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Abstract

Precision farming enables agricultural management decisions to be tailored
spatially and temporally. Site-specific sensing, sampling, andmanaging allow
farmers to treat a field as a heterogeneous entity.Through targeted use of in-
puts, precision farming reduces waste, thereby cutting both private variable
costs and the environmental costs such as those of agrichemical residuals.
At present, large farms in developed countries are the main adopters of pre-
cision farming. But its potential environmental benefits can justify greater
public and private sector incentives to encourage adoption, including in
small-scale farming systems in developing countries. Technological devel-
opments and big data advances continue to make precision farming tools
more connected, accurate, efficient, and widely applicable. Improvements in
the technical infrastructure and the legal framework can expand access to
precision farming and thereby its overall societal benefits.
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1. INTRODUCTION

With the large-scale mechanization of the agricultural sector in the twentieth century, labor was
increasingly replaced by machinery, land productivity increased, and economies of scales were
achieved (Martín-Retortillo & Pinilla 2015). The switch from labor- to capital-intensive farming
enabled farmers to manage larger fields and farms. From the mid-twentieth century on, the Green
Revolution brought productivity gains via genetically improved varieties, synthetic chemical fertil-
izers, and pesticides that reduced crop losses.These innovations favored the development of larger
and more uniformly managed fields in many parts of the world. In contrast, before agricultural
mechanization, farmers could adjust their within-field management to account for variabilities in
yield potentials, topography, soil characteristics, nutrient demands and both abiotic (e.g., weather)
and biotic (e.g., pests and weed infestation) stresses in mainly manual practices (Zhang et al. 2002).
But in gaining the economies of scale frommechanization and moving to uniform practices, farm-
ers sacrificed the ability tomanage efficiently the spatial and temporal heterogeneity of farm fields.

The new and ongoing agricultural revolution in information technology, called precision farm-
ing (PF), began to be developed in the 1980s. PF technologies became commercially available
beginning in the early 1990s. PF addresses the challenge of tailoring management to site, crop,
and environmental traits (Swinton & Lowenberg-DeBoer 1998, Lowenberg-DeBoer 2015) and
promotes the use of new technologies and data to address heterogeneities of a field (e.g., Zhang
et al. 2002). Thus, PF comprises standardized approaches to reduce the unknowns related to the
knowledge base for farm management decisions (Liaghat & Balasundram 2010) and enables tem-
poral and site-specific farm management even for agricultural systems that became mechanized
and large scale. In short, PF enables big farms to tailor management as small farms do (Swinton &
Lowenberg-DeBoer 1998, Lowenberg-DeBoer 2015). It represents a paradigm shift, as the field
is treated as a heterogeneous entity that allows for selective treatment and management (Aubert
et al. 2012). PF is not exclusive to specific farms but could be applicable and beneficial for all
farms, ranging from small to large, organic to conventional, as well as from developed to develop-
ing country farms. Besides PF, precision livestock farming is also an important and emerging field
(e.g., Wathes et al. 2008, Berckmans 2014, Busse et al. 2015), but beyond the scope of this review.

Adoption of PF technologies to date varies both geographically and by type of technology.
Although various components of PF became mature technologies in developed countries (e.g.,
georeferencing technologies and guidance systems), the overall picture is that PF has not yet been
taken up widely in the agricultural sector at large (e.g., Bramley 2009,Tey&Brindal 2012,Tamirat
et al. 2018). This is especially the case for more complex applications like sensor-driven variable
rate application of inputs.

However, the ongoing evolution of many PF technologies is lowering costs and expanding ap-
plications in ways that bode broader adoption. Developments in information technology allow an
increasingly finer degree of precision than previously possible (Aubert et al. 2012), and the costs
for sensor technologies are declining rapidly. Technological developments related to the digital-
ization of the agricultural sector are currently complemented by advances in data processing and
robotics (e.g., Walter et al. 2017, Wolfert et al. 2017, Weersink et al. 2018). These developments
have led some to argue that PF will advance the sustainability of agriculture (e.g., Walter et al.
2017).

The question remains whether, where, and how technological developments can be trans-
formed into benefits in the agricultural sector. Policy makers became increasingly interested in PF
recently because of its potential to address current challenges of the agricultural sector (Kritikos
2017). These challenges comprise the need for high quantity and quality of food produced but
also the reduction of negative external effects of agricultural production, such as environmental
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pollution, loss of biodiversity, and the substantial contribution of agriculture to greenhouse
gas emissions (e.g., Tilman et al. 2002, 2011). These challenges are accelerated due to climate
change, globally changing dietary patterns, and changing societal demands for ecosystem services
(Schröter et al. 2005, Swinton et al. 2007, Zhang et al. 2007, Power 2010, Vermeulen et al. 2012,
Wheeler & Von Braun 2013). In response, agri-environmental policies are becoming stricter,
motivated by the urgent need for solutions reducing the environmental and human health im-
plications of agricultural production. These steps, however, shall not jeopardize food production
and the economic viability of the sector (Zhang & Wen 2008, Osteen & Fernandez-Cornejo
2013, Finger 2018). Sustainable development of the agricultural sector requires addressing this
nexus of productivity, environmental problems and economic viability of agricultural activities.

This review argues that PF is not a panacea, but it has great potential to contribute to a more
sustainable development of the agricultural sector. Because PF is fundamentally a set of infor-
mation technologies used for decision support, the change it promises will vary with the pre-PF
farming practices and degree of information use. The goal of this article is to investigate and as-
sess developments of precision farming from the perspective of both farmers and policy makers.
The article examines the mechanisms, use, trends, and future prospects of PF. Based on founda-
tions from agronomic and technical perspectives, we review the economics of PF, adoption and
diffusion, barriers to success, and environmental impacts. Moreover, policy aspects of PF are in-
vestigated, and the interrelation with other agricultural and environmental policies is analyzed.

2. PRECISION FARMING

PF aims to tailor management in a coherent and holistic manner (Lowenberg-DeBoer 2015),
especially exploiting high spatial and temporal variability of crop and environmental traits (e.g.,
Zhang et al. 2002, Lowenberg-DeBoer 2015). Variabilities in yield potentials, topography, soil
characteristics, nutrient demands, and abiotic (e.g., weather) and biotic stressors (e.g., pest and
weed infestation) are addressed (Zhang et al. 2002). Pierce & Nowak (1999, p. 4) summarize PF
as a technology that allows a farmer to “…do the right thing, in the right place, in the right time
and in the right way.” To this end, farmers can use different (combinations of ) technologies. We
especially distinguish diagnostic (collecting or generating information) and applicative (implying
adjusted management actions) tools in PF technologies.1 Collecting and structuring data are the
foundation of PF, but ultimately, the high potential of PF results from the combination of different
technologies applied to derive management practices from the collected data.

Georeferencing technologies, such as the global positioning system (GPS) and mapping via
geographical information systems (GIS), are key elements of many PF applications. These tech-
nologies allow the use of guidance systems and controlled traffic during field operations such as
tillage, harvesting, and application of inputs such as nitrogen, seeds, and pesticides. Because no
further skills or new machinery are needed to make use of georeferencing technologies,Weersink
et al. (2018) refer to them as embodied-knowledge technologies. However, georeferencing infor-
mation is especially powerful in reaching efficiency gains if used in conjunction with other sensors
to provide georeferenced maps of yield, salinity, or other measurable environmental traits, but also
by simply reducing overlap during field operations.

Diagnostic tools gather information using sensing or sampling techniques along various scales
(e.g., Wang et al. 2006, Zhang & Kovacs 2012, Mulla 2013). The most important sensing tools
use spectral indices that are taken from images and provide information on the coloration of the
observed vegetation. Frequently, sensors and scanners mounted on tractors are used to provide

1Barnes et al. (2019) use the terms recording technologies and reacting technologies instead.
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information on nutrient status (e.g., Li et al. 2010). Initial sensing approaches have established
the normalized difference vegetation index (NDVI) as a measure for soil covered with functional
leaf tissue. NDVI has been calculated from data in the near-infrared and in the red wavelength
range since the 1970s. In the meantime, many more spectral indices have been used in PF to de-
rive proxies for canopy cover, organic carbon content of the soil, soil moisture, leaf area index, or
plant biomass (Mulla 2013). Images taken from satellites have been used since the 1970s to extract
relevant agricultural information (Bauer & Cipra 1973, Mulla 2013). The first of those satellites,
Landsat 1, collected information in four spectral bands (red, green, and two infrared bands) at a
spatial resolution of 80 m and at a return frequency of 18 days. In the meantime, satellites such as
QuickBird and RapidEye that are equipped with more sophisticated sensor technology can pro-
vide revisit times between one and three days, spatial pixel resolutions of less than 1 m, and higher
numbers of spectral bands. Data from these satellites are not easy to process and are costly. Since
2017, data from Sentinel 2 are publicly available, with a spatial resolution of 10 m in 13 possibly
relevant spectral bands, leading to cheaper and more precise options for the diagnosis of vegeta-
tion and nutrient status than previously possible (Lilienthal et al. 2018). Moreover, near-remote
sensing is based on unmanned aerial vehicles (UAVs) such as drones. Within a small field, UAVs
have increasingly been used to provide images with resolutions in the centimeter range (Candiago
et al. 2015, Agili et al. 2018) and allow for the detection of a high number of relevant traits (Walter
et al. 2015, Hunt & Daughtry 2018) such as crop biomass, developmental stage, photosynthetic
efficiency, nitrogen nutrition status (Gnyp et al. 2016), or soil properties without the nuisance
of clouds possibly covering the information, as is often the case for satellites. Moreover, scout-
ing for weeds, for example, can be facilitated with UAVs (Lottes et al. 2017, Walter et al. 2018).
To monitor crop traits and certain other environmental conditions, other sensing [e.g., thermal
imaging, electrical conductivity of the soil (Corwin & Lesch 2005)] and sampling techniques (e.g.,
GPS-based soil sampling regarding available nutrients, pH level, soil moisture, etc.) are frequently
used. Furthermore, in situ sensors capable of real-time monitoring of soil nitrogen can improve
fertilizer management, seeding rates, and use of growth regulators exploiting the spatial variation
of soil nitrogen (e.g., Shaw et al. 2016). Finally, also handheld devices are used to measure the
nutritional status of plants.

Diagnostic tools are not only focused on measurement during the growing period, but they
are also applied at harvest. Based on sensors on grain and bulk crop harvesters, yield monitors
record crop yield, especially to document within-field variability. These monitors are available for
most grain and bulk crop harvesters. This allows a precise and highly localized performance mea-
surement within the field. Yield monitoring also plays an important role in different horticultural
crops ranging from vegetables to fruits and from mechanically harvested to handpicked systems
(see Zude-Sasse et al. 2016 for an overview). Beyond crop quantity, quality is also monitored. For
cereals, quality traits such as protein andmoisture content are measured in yield-monitoring com-
bines using near-infrared spectroscopy. In addition, forage quality traits such as moisture, protein,
or fiber are frequently monitored at harvest. Yield quality monitoring is of special relevance for
high-value horticultural crops (e.g., Aggelopoulou et al. 2011).

Next to the use of high technology sensor solutions, low-cost, low-technology tools are also
used as diagnostic tools, especially in developing countries. For example, Mondal & Basu (2009)
report that portable diagnostic tools such as chlorophyll meters and leaf color charts for in situ
measurement of the crop nitrogen are used in various Asian countries.

Applicative tools enable management response to spatially and temporally precise diagnostic
information. This can be done using manually operated systems, e.g., for the variable rate appli-
cation of fertilizer (Robertson et al. 2012). In theory, however, the full capacity of PF is utilized
when applications are performed with automated treatment technology, such as shown for highly
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site-specific nitrogen fertilization (Fulton et al. 2005, Kim et al. 2008, Diacono et al. 2013), tree
spraying ( Jeon&Zhu 2012), or site-specific center pivot irrigation (Evans et al. 2013).These vari-
able rate technologies (VRTs) also comprise precision soil preparation or variable rate seeding. For
the latter, adjustments in spacing and depth according to environmental conditions such as soil
moisture and soil organic matter content are made. Yet, in practice, a frequently applied concept
for site-specific application of inputs is that of management zones (Khosla et al. 2002, Seelan et al.
2003, Nawar et al. 2017): Highly resolved prescription maps are translated to maps that show a
small number of regions, for which differing intensities of fertilizer, irrigation, or other input are
applied using available, often conventional machinery. These management zones are based on a
number of monitored input parameters, and the number of zones can be chosen with respect to the
given task (e.g., a high, medium, or low rate of fertilizer applied). Nawar et al. (2017) showed that
an optimal number and outline of these management zones are important prerequisites for prof-
itable application of PF. Delineation of site-specific management zones today is performed with
methods of machine learning (Chlingaryan et al. 2018). Yet, machinery is also increasingly used
that allows even further refined precision application of inputs, e.g., specific precision fertilization
or spraying equipment.

VRTs also increasingly involve new types of equipment and machinery. For example,UAVs can
be used to apply inputs such as pesticides (Xiongkui et al. 2017).The use of autonomousmachinery
and robots is another area of increasing development along the line of PF technologies. Here,
positioning information and multiple sensors are combined with machines allowing autonomous
activities such as seeding or weed control (e.g., Slaughter et al. 2008, Van Evert et al. 2011, Naik
et al. 2016,Walter et al. 2018).Greenhouse-based production is also highly suitable for automation
and use of robots (e.g., Roldán et al. 2018), e.g., by measuring and adjusting the use of inputs such
as water and fertilizer but also heating, CO2 injections, and ventilation (Roldán et al. 2018).

Overall, VRTs facilitate the application of inputs in a computer-based controlled way using
prescription maps.Higher spatial and temporal precision in input application is used to meet crop
quantity and quality targets. As an example of the latter, nitrogen is decisive for the quality of var-
ious crops such as cereals, oil seed crops, potatoes, or sugar beets. Precise application of nitrogen
can allow a farmer to adequately balance trade-offs, e.g., between protein levels and oil concentra-
tion for oil seed crops, and to determine marketing channels (e.g., for potatoes) (see Blumenthal
et al. 2008). Precise application of inputs also has the potential to reduce costs and effluents, i.e.,
residual inputs lost to environmental systems. It is an open question whether and to what extent
these benefits are achieved in real-world agricultural systems.Land allocation decisions can also be
improved using information obtained from sensors. For instance, high-productivity zones can be
identified in the field based on yield monitors to prioritize land-use decisions. The identification
of low-productivity zones in the field can be used to assign set-asides (Muth 2014, Brandes et al.
2016).Due to increasing computing power and better tools to process and analyze data,more data
can be fed into decision support tools (e.g., on-tractor dashboards or apps) allowing for real-time
adjustments in management decisions.

3. ECONOMIC FRAMEWORK

To help conceptualize the adoption of PF technologies, we build upon the model of Norton &
Swinton (2001). Developed in the early days of PF, that model focused on how PF affects variable
input use. We expand that model to accommodate PF technologies that (a) enhance the yield (y);
(b) reduce undesirable effluents (e) from residual nutrients to water (e.g., NO3, pesticides) or to air
(e.g., N2O); and (c) reduce the overuse of other environmentally relevant inputs such as fuel and
irrigation water. We also allow PF to increase the quality (Q) of marketed goods. Product quality
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as influenced by inputs can take the form of intrinsic and/or extrinsic quality. Intrinsic quality
comprises, for example, color, appearance, protein, starch, or sugar content as well as pesticide
residue content. Extrinsic quality is associated with production practices, origin, or related aspects
of the production process.

We distinguish between PF technologies that manage a limited set versus a wide set of inputs.
From the standpoint of a farmer as decision maker, we frame the problem as a dynamic investment
model. The decision maker choses a stream of capital and variable inputs—differentiated between
information technologies and conventional ones—to maximize discounted net revenue over the
farm’s planning horizon. Annual capital investments may take the form of information technolo-
gies, kI, or conventional technologies, kx. Annual variable inputs may take the form of custom PF
services, sI, conventional inputs, x, or a mixture of both.

In deriving behavioral expectations from this model, we work from the assumption that the
farmer had already optimized for spatially average conditions, x̄∗|sI = 0. So the inferences of in-
terest involve how the presence of PF services (sI > 0) causes accumulated wealth to change and
which particular PF services have the greatest effect under what conditions.

Max

T∫

t=0

δtE(πt )dt

kI , sI , kx, x

, 1.

subject to

π = p(Q)Ay
[
x (sxI , kI ) , s

mc
I , z

] − (wxx+ wx
I s
x
I + wmc

I s
mc
I ) − cee− kI − kx − FC, 2.

Q = Q
[
x (KI , sxI )

]
, 3.

e = x− θy, 4.

k j = k j (Kjt−1,L f ,
∫

δtπtdt,WK [Y n f , credit (Kjt−1, i,A)] ∀ j = I, x

Kjt =Kjt−1 + k jt 5.

KI0 = 0;Kx0 = K0,

where E(•) is the expectations operator, δ is a discount factor, and π t is net revenue in period t, with
integration covering all periods up to the farmer’s time horizon T. In the constraint set, the time
subscript is suppressed for simplicity. Annual net revenue π t depends on revenue, variable costs,
and capital costs (kj, FC). The revenue function, which is the first expression on the right-hand
side of Equation 2, is the product of product price p, land operated A, and yield y. Product price
is assumed to be increasing in quality (Q), which can be enhanced via information-based manage-
ment of conventional inputs x, as shown in Equation 3. Note that price increases due to increases
in intrinsic and especially extrinsic quality require that this quality information can be reliably
transported to downstream actors. Yield depends on x (including seed, fertilizers, pesticides, hired
labor), information services for inputs sxI (including nutrient and pest maps, variable rate applica-
tors), information services for management control smcI (e.g., yield maps, sensors, yield traceability,
guidance systems), and conditioning factors z (such as human capital,management ability, and land
quality). Variable costs, which appear in the second term on the right-hand side of Equation 2, de-
pend on input levels and unit input prices wx for conventional input x and wI for information
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custom services, sI.2 The adoption of PF is capital intensive and leads to greater expenditures on
machinery and equipment as well as for access to information, e.g., such as georeferencing services
(Schimmelpfennig 2016). Effluent costs, cee, appear as the third term in Equation 2. Effluents are
defined as the residual of inputs, x, that remain in the environment after share θy of x is removed
by crop yield, per Equation 4 (Khanna et al. 2000). The remaining terms are the annual capital
costs of owning information technologies (kI) and conventional technologies (kx), along with other
fixed costs,FC. As indicated in Equation 5, annual investment costs of either technology kj depend
on prior capital stocks Kjt-1, the availability of family labor (Lf), expected future net revenues from
changes in capital level (the second term), and the availability of working capitalWK.WK, in turn,
depends on nonfarm income Ynf and credit, which is a function of current ownership of capital
(Kjt-1), interest rate (i), and land (A). The final two constraint equations specify the dynamics of
motion and the initial conditions.

Creating a Hamiltonian from Equations 1 and 2 and differentiating with respect to kI or sI
leads to a reduced form of input demand functions that highlight the expected determinants of
adoption for PF technologies:

kI = kI (
+
p,

−
wI ,

+
wx,

−
i ,

+
K0,

+
Y n f ,

+/−
CSI ,

+
A, z), 6.

sI = sI (
+
p,

−
wI ,

+
wx,

−
KIt ,

+
CSI ,

+
A, z). 7.

Equation 6 suggests that apart from input and output prices, PF technology investment depends
on the farm’s access to investment capital, be it from an initial endowment, off-farm income, or
land. Equation 7 shows that custom-hired PF services depend on relative prices and land area in
the same fashion as do PF investments, but the effect of PF capital equipment is to reduce custom
hired services, whereas the effect of local agribusiness infrastructure (CSI) is to increase them.
Jointly, Equations 6 and 7 address the use of PF technologies, whether through one’s own capital
(kI) or custom-hired services (sI).

This model of wealth-maximizing decisions by a representative farmer creates a framework
for developing expectations about PF technology adoption. First, because PF information tech-
nologies can enhance land productivity and because they require access to investment capital,
farms with more land will be more likely to adopt PF for the revenue contribution and for access
to capital embodied in land value. Hence, larger farms are expected to be early adopters of new
technologies such as PF that exhibit increasing returns to scale (Bowman&Zilberman 2013). Sec-
ond, in areas with higher spatial variability of field conditions, PF is more likely to be profitable
and adopted because, for example, variable rate applications have higher economic benefits (e.g.,
Bullock et al. 2002, Isik & Khanna 2002, Liu et al. 2006). Third, farms whose product quality is
responsive to PF management will be more likely to adopt PF due to the potential to gain qual-
ity premiums. This can comprise products where intrinsic quality is highly price relevant (e.g.,
horticultural crops) and products where prices are driven by extrinsic quality (e.g., products under
specific brands or labels). Fourth, because they provide general management planning and control
information, the PF diagnostic tools for management control (smcI ) are likely to be adopted earlier
than the applicative PF technologies.The reason is that diagnostic tools, such as remote sensing of
crop health or yield monitoring, can add value through informing management decisions on mul-
tiple inputs (e.g., nutrients, water, pesticides), while the specific applicative PF technologies tend

2The demand for custom services will depend on both the level of existing farm investment in information
technologies, KI, and the existing set of custom services available in the local economy, CSI. We omit these
details for parsimony.
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to be limited to one or few inputs.Moreover, applicative technologies require diagnostic tools and
additional investments. Fifth, embedded in the z variable are management quality elements, in-
cluding human capital, suggesting that PF will be adopted more rapidly where education levels are
higher. Sixth, the presence of an agribusiness infrastructure, CSI, will be especially important for
adoption of custom-hired PF services that enable adoption of PF with much reduced investment
in PF hardware, software, and learning. Along these lines, the availability of information technol-
ogy infrastructure—including high-speed internet access, georeferencing services, platforms for
data collection and sharing, decision support tools, and advisory service—will be a precondition
for the adoption and diffusion of PF technology.

Apart from expectations about farmer adoption, the annual production part of the model in
Equations 2–4 suggests two additional expectations about the effect of PF adoption on farming
systems. The first of these is a cautionary note: Although PF is often characterized as input sav-
ing and/or yield enhancing, neither is necessarily true. In both cases, the effect of PF depends
on the prior level of management. Indeed, if (contrary to model assumptions) the farmer did
not optimize input use for spatially average conditions (e.g., if the information was not avail-
able before), PF adoption may bring extra yield gains or agrichemical savings that could have
been had simply by good management for average conditions. Second, PF is expected to reduce
emissions by increasing the efficiency of field operations and reducing wasted agrochemical in-
puts that miss their targets and become effluents. Where there is a nonzero effluent cost (ce), as
in the presence of Pigouvian taxes, we would expect an even stronger effect of PF on reducing
effluents.

The conceptual model presented here provides a starting point for a critical assessment of PF
technology adoption. By extending the model, added adoption determinants can enter. For exam-
ple, other benefits of PF beyond changes in (expected) profits, are decreasing risk exposure [e.g.,
reduce temporal yield variability (Lowenberg-DeBoer 1999)], reductions of labor requirements
(e.g., for autonomous field operations), or improved quality of working conditions (e.g., higher
work safety, reduced exposure to pesticides, reduction of physically demandingmanual labor, auto-
steer systems) (e.g.,Gebbers &Adamchuk 2010).The goal function depicted in Equation 1 reveals
that investment costs for equipment (e.g., Reichardt & Jürgens 2009) and/or learning costs due
to complexities of PF production systems (e.g., Kutter et al. 2011) can represent adoption hur-
dles. This framework can be extended to also incorporate the role of risk and risk preferences for
investment decisions (see also Sunding & Zilberman 2001). For example, uncertainties regarding
possible benefits of PF reduce adoption incentives (e.g., Khanna et al. 2000,Tozer 2009). Technol-
ogy risks are especially crucial for the adoption of PF by farmers because innovation can take place
rapidly: “In the world of precision agriculture, each new growing season seems to bring a fresh
batch of brand-new technologies.”3 This is expected to delay PF investment (Watcharaanantapong
et al. 2014), especially if framing investment decisions in a real option theory framework (e.g.,
Tozer 2009).

4. EMPIRICAL EVIDENCE

The empirical evidence on the uptake of PF and its potential for environmental benefits is con-
sistent with the expectations from the economic model and also shows that uptake of PF is highly
heterogeneous across time, space, and technology. While there exists no global database of PF
adoption patterns, there are many examples of the application of PF across various cropping sys-
tems and countries (e.g., Bramley 2009, Tey & Brindal 2012, Pierpaoli et al. 2013).

3https://www.country-guide.ca/2018/01/23/the-precise-in-precision-agriculture/52423/.
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4.1. Adoption of Precision Farming

Consistent with expectations from the economic model, PF diagnostic technologies are becoming
more widely adopted compared to the PF applicative technologies. The number of agricultural
devices for gathering data worldwide was estimated at 30 million in 2015 and is expected to rise
to 75 million by 2020 (Chi et al. 2017, Weersink et al. 2018). Guidance systems, GPS, and GIS
mapping are common in newmachinery in many countries (e.g.,Winstead et al. 2010,Mulla 2013,
Suprem et al. 2013, Schimmelpfennig & Ebel 2016, Zhou et al. 2017). For example, Griffin et al.
(2018) report adoption rates in Kansas to be above 80%. Yield monitoring systems are also widely
used and incorporated into most new, large-scale combine harvesters in North America (Griffin
et al. 2018). Suprem et al. (2013) report that 46% of corn, 36% of soybeans, and 15% of wheat in
the United States are harvested by a combine that allows yield monitoring. However, the share of
farms that also uses GISmapping software to store,manage, and analyze the data from site-specific
technologies was found to be lower than the share equipped with yield monitors (Winstead et al.
2010).

Remote sensing (e.g., satellite imagery) or proximate plant sensing approaches are less widely
adopted than in-field diagnostic technologies. For example, Castle et al. (2015) report that 25%
of Nebraska farms use satellite imagery compared to an 80% uptake of yield monitors and GPS
guidance systems.

PF diagnostic tools are adopted outside of the United States at lower rates, but they follow sim-
ilar uptake patterns in regions such as Australia (e.g., Bramley 2009) and Europe (e.g., Reichardt
& Jürgens 2009, Tamirat et al. 2018). For example, the general uptake of PF technologies in
German agriculture is estimated to be between 10% and 30% (Reichardt & Jürgens 2009, Kutter
et al. 2011, Paustian & Theuvsen 2017). While the overall PF adoption in developing countries
is low, selected uptake has been reported in Argentina, Brazil, Chile, China, India, and Malaysia
(Mondal & Basu 2009). The uptake of diagnostic tools, including remote sensing, was found to
be highest among large-scale farming operations (e.g., Silva et al. 2011 for sugarcane in Brazil).
More generally, adoption is increasing with farm size, consistent with the capital requirements
and economies of scale for such tools highlighted in the previous section (e.g., Norton & Swinton
2001, Schimmelpfennig 2016).

Applicative technologies such as VRT have been adopted to a much smaller extent than diag-
nostic tools. Griffin et al. (2018) report that the share of Kansas farms using VRT fertilizer appli-
cation is above 25% and VRT seeding at approximately 20%. More generally, Schimmelpfennig
& Ebel (2016) report that VRT in US crop production is used on about 19% of farms (see also
Winstead et al. 2010, Zhou et al. 2017). Along these lines, Reichardt & Jürgens (2009) show for
German farms during 2001–2006 that approximately one out of five PF adopters usedVRT.Barnes
et al. (2019) surveyed farmers on adoption of PF in Belgium, Germany, Greece, the Netherlands,
and the United Kingdom. In summary, their findings reveal that PF technologies also play a vital
role in European agriculture, but a large share of adoption is due to the use of machine guid-
ance, whereas VRTs play a minor role. Among Brazilian sugarcane producers in São Paulo state,
fewer used VRT (29%) than used diagnostic technologies (e.g., 39% used GPS, 76% satellite im-
ages) (Silva et al. 2011). Yet, information on within-field variability does not necessarily need to
be addressed using sophisticated VRTs. For example, Robertson et al. (2012) show that farmers
in Australia use a pragmatic approach, applying fertilizer, lime, gypsum, and seed by management
zones based on soil testing and yield maps, but without necessarily using prescription maps and
variable rate controllers.

The uptake of VRT is high for horticultural crops, due to both high input costs and consumer
appreciation of extrinsic quality traits (Zude-Sasse et al. 2016). For example, targeted spraying in
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orchards aims pesticides at individual trees (Zude-Sasse et al. 2016). Given the large number of
pesticide applications to many horticultural crops, the cost savings due to PF here can be large and
can create intrinsic quality attributes. Targeted pesticide applications can also augment extrinsic
quality by reducing environmental effluents.

There is an increasing use of UAVs for precision pest control on horticultural crops but also
on arable crops. Xiongkui et al. (2017) show high uptake rates of UAV pest control in South Korea
and Japan, especially for arable crops. UAV-based application of pesticides is in an early market
phase in other parts of the world. For example, in Switzerland, three companies now offer UAV ap-
plication of pesticides in vineyards where in a first step, helicopter application of pesticides should
be replaced. In comparison to these helicopter applications, UAVs are less noisy, more accurate,
less polluting (due to greater accuracy), and cheaper (Anken et al. 2018). Technical, economic, and
regulatory hurdles remain for UAV use, but it has potential as a cost-effective applicative tech-
nology in a wide range of crops and cropping systems. Giles (2016) provides an overview on the
use of remotely piloted aircraft for pesticide applications. The use of autonomous robots for weed
control, seeding, and other field operations is in the initial phase of market entry.

For grasslands, PF has seen less uptake than in arable crops (e.g., Schellberg et al. 2008). In
part, this is due to lower values of produced output but is also because the mixed species of grass-
lands complicate management recommendations (Schellberg et al. 2008). However, new PF tech-
nologies are also being introduced on grasslands. Besides yield monitoring, precision fertilization,
and weed detection, site-specific overseeding is a new application of PF for grasslands. In this
application, seeding is focused on parts of the field with low plant density as identified with cam-
eras.However,machines for grassland restoration, including site-specific overseeding of degraded
grasslands, currently available on the market are not suitable for all types of soil and grassland con-
ditions (Golka et al. 2016), requiring further developments (e.g., Loghin et al. 2011).

4.2. Environmental Effects of Precision Farming

PF has been widely expected to show environmental benefits.More targeted application of inputs
with fewer losses of fertilizer and pesticides to the environment, reduced water consumption, and
reduced greenhouse gas emissions provide a wide spectrum of environmental benefits (e.g., Zhang
et al. 2002, Balafoutis et al. 2017).However, the magnitude of these effects is often not well known
or is highly variable (e.g., Balafoutis et al. 2017). Moreover, most studies do not report observed
impacts, but rather possible impacts based on experimental data or model predictions. Only a
few studies show causal inference on environmental performance of PF in real-world agricultural
applications. With these caveats, we synthesize some key areas of environmental benefits arising
from PF based on the available studies.

Overall, PF reduces greenhouse gas emissions. First, machine guidance and controlled traffic
farming reduce fuel consumption due to less overlap in farm operations. Guidance systems have
been found to cause a 6% reduction of fuel use (Shockley et al. 2011), and Jensen et al. (2012) re-
port a 25% reduction of fuel expenditures. These reductions are larger for large-scale fields, and
they come with several cobenefits, including reductions in soil compaction, runoff, and erosion
(Balafoutis et al. 2017). Second, the reduction of effluents implies, for example, reduced nitro-
gen losses as ammonia and nitrogen oxides (e.g., Balafoutis et al. 2017). In a case study on maize
production in Germany, VRT nitrogen application resulted in nitrous oxide (N2O) emission re-
ductions of 34% (Sehy et al. 2003). For locations in Southern India, the Philippines, and southern
Vietnam, Pampolino et al. (2007) showed the potential of site-specific nutrient management to
obtain higher yields with increased nitrogen fertilizer use while maintaining low N2O emissions.
Third, the indirect energy consumption footprint from inputs such as fertilizer, seeds, and pesti-
cides (e.g., Böcker et al. 2019) can be reduced if inputs are applied more efficiently.
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By increasing application efficiency, losses of critical inputs to the environment are generally
reduced. For example, for Texas citrus production,Du et al. (2008) compare airbornemultispectral
analysis with human inspection to identify tree health problems and to guide pesticide application.
The airborne multispectral technique combined with VRT led to reductions in the use of pesti-
cides by more than 90%.Along these lines, Balafoutis et al. (2017) show that across several studies,
herbicide use could be reduced between 11% and 90% by precision application in different arable
crops. At an experimental site in Germany, Dammer & Adamek (2012) show that sensor-based
precision control of aphids, compared to uniform spraying, could reduce insecticide use in wheat
production by more than 13%. Kempenaar et al. (2018) show possible savings on pesticide (and
nitrogen) based on VRT of on average about 25%. Variable rate irrigation was found to increase
water use efficiency and potentially imply water savings of up to 20–25% (e.g., Sadler et al. 2005,
Evans et al. 2013).However, the findings on the use of PF in irrigation vary widely (e.g., depending
on the reference technology and soil and weather conditions) (e.g., Balafoutis et al. 2017).

Overall, effluents from agricultural systems to water bodies are reduced under adoption of
VRT (e.g., Tey & Brindal 2012, Balafoutis et al. 2017). However, at present, the magnitudes of
these effects are largely uncertain and case dependent. For example, Harmel et al. (2004) show in
an experiment on corn in Texas that, compared to uniform application, VRT nitrogen application
decreased total nitrogen applied by 4–7%, but the runoff water quality was similar for VRT and
uniform nitrogen application regimes. For case studies of potato production in the Netherlands
and olive production in Greece, Van Evert et al. (2017) show even larger reductions of fertilizer
application due to VRT adoption.VRT is not the only way to reduce unnecessary input use.Using
a modeling approach for corn–soybean rotations in Illinois, Rejesus & Hornbaker (1999) show
that nitrate pollution can be reduced not only by VRT, but also by improved timing of fertilizer
application. In summary, the literature suggests that PF has positive environmental effects, but
there is some uncertainty with respect to the magnitude of these effects. Additional research into
the environmental effects of PF is thus required to further justify private and public support.

5. POLICY ISSUES

Agricultural policies can play a vital role in determining whether and how PF enters agriculture.
In this section, we address these policy aspects from three different perspectives: (a) promotion
of PF adoption, (b) provision of infrastructure and legal frameworks, and (c) the possible use of
information generated in PF for agricultural policies.

5.1. Promotion of Precision Farming Adoption

There is a rationale for support or intervention because PF provides means to ensure a sustain-
able intensification of the agricultural sector by reducing environmental footprints of agricultural
production (e.g., Garnett et al. 2013). PF technologies have the potential to reduce environmental
footprints of agricultural production without jeopardizing food production and the economic via-
bility of the sector. Along these lines, policy incentives to reduce agricultural effluents are likely to
encourage the use of PF technologies.For example, taxes on inputs such as fertilizer, pesticides, and
gasoline can internalize external costs of these inputs and provide incentives for farmers to adopt
PF for both input targeting and efficient equipment guidance.Taxes on pesticides and fertilizer are
used in some European countries (Nam et al. 2007, Böcker & Finger 2016). Subsidies for adop-
tion of environmental stewardship technologies are another price-related incentive. For example,
Switzerland offers resource efficiency payments to support adoption of conservation technologies
(Mann & Lanz 2013). The combination of taxation and subsidization can be especially powerful if
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tax revenues are used to finance better technologies (e.g., Finger et al. 2017). However, note that
resolving the uncertainty regarding the magnitude of case-specific environmental effects of PF as
outlined in the previous section is critical to rationalize and quantify governmental support. Input
quantity quotas could also be a highly suited policy instrument, especially in an environment with
significant technological change (e.g., Schieffer & Dillon 2015).

Agricultural conservation set-aside programs could be adapted to use PF information. For ex-
ample, the US Conservation Reserve Program (CRP) pays farmers to set aside environmentally
sensitive land. Brandes et al. (2016) show how yield mapping can be used to identify less prof-
itable zones within fields as candidates for CRP set-aside. One can imagine extending the CRP to
support precision conservation if mapping were extended beyond profitability to environmental
benefits (e.g., habitat configurations to optimize biodiversity) (Landis et al. 2000, Muth 2014).

Other pathways can also be used to promote the adoption of PF. New research shows that the
environmental outcomes of farming practices can be improved by behavioral nudges (e.g., Peth
et al. 2018). One approach is to make available site-specific environmental models that enable
farmers to run scenarios to see the environmental effects of alternative farming practices. Now
available on mobile devices, simplified, field-specific programs like the Soil and Water Assess-
ment Tool have been used in Michigan to inform farmers about the water quality consequences of
phosphorus fertilizer rates and related cropping practices (Fales et al. 2016). PF offers to provide
not only these feedbacks but also specific options for implementation (e.g., input application).
That knowledge has the potential to nudge decisions, though more evidence is needed. Along
these lines, environmental and economic benchmarking can be powerful, especially if combined
with PF technologies to reduce learning costs (e.g., Foster & Rosenzweig 2010). Benchmarking is
defined as the comparison of one’s own farm performance, e.g. focusing on quantitative economic
and environmental indicators; with the performance of others engaged in a similar activity. This
enables learning from others and identifying actions that can improve performance (Eur. Comm.
2017). PF has the potential to transfer insights from other fields and farms at high quality and
low costs and thus can facilitate such benchmarking. This could lead to increased productivity
and reduced negative externalities from agricultural production. To enable such benchmarking,
appropriate and affordable tools and platforms must be available for farmers, and farmers must be
willing to share their data. Here, policy can support these developments.

5.2. Provision of Infrastructure and Legal Frameworks for Precision Farming

Along these lines, realizing the potential social benefits from wider PF adoption calls for pub-
lic and private investments in data, models, tools, and hardware infrastructure. Data platforms
aggregating data, enabling data exchange between systems, and providing decision support tools
provide a backbone for the adoption of PF and use of decision support systems (Weersink et al.
2018). In many countries, initiatives are ongoing to create agricultural data platforms that collect
and aggregate the data needed for PF decision support tools. These platforms are often created
by private companies or public-private partnerships. Among the former, Monsanto took over the
hardware and software company Precision Planting in 2012 and the weather data and modeling
technology companyTheClimateCorporation in 2013 (Carolan 2017).TheClimateCorporation
established the Climate FieldView platform to aggregate data of different sources in one place and
provide diagnostic and applicative tools to farmers. DuPont, John Deere, and DTN provide wire-
less data transfer systems and market and weather information, and John Deere took over Preci-
sion Planting fromMonsanto and bought BlueRiverTechnology later on (Lev-Ram2017). Several
nations are building public-private partnerships to advance the use of sophisticated data in agricul-
ture. One example is the Dutch web-based platform Akkerweb (https://www.akkerweb.eu) that
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aggregates data on weather, parcel boundaries, and satellite and farm management into a Farm
Management Information System to provide farmers decision support and recommendations via
prescription maps that can be downloaded to tractor terminals (Van Evert et al. 2018). Another
example is the platform Barto (https://www.barto.ch) in Switzerland. As a stock company, Barto
brings together public and private actors to build up a smart-farming platform that also aims to
reduce the administrative burden of farmers by automatizing reporting tasks.

Sufficient infrastructure is central for companies and governmental agencies to develop web-
and data-based decision support tools and to allow farmers to take full advantage of PF technolo-
gies available on the market. Public policy can be decisive in realizing this infrastructure. First
and most fundamentally, high-speed internet access must be available to farmers. Yet in many
regions—including remote regions of wealthy nations—the required telecommunications infras-
tructure is not yet in place. Second, data facilitating PF use can be provided to farmers. For exam-
ple, several German states provide free access to satellite data useful for high-precision GIS-based
applications.4 Third, connectivity to devices and regulatory regimes for ensuring effective data
ownership are needed. For instance, to manage and control the payments to farmers fulfilling the
production requirements of the European Common Agricultural Policy, the Integrated Admin-
istration and Control System (IACS) was introduced across all EU member states. This system
includes the Land Parcel Identification System recording all agricultural parcels that are consid-
ered eligible for annual payments of the subsidies (Kritikos 2017). Fourth, public investments in
information, training, education, and extension can support PF adoption. Several studies on the
determinants of adoption of PF reveal that lack of education and knowledge gaps are determi-
nants for nonadoption of PF (e.g., Tey & Brindal 2012, Pierpaoli et al. 2013). Along these lines,
investments in knowledge and tools can be made. For example, public investment in the next
generation of crop and livestock management simulation models could facilitate providing pre-
dictions on environmental outcomes from integrated systems to farmers (Antle et al. 2017, Jones
et al. 2017).

Fortifying PF data and decision support platforms requires not only technical infrastructure
but also legal rules related to the question on confidentiality of data and data ownership. Con-
fidentiality of data is a huge concern of farmers, and legal frameworks must apply to both the
unauthorized use of data and the disclosure of information delivered by farmers. Thus, for all
applications, platforms and decision support tools based on farm-level and personal data, confi-
dentiality requirements must be met. Legal rules for use and disclosure must be found not only at
the country level but also at the international level, as service providers of such tools and platforms
are predominantly internationally operating private companies.

Along these lines, public-private partnerships and related data standards are needed that enable
public sector research on privacy-protected detailed data (Antle et al. 2017). Data security will be
crucial when establishing reliable interfaces to databases used or generated by public authorities
(e.g., Wirtz & Weyerer 2017). Up to now, no specific regulatory regimes for PF technologies ex-
ist (Basu et al. 2018), so new regulations and standards will be needed to fully take advantage of
PF technologies. To avoid heavy-handed regulations and establish a common understanding be-
tween the different agrifood chain actors, several initiatives have started in countries all over the
globe. For instance, the US and New Zealand agricultural sectors have introduced voluntary in-
dustry standards to clarify data use and ownership issues (Keogh&Henry 2016). Another example
is the INSPIRE directive, a pan-European initiative aiming for standardization and harmoniza-
tion of georeferenced field-level data needed for the management and control of the Common

4The satellite-based position service is provided by the German states (e.g., Riecken & Kurtenbach 2017;
https://www.sapos.de).
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Agricultural Policy (Kritikos 2017). Finally, also removing existing regulatory hurdles and legal
gaps for the implementation of PF technologies will facilitate the adoption of PF. For example,
this comprises the lack of legal rules with regard to issues of technological control, human safety,
civil liability and privacy (Kritikos 2017, Basu et al. 2018).

5.3. Possible Use of Information Generated in Precision Farming
for Agricultural Policies

PF data management creates new opportunities for data to inform agricultural policy.More effec-
tive and more efficient agricultural policy schemes could be developed if recording input appli-
cations and other field operations reduces information asymmetries between farmers and policy
makers. This especially applies to agricultural policies that are characterized by (a) direct pay-
ments linked to cross-compliance criteria that farmers must fulfill and (b) action-based criteria for
agri-environmental programs. Using data as recorded from PF technologies for administrative
purposes would increase the effectiveness and efficiency of monitoring of farming practices such
as input use. Under such a scenario, farmers could be required to provide PF data (e.g., on input
and land use) to receive certain environmental payments or as part of cross-compliance obliga-
tions in the future (e.g., Möckel 2015). Yet, a high accuracy of such information is required for
this step. Moreover, such data requirements would be feasible probably only in nations that have
a history of very active government involvement in agricultural management, e.g., in Europe.

6. DISCUSSION AND OUTLOOK

The current uptake of PF is moderate and mostly taking place at larger, highly capitalized farms
in developed countries. Adoption and diffusion rates predicted in earlier literature have not been
met at the expected pace (e.g., Griffin et al. 2018), especially for applicative tools like variable rate
input application. Thus, the full potential of PF in terms of economic and environmental benefits
is far from being exploited.

A higher relevance of PF in the future will depend on the coevolution of technological, eco-
nomic, and policy-related aspects: Farmers need to be provided with affordable tools allowing
them to meet clear management decisions to tap potentially large economic and environmen-
tal benefits. New PF-based systems might lead to further paradigm shifts in farming systems. In
the future, farmers may not need to care about the precision of their activities any longer, since
precision will be handled automatically. Instead, they can focus more on strategic decisions that
allow them to minimize their entrepreneurial risk in a landscape of clear policies but uncertain
progression of climate and markets.

Ongoing technological developments and big data advances (e.g., Walter et al. 2017, Wolfert
et al. 2017) continue to make PF technologies (a) more accurate, (b) more widely applicable, and
(c) more efficient. Weersink et al. (2018, p. 21) go so far as to say that, “Ultimately, these tech-
nologies may even allow farmers to manage the needs of individual animals or plants in real time.”
This vision is supported by recent developments in such areas as multispectral sensing of plant
and soil traits from UAVs (Aasen et al. 2018), remote characterization of plant diseases (Bouroubi
et al. 2018,Mahlein et al. 2018), and weed detection via machine learning algorithms (Lottes et al.
2017, Bouroubi et al. 2018, Walter et al. 2018). In research projects, site-specific weed treatment
has been partly realized using autonomous, robotic ground vehicles (Roldán et al. 2018, Walter
et al. 2018). Given the costs of precision weed management, future prospects for adoption depend
on continued technologically driven cost reductions, paired with finding ways to either attract
environmental stewardship payments (Swinton 2005) or adapt precision herbicide management
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to address the rapidly expanding problem of herbicide-resistant weeds (Swinton & Van Deynze
2017). The potential to save herbicides or even avoid them completely (e.g., via mechanical treat-
ment) is enormous. Yet, whether these are widely used will depend on the costs and benefits from
these technologies (Böcker et al. 2019).

A crucial aspect needed for the increasing uptake of PF is the improvement of decision support
systems and of software solutions that assist farmers in most efficiently administrating their pur-
chases, planning requirements, and cost calculations. The overall vision is to come from precision
to decision farming. The advent of machine learning and deep learning possibilities has begun in-
creasing the power and reliability of such decision support systems in fields such as side-dressing of
nitrogen or in timed and targeted spraying of pesticides.The future of such integrated PF decision
support systems will depend heavily on market and policy incentives, the evolving legal frame-
work, and the reliability of decision support systems. In the near future, augmented reality tools
that merge graphical depictions of decision support with real status of crop fieldsmight play an im-
portant role to elaborate whether or not decision support measures seem appropriate for farmers.

However, further sophisticated technologies will likely increase the capital intensity of PF.
This in turn could mean that only few farms can afford such technologies (see Walter et al. 2017,
Weersink et al. 2018). As a result, this may favor a concentration and increasing inequality in the
agricultural sector. To avoid such outcomes, diverse technologies need to be available for a diverse
set of agricultural systems, ranging from small- to large-scale farms as well as from crop, horti-
culture, and livestock production (Walter et al. 2017). Moreover, different forms of cooperation
and PF technology sharing can enable many farms to benefit from new technologies. Especially
in developing countries, improvements in education, and information distribution seem to be the
most crucial fields to expand the potential power of PF. This could also imply that smallholder
farming practices in many tropical countries or semiarid regions of the world could profit from PF
technologies and considerations. This might comprise spatial and temporal aspects of input ap-
plication in small-scale, labor-intensive, diverse cropping systems but can also include the support
for long-term production decisions (Aune et al. 2017).

Here, cheap(er) PF technologies can play a vital role in promoting the widespread benefits
of PF. There are currently multiple services that provide site-specific advice on crop manage-
ment and livestock treatment via mobile phones to farmers. For example, the Kenyan company
UjuziKilimo (https://www.ujuzikilimo.com) promotes the use of simple ground sensory tech-
nology as combined with a database that provides recommendations on input use to farmers via
text messaging. Likewise, the Virtual Irrigation Academy (https://via.farm) promotes tools to
measure soil water and improve irrigation decisions for farmers in Africa. An example of technol-
ogy sharing is the Nigerian technology platform Hello Tractor (https://www.hellotractor.com)
that connects farmers with tractor services via apps and text messaging, enabling mechanization
and technology diffusion. With these examples in mind, we believe that PF technologies have a
place in small-scale developing country agriculture.

PF is paving the way for big data in agriculture (Griffin et al. 2018), and new applications
based on big data might in turn make PF technologies more attractive. Beyond the field level,
PF technologies have the potential to decrease transaction costs for reporting of land and input
use. Such information may meet governmental requirements associated with cross-compliance
obligations or certification of specific environmental stewardship practices. Similarly, such infor-
mation may enable private sector certification of environmental performance to satisfy value-
added labels. One private-sector example is the 4R Nutrient Stewardship program (https://www.
nutrientstewardship.com/4rs/) that certifies agribusinesses as following the principles of apply-
ing inputs from the right source, at the right rate, at the right time, in the right place (Vollmer-
Sanders et al. 2016). The 4R program creates an incentive for agricultural input suppliers to shift
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their revenue model from one based on agrichemical product sales to one based on precision man-
agement services. Similar programs exist in other countries, for example, in Switzerland (e.g., IP
Suisse) and France (e.g., Zéro résidu de pesticides). Clear documentation of such practices based
on PF technologies, possibly as combined with other technologies such as blockchain will rein-
force the role of these certifications. This can play a major role in conventional but also organic
farming. Furthermore, insurance products could become more efficient if information asymme-
tries can be reduced when providing information on yields, input use, and environmental condi-
tions to insurance companies (e.g., Lowenberg-DeBoer 1999; Woodard 2016a,b; Weersink et al.
2018).

Another new opportunity providing additional incentives for adoption is that PF can be in-
strumental in developing fully transparent agri-food systems, thereby ensuring traceability from
consumables to produced rawmaterials (e.g.,Gebbers&Adamchuk 2010,Ruiz-Garcia et al. 2010).
One currently discussed possibility for full food traceability is the blockchain technology that al-
lows tracking and sharing all transactions or digital events among participating parties that can be
verified at any time in the future (Galvez et al. 2018). Blockchain technology has the potential to
ensure food traceability along the agri-food supply chain. In one high-payoff domain—E. coli out-
breaks caused by contaminated salad greens that forced destruction of supermarket inventories—
Walmart and Microsoft announced a partnership in September 2018 to introduce blockchain
traceability in the United States in 2019 (Corkery & Popper 2018). In that way, intrinsic and
extrinsic quality characteristics could be efficiently and reliably transported along the value chain.
One example for a blockchain technology application in the agri-food domain is the US start-up
ripe.io that tracks tomato ripeness, color, and flavor (Massa 2017). Yet, blockchain applications for
the agri-food sector are currently mainly focused on pilots (Tian 2016, Ge et al. 2017, Lin et al.
2017, Casado-Vara et al. 2018). Along these lines, Poppe et al. (2013) show that information and
communication technology has the potential to innovate data exchange and increase transparency
between actors in agri-food chains and thus alleviate many of the current sustainability and food
safety issues.

The increased interlinkage of agricultural production with up- and downstream industries
based on PF technologies might also create incentives for stronger vertical integration in the agri-
food sector. For example, the required integrated data systems might be realized more efficiently
by highly integrated firms (e.g., Weersink et al. 2018). Moreover, the increasing transparency of
farming practices and increasing need to both disclose these practices and also adjust them to
consumer needs might lead to stronger incentives for backward vertical integration.

7. CONCLUSION

PF has high potential to increase farmers’ income, increase extrinsic and intrinsic quality of agri-
cultural production, and decrease negative environmental effects of agricultural production, all at
the same time. PF will not be a panacea, but it has the potential to contribute to more sustainable
agriculture. Currently, potential benefits are utilized only to a small extent. PF adoption is cur-
rently mostly limited to large farms in developed countries. Variable rate applicative technologies
have been adopted mostly in higher-value crops. However, PF technologies need to be widely
adopted to utilize their full potential. For PF to spread to small-scale and diversified farming sys-
tems (including those in the developing world) and for VRTs to expand into lower-value crops,
a broad range of technologies and business models will be needed, going beyond the currently
dominant focus on input cost savings.

The potential for environmental benefits from PF (e.g., fewer losses of inputs such as pesticides
and fertilizer to the environment and the reduction of greenhouse gas emissions) constitutes an

328 Finger et al.



RE11CH15_Finger ARjats.cls August 24, 2019 14:54

important rationale for new incentives to adopt, for both private and public institutions. For ex-
ample, investments in technical infrastructure (e.g., access to high-speed internet, satellite images)
and data platforms can be essential first steps. Establishing a legal framework prescribing terms for
data ownership and sharing is a second key step. Governments can also tailor agri-environmental
policy instruments so that taxes, quotas, and subsidies target defined levels of agrichemical inputs
or polluting residuals. Such policies would indirectly strengthen incentives for increased adoption
of PF. Private firms in the agri-food system that seek reduced environmental footprints for their
products can require farm suppliers to certify responsible agrichemical input levels, facilitated by
PF. Moreover, PF also allows the creation of intrinsic and extrinsic quality traits and the transfer
of this information along the agri-food value chain.

Although PF has great potential for economic welfare and environmental good, its distribu-
tional effects should be observed and analyzed carefully. Many PF technologies appear to exhibit
economies of scale and scope. Thus, PF technologies may lead to further concentrations in the
agri-food sector, and benefits of PF technologies may be unequally distributed. These private
sector distributional effects demand greater study, not only at the farm level, but also along the
agri-food value chain.

Our analysis reveals that technological developments and big data advances continue to make
PF tools more connected, accurate, efficient, and widely applicable. Improvements in the technical
infrastructure and the legal framework can expand access to PF technologies and thereby expand
their overall societal benefits.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that
might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

R.F. and A.W. thank the Swiss National Science Foundation for support of the InnoFarm project
within the framework of the National Research Programme 73 (“Sustainable Economy”). S.M.S.
thanks Michigan State University AgBioResearch and the US National Institute of Food and
Agriculture, as well as the National Science Foundation’s Long-Term Ecological Research Pro-
gram (DEB 1027253) at the Kellogg Biological Station. N.E.B. thanks the Swiss Federal Office
for Agriculture for supporting the project “Adoption and Diffusion of New Technologies in Agri-
culture.” We thank the editorial board member Matin Qaim as well as Melf-Hinrich Ehlers for
helpful feedback on earlier versions of this paper and thank Reto Sager and Vivienne Oggier for
support.

LITERATURE CITED

AasenH,Honkavaara E,Lucieer A,Zarco-Tejada P.2018.Quantitative remote sensing at ultra-high resolution
with UAV spectroscopy: a review of sensor technology, measurement procedures, and data correction
workflows. Remote Sensing 10(7):1091

Aggelopoulou AD, Bochtis D, Fountas S, Swain KC, Gemtos TA, Nanos GD. 2011. Yield prediction in apple
orchards based on image processing. Precis. Agric. 12(3):448–56

Agili H, Chokmani K, Cambouris A, Perron I, Poulin J. 2018. Site-specific management zones delineation us-
ing drone-based hyperspectral imagery. Paper presented at the 14th International Conference on Precision
Agriculture, Monticello, IL

www.annualreviews.org • Precision Farming 329



RE11CH15_Finger ARjats.cls August 24, 2019 14:54

Anken T, Dubuis PH, Lebrun M. 2018. Drohnen: kaum Abdrift, kaum Lärm. Landfreund, Aug. 22. https://
www.landfreund.ch/pflanzenbau/Drohnen-kaum-Abdrift-kaum-Laerm-9614983.html

Antle JM, Basso B, Conant RT,Godfray HCJ, Jones JW, et al. 2017. Towards a new generation of agricultural
system data, models and knowledge products: design and improvement. Agric. Syst. 155:255–68

Aubert BA, Schroeder A, Grimaudo J. 2012. IT as enabler of sustainable farming: an empirical analysis of
farmers’ adoption decision of precision agriculture technology.Decis. Support Syst. 54(1):510–20

Aune JB, Coulibaly A, Giller KE. 2017. Precision farming for increased land and labour productivity in semi-
arid West Africa. A review. Agron. Sustain. Dev. 37(3):16

Balafoutis A, Beck B, Fountas S, Vangeyte J, Van der Wal T, et al. 2017. Precision agriculture technologies
positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability
9(8):1339

Barnes AP, Soto I, Eory V, Beck B, Balafoutis A, et al. 2019. Exploring the adoption of precision agricultural
technologies: a cross regional study of EU farmers. Land Use Policy 80:163–74

Basu S, Omotubora A, Beeson M, Fox C. 2018. Legal framework for small autonomous agricultural robots.
AI Soc. https://doi.org/10.1007/s00146-018-0846-4

Bauer ME, Cipra JE. 1973. Identification of agricultural crops by computer processing of ERTS MSS data. LARS
Tech. Rep. 20, Purdue Univ., West Lafayette, IN

Berckmans D. 2014. Precision livestock farming technologies for welfare management in intensive livestock
systems. Sci. Tech. Rev. Off. Int. Epizoot. 33(1):189–96

Blumenthal JM, Baltensperger DD, Cassman KG, Mason SC, Pavlista AD. 2008. Importance and effect of
nitrogen on crop quality and health. In Nitrogen in the Environment: Sources, Problems, and Management,
ed. JL Hatfield, RF Follett, pp. 51–70. Amsterdam: Elsevier. 2nd ed.

Böcker T, Britz W, Möhring N, Finger R. 2019. An economic and environmental assessment of a
glyphosate ban for the example of maize production. Eur. Rev. Agric. Econ. In Press. https://doi.org/
10.1093/erae/jby050

Böcker T, Finger R. 2016. European pesticide tax schemes in comparison: an analysis of experiences and
developments. Sustainability 8(4):378

Bouroubi Y, Bugnet P, Nguyen-Xuan T, Gosselin C, Bélec C, et al. 2018. Pest detection on UAV imagery using
a deep convolutional neural network. Paper presented at the 14th International Conference on Precision
Agriculture, Monticello, IL

Bowman MS, Zilberman D. 2013. Economic factors affecting diversified farming systems. Ecol. Soc. 18(1):33
Bramley RGV. 2009. Lessons from nearly 20 years of Precision Agriculture research, development, and adop-

tion as a guide to its appropriate application. Crop. Pasture Sci. 60(3):197–217
Brandes E, McNunn GS, Schulte LA, Bonner IJ, Muth DJ, et al. 2016. Subfield profitability analysis reveals

an economic case for cropland diversification. Environ. Res. Lett. 11(1):014009
Bullock DS, Lowenberg-DeBoer J, Swinton SM. 2002. Adding value to spatially managed inputs by under-

standing site-specific yield response. Agric. Econ. 27(3):233–45
Busse M, Schwerdtner W, Siebert R, Doernberg A, Kuntosch A, et al. 2015. Analysis of animal monitoring

technologies in Germany from an innovation system perspective. Agric. Syst. 138:55–65
Candiago S, Remondino F, De Giglio M, Dubbini M, Gattelli M. 2015. Evaluating multispectral images and

vegetation indices for precision farming applications from UAV images. Remote Sensing 7(4):4026–47
CarolanM. 2017. Publicising food: big data, precision agriculture, and co-experimental techniques of addition.

Soc. Rural. 57(2):135–54
Casado-Vara R, Prieto J, De la Prieta F, Corchado JM. 2018.How blockchain improves the supply chain: case

study alimentary supply chain. Proc. Comput. Sci. 134:393–98
CastleM,Lubben BD,Luck J. 2015.Precision agriculture usage and big agriculture data.Cornhusker Economics,

May 27. https://digitalcommons.unl.edu/agecon_cornhusker/725/
Chi H, Welch S, Vasserman E, Kalaimannan E. 2017. A framework of cybersecurity approaches in precision

agriculture. In Proceedings of the ICMLG2017 5th International Conference on Management Leadership and
Governance, pp. 90–95. Reading, UK: Acad. Conf. Publ. Int.

Chlingaryan A, Sukkarieh S, Whelan B. 2018. Machine learning approaches for crop yield prediction and
nitrogen status estimation in precision agriculture: a review. Comput. Electron. Agric. 151:61–69

330 Finger et al.

https://www.landfreund.ch/pflanzenbau/Drohnen-kaum-Abdrift-kaum-Laerm-9614983.html
https://doi.org/10.1007/s00146-018-0846-4
https://doi.org/10.1093/erae/jby050
https://digitalcommons.unl.edu/agecon_cornhusker/725/


RE11CH15_Finger ARjats.cls August 24, 2019 14:54

Corkery M, Popper N. 2018. From farm to blockchain: Walmart tracks its lettuce. New York Times, Sept. 24.
https://www.nytimes.com/2018/09/24/business/walmart-blockchain-lettuce.html

Corwin DL, Lesch SM. 2005. Apparent soil electrical conductivity measurements in agriculture.Comput. Elec-
tron. Agric. 46(1–3):11–43

Dammer KH, Adamek R. 2012. Sensor-based insecticide spraying to control cereal aphids and preserve lady
beetles. Agronomy J. 104(6):1694–701

Diacono M, Rubino P, Montemurro F. 2013. Precision nitrogen management of wheat. A review. Agron.
Sustain. Dev. 33(1):219–41

Du Q, Chang NB, Yang C, Srilakshmi KR. 2008. Combination of multispectral remote sensing, variable rate
technology and environmental modeling for citrus pest management. J. Environ. Manag. 86(1):14–26

Eur. Comm. 2017. Benchmarking of farm productivity and sustainability performance. EIP-AGRI Focus
Group Final Rep., Jan. 10. https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/eip-agri_fg_
benchmarking_final_report_2016_en.pdf

Evans RG, LaRue J, Stone KC, King BA. 2013. Adoption of site-specific variable rate sprinkler irrigation
systems. Irrig. Sci. 31(4):871–87

Fales M,Dell R, Herbert ME, Sowa SP, Asher J, et al. 2016.Making the leap from science to implementation:
strategic agricultural conservation in Michigan’s Saginaw Bay watershed. J. Great Lakes Res. 42(6):1372–
85

Finger R. 2018. Take a holistic view when making pesticide policies stricter.Nature 556(7700):174
Finger R,Möhring N, Dalhaus T, Böcker T. 2017. Revisiting pesticide taxation schemes. Ecol. Econ. 134:263–

66
Foster AD, Rosenzweig MR. 2010. Microeconomics of technology adoption. Annu. Rev. Econ. 2:395–424
Fulton JP, Shearer SA, Higgins SF, Hancock DW, Stombaugh TS. 2005. Distribution pattern variability of

granular VRT applicator. Trans. ASAE 48(6):2053–64
Galvez JF,Mejuto JC, Simal-Gandara J. 2018. Future challenges on the use of blockchain for food traceability

analysis. Trends Anal. Chem. 107:222–32
Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG, et al. 2013. Sustainable intensification in

agriculture: premises and policies. Science 341(6141):33–34
Ge L, Brewster C, Spek J, Smeenk A, Top J, et al. 2017. Blockchain for agriculture and food. Report

2017-112, Wageningen Econ. Res., Wageningen, Neth. https://library.wur.nl/WebQuery/wurpubs/
fulltext/426747

Gebbers R, Adamchuk VI. 2010. Precision agriculture and food security. Science 327(5967):828–31
Giles DK. 2016. Use of remotely piloted aircraft for pesticide applications: issues and outlook. Outlooks Pest

Manag. 27(5):213–16
GnypML, Panitzki M,Reusch S, Jasper J, Bolten A, Bareth G. 2016.Comparison between tractor-based and UAV-

based spectrometer measurements in winter wheat. Paper presented at the 13th International Conference on
Precision Agriculture, St. Louis, MO
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