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Abstract

Computational methods are required to solve problems without closed-
form solutions in environmental and resource economics. Efficiency, stabil-
ity, and accuracy are key elements for computational methods. This review
discusses state-of-the-art computational methods applied in environmental
and resource economics, including optimal control methods for determinis-
tic models, advances in value function iteration and time iteration for general
dynamic stochastic problems, nonlinear certainty equivalent approximation,
robust decision making, real option analysis, bilevel optimization, solution
methods for continuous time problems, and so on. This review also clari-
fies the so-called curse of dimensionality, and discusses some computational
techniques such as approximation methods without the curse of dimension-
ality and time-dependent approximation domains. Many existing economic
models use simplifying and/or unrealistic assumptions with an excuse of
computational feasibility, but these assumptions might be able to be relaxed
if we choose an efficient computational method discussed in this review.
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1. INTRODUCTION

In environmental and resource economics, problems often have no closed-form solutions, so we
have to rely on computational methods to solve them and then provide economic analysis.While
analytic results can be helpful in building intuition, they have tomakemany strong and simplifying
assumptions, so sometimes their closed-form solutions may result in economic analysis that is
more confusing than clarifying.

This review focuses on computational methods, particularly general and recent methods,more
than substantive modeling and applications, although I provide some references to applied re-
search that focuses on environmental and resource economics.The review also focuses on solution
methods for discrete time dynamic stochastic problems, particularly new advances and clarifica-
tions in the most popular method—value/policy function iteration. I also review other methods,
including NLCEQ (nonlinear certainty equivalent approximation) (Cai et al. 2017c), robust de-
cision making, and bilevel optimization. For general background, traditional methods, and stan-
dard rules in computational methods for economists, see Rust (1996), Judd (1998), Ljungqvist &
Sargent (2000), Miranda & Fackler (2002), Bertsekas (2005, 2007), and Cai & Judd (2014) for de-
tails. This review will also not discuss agent-based models [see Farmer et al. (2015) for a detailed
discussion about agent-based models in climate change economics] or econometric and statistical
methods.1

The review is organized as follows. Section 2 discusses optimal control methods for deter-
ministic models, including solving a social planner’s problem and finding equilibrium under no
uncertainty. Section 3 presents value function iteration, the most popular method for solving
discrete time dynamic stochastic programming problems under a social planner’s preference.
Section 4 presents time iteration, another popularmethod for finding dynamic general equilibrium
of discrete time dynamic stochastic programming problems. While both value function iteration
and time iteration are for general dynamic programming problems thatmay have a finite or infinite
time horizon andmay be nonstationary,many economic problems study infinite-time-horizon sta-
tionary problems, which Section 5 specifically discusses. Section 6 briefly reviews computational
methods for robust decision-making problems. Section 7 discusses other computational methods
including NLCEQ, approximate dynamic programming, real options pricing, and bilevel opti-
mization for solving principal-agent problems. Section 8 briefly reviews computational methods
for continuous time dynamic programming problems. Section 9 provides detailed discussions of
the curse of dimensionality, boundedness, Monte Carlo techniques, approximation, and stopping
criteria. Section 10 concludes. The Supplemental Appendix discusses the complete Chebyshev
approximation, simplicial complete Chebyshev approximation, and the Chebyshev regression al-
gorithm; it also provides an illustrative example of value function iteration with complete Cheby-
shev approximation and its code for solving a simple optimal growth problem.

2. OPTIMAL CONTROL METHODS FOR DETERMINISTIC MODELS

2.1. Social Planner’s Problem

Most deterministic discrete time dynamic programming (DP) problems in environmental and
resource economics can be written as

1In econometrics, there are many computational issues that may lead to different, even opposite, solutions. For
example, Cafiero et al. (2011, 2015) show that using a much finer grid to approximate the equilibrium price
function leads to positive evidence for the role of storage arbitrage, contrary to a previous claim of Deaton
& Laroque (1995, 1996) using a coarse grid. Guerra et al. (2015) show serious differences in magnitudes of
practical interest between using annual price data and using December price data for testing a storage model.
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max
T−1∑
t=0

βtut (xt , at ) + βTVT (xT ) 1.

s.t. xt+1 = ft (xt , at ), t = 0, 1, . . . ,T − 1

at ∈ Dt (xt )

x0 given,

where t is time (period),T is the time horizon (which can be infinite), xt is a vector of state variables
(e.g., capital or resource stock), at is a vector of decision variables (e.g., consumption), ft is a vector
of functions representing transition laws of the state variables,β < 1 is the discount factor, ut is the
social planner’s utility function,VT is the terminal value function (for infinite-horizon problems,
VT is zero everywhere), and Dt (xt ) is the feasible set for decision variables at time t.

The optimal control method is the most common method to solve the deterministic prob-
lem (Equation 1) with a finite horizon. That is, if the functions and variables are contin-
uous, then we view Equation 1 as a nonlinear programming (NLP) problem with variables
(x1, . . . , xT , a0, a1, . . . , aT−1) and constraints xt+1 = ft (xt , at ) and at ∈ Dt (xt ) for t = 0, 1, . . . ,T − 1,
and then use an NLP solver to solve it directly;2 if the functions and variables are discrete, then
we can use integer programming to solve Equation 1; and if some but not all of the functions
and variables are discrete, then we can use mixed integer nonlinearly constrained optimization
(MINLP) solvers to solve Equation 1. In MATLAB, we can use the fmincon solver (a solver for
finding a minimum of a constrained optimization problem) to solve Equation 1 after transforming
it into a minimization problem by multiplying the objective by −1, and in cases where fmincon
does not work well, we use an alternative solver such as KNITRO. However, GAMS (General
Algebraic Modeling System) or AMPL (A Mathematical Programming Language) can provide
a more flexible environment than MATLAB, as there are more professional solvers available us-
ing GAMS or AMPL (see McCarl et al. 2018 or Fourer et al. 2003 for their user guides). For
example, CONOPT (Drud 1994) is often more reliable and efficient than fmincon in solving
NLP problems, and SNOPT (Gill et al. 2005) is another good alternative. The NEOS server
(Czyzyk et al. 1998) (https://neos-server.org/neos/solvers/index.html) provides a long list of
free solvers for various optimization problems (e.g., NLP, MINLP, global optimization) that can
run GAMS or AMPL code. The flexibility of GAMS or AMPL is more useful for dealing with
challenging optimization problems such as global optimization or problems with a flat objective
over some decision variables, as we can try different solvers with the same code written in GAMS
or AMPL to solve Equation 1 or even verify the accuracy of a solution of Equation 1 obtained from
another solver. A good initial guess, scaling, and stopping criteria are also important for solving
challenging problems.

For deterministic problems (Equation 1) with an infinite horizon, usually one can also use
the optimal control method after truncating the infinite series at a large finite period T , because
βt → 0 as t → ∞ and infinite-horizon problems often require a transversality condition. In fact,
if the utility function is a power function with a marginal elasticity larger than 1, then it is upper-
bounded at zero, so βtut (xt , at ) → 0 for a typical economic problem.

2.2. Find Equilibrium

While DP problems usually focus on intertemporal equilibrium and long-term effects (often
with hundreds of periods), another direction is to study short-term effects and spatial or sectoral

2Linear programming (LP) is a special case of NLP and usually is easier to solve with LP solvers such as
CPLEX and Gurobi, so we do not discuss LP in this article.
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equilibrium, which typically includes many regions or sectors (up to hundreds of sectors). The
Global Trade Analysis Project (GTAP) founded by Thomas Hertel at Purdue University is one
representative example (see Hertel 2013 for an overview of GTAP), and many other computable
general equilibrium (CGE) models are presented by Dixon & Jorgenson (2013).3 GTAP applies
on the GEMPACK (General Equilibrium Modeling Package) platform, which is compared with
GAMS and MPSGE [Mathematical Programming System for General Equilibrium (Rutherford
1999)] by Horridge et al. (2013). GTAP is also combined with other models in the literature.
For example, Golub et al. (2009) extend GTAP to GTAP-AEZ-GHG, a general equilibrium
framework, to model forest carbon sequestration and land management in agriculture and
forestry, and Golub et al. (2013) extend GTAP-AEZ-GHG to study climate policy impacts.

For multi-regional, multi-sectoral, and/or multi-agent static problems, each region, sector, or
agent is assumed to optimize their objectives with budget and market-clearing constraints and
trade between regions, sectors, and/or agents. The decentralized equilibrium can be solved using
a system of first-order conditions (and constraints). That is, the problem is to find a solution to
the system of equations and inequalities {

F(a) = 0

G(a) ≥ 0,
2.

where a contains prices, quantities of (intermediate) products, and resource allocations. This may
be solved in MATLAB using fsolve or other equation solvers. The system (Equation 2) may also
be solved as a degenerate optimization problem,

max
x

1 3.

s.t. F(a) = 0

G(a) ≥ 0,

using an optimization solver such asCONOPTand SNOPT to find a feasible point using the opti-
mal control method. Sometimes the system (Equation 2) may contain complementarity conditions
(such as xix j = 0 with xi, x j ≥ 0), which often make it challenging to solve. The mixed comple-
mentarity problems may be solved using MILES (Rutherford 1993, 1995) or PATH (Dirkse &
Ferris 1995, Ferris & Munson 2000).

For deterministic dynamic problems, we can use the same computational methods to solve the
following system of equations and inequalities:{

Ft (xt , xt+1, at , at+1) = 0, ∀t
Gt (xt , at ) ≥ 0, ∀t, 4.

where xt are state variables; at are other variables, including decision variables and prices; Ft rep-
resents transition laws of states, Euler equations, first-order conditions, and other equality con-
straints; and Gt represents all inequality constraints. For example, Baldwin et al. (2018) use the
degenerate optimization method (Equation 3) but with the constraints in Equation 4 to obtain
decentralized equilibrium when there is no carbon tax in the dirty energy sector or a subsidy in
the renewable energy sector. One disadvantage of this method is that we have to derive the Euler
equations and first-order conditions, and the system (Equation 4) may be challenging to solve.

3Also see Bergman (2005) for CGE modeling in environmental policy and resource management.
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3. VALUE FUNCTION ITERATION

Most stochastic discrete time dynamic programming problems in environmental and resource
economics can be written as

max E

{
T−1∑
t=0

βtut (xt , at ) + βTVT (xT )

}
5.

s.t. xt+1 = ft (xt , at ,εt ), t = 0, 1, . . . ,T − 1

at ∈ Dt (xt )

x0 given,

where E is the expectation operator and εt is a vector of random variables at time t. Note that
some state variables may have deterministic transition laws, e.g., the transition law of the j-th
state variable is xt+1, j = gt, j (xt , at ), but here we simplify our notation by defining ft, j (xt , at ,εt ) =
gt, j (xt , at ) + 0 · εt so that xt+1, j = ft, j (xt , at ,εt ). For simplicity in discussion of computational
methods, we assume xt are continuous variables (as discrete state variables can be simply added).

Value function iteration (VFI) is the most common method to solve Equation 5. It transforms
Equation 5 to the following Bellman equation (Bellman 1957):

Vt (xt ) = max
at∈Dt (xt )

ut (xt , at ) + βEt
{
Vt+1(xt+1)

}
6.

s.t. xt+1 = ft (xt , at ,εt )

for t = 0, 1, . . . ,T − 1,whereEt is the expectation operator conditional on the time-t information.
With a given terminal value functionVT for finite-horizon problems, it iterates backward over time
to get all value functions and policy functions. For infinite-horizon problems, we can truncate it
at a finite horizon T and choose

VT (xT ) ≈ ET

{ ∞∑
t=T

βt−T ut (̃xt , ãt)

}
,

where ãt and x̃t are a series of guessed decisions and states starting from the terminal state xT . A
criterion in setting a terminal value function VT is that a reasonable change in its terminal values
(e.g., 10% up or down) will not result in a nonnegligible change in the solutions at the periods of
interest.

Each iteration of Equation 6 contains three main parts: approximation, optimization, and in-
tegration. These parts are computed numerically for problems with continuous state variables,
continuous random variables, and continuous decision variables. That is, with a given next-period
value function approximation V̂t+1(xt+1;bt+1), numerical VFI constructs the current-period value
function V̂t (xt;bt ) by solving

V̂t (xt;bt ) ≈ m̂ax
at∈Dt (xt )

ut (xt , at ) + βÊt

{
V̂t+1(xt+1;bt+1)

}
7.

s.t. xt+1 = ft (xt , at ,εt ),

where hatted variables refer to the numerical implementation of approximation, optimization, and
integration, and b is a vector of approximation coefficients. A typical numerical approximation of
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a value function V is

V̂ (x;b) =
∑
j

b jφ j (x), 8.

where {φ j (x)} are basis functions (e.g.,Chebyshev basis polynomials discussed in Section 9.4, or or-
dinary basis polynomials: 1, x, x2, x3, . . . , for univariate problems) and b = {b j} are approximation
coefficients [see Judd (1998) and Miranda & Fackler (2002) for a detailed discussion]. Moreover,
a numerical approximation is often associated with a bounded approximation domain in the state
space, which could be time variant. To solve Equation 7, we choose approximation nodes {xt,i},
solve the maximization problem

vt,i = m̂ax
at,i∈Dt (xt,i )

ut (xt,i, at,i ) + βÊt

{
V̂t+1(xt+1,i;bt+1)

}
9.

s.t. xt+1,i = ft (xt,i, at,i,εt )

for every xt,i, and then find bt such that V̂t (xt,i;bt ) ≈ vt,i for all i. Numerical optimization solvers
include CONOPT, SNOPT, NPSOL (Gill et al. 1994), KNITRO (Byrd et al. 2006), or fmin-
con inMATLAB.Numerical integration methods include Gaussian quadrature rules (e.g., Gauss-
Hermite quadrature for normal or log-normal distributions and Gauss-Legendre quadrature for
uniform distributions) and monomial quadrature rules. See Judd (1998) for a detailed discussion
of these.

The Bellman equation (Equation 6) applies widely to problems with separate utility functions.
There are numerous applications in the literature; here I provide only several recent examples in
environmental and resource economics. Daigneault et al. (2010) use the Bellman equation to find
optimal forest management with fire risk and carbon sequestration credits. Cai et al. (2015a) and
Lontzek et al. (2015) apply VFI to solve for the optimal carbon tax with an integrated assessment
model with climate tipping risks.

Recently, recursive utility (Epstein & Zin 1989) has been used in DP. For example, Jensen &
Traeger (2014) and Cai et al. (2016b, 2017b, 2018a) employ recursive utility in climate change
economics for solving dynamic stochastic integrated assessment models (IAMs). They still apply
VFI but with the more general Bellman equation

Vt (xt ) = max
at∈Dt (xt )

ut (xt , at ) + βGt
{
Vt+1(xt+1)

}
10.

s.t. xt+1 = ft (xt , at ,εt ),

where

Gt
{
Vt+1(xt+1)

} ≡ 1
1 − 1/ψ

(
Et

{
((1 − 1/ψ )Vt+1(xt+1))

1−γ
1−1/ψ

}) 1−1/ψ
1−γ

with ψ and γ as the intertemporal elasticity of substitution and the risk aversion coefficient, re-
spectively. Without loss of generality, we will use the Bellman equation (Equation 6) for later
discussion.

VFI is also used to solve problems with learning. For example, Kelly & Kolstad (1999) em-
ploy VFI with neural network approximation to solve climate change economics problems with
Bayesian learning. Leach (2007) extends their pioneering work to the case of learning about two
correlated uncertain parameters. Recently, Kelly & Tan (2015) investigated the impact of learning
an important uncertain parameter, climate sensitivity (which measures the temperature increase in
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equilibrium if carbon concentration in the atmosphere doubles), on optimal climate policy under
fat-tailed uncertainty about climate change. Rudik (2016) combines Bayesian learning and robust
control in the context of optimal carbon taxation.

It is always important to check whether a computational method and code are actually solving
problems with the desired accuracy. Cai et al. (2017b, 2018b) present how to verify and measure
errors appropriately for numerical solutions from VFI.One technique for verification is to use the
same code and the same computational methods (including the same approximation domains and
nodes) for a stochastic problem to replicate a solution of its corresponding deterministic model,
obtained by another programming language and/or another computational method (e.g., GAMS
and the optimal control method). Another way is to check if higher-order approximations with
wider approximation domains or higher-order quadrature rules will change results significantly.
Normalized Euler equation errors (see, e.g., Cai et al. 2017c) and approximation errors are also
important for measuring errors (Cai et al. 2018b).

4. TIME ITERATION

Time iteration, another backward iteration method, is also popular. It constructs policy functions
with state variables as arguments, while their approximation domains are the same across deci-
sion variables.With next-period policy functions, we compute current-period policy functions by
solving a system of intertemporal Euler equations and transition laws, and temporal first-order
conditions and constraints. That is, at time t, with given next-period policy functions At+1(xt+1),
instead of solving the maximization problem (Equation 6) in VFI we solve the following system
of equations and inequalities:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Et (xt , xt+1,At (xt ),At+1(xt+1)) = 0

Ft (xt ,At (xt )) = 0

xt+1 = ft (xt ,At (xt ),εt )

Gt (xt ,At (xt )) ≥ 0,

11.

where xt are state variables, At (xt ) are policy functions, Et represents Euler equations, Ft rep-
resents first-order conditions, ft represents transition laws of state variables, and Gt represents
all other constraints (e.g., nonnegativity constraints and complementarity constraints).4 To solve
Equation 11 numerically, we start with a given numerical approximation of next-period pol-
icy functions, Ât+1(xt+1;Bt+1), where Bt+1 are approximation coefficients for decision variables;
choose approximation nodes {xt,i}; solve⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Et (xt,i, xt+1,i, at,i, Ât+1(xt+1,i;Bt+1)) = 0

Ft (xt,i, at,i ) = 0

xt+1,i = ft (xt,i, at,i,εt )

Gt (xt,i, at,i ) ≥ 0

12.

for every xt,i; and then find Bt such that Ât (xt,i;Bt ) ≈ at,i for all i.
For stationary infinite-horizon problems, time iteration is often faster than VFI. However,

most economic problems have monotone and concave value functions. For such problems, solving
the system in Equation 12 may be more challenging than solving the maximization problem in

4An equality constraint g(xt ,At (xt )) = 0 can be represented as a combination of two inequality constraints:
g(xt ,At (xt )) ≥ 0 and −g(xt ,At (xt )) ≥ 0.
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Equation 6 using VFI, as the first-order conditions and Euler equations may lose the convexity of
the maximization problem in Equation 6.

Time iteration has been widely used in the literature. For example, Judd et al. (2014) incorpo-
rate the Smolyak method (Smolyak 1963) into time iteration, and Brumm & Scheidegger (2017)
introduce an adaptive sparse grid method into time iteration, so that time iteration can solve large-
dimensional problems.

In particular, time iteration is a typical method for nonstationary DSGE (dynamic stochastic
general equilibrium) or dynamic stochastic game problems with multiple regions, sectors, and/or
agents. That is, at each time, time iteration solves the system in Equation 11 to get the optimal
resource allocation and investment among regions, sectors, and/or agents, as well as prices and
quantities of goods, and then iterates backward until the initial time (for finite-horizon problems)
or until convergence (for infinite-horizon stationary problems).

5. METHODS FOR STATIONARY INFINITE-HORIZON PROBLEMS

For stationary infinite-horizon dynamic problems (i.e., all functions and exogenous parameters
are independent of time), the Bellman equation (Equation 6) becomes

V(x) = max
a∈D(x)

u(x, a) + βE
{
V(x+ )

}
13.

s.t. x+ = f (x, a, ε ),

where x+ is the next-period state transited from current state x, and we can choose an initial guess
for the value function V and then iterate until VFI converges.

Let V̂k(x;bk ) be the value function approximation at the k-th iteration. We assume VFI con-
verges numerically if two consecutive value function approximations are sufficiently close, i.e.,∥∥∥V̂k − V̂k+1

∥∥∥ < ε

for some functional norm ‖·‖ and a small positive number ε. The L∞ norm is often used, i.e.,

max
x

∣∣∣V̂k(x;bk ) − V̂k+1(x;bk+1)
∣∣∣ < ε.

Numerically, we can replace the above formula with

max
i

∣∣∣V̂k(xi;bk ) − V̂k+1(xi;bk+1)
∣∣∣ < ε

over a large-size set of points {xi} on the state space. For example, Cai et al. (2017b, 2018b) use
1,000 Monte Carlo points in the state space of continuous state variables for every discrete state.
We should also pay attention to the magnitude of V̂, as too large a magnitude will make it too
challenging or time consuming to stop, and too small a magnitude will make VFI stop too early,
with large errors. Thus, typically we first scale utility by a constant such that the value function
has a reasonable magnitude. Alternatively we can use the difference of two consecutive policy
functions as a substitute for the difference of two consecutive value functions. In addition, the
value of the discount factor also matters, because a discount factor close to 1 implies a small time
increment. Since one period’s utility could then have little contribution to the objective function,
which may make VFI stop too early, we often use ε/(1 − β ) instead of ε.

However, for infinite-horizon stationary DSGE problems, perturbation methods (see, e.g.,
Judd & Guu 1993) and projection methods (see, e.g., Judd 1992) may be more efficient, although
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perturbation methods can only provide locally accurate solutions around the nonstochastic steady
state, and projection methods may be challenging for high-dimensional problems or problems
with strong nonlinearity.5 Moreover, neither perturbation nor projection can solve problems with
kinks in general, except the OccBin method (Guerrieri & Iacoviello 2015), which can solve some
low-dimensional problems with occasionally binding constraints. Fernandez-Villaverde et al.
(2016) provide a detailed discussion about perturbation and projection. Recently, Levintal (2018)
proposes an efficient Taylor projection method to solve DSGE models. The algorithm is a hy-
brid of perturbation and projection, and it can obtain a locally accurate solution around any point
on the state space. Fernandez-Villaverde & Levintal (2018) apply the Taylor projection method
to solve a DSGE model with Epstein–Zin preferences and rare disasters. Other methods include
NLCEQ (Cai et al. 2017c), discussed later in this review, and simulation-based methods including
GSSA ( Judd et al. 2011) and EDS (Maliar &Maliar 2015), which unfortunately cannot guarantee
convergence. In addition, Dynare (Adjemian et al. 2011), a MATLAB toolbox, is used for solving
DSGE models, particularly for problems in macroeconomics.

6. ROBUST DECISION MAKING

Experts often provide different models, projected paths, or estimated parameter values, so policy
makers have to face Knightian uncertainty, where a particular probability distribution cannot be
assigned across the models, projected paths, or parameter values. A typical method to deal with
problems involving Knightian uncertainty is sensitivity analysis, and uncertainty quantification is
another method (see Cai et al. 2018b, Harenberg et al. 2019). But neither can provide a robust
solution for decision makers.

Robust decision-making methods help decision makers who face Knightian uncertainty. The
max-min method is the most well-known robust decision-making method. It tries to maximize the
minimal welfare across the uncertain models, projected paths, or estimated parameter values; that
is, the max-min method corresponds to the worst-case analysis. Thus, the robust decision from
the max-min method is often too conservative.

Recently, a min-max regret (MMR) method, a less conservative robust decision-making
method, has been applied in environmental and resource economics for policy analysis. For an
unknown but true model, there is an optimal solution to achieve the maximal welfare under the
model. Other models will also propose their corresponding solution. Implementing the proposed
decisions from the other models in reality (i.e., the true model) gives us realized welfare. MMR
defines regret to be the difference between the maximal welfare using the optimal decisions under
the true model and the realized welfare using the proposed decisions under the other models, and
then chooses a robust decision to minimize the maximal regret.

Iverson (2012) implements an iterative approach and applies MMR to climate policy analy-
sis using DICE-2007 (Nordhaus 2008) under Knightian uncertainty across weights on environ-
mental or growth objectives, climate sensitivity, and the coefficient of the damage function of a
Dynamic Integrated Climate-Economy (DICE) model. Iverson (2013) uses MMR to consider a
robust environmental policy decision in the face of Knightian uncertainty about the discount rate.
Anthoff & Tol (2014b) also analyze MMR using the Climate Framework for Uncertainty,Negoti-
ation and Distribution (FUND) integrated assessment model. Cai & Sanstad (2016) introduce an
efficient computational method to solve MMR problems and make robust decisions over Knight-
ian uncertainty, and apply it to the Goulder-Mathai model (Goulder &Mathai 2000) for studying

5We can transform nonstationary problems into stationary problems by adding some extra state variables, so
that perturbation or projection methods can be applied.
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carbon emissions abatement from the energy sector in the face of model uncertainty about tech-
nical change. Cai et al. (2017a) apply the efficient MMR method to study robust decisions of
agricultural research and development under uncertainty in population, income, and temperature
using five shared socioeconomic pathways (O’Neill et al. 2014). Cai et al. (2016a) extend the ef-
ficient MMR method to study robust decisions of agricultural research and development under
ambiguity over risk of economic growth (i.e., Knightian uncertainty across probability distribu-
tions of economic growth), based on a survey of economists about economic growth in the next
century (Christensen et al. 2018, Gillingham et al. 2018). The MMR methods cannot change the
level of ambiguity aversion, and they have no risk aversion (except in Cai et al. 2016a). Hansen
& Sargent (2008) introduce a robust control framework in the face of both risk and ambiguity
(misspecification), with both risk aversion and ambiguity aversion. Athanassoglou & Xepapadeas
(2012) implement the robust control framework to consider an analytical pollution control prob-
lem, and Rudik (2016) incorporates it numerically in DICE to include learning and solves his
model using VFI with sparse grid approximation. Drouet et al. (2015) disentangle model uncer-
tainty and risks to economic production due to mitigation costs, climate dynamics, and climate
damages. Berger et al. (2017) apply the robust tools in Cerreia-Vioglio et al. (2013) and Marinacci
(2015) to disentangle the role of preferences from the structure of model uncertainty in order to
study the impact on optimal mitigation policy.

7. OTHER COMPUTATIONAL METHODS

7.1. Nonlinear Certainty Equivalent Approximation

It is often challenging to solve dynamic stochastic programming problems with high dimensions
or occasionally binding constraints. Cai et al. (2017c) introduce a new computational method,
NLCEQ, to solve these kinds of problems. NLCEQ can solve deterministic infinite-horizon sta-
tionary problems accurately, and stochastic infinite-horizon stationary problems with acceptable
accuracy, including a social planner’s problems and competitive equilibrium. It is simple for cod-
ing and naturally parallelizable, and it is also very stable, particularly for solving a social planner’s
problems. For example, NLCEQ can solve a stochastic multi-country optimal growth problem
with up to 400 state variables using Smolyak grids and parallelism, a dynamic model of food and
clean energy with a stochastic jump process, and aNewKeynesian DSGEmodel with a zero lower
bound. SeeCai et al. (2017c) for a comparison betweenNLCEQ and perturbation,OccBin,GSSA,
and EDS methods.

7.2. Approximate Dynamic Programming

Simulation-based methods [e.g., GSSA ( Judd et al. 2011)] can avoid the so-called curse of di-
mensionality, based on the properties of Monte Carlo simulation methods. Approximate dynamic
programming (ADP) (e.g., Powell 2007) is a simulation-based and nested inner–outer iteration
method. It was originally designed for problems with discrete states. It starts with a given initial
guess of value functions at all times, V̂ 0

t (xt ), where xt are discrete state variables; it then updates
them by the outer iteration. In each outer iteration, it generates a new sample path of stochastic
variables and then runs an inner forward iteration over time using the Bellman equation. That
is, after the (n− 1)-th outer iteration, we have V̂ n−1

t (xt ) for all t; then the inner iteration starts
with the initial state xn0 and a simulated εn0 , uses the Bellman equation and V̂ n−1

1 (x1) to compute
the optimal decision an0, computes V̂ n

0 (x
n
0 ) as a weighted sum of V̂ n−1

0 (xn0 ) and the optimal objective
value at xn0, lets V̂

n
0 (x0) = V̂ n−1

0 (x0) for all x0 
= xn0, and then obtains the next-period state using the
transition laws xn1 = f0(xn0, a

n
0, ε

n
0 ).With xn1 and a simulated εn1 , it can similarly obtain V̂ n

1 (x1) and xn2.
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This forward iteration is continued until the terminal time, and then the inner iteration obtains
V̂ n
t (xt ) for all t. Thus, in the n-th outer iteration, V̂ n

t (xt ) differentiates with V̂ n−1
t (xt ) at only one

visited state xnt at each time t. The inner–outer iteration process stops until the value functions
converge, that is, V̂ n

t (xt ) and V̂ n+1
t (xt ) are sufficiently close for all t and all states xt . Since this

method is based on Monte Carlo simulation, it requires a large number of outer iterations; other-
wise many states may not be visited with enough frequency or may even never be visited, limiting
the accuracy of ADP.

For problems with continuous state variables xt , a standard ADP needs to discretize them, but
discretization makes it inaccurate for high-dimensional problems.However, ADP can also employ
value function approximation V̂t (xt;Bn

t ), where Bn
t are approximation coefficients over some basis

functions, so the outer iteration updatesBn
t instead of values at a large discretized state space.Thus,

ADP can be fast in some cases, although it may be unstable in other cases. A good choice of basis
functions can significantly improve the performance of ADP. Shayegh & Thomas (2015) design a
two-step-ahead approximation in ADP to solve problems with continuous state variables, in which
they choose utility functions of subsequent states in the next two periods as the basis functions.
The two-step-ahead algorithm is then applied in Heutel et al. (2016) and its extended four-step-
ahead algorithm is applied in Heutel et al. (2018) to study the impact of solar geoengineering
on climate policy under uncertainty. However, it is important to check errors (e.g., Euler errors),
because the accuracy of the multiple-step-ahead approximation may be limited for approximating
value functions, and ADP with the multiple-step-ahead approximation cannot guarantee that it
actually solves the original dynamic stochastic problems even if it converges.

7.3. Real Options Analysis

The costs and benefits of an action in a decision-making problem are often uncertain, particularly
in a dynamic environment as future management and policy can respond to new information. Real
options analysis can take into account uncertainty and also flexibility, so it is often used to value
the flexibility in an investment project, including allowances for future deferral, abandonment, or
expansion of the project (see, e.g., Brennan & Schwartz 1985, Dixit & Pindyck 1994).

The most commonmethods for evaluating options areMonte Carlo simulation, decision trees,
and partial differential equations (PDEs). For instance, Albers et al. (1996) use a real options ap-
proach with a decision tree to discuss the impact of uncertainty and irreversibility on the valuation
and management of tropical forests, assuming that there are three types of land use: preservation,
an intermediate use, and development. Insley (2002) introduces a real options approach based on a
PDE to model the optimal tree-harvesting decision by implementing an implicit finite difference
method to discretize a linear complementarity equation for determining the value of the option
in a backward iteration. Hansen et al. (2008) evaluate an annual dry-year option, under which
a water agency buys the right to purchase water at a later date with a prespecified strike price,
by constructing a distribution of shadow prices that reflect the economic value of water under a
simulation–optimization framework. Anda et al. (2009) apply real options analysis based onMonte
Carlo simulation to select a future-flexible climate policy that can be corrected in the future in
response to new knowledge. Leroux et al. (2009) use a real options approach based on a PDE and
its finite difference solution to find optimal levels of conservation and land development under
future stochastic natural damages, with the ecological mechanism of extinction debt as an illustra-
tion. Nadolnyak et al. (2011) apply real options analysis to market entry of genetically modified
crops using VFI with Chebyshev polynomial approximation. Linquiti & Vonortas (2012) formu-
late a Monte Carlo model with real options analysis to test adaptation strategies for defending
against sea level rise due to global warming. Ryu et al. (2018) apply real options analysis with a
binomial tree to study flood mitigation strategies under uncertainty in global climate change.
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7.4. Solving Principal-Agent Models

Baldwin et al. (2018) apply theMathematical Programmingwith EquilibriumConditions (MPEC)
method to solve a dynamic principal-agent model, where the principal decides dynamic carbon
taxes and/or subsidies to maximize social welfare, and the agents maximize their respective utility
functions: The representative household maximizes the present value of utilities; the final good
firms, fossil fuel firms, and renewable energy firms maximize their present value of profits.MPEC
approaches have also been applied in other fields of economics. For example, Su & Judd (2012)
apply MPEC in structural estimation to maximize the likelihood subject to equilibrium condi-
tions from a Bellman equation, which is a bilevel optimization problem like the principal-agent
structure, and then compare it with the nested fixed-point approach (Rust 1987). Recently, a poly-
nomial optimization approach has been introduced to solve principal-agent models (see Renner
& Schmedders 2015, 2016).

8. CONTINUOUS TIME DYNAMIC PROGRAMMING PROBLEMS

Researchers often use continuous time dynamic programming for modeling. Deterministic prob-
lems can be formulated as

max
∫ T

0
e−ρtu(x(t ), a(t ), t )dt + e−ρTW (x(T )) 14.

s.t. ẋ(t ) = f (x(t ), a(t ), t ),

where ρ is the discount rate, a(t ) is the vector of decision variables at time t, ẋ(t ) is the derivative of
the state variables x over time t, and the terminal time T can be infinite. Under some conditions
that economic problems often satisfy, the above problem can be reformulated as the following
Hamilton-Jacobi-Bellman (HJB) PDE:

∂V
∂t

(x, t ) − ρV (x, t ) + max
a

{∇V (x, t ) · f (x, a, t ) + u(x, a, t )
} = 0 15.

subject to the terminal conditionV (x,T ) =W (x), where ∇V (x, t ) denotes the gradient vector of
V on x.

Sometimes it is easy to derive an analytical formula for the maximizer in Equation 15, so the
HJB equation can be transformed to a standard PDE that can be solved by standard computational
methods, such as finite element methods and finite difference methods. Pontryagin’s maximum
principle can also be implemented to derive a set of equations for us to solve and obtain optimal
policy functions. For example, Sohngen &Mendelsohn (1998) use this method and a shooting al-
gorithm for solving equations to find equilibrium prices and timber harvests under climate change.
Sohngen & Mendelsohn (2003) later combine a continuous time global timber model (Sohngen
et al. 1999) with the discrete time DICE model (Nordhaus & Boyer 2000), and implement an
iteration method to calculate carbon rental rates and then solve the two models simultaneously.

When there are occasionally binding constraints in Equation 14, HJB equations may be chal-
lenging to solve, or the value function V (x, t ) may not even be twice differentiable over the state
variables x. Cai et al. (2012) apply finite difference methods to solve a continuous time DICE
problem where the emission control rate will hit its upper bound after some years. They imple-
ment explicit, implicit, or trapezoid finite difference rules to discretize the ordinary differential
equation in Equation 14, and they employ corresponding numerical integration rules to replace
the integration in Equation 14 with summation. They can efficiently solve their problem with
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weekly time steps, a 600-year horizon, and six continuous state variables. Moreover, their method
avoids the kink problems that arise from the transformation to an HJB equation.

The stochastic version of Equation 14 is

max E

{∫ T

0
e−ρtu(x(t ), a(t ), t )dt + e−ρTW (x(T ))

}
16.

s.t. ẋ(t ) = f (x(t ), a(t ), ε(t ), t ),

where ε(t ) is a continuous time stochastic process (and can be multidimensional). The time dis-
cretization method used by Cai et al. (2012) can still be applied, and then we can implement
NLCEQ, value function iteration, or other computational methods for discrete time problems.
The model in Equation 16 can also be converted to an HJB PDE equation under some conditions
[e.g., ε(t ) is normal, log-normal, or binary]. For example, in finance, the Black-Scholes equation
for pricing a derivative is derived under a number of assumptions, including the assumption that
the underlying asset’s price follows a geometric Brownian motion. Polasky et al. (2011) build a
system of HJB equations for problems with potential regime shifts with exogenous or endoge-
nous probabilities. Van der Ploeg & de Zeeuw (2016) use a system of HJB equations to investigate
cooperative and noncooperative responses to climate change with a North-South model of the
global economy in the face of stochastic tipping points of productivity. Since the expectation op-
erator disappears in the converted HJB equation, we can again implement standard computational
methods for solving PDE on the HJB equations.

The time discretization method may be time consuming if the time horizon is large and time
increments used are small, but it is becoming feasible with modern computational power, as shown
by Cai et al. (2012). However, if there are multiple optimal solutions, it is still challenging to find
the global optimizer or all local optimizers.

In the literature of continuous time dynamic programming problems in environmental and
resource economics, many problems are deterministic and stationary assuming an infinite time
horizon. For such a deterministic infinite-horizon stationary problem,

max
∫ ∞

0
e−ρtu(x(t ), a(t ))dt 17.

s.t. ẋ(t ) = f (x(t ), a(t )),

its corresponding HJB equation becomes

max
a

{∇V (x) · f (x, a) + u(x, a)
} = ρV (x). 18.

Instead of solving the HJB equation to get a fixed point for the unknown value function V, we
often form a current value Hamiltonian,

H(x, a, λ) = λ�f (x, a) + u(x, a),

and then implement Pontryagin’s maximum principle to obtain the following modified Hamilto-
nian system of ordinary differential equations (ODEs):⎧⎪⎪⎨⎪⎪⎩

λ̇ = −∇xH(x, a, λ) + ρλ

0 = ∇aH(x, a, λ)

ẋ = f (x, a),

19.
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where λ is the costate vector. Together with the transversality condition and initial/boundary
conditions, we can solve the system of ODEs numerically. For example, the MATLAB ODE
packages (e.g., ode45, ode15s and bvp4c) or Mathematica’s NDSolve routine can be applied to
solve ODE problems. In the literature, this deterministic infinite-horizon stationary problem ap-
pears in the management of a dynamic ecological system such as lake eutrophication (Carpenter
et al. 1999, Brock & Starrett 2003, Mäler et al. 2003, Wagener 2003) and a socioeconomic sys-
tem of a lake district on fishery management (Carpenter & Brock 2004). Grimsrud & Huffaker
(2006) apply singular-perturbation reduction methods to reduce the multidimensional solution
space to a lower-dimensional subspace confining long-term dynamics, and then useMathematica’s
NDSolve routine to solve for optimal management of pest resistance to pesticidal crops. Fenichel
& Horan (2016) apply numerical function approximation and collocation methods, a type of pro-
jection method, to solve their system of ODEs, to show the importance of institutions for man-
aging convex-concave systems with thresholds and tipping points.

When there are multiple agents in the model, it often becomes a differential game. The ODE
system in Equation 19 provides a solution to the optimal management problem under a social
planner’s preference, but not under decentralized equilibrium. The literature often discusses two
types of differential games for decentralized equilibrium: open-loop Nash equilibrium (OLNE)
and feedbackNash equilibrium (FBNE). InOLNE, agents make their decisions ignoring feedback
from physical processes and strategies of other economic agents, so that OLNE has no Markov
properties. We can solve OLNE via a similar system of ODEs by deriving a modified Hamilto-
nian system of ODEs for every agent. FBNE takes into account the feedback in the model, so
agents’ decisions depend on both time and state (i.e., FBNE has Markov properties), and finding a
numerical solution becomes more challenging. Kossioris et al. (2008) provide a more detailed dis-
cussion about OLNE and FBNE with an application to the eutrophication of lakes, and they also
introduce a numerical algorithm to solve FBNE, which incorporates the ode15s solver of MAT-
LAB. Gopalakrishnan et al. (2017) implement the bvp4c routine of MATLAB to find OLNE
for the spatial beach nourishment and coastal climate adaptation of two neighboring coastal
communities.

Grass (2012) uses information about the long-run behavior of the system to derive appropriate
boundary conditions at infinity, and then to reformulate the conditions in a finite time setting.
His numerical algorithm is exemplified by a one-dimensional fishery model, using his MATLAB
package OCMat. Grass et al. (2017) apply the algorithm and OCMat to solve for the optimal
management of ecosystem services with pollution, using a lake model with fast-slow dynamics,
and to find Skiba manifolds and solution paths under full cooperation (i.e., under a social planner’s
preference) or OLNE.

9. DISCUSSION

9.1. The Curse of Dimensionality

For multidimensional problems, the “curse of dimensionality” is often an excuse to not use VFI or
time iteration (see, e.g., Traeger 2014). However, whether VFI or time iteration has the curse of
dimensionality depends on the methods used. If a simple product rule6 is used, then VFI or time
iteration has the curse of dimensionality, but it may not if a nonproduct rule is used. There are

6For example, if Chebyshev basis functions Tk(xi ) with 0 ≤ k ≤ n and 1 ≤ i ≤ d are used in Equation 8 for a d-
dimensional state space, then the simple product rule uses all of their products, Tα1 (x1) · · · Tαd (xd ), as the basis
functions for all 0 ≤ αi ≤ n and 1 ≤ i ≤ d in Equation 8, so that the number of terms in the approximation is
(n+ 1)d . This method is called tensor-product Chebyshev approximation.
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three potential levels of the curse of dimensionality. The first two are on the state space, and the
last is on the space of random variables.

The first potential level is in the choice of approximation methods for V̂ (x;b) depending on
the state space, as V̂ (x;b) has to be computed on the objective function of the maximization
problem (Equation 7). A tensor product approximation such as piecewise linear interpolation and
cubic spline interpolation will suffer from this level, as their number of basis functions {φ j (x)} (and
approximation coefficients b) in V̂ (x;b) grows exponentially in the dimension of the state space.
But if we use a nonproduct approximation method, such as complete Chebyshev polynomials and
simplicial complete Chebyshev polynomials described in Section 9.4, or sparse-grid interpolation
(Krueger & Kubler 2004, Malin et al. 2011, Judd et al. 2014, Brumm & Scheidegger 2017), then
this level of the curse of dimensionality can disappear.

The second potential level is in the choice of approximation nodes on the state space. To ob-
tain approximation coefficients, we need to provide data {(xi, vi )}, where vi is the objective at the
optimal solution of the maximization problem (Equation 7) with current-period state xi. If ten-
sor grids {xi} in the state space are used, then VFI or time iteration suffers from this level, unless
parallelism is also used (Cai et al. 2015b).

Sparse grids, e.g., Smolyak grids (Smolyak 1963), or adaptive sparse grids (Brumm &
Scheidegger 2017) can also break this level of the curse of dimensionality. Note that if the first
level exists then the second level will also exist, but not vice versa, as the number of approxima-
tion coefficients could be less than the number of Lagrange data (but not vice versa) to avoid
overfitting.

The last potential level is in the choice of numerical integration methods. If a tensor-product
integration rule is used in computing expectations or random variables are discrete, then VFI or
time iteration has the curse of dimensionality on the space of random variables εt .7 However, when
random variables are continuous, this level of the curse of dimensionality can be broken by mono-
mial quadrature rules (Stroud 1971, Judd 1998), sparse grid integration (Gerstner &Griebel 1999,
Heiss &Winschel 2008), or Monte Carlo integration methods.Monte Carlo integration methods
have to use a large number of simulated points as they only haveO(1/

√
N ) accuracy withN simu-

lated points, while the optimization solver often needs six-digit accuracy, or even higher accuracy
for problems with flat objective functions in the maximization problem (Equation 7). Thus, in
practice, numerical quadrature rules are often more efficient for problems with continuous ran-
dom variables (Skrainka & Judd 2011). In addition, even if random variables are discrete, it is still
possible to break the curse of dimensionality at this level. For example, Doraszelski & Judd (2012)
avoid the curse of dimensionality in discrete time dynamic stochastic games by transforming it
into a continuous time problem.

Thus, we see that all potential levels of the curse of dimensionality may not exist if we choose
efficient methods in VFI or time iteration.

9.2. Boundedness

The dismal theorem of Weitzman (2009) shows that the risk premium can be infinite for un-
boundedly distributed uncertainties.Costello et al. (2010) use a truncationmethod to get bounded
uncertainty and obtain a finite risk premium. Thus, numerical solutions with truncation of

7We often let the expectations operate on the space of next states, as the next states are random due to the
randomness of εt . But in many cases the number of random variables εt in the same period t is smaller than the
dimensionality of state space; for example, we may consider only one systematic shock affecting all agents, so it
is beneficial to use εt . Even if the number of random variables εt is larger than the dimensionality of state space,
it is often hard to construct the joint distribution of next state variables from a given joint distribution of εt .
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unbounded distributions could be qualitatively inconsistent with theoretical results without trun-
cation. However, in the literature, researchers often do not consider this inconsistency issue when
they solve dynamic stochastic programming problems with an unbounded distribution. For ex-
ample, a normal or log-normal distribution is often assumed for Bayesian learning when deriving
Bayes’ updating rules, and then researchers use a truncation method (or a bounded quadrature or
simulation rule) to estimate the integration in the objective function of the maximization problem
in the Bellman equation (Equation 6).

Recently, to avoid the inconsistency between theory and numerical implementation, Cai et al.
(2017b) replaced a continuous long-run risk stochastic process with a two-dimensional dense
Markov chain in their Dynamic Stochastic Integration of Climate and Economy (DSICE) model
and then solved it numerically using VFI. Cai & Judd (2015) define a bounded distribution that
is close to normal and then implement it in their model and numerical methods using Hermite
information. In fact, it is often reasonable to assume bounded distributions instead of unbounded
distributions in environmental and resource economics. For example, the climate sensitivity pa-
rameter is considered to be positive and less than ten (IPCC 2007, 2013).

9.3. Monte Carlo Techniques

The previous discussion assumes stochastic processes, but there are also uncertain parameters that
are constant but unknown across time.These parameter values are often estimated from an econo-
metric analysis, so we may know their distributions. Thus, if a distribution can be assigned to an
uncertain parameter, then we can solve it using expected welfare maximization, which mimics the
expected cost minimization method described in Cai & Sanstad (2016). Some researchers use a
Monte Carlo method, which obtains an optimal policy by solving a deterministic welfare maxi-
mization problem for each sampled realization of the uncertain parameters under the distributions
and then averages over the policies as an approximate solution in the face of the uncertainty. For
example, New & Hulme (2000), Nordhaus (2008), Ackerman et al. (2010), and Anthoff & Tol
(2013) implement this Monte Carlo method to analyze the impact of uncertainty on climate pol-
icy.While thisMonte Carlo analysis can be helpful in some cases, it does not solve the real problem
of a decision maker facing the parameter uncertainty, and it may even lead to the opposite sign
for the effect of uncertainty (Crost & Traeger 2013).8 Here I use a simple portfolio optimization
problem with one stock and one bond to illustrate this point. Assume that the bond has a riskless
3% return, and the stock’s return parameter is uncertain but we know that it has a 70% probability
of being larger than 3%. The Monte Carlo method will always find it optimal to invest around
70% of wealth on the stock and the remaining 30% on the bond, no matter which risk aversion
coefficient or utility function is used in the objective function.

9.4. Approximation

Value function approximation is used in the objective function of the maximization problem
(Equation 7). For example, Chebyshev basis functions are used for Chebyshev approximation.
Piecewise linear interpolation and cubic spline interpolation are also often used in the literature
(see, e.g., Judd 1998 and Miranda & Fackler 2002). Kelly & Kolstad (1999) apply neural networks
for approximation. Sometimes value functions have special properties, so special basis functions
can be chosen. For example,Hwang (2017) presents a log-linearization method that approximates
value functions by a linear combination of the logarithm of state variables, but this method only

8Lemoine & Rudik (2017) also discuss this Monte Carlo method in detail.
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works for problems with value functions that can be approximated well on a reasonable domain
by the log-linearization, while most problems do not have this property.9

For multidimensional approximation, an efficient approximation method is complete Cheby-
shev approximation (see, e.g., Cai & Judd 2010, 2014) or simplicial complete Chebyshev approxi-
mation introduced by Cai et al. (2018b), as both methods have no curse of dimensionality. More-
over, Chebyshev coefficients can be efficiently computed by the Chebyshev regression algorithm
(see, e.g., Judd 1998 and Cai et al. 2018b) if we choose Chebyshev nodes as approximation nodes.
Readers are referred to the Supplemental Appendix for a detailed discussion.

Since most approximation methods are defined on hyperrectangles, we often have to trun-
cate an unbounded or too-large state space into a bounded hyperrectangle [xmin, xmax] that is wide
enough to contain all necessary states. If the hyperrectangle is too narrow, then it may lead to a
bad approximation for points outside the hyperrectangle as extrapolation often does not work well.
Thus, solutions using VFI with narrow hyperrectangles may not be reliable. If the hyperrectangle
is too wide, then it requires more approximation nodes and a higher degree of approximation to
achieve the necessary accuracy, so the problem may be too time consuming or even infeasible to
run with a modern computer. Since an initial state x0 is given in dynamic stochastic programming
problems (Equation 5), we can choose a very narrow initial state space and then expand it grad-
ually in the next periods to contain all states originated from any states in the initial state space
and reasonable decisions. Cai & Judd (2012) use time-dependent state spaces to solve a simple
dynamic portfolio example, where the next period’s state space is chosen to contain all possible
states transited from any states in current-period state space, defined as an interval of wealth.

Cai et al. (2015a, 2016b, 2017b, 2018b) and Lontzek et al. (2015) choose a series of approx-
imation domains by setting consumption-output ratios and emission control rates in reasonable
ranges, e.g., the optimal states and decisions of their corresponding deterministic dynamic pro-
gramming models should be well inside the approximation domains and the ranges of decisions
at each time; and simulated paths of states for the stochastic model should be well within the ap-
proximation domains. They then efficiently solve large-dimensional (from 7 to 15 dimensions)
dynamic stochastic IAMs based on the framework of DSICE, in which its corresponding deter-
ministic IAM is the annual analog of the DICE model (Nordhaus 2008). The largest example in
Cai et al. (2017b) has six continuous state variables (corresponding to DICE) and three dense dis-
crete stochastic state variables. Its horizon is 600 years and it uses annual time steps. It is solved
in less than eight hours using 110,688 cores in parallel on the Blue Waters supercomputer. The
smallest example in Cai et al. (2015a) has six continuous state variables (corresponding to DICE)
and one binary stochastic state variable indicating whether a tipping event happens or not, and it
has 600 annual time steps, but it took only minutes to get an accurate solution on a laptop. Cai
et al. (2016b) solve DSICE with five interacting tipping elements in the climate system, which has
ten continuous state variables and five binary stochastic state variables. Although the problems
in Cai et al. (2016b) have more state variables than in Cai et al. (2017b), they can use narrower
approximation domains and then lower-degree Chebyshev approximation methods as well as a
much smaller number of discrete states, so they can be solved in about three hours using 10,560
cores of the Blue Waters supercomputer. All of these problems have 0.1–1% estimated errors for
policy functions and 0.01–0.1% for the value functions.

9A linearization or log-linearization method may work locally on a narrow domain, but it is often not enough
to obtain a globally accurate solution; see Cai et al. (2017c) for more discussion. In fact, from a numerical
result of Hwang (2017), we can see that his solution from the log-linearization method may lead to an error of
around 100% in carbon emission control compared to the solution from the optimal control method, which
can be treated as the true solution.
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The stationary problem (Equation 13) requires only one hyperrectangle as its approximation
domain for all iterations until VFI converges. Some researchers transform the nonstationary
problems (Equation 6) into the problem

V (x, τ ) = max
aτ∈Dτ (x)

uτ (x, aτ ) + βEτ
{
V (x+, τ+ )

}
20.

s.t. x+ = fτ (x, aτ , ετ )

τ+ = g(τ )

by adding τ as an extra continuous state variable in the value function V, where τ is bounded and
has a one-to-one monotonic map to time t. For example, Lemoine & Traeger (2014) apply this
trick to solve a four-dimensional dynamic stochastic IAM based on a reduced system of DICE.
However, this trick increases one dimension and also has to expand its approximation domain
significantly because it has to contain the minimal and maximal states along time, while states
could increase significantly along time. Thus, the approximation domain would be significantly
wider than the largest domain using the time-dependent state spaces. Therefore, this trick
makes VFI much more time consuming. In addition, Lemoine & Traeger (2014) implement
tensor-product Chebyshev approximation and MATLAB. These reasons explain why their run
took days using a laptop.

9.5. Stopping Criterion

Infinite-horizon stationary dynamic programming problems (as in Equation 13) require a stop-
ping criterion for value function iteration or time iteration. Inattention to the choice of stopping
criteria may lead to large numerical errors, even if the value function has a proper magnitude
and the discount factor β is not very close to 1. For example, Lemoine & Traeger (2014) use the
stopping criterion

max
j=1,...,N

∣∣bk, j − bk+1, j
∣∣ ≤ 10−4,

where {bi, j : j = 1, . . . ,N} are value function approximation coefficients of tensor-product
Chebyshev polynomials at the k-th iteration. However,

∣∣∣V̂k(x;bk ) − V̂k+1(x;bk+1)
∣∣∣ =

∣∣∣∣∣∣
N∑
j=1

bk, jφ j (x) −
N∑
j=1

bk+1, jφ j (x)

∣∣∣∣∣∣
≤N max

j=1,...,N

∣∣bk, j − bk+1, j
∣∣ ≤ 10−4N ,

where φ j (x) are Chebyshev basis functions with 1 as the maximal value. Thus, the upper bound
of |V̂i(x;bi ) − V̂i+1(x;bi+1)| is 10−4N , not 10−4. If N is huge, then the errors could be huge too.
Lemoine & Traeger (2014) use N = 10,000, so the upper bound of |V̂i(x;bi ) − V̂i+1(x;bi+1)|
could be 1.

10. CONCLUSION

I have reviewed various state-of-the-art computational methods and their application in environ-
mental and resource economics.Each computational method has its advantages and disadvantages.
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For example, VFI and time iteration are quite general, but they require more complicated compu-
tational techniques such as efficient approximation, appropriate approximation domains, efficient
numerical integration, and/or a suitable stopping criterion. NLCEQ is relatively simple and ro-
bust and can have accuracy within two or three digits, but it is limited for obtaining higher accuracy
for stochastic problems. Researchers should choose a proper algorithm for their specific problem,
and it is also important to verify and check the accuracy of the solution, because it is often hard
to guarantee that the numerical solution found via computational methods is actually close to the
true solution (for reasons such as nonlinearity, multiplicity of local optimizers, numerical errors,
or bugs in code). In addition, with advances in computer technology and computational methods,
it becomes feasible to solve a high-dimensional dynamic stochastic programming problem even
on a laptop.
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