nature. Science
307(5709):550–55

Griffin TW, Miller NJ, Bergtold J, Shanoyan A, Sharda A, Ciampitti IA. 2017. Farm’s sequence of adoption
of information-intensive precision agricultural technology. Appl. Eng. Agric. 33(4):521–27

Howard PH. 2016. Concentration and Power in the Food System: Who Controls What We Eat? New York:
Bloomsbury

IPCC (Int. Panel Clim. Change). 2014. Climate change 2014: synthesis report. Contrib. Work. Groups I, II, III
to 5th Assess. Rep. IPCC, Geneva

Janssen SJC, Porter CH, Moore AD, Athanasiadis IN, Foster I, et al. 2017. Towards a new generation of
agricultural system data, models and knowledge products: information and communication technology.
Agric. Syst. 155:200–12

Janzen T. 2017. Dicamba will show us the promise—and limitations—of big data in 2017. Janzen Ag Law Blog,
Aug. 3. http://www.aglaw.us/janzenaglaw/2017/8/3/dicamba-big-data

Ker AP, Barnett B, Jacques D, Tolhurst T. 2017. Canadian business risk management: private firms, crown
corporations, and public institutions. Can. J. Agric. Econ. 65(4):591–612

Koontz SB, Hoag DL, Thilmany DD, Green JW, Grannis JL, eds. 2006. The Economics of Livestock Disease
Insurance: Concepts, Issues and International Case Studies. Oxfordshire, UK: CABI

Krintz C, Wolski R, Golubovic N, Lampel B, Kulkarni V, et al. 2016. SmartFarm: improving agricul-
ture sustainability using modern information technology. Paper presented at the KDD 2016 Workshop
on Data Science for Food, Energy, and Water, San Francisco, Aug. 13–17. http://www.cs.ucsb.
edu/∼rich/publications/dsfew16.pdf

Kshetri N. 2016. Big Data’s Big Potential in Developing Economies: Impact on Agriculture, Health and Environmental
Security. Boston, MA: CABI

Leslie JE, Weersink A, Yang W, Fox G. 2017. Actual versus environmentally recommended fertilizer appli-
cation rates: implications for water quality and policy. Agric. Ecosyst. Environ. 240(1):109–20

www.annualreviews.org • Big Data in Agricultural and Environmental Analysis 35

http://www.conferenceboard.ca/e-library/abstract.aspx?did=8363
http://agribusiness.purdue.edu/files/resources/2015-crop-life-purdue-precision-dealer-survey.pdf
http://agribusiness.purdue.edu/files/resources/2015-crop-life-purdue-precision-dealer-survey.pdf
https://doi.org/10.1093/acrefore/9780199389414.013.541
https://www.canada.ca/en/radio-television-telecommunications/news/2016/12/crtc-establishes-fund-attain-new-high-speed-internet-targets.html
https://www.canada.ca/en/radio-television-telecommunications/news/2016/12/crtc-establishes-fund-attain-new-high-speed-internet-targets.html
http://www.aglaw.us/janzenaglaw/2017/8/3/dicamba-big-data
http://www.cs.ucsb.edu/~rich/publications/dsfew16.pdf
http://www.cs.ucsb.edu/~rich/publications/dsfew16.pdf


RE10CH02_Weersink ARI 25 August 2018 15:21

Lesser A. 2014. Analyst report: big data and big agriculture. Gigaom. https://gigaom.com/report/big-
data-and-big-agriculture/

Lev-Ram M. 2017. John Deere is paying $305 million for this Silicon Valley company. Fortune, Sept. 6.
http://fortune.com/2017/09/06/john-deere-blue-river-acquisition/

Lindblom J, Lundstro C, Jonsson A. 2017. Promoting sustainable intensification in precision agriculture:
review of decision support systems development and strategies. Precis. Agric. 18(3):309–31

Lusk JL. 2017. Consumer research with big data: applications from the food demand survey (FooDS). Am. J.
Agric. Econ. 99(2):303–20

Luskin MS, Lee JSH, Edwards DP, Gibson L, Potts MD. 2018. Study context shapes recommendations of
land-sparing and sharing; a quantitative review. Glob. Food Secur. 16:29–35

Lyson TA, Stevenson GW, Welsh R. 2008. Food and the Mid-Level Farm: Renewing an Agriculture of the Middle.
Cambridge, MA: MIT Press

MacDonald JM. 2016. Concentration, contracting, and competition policy in U.S. agribusiness. Concurrences
1:3–9

Marden E, Godfrey RN, Manion R, eds. 2016. The Intellectual Property–Regulatory Complex: Overcoming Barriers
to Innovation in Agricultural Genomics. Vancouver: UBC Press

Marvin HJ, Janssen EM, Bouzembrak Y, Hendriksen PJ, Staats M. 2017. Big data in food safety: an overview.
Crit. Rev. Food Sci. Nutr. 57(11):2286–95

Matson PA, Parton WJ, Power AG, Swift MJ. 1997. Agricultural intensification and ecosystem properties.
Science 277(5325):504–9

McAfee A, Brynjolfsson E, Davenport TH, Patil DJ, Barton D. 2012. Big data: the management revolution.
Harv. Bus. Rev. 90(10):60–68

McCluskey JJ, Kalaitzandonakes N, Swinnen J. 2015. Media coverage, public perceptions, and consumer
behavior: insights from new food technologies. Annu. Rev. Resour. Econ. 7:467–86

Messer KD, Costanigro M, Kaiser HM. 2017. Labeling food processes: the good, the bad and the ugly. Appl.
Econ. Perspect. Policy 39(3):407–27

Mitchell S, Weersink A, Erickson B. 2018. Adoption of precision agriculture technologies in Ontario crop
production. Can. J. Plant Sci. In press

Ng JMS, Han M, Beatty PH, Good A. 2016. “Genes, meet gases”: the role of plant nutrition and genomics
in addressing greenhouse gas emissions. In Plant Genomics and Climate Change, ed. D Edwards, J Batley,
pp. 149–72. New York: Springer

Opara LU. 2003. Traceability in agriculture and food supply chain: a review of basic concepts, technological
implications, and future prospects. J. Food Agric. Environ. 1:101–6

Palm-Forster LH, Swinton SM, Redder TM, DePinto JV, Boles CM. 2016. Using conservation auctions
informed by environmental performance models to reduce agricultural nutrient flows into Lake Erie.
J. Great Lakes Res. 42(6):1357–71

Pannell DJ. 2006. Flat earth economics: the far-reaching consequences of flat payoff functions in economic
decision making. Rev. Agric. Econ. 28(4):553–66

Pant LP, Odame HH. 2017. Broadband for a sustainable digital future of rural communities: a reflexive
interactive assessment. J. Rural Stud. 54:435–50

Phalan B, Green RE, Dicks LV, Dotta G, Feniuk C, et al. 2016. How can higher-yield farming help to spare
nature? Science 351(6272):450–51

Pierpaoli E, Carli G, Pignatti E, Canavari M. 2013. Drivers of precision agriculture technologies adoption: a
literature review. Proc. Technol. 8:61–69

Pitchbook. 2017. Agtech investment review. Rep., Finistere Ventures, Palo Alto, CA. https://files.pitchbook.
com/website/files/pdf/Finistere_Ventures_PitchBook_2017_Agtech_Investment_Review.pdf

Pizzuti T, Mirabelli G. 2015. The Global Track&Trace System for food: general framework and functioning
principles. J. Food Eng. 159:16–35

Poon K, Weersink A. 2014. Growing forward with agricultural policy: strengths and weaknesses of Canada’s
agricultural data sets. Can. J. Agric. Econ. 62(2):191–218

Popper N, Lohr S. 2017. Blockchain: a better way to track pork chops, bonds, bad peanut butter. New
York Times, March 4. https://www.nytimes.com/2017/03/04/business/dealbook/blockchain-ibm-
bitcoin.html

36 Weersink et al.

https://gigaom.com/report/big-data-and-big-agriculture/
https://gigaom.com/report/big-data-and-big-agriculture/
http://fortune.com/2017/09/06/john-deere-blue-river-acquisition/
https://files.pitchbook.com/website/files/pdf/Finistere_Ventures_PitchBook_2017_Agtech_Investment_Review.pdf
https://files.pitchbook.com/website/files/pdf/Finistere_Ventures_PitchBook_2017_Agtech_Investment_Review.pdf
https://www.nytimes.com/2017/03/04/business/dealbook/blockchain-ibm-bitcoin.html
https://www.nytimes.com/2017/03/04/business/dealbook/blockchain-ibm-bitcoin.html


RE10CH02_Weersink ARI 25 August 2018 15:21

Porter CH, Villalobos C, Holzworth D, Nelson R, White JW, et al. 2014. Harmonization and translation of
crop modeling data to ensure interoperability. Environ. Model. Softw. 62:495–508

Rainie L, Anderson J. 2017. The future of jobs and jobs training. Pew Res. Cent. Internet Technol., May 3.
http://www.pewinternet.org/2017/05/03/the-future-of-jobs-and-jobs-training/

Rajsic P, Weersink A. 2008. Do farmers waste fertilizer? A comparison of ex post optimal nitrogen rates and
ex ante recommendations by model, site and year. Agric. Syst. 97(1):56–67

Ramundo L, Taisch M, Terzi S. 2016. State of the art of technology in the food sector value chain towards
the IoT. 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging
a Better Tomorrow (RTSI), pp. 1–6. New York: IEEE

Rose DC, Sutherland WJ, Parker C, Lobley M, Winter M, et al. 2016. Decision support tools for agriculture:
towards effective design and delivery. Agric. Syst. 149:165–74

Rotz S, Fraser EDG, Martin RC. 2017. Situating tenure, capital and finance in farmland relations: impli-
cations for stewardship and agroecological health in Ontario, Canada. J. Peasant Stud. https://doi.org/
10.1080/03066150.2017.1351953

Schimmelpfennig D. 2016. Farm profits and adoption of precision agriculture. Econ. Res. Rep. 217, Econ. Res.
Serv., US Dep. Agric., Washington, DC

Schmitz A. 2010. Agricultural Policy, Agribusiness, and Rent-Seeking Behavior. Toronto: Univ. Toronto Press
Sexton RJ. 2012. Market power, misconceptions, and modern agricultural markets. Am. J. Agric. Econ.

95(2):209–19
Shin DH, Choi MJ. 2015. Ecological views of big data: perspectives and issues. Telemat. Inf. 32(2):311–20
Sonka S. 2014. Big data and the ag sector: more than lots of numbers. Int. Food Agribus. Manag. Rev. 17(1):1–20
Sonka S. 2016. Big data: fueling the next evolution of agricultural innovation. J. Innov. Manag. 4(1):114–36
Stat. Can. 2017. A portrait of a 21st century agricultural operation. Rep., Minist. Ind., Ottawa. http://www.

statcan.gc.ca/pub/95-640-x/2016001/article/14811-eng.pdf
Tey YS, Brindal M. 2012. Factors influencing the adoption of precision agricultural technologies: a review

for policy implications. Precis. Agric. 13(6):713–30
Tilman D. 1998. The greening of the green revolution. Nature 396(6708):211–12
Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. 2002. Agricultural sustainability and intensive

production practices. Nature 418(6898):671–77
Van Rijswijk W, Frewer LJ. 2012. Consumer needs and requirements for food and ingredient traceability

information. Int. J. Consum. Stud. 36(3):282–90
Walker MJ, Burns M, Burns DT. 2013. Horse meat in beef products—species substitution 2013. J. Assoc.

Public Anal. 41:67–106
Weersink A. 2018. The growing heterogeneity in the farm sector and its implications. Can. J. Agric. Econ.

66(1):27–41
Weersink A, Livernois J, Shogren JF, Shortle JS. 1998. Economic instruments and environmental policy in

agriculture. Can. Public Policy/Anal. Politiques 24(3):309–27
Weersink A, Pannell D. 2017. Payments versus direct controls for environmental externalities in agriculture.

Oxf. Res. Encycl. Environ. Sci. http://environmentalscience.oxfordre.com/view/10.1093/acrefore/
9780199389414.001.0001/acrefore-9780199389414-e-520

Weis T. 2013. The Ecological Hoofprint: The Global Burden of Industrial Livestock. London: Zed Books
Wolfert S, Ge L, Verdouw C, Bogaardt M-J. 2017. Big Data in Smart Farming—a review. Agric. Syst. 153:69–

80
Wong EHK, Hanner RH. 2008. DNA barcoding detects market substitution in North American seafood.

Food Res. Int. 41(8):828–37
Woodard JD. 2016. Data science and management for large scale empirical applications in agricultural and

applied economics research. Appl. Econ. Perspect. Policy 38(3):373–88

www.annualreviews.org • Big Data in Agricultural and Environmental Analysis 37

http://www.pewinternet.org/2017/05/03/the-future-of-jobs-and-jobs-training/
https://doi.org/10.1080/03066150.2017.1351953
https://doi.org/10.1080/03066150.2017.1351953
http://www.statcan.gc.ca/pub/95-640-x/2016001/article/14811-eng.pdf
http://www.statcan.gc.ca/pub/95-640-x/2016001/article/14811-eng.pdf
http://environmentalscience.oxfordre.com/view/10.1093/acrefore/9780199389414.001.0001/acrefore-9780199389414-e-520
http://environmentalscience.oxfordre.com/view/10.1093/acrefore/9780199389414.001.0001/acrefore-9780199389414-e-520



