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Abstract

Land-use change is a leading cause of environmental degradation in
terrestrial systems and has important implications for natural re-
source use. Economists have a long tradition of studying land use
and in recent decades have developed empirical land-usemodels using
econometric and optimization approaches. Integration of these land-
use and biophysical models allows for a more comprehensive analysis
of the consequences of future land-use change and the use of land-use
policies to avoid undesirable outcomes. I provide a conceptual frame-
work for the modeling approach, describing the individual compo-
nents of an analysis as well as how they are linked together. My
review describes how the literature has evolved to take advantage of
spatial data and greater computing capabilities. Although most
researchers have used either an econometric or an optimization ap-
proach, there is potential to combine these methods to identify more
efficient land-use policies that still meet criteria of tractability and
political acceptance.
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1. INTRODUCTION

Land-use change is an important cause of environmental degradation, contributing to biodiversity
loss (Sala et al. 2000,Wilcove et al. 2000), increasing atmospheric carbon dioxide concentrations
(van derWerf et al. 2009), and loss of open space (Lubowski et al. 2006b). Land use has important
implications for the use of natural resources, such as water for irrigation, and can influence risks
and consequences of natural disasters (Hey & Philippi 1995, Syphard et al. 2007) and infectious
diseases (Patz et al. 2004). Economists have a long tradition of studying land, which has provided
a framework for understanding and modeling the determinants of land-use change (von Thünen
1826, Alonso 1964). Integration of economic land-use models with landscape-scale biophysical
models allows for a more comprehensive analysis of the consequences of future land-use change
and the potential for using land-use policies to avoid undesirable outcomes.

Biophysical models represent biological and physical processes in the environment. A simple
biophysical model is a yield curve relating plant growth to temperature and rainfall. Another
example is the universal soil loss equation, which is a simple mathematical model used to describe
the relationship between erosion and biophysical values such as rainfall, soil characteristics, to-
pography, and land management. From a biophysical perspective, land-use change alters natural
processes in ways that affect living organisms. For example, removal of riparian vegetation for
timber or land conversion to crops can increase stream temperatures and, thus, affect fish pop-
ulations(Schlosser 1991).Urbandevelopment cancontribute to the urbanheat islandeffect (Stone&
Rodgers 2001), which has important consequences for human health (Patz et al. 2005). At the heart
of more complex biophysical models such as RHESSys (Tague & Band 2004) and CLM (Dai et al.
2003) are GIS-based representations of the landscape, which include fine-scale information on land
cover. Land cover maps provide a direct means of linking to economic land-use models.1

Economists have developed two basic types of empirical land-use models. The first is
econometric land-use models, which relate observed private land-use decisions to economic
variables such as land rents. Thesemodels have been developedwith aggregate land-use data (e.g.,
Stavins & Jaffe 1990, Plantinga 1996), plot-level data (e.g., Lubowski et al. 2006a), and spatially
explicit data (e.g., Carrion-Flores & Irwin 2004). A second type comprises optimization models,
which seek to solve for an optimal spatial arrangement of land uses, such as conservation lands
(Polasky et al. 2008), or to find land-use allocations corresponding to competitive market
equilibria (Adams et al. 1996). Although land-use models are developed by researchers in other
fields, such as geography (Clarke & Gaydos 1998) and ecology (Theobald 2005), economic
models have the advantages of being grounded in a theory of individual decision making (e.g.,
Miller & Plantinga 1999) and of providing a framework for policy analysis. In particular,
economicmodels can be used to evaluate the effects of incentives designed to encourage particular
land uses (e.g., Plantinga et al. 1999, Lawler et al. 2014) or to evaluate the benefits and costs of
land-use policies (Alig et al. 1997, Polasky et al. 2008).

The purpose of this review is to describe methods for integrating economic land-use and bio-
physical models. We emphasize models that evaluate the provision of ecosystem services from
private lands, although many of the approaches we discuss can be applied to public lands as well.
The next section provides an overviewof the generalmodeling approach.An important distinction
is made between econometric and optimization models, as these models are linked with bio-
physical models in different ways. Subsequent sections are devoted to discussing the model
components and the connections among them in more detail. Although much of this discussion

1Land cover is a physical description of land (e.g., its vegetative cover is forests), whereas land use indicates how humans are
using the land (e.g., for commercial forestry).
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emphasizes what has been done in previous studies, attention is also given toways thatmodels can
be improved and extended.We do not attempt to provide a comprehensive review of all integrated
land-use studies; rather, we highlight studies that nicely illustrate the methods used in this liter-
ature. A final section provides discussion.

2. OVERVIEW OF MODELING APPROACH

Figure 1 shows a schematic diagramof integrated land-use andbiophysicalmodels. As indicated at
the top of the figure, policy is an input to econometric and optimizationmodels. Examples include
a per-acre subsidy for conversion of agricultural land to forest and a budget for establishing
a network of conservation reserves.

Under the econometric approach, analysis of the policy yields a prediction of how land use
would change under the policy. Such predictions might take the form of a map showing where on
the landscape these changes occur or simply an aggregate summary of area changes by use.
Changes in land use are then evaluated in a biophysicalmodel. For example, the biophysicalmodel
may produce estimates of the additional carbon sequestered in forests or estimates of the change in
survival probabilities for a groupof species. The next step is to represent these changes in economic
terms by combining information from the econometric land-use model with changes in bio-
physical variables. Because econometric models are formulated in terms of economic variables
such as rents, they yield information on the opportunity costs of the policy. Thus, one might
estimate the cost of improving water quality through a policy that penalizes land conversion in
riparian areas.

There are potential feedbacks from land-use and biophysical models to econometric land-use
models. In the first case, if changes in land use affect prices for crops and other commodities, then

Policy

Econometric
land-use
models

Land use

Biophysical
models

Economic
measures of 

environmental 
outcomes  

Economic
optimization

models

Figure 1

Integrated economic land-use and biophysical models. Ovals correspond to model components, and arrows
indicate linkages between them. Blue and red arrows are used to distinguish between econometric and
optimization approaches, respectively.

235www.annualreviews.org � Integrating Economic Land-Use and Biophysical Models



rents are endogenous, and solving for equilibria in commodity and land markets becomes nec-
essary. The feedback from biophysical models reflects the possibility that changes in the envi-
ronment will affect land-use choices. For example, policies that produce amenities such as open
space may increase nearby housing rents, thereby increasing incentives for residential de-
velopment. Increases in water quantity may spur the conversion of land to irrigated agriculture.

The information flowunder the optimization approach differs from that under the econometric
approach. An optimization model typically incorporates information on land use and biophysical
variables at the outset. For example, in a reserve site selection problem, the objective may be to
maximize the number of species protected on the landscape subject to a budget constraint that
limits the number of acres that can be conserved. This approach requires that information on
initial land use and species be brought into the optimization model, as shown in Figure 1. The
solution to the optimization problem is an optimized landscape, which can be summarized using
economic measures such as production possibilities frontiers. The two-way arrows between the
land-use component and the optimization model reflect the potential for land rents to be en-
dogenous, as in sectoral optimization models that solve for land market equilibria.

3. MODEL COMPONENTS AND LINKAGES

3.1. Policy

Under the econometric approach, the most common policies analyzed are per-acre subsidies that
raise the relative returns from desired land uses. In most cases, the ultimate policy objective is to
increase services from the land, such as carbon sequestration or wildlife habitat, rather than the
area of land in particular uses. However, because these environmental services are typically public
goods, one cannot directly model the private supply of these services by using econometric
methods. Thus, private land-use decisions are modeled in terms of returns to private goods pro-
duced from the land (e.g., timber, crops), and policies are directed at augmenting or diminishing
these returns.

Plantinga et al. (1999) and Lewis & Plantinga (2007) use econometric land-use models to
evaluate the effects of per-acre subsidies for forestland. Stavins (1999) notes that an afforestation
subsidy may encourage landowners to take land out of forest so that they can receive the subsidy
for converting it back. To deter inefficient land conversions, he evaluates a two-part incentive that
pays a subsidy for afforestation and levies a tax on deforestation. In a related approach, Fezzi &
Bateman (2011) develop econometric models of land shares in different agricultural uses and
include input prices as exogenous variables. This approach enables them to simulate the effects on
land use of a tax on nitrogen fertilizer. Mason& Plantinga (2013) recognize that because uniform
land-use subsidies provide landowners with inframarginal rents, such subsidies may involve large
transfers from the government. These researchers evaluate a contract policy that minimizes the
planner’s ex ante expenditures on payments to landowners.

Besides changing the allocation of land among the existing set of uses, policies can also be
designed to encourage new uses. Using econometric methods, Lewis et al. (2011) estimate the
payments needed to compensate landowners for removing land entirely from agricultural pro-
duction and putting it into conservation.With an econometric model of land-use shares, Bateman
et al. (2013) evaluate policies requiring agricultural land set-asides and land diversions for parks.

Under the optimization approach, the policy objective is usually stated in terms of a biophysical
target. Rabotyagov et al. (2010) find least-cost ways of achieving specified reductions in nitrogen
and phosphorus loadings in theGulf ofMexico. The choice variables in this optimization problem
are various agricultural practices as well as retirement of cropland. In Polasky et al. (2008), the
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objective is to find land-use patterns thatmaximize an aggregate biodiversity score. The problem is
constrained by a budget specified in terms of the total value of land within the region. Newburn
et al. (2006) consider the problem of a planner who seeks to purchase development rights that
restrict future residential and vineyard development. The objective is to maximize open space and
habitat benefits subject to a constraint on total expenditures on conservation easements. Sectoral
optimization models can also be used to evaluate policies stated as biophysical targets. Alig et al.
(1997) examine the welfare implications of meeting specified carbon targets, expressed as changes
in consumer and producer surplus relative to a baseline. Instead of using a biophysical target,
Khanna et al. (2011) introduce a range of biomass prices to estimate the supply response for
different cellulosic biofuels.

3.2. Econometric Land-Use Models

The theoretical basis for econometric land-use models is a model of profit maximization by in-
dividual landowners. Each landowner is assumed to allocate a land parcel of uniform quality
among the set of available uses to maximize profits, or what are often referred to as returns (or net
returns) in the land-use literature.2 Returns can be defined for the current period alone (e.g.,Wu&
Segerson 1995) or as the present discounted value of the stream of returns (e.g., Stavins & Jaffe
1990). The latter approach is required if annual returns to alternative landuses occurwith different
periodicities, as with agriculture and forestry. The dynamic model of optimal land allocation
requires an explicit assumption about how landowners form expectations about future returns. As
Plantinga (1996) shows, if landowners have static expectations—that is, their expectation is that
future annual returns to their land are constant—they will allocate each land parcel to the use
generating the greatest annualized returns net of conversion costs. Relaxing this assumption
complicates the estimation problem considerably because this simple decision rule no longer
applies generally. De Pinto & Nelson (2009) assume that farm commodity prices follow an
autoregressive process, which requires that they estimate a structural dynamic model of land-use
change following Rust (1987).

If the land-use model is estimated with aggregate (e.g., county-level) data on land use, then the
individual land-use decisions need to be aggregated tomatch the scale of the data. Aggregation can
be done by assuming a representative landowner or constant returns to scale (Fezzi & Bateman
2011) or by integration of county land quality densities (e.g., Lichtenberg 1989, Hardie & Parks
1997). The result is a land-use sharemodel, which specifies the share of land in each use within the
aggregate area as a function of average profits obtained from each use. The share model is a static
or long-run model and thus does not account for transitions between uses or the costs associated
with land conversion. Stavins & Jaffe (1990) and Plantinga & Ahn (2002) develop models that
account for transitions between uses and can be estimated with aggregate data.

If data are available on a random sample of land plots, then aggregation is not required. A
number of authors estimate multinomial logit models of land-use decisions using plot data (e.g.,
Lubowski et al. 2006a, Lewis & Plantinga 2007). An advantage of these models over aggregate
models is that they accommodate plot-level variables, such as measures of land productivity.
Moreover, if repeated observations are available, then land-use transitions can be explicitly
modeled. However, these models still require an assumption of constant returns to scale because
information is available only about individual land plots, and not about larger operations ofwhich

2In empirical land-use applications, returns are typically measured as the net revenues (total revenues minus total costs) from
the production of commodities.
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the plot might be a part. With many data sets, the precise location of land plots is not revealed to
protect confidentiality. For example, the National Resources Inventory reveals only the county
within which a plot is located (US Department of Agriculture 2013). Use of such data limits the
precision with which returns to land can be measured. Lubowski et al. (2006a), for example,
include measures of county-level average returns, along with plot-level measures of land quality.

The availability of spatially explicit data on land use obtained through remote sensing has
allowed researchers to model the determinants of land-use decisions with much greater precision.
In an early application, Bockstael (1996) uses land-use maps for two time periods to model the
transition of land from undeveloped to developed use. To obtain estimates of returns to de-
velopment, she estimates a hedonic function of land sales and uses this model to predict de-
velopment returns for each grid cell. An appealing feature of this approach is that the hedonic
model can be estimatedwith a small sample of parcels but still be used to generate spatially varying
estimates of returns for all the parcels in the land-use analysis. Prediction for all parcels is ac-
complished by including spatial variables in the hedonicmodel, such as distances to roads and land
qualitymeasures, and then usingmaps of these variables to produce amapof estimated returns.An
alternative is to skip the estimation of the hedonic model and instead directly estimate a reduced-
form land-use model specified in terms of spatially varying parcel attributes (Carrion-Flores &
Irwin 2004, Newburn et al. 2006). This approach has lower data requirements but has two
disadvantages relative toBockstael’s two-stagemethod. First, the land-usemodel is not specified as
a function of returns, which limits its use for evaluatingmarket-based incentive policies. Second, if
a linear hedonic model is estimated in the first stage, then techniques such as fixed effects and
instrumental variables can be used to address identification challenges.

Despite its strengths, few researchers have used Bockstael’s (1996) approach since her paper
was published. This may be due to the requirement for extensive spatial data on land use, land
sales, and parcel attributes. Over time, these data have become easier to obtain, so perhaps this
approach will become more common. In one recent application, Bigelow et al. (2014) develop
a panel data set of land values for parcels in developed, agricultural, and forest uses in the
WillametteValley ofOregon. They estimate hedonicmodels using theHausman-Taylor estimator,
which allows them to treat land-use regulations as endogenous. Models of transitions from
agriculture and forest to developed use are then estimated with data from Land Cover Trends
(Loveland et al. 2002), which provide repeated observations of high-resolution land cover maps
over a 27-year period. The authors use these models to simulate the effects of different urban
growth policies on the spatial pattern of land and water use.

3.3. Land Use

Under the econometric approach, the econometric model is used to simulate the effects of the
policy on land use. If the model is estimated with aggregate data, then the simulations produce
corresponding aggregate estimates of the land-use changes induced by the policy. For example,
Wu& Segerson (1995) simulate the effects of changes in agricultural commodity programs on the
county shares of land in different crops. They find that, across all counties in Wisconsin, a 2.3%
reduction in the target price for corn reduces the acreage of corn and soybeans by 1%. Wu &
Segerson assume that crop shares are constant in the absence of policy interventions (i.e., they
adopt a static baseline). Stavins (1999) allows for a dynamic baseline in which county land-
use shares continue to change due to the partial adjustment structure of the econometric
model. Baseline land-use changes are subtracted from changes under the policy. The use of
a dynamic baseline can have large effects on the results of the policy simulations if, for example,
there are large baseline changes in the land use that is targeted by the policy.
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If the econometric model is estimated with plot-level or spatially explicit data, the results of the
policy simulation can be displayed asmaps. In this case, the estimated econometricmodels provide
a set of rules that govern fine-scale changes in land use. For example, Lewis & Plantinga (2007)
estimate an econometric model of land-use transitions using plot-level data, which yielded
functions of the form

Pijkt ¼ F
�
Xit,Z; b̂jk

�
, ð1Þ

wherePijkt is the probability that plot i changes from use j to k during the period starting in time t,
Xit is a vector of county average returns and plot-level land quality variables in time t,Z is a vector
of per-acre subsidies that augment returns to forests, and b̂jk is a vector of estimated parameters
specific to the j-to-k transition. By overlaying maps of initial land use, land quality, and county
boundaries, Lewis & Plantinga define spatially distinct parcels that map to sets of transition
probabilities as defined in Equation 1. A stochastic simulation is then performed to determine
which parcels on the landscape remain in the same use and which ones change uses. This process
produces a set ofmaps corresponding to different values ofZ.3 The same procedure is usedwith an
econometric model estimated with spatially explicit data.

The optimization approach also uses initial land-use maps as an input and produces simulated
land-usemaps as outputs. Polasky et al. (2008) use a map of 8,000 parcels in theWillamette Basin
of Oregon classified according to uses such as row-crop agriculture and managed forest. The
optimization algorithm decides whether to keep each parcel in its current use, change it to another
use, or allocate it to one of many conservation alternatives. Rabotyagov et al. (2014) study
a watershed in Iowa and divide their study area into more than 16,000 parcels, which are roughly
the size of agricultural fields. Data from a field-level survey are used to identify the crop rotations,
tillage, and conservation practices. The optimization problem involves finding the least-cost
placement of conservation practices to achieve given levels of ambient water quality. Newburn
et al. (2006) use a GIS map for Sonoma County, California, that identifies parcels in residential,
vineyard, and undeveloped uses. Additional GIS data are used to indicate whether parcels are
within a conservation priority area for habitat, open space, and rangeland, which determines the
benefits of conserving them. Early reserve site selection studies (e.g., Church et al. 1996, Polasky
et al. 2001) do not explicitly account for land use. Rather, in these studies the landscape is
partitioned into sites, and the problem is to decide which sites to include in a reserve network to
maximize the number of species protected.

3.4. Biophysical Models

Four basic types of biophysical models have been used in integrated economic land-use analyses
(Table 1). These models can be classified according to how they account for spatial heterogeneity
on the landscape4 and whether the biophysical processes in the model are aspatial or spatial. A
parcel-specific biophysical model can capture a high degree of spatial heterogeneity because land
use and other attributes of the land that influence biophysical processes can vary at the scale of
parcels. In contrast, other biophysical models are based on the characteristics of aggregate areas,
such as counties. In this case, when land changes use, the biophysical processes for new lands

3To account for the stochastic nature of the transition probabilities in Equation 1, Lewis & Plantinga (2007) simulate a large
number of landscapes for each value of Z, each of which is consistent with the underlying transition rules.
4Only landscape-scale analyses are considered here. There are also integrated land-use and biophysical studies that analyze
optimal management of a single site, such as a farm (e.g., Johnson et al. 1991).
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depend on the average characteristics of land in the county. There are also intermediate cases in
which the biophysical processes can depend on the full distribution of land attributes for the
aggregate area. Biophysical models can be spatial, meaning that the processes represented in the
model depend on the spatial arrangement of land use and other land attributes. An examplewould
be a model of wildlife habitat in which the reproductive success of a given species depends on the
connectivity of habitat patches. In an aspatialmodel, only the total amount of land in different uses
influences biophysical variables.

Wu & Segerson (1995) examine the effects on groundwater quality of different cropping
patterns using an aspatial, aggregate model. They determine the percentage of farmland in each
Wisconsin county that, on the basis of soil characteristics and other factors, is vulnerable to
groundwater contamination if polluting crops (e.g., corn) are selected.The area of land in polluting
crops in each county is then multiplied by the vulnerable percentage to obtain the farmland area
that has the potential to contribute to groundwater contamination. This approach is equivalent to
assuming a representative parcel for each county that has the average vulnerability of farmland in
the county as well as the average distribution of land uses. In an analysis of the costs of carbon
sequestration in forests, Plantinga et al. (1999) compute a weighted average of carbon yields for
different forest species using weights based on forest species composition within each county. The
carbon sequestration rate for new forests is assumed to be the same as the county average rate. A
parcel-specific model would link the characteristics of individual parcels (e.g., vulnerability to
contamination or the dominant forest species) and chosen land uses to biophysical outcomes.

Plantinga & Wu (2003) use the distribution of land quality in each aggregate area to refine
estimates of the environmental benefits of removing land from agricultural production. Envi-
ronmental production functions relate pollution fromagricultural chemicals to site characteristics,
including a measure of land quality, and a land-use model predicts the total amount of cropland
that is converted to forest in each area. By accounting for the distribution of land quality in each
aggregate area and assuming that agricultural lands are converted in order of increasing land
quality, the authors obtain a more precise estimate of pollution reductions. A similar approach is
used in FASOM (Forest and Agricultural Sector OptimizationModel), developed by Adams et al.
(1996). The authors categorize forests within each region according to ownership, species, site
productivity, management intensity, and age class. Furthermore, crop, pasture, and forest are
assigned to a land class, which indicates the potential for conversion to and out of forest on the
basis of land productivity and historical conversion patterns. This classification identifies, for
example, which cropland and pasture acres are eligible for conversion to forest on the basis of
information about regional distributions of land productivity. Finally, Jian et al. (2010) simulate
yields for bioenergy crops for each 0.1� 3 0.1� grid cell in the United States using GIS data on
biogeochemical variables. Yields are aggregated to the county scale and are combined with
economic data to estimate break-even prices of producing bioenergy crops.

Although most biophysical models based on aggregate land areas are aspatial, Rabotyagov
et al. (2010) makes use of a watershed-scale hydrology model (the Soil and Water Assessment

Table 1 Classification of biophysical models used in integrated economic land-use analyses

Spatial heterogeneity

Representative parcels Parcel-specific model

Biophysical
processes

Aspatial Wu& Segerson (1995), Plantinga et al. (1999) Butsic et al. (2010), Lawler et al. (2014)

Spatial Rabotyagov et al. (2010) Nalle et al. (2004), Polasky et al. (2008)
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Tool) that accounts for spatial linkages among aggregate land units. Although each land unit has
homogeneous land use and land attributes, streamflow and in-stream concentrations of water
pollutants depend on the spatial arrangement of these land units in relation to the stream network.

Lawler et al. (2014) make fine-scale (100-m-pixel) land-use projections for the contiguous
United States that account for parcel-level variation in land quality. On the basis of these pro-
jections, the authors estimate changes in the amount of habitat available for 194 terrestrial
vertebrate species, such as amphibians and at-risk birds, using data on their geographic ranges and
habitat associations. The biophysicalmodel is aspatial in that the assessment of habitat availability
does not depend on the size or spatial arrangement of patches. However, in contrast to aggregate
modeling approaches, the authors are able to link parcel-level information on land use to fine-scale
data on species’ ranges and habitat requirements. Beaudry et al. (2013) use a similar approach to
study habitat changes for 20 bird species in Wisconsin. However, these authors account for the
spatial arrangement of habitat (e.g., the amount of edge between forests and agricultural fields) in
determining its suitability for each species.

Nelson et al. (2008), Polasky et al. (2008), and Lewis et al. (2011) account for land use at the
parcel scale and spatial processes that affect habitat quality. Land-use maps are generated using
optimization or econometric methods and are then evaluated in terms of the likelihood that the
landscape will sustain species in the future. The biophysical model accounts for species-habitat
compatibility (i.e., what land uses the species can use for habitat), the amount of habitat needed to
support a breeding pair, and the ability of the species to move between patches of habitat. Nalle
et al. (2004) use a biophysical model to estimate population sizes of selected species given the
characteristics and spatial arrangement of land management units. The model stochastically
simulates movements across the landscape and the breeding behavior of individual animals.

3.5. Economic Optimization Models

As discussed above, many optimization studies seek tomaximize a biophysical objective subject to
constraints expressed in economic terms (e.g., a total budget for land conservation). The dual to
the problem is also investigated so that the objective is to minimize costs of achieving a stated
biophysical target. In sectoral optimization studies, the objective is to maximize the sum of con-
sumer and producer surpluses, yielding the competitive market equilibrium. This problemmay be
constrained by biophysical targets.

The simplest optimization problems involve designating a reserve network to maximize the
number of species protected. This problem, referred to as themaximal coverage location problem,
was first studied by ecologists (e.g., Church et al. 1996). Given information on the geographic
distribution of species, the problem is to choose sites to maximize total coverage of species subject
to a constraint on the number of sites in the reserve network. Ando et al. (1998) recognize that this
formulation of the problem implicitly assumes that the cost of acquiring land for the network is
equal for each site. This approach can produce extremely costly solutions, as sites with large
numbers of endangered species are often found in urban areas with high land rents (e.g., southern
Florida and Los Angeles). Using US county data on the presence of endangered species and on
average land costs, Ando et al. solve a budget-constrained version of the maximal coverage
problem and find dramatically lower costs compared with costs under the site-constrained
problem. For example, the cost of covering one-half of the species under the budget-constrained
version is less than one-third the cost under the site-constrained approach.

A number of extensions of the reserve site selection problemhave been pursued along economic
and biophysical dimensions. Costello & Polasky (2004) and Newburn et al. (2006) solve a dy-
namic version of the problem that accounts for the possibility that sites will be unavailable in the
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future as the result of land development. Costello & Polasky show that, given threats from de-
velopment and per-period budget constraints, there are substantial gains to optimally sequencing
site selection. Strange et al. (2006) further extend the dynamic problem by allowing for the
possibility of species extinction. Other authors examine how the solution changes when site
attributes that affect habitat quality are incorporated (e.g., Fischer&Church 2003,Onal&Briers
2003). In the analysis by Fischer & Church (2003), sites with large perimeters are penalized,
leading to the selection of sites with greater compactness and contiguity. Recent studies seek to
directly optimize outcomes for species, often accounting for complex relationships between the
spatial pattern of habitat and species survival (e.g., Nicholson et al. 2006, Polasky et al. 2008).

The increase in the economic and biophysical complexity of optimization problems hasmade it
challenging for researchers to find explicit solutions. When the parcel-level benefits and costs are
independent of one another, the optimal solution is easily obtained. Bateman et al. (2013) evaluate
the effects of six land-use change scenarios on a range of ecosystem services, each of which is
associated with a separate policy and regulatory regime. Changes in market and nonmarket
services are measured on a 2-km scale. Bateman et al. then consider how the outcomes could be
improved through the use of spatially differentiated policies. For example, to maximize the
monetary value of ecosystem services, they choose the policy for each grid cell from among the six
alternatives that produces the highest monetary value.

The problem can be much harder to solve when the benefits and costs are spatially and tem-
porally dependent. For example, in Rabotyagov et al. (2010), nutrient loadings at the watershed
outlet depend on the landscape-scale pattern of agricultural land use and on the hydrology of the
system. The solution to the problem of achieving least-cost reductions in nutrient loadings must
account for interdependencies among conservation activities adopted at many locations. In-
creasing the complexity of the problem are a large number of possible conservation practices and
a multicriteria objective. Rabotyagov et al. use evolutionary algorithms to search for a cost-
effective solution. Candidate solutions are subjected to mechanisms motivated by optimization
processes observed in nature (e.g., selection, recombination, reproduction, and mutation) to
produce new solutions that are evaluated with respect to the problem’s objectives (Simon 2013).
Heuristic algorithms are also applied in Nalle et al. (2004) and Polasky et al. (2008) to address
challenges arising from large numbers of land parcels and choice variables aswell as nonlinear and
spatially dependent biophysical relationships. Although these algorithms can overcome com-
putational limitations, they cannot guarantee optimality.

3.6. Economic Measures of Environmental Outcomes

Many econometric analyses evaluate specific policies. In some cases, the outcome of the policy is
simply reported as the induced change in biophysical variables. For example, Wu & Segerson
(1995) report changes in high-polluting acreage associated with a specified reduction in the target
price for corn. Lewis et al. (2011) report changes in a biological score for different cost levels,where
the costs are computed as theopportunity cost of the land in intensive agricultural uses. If the policy
is a per-acre incentive for increasing land in adesired use, the incentive canbe varied to trace out the
marginal costs of changes in the biophysical variable. Lubowski et al. (2006a) simulate a combined
subsidy and tax policy for increasing forest area. For each increment in the incentive, they calculate
the change in total costs, measured as opportunity costs of the land in nonforest uses, the change in
forest area, and the corresponding change in carbon stored in the forest. The ratio of the change in
total cost to the associated change in carbon gives the marginal cost at the level of the incentive. A
marginal cost curve for carbon is constructed by arraying marginal costs against cumulative
carbon sequestration (Figure 2). Montgomery et al. (1994) use a sectoral optimization model to
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estimate a marginal cost curve for survival of the northern spotted owl (Figure 2). The costs of
setting aside habitat for owls are measured in terms of forgone surplus from timber production.

When the outputs of a policy simulation are maps, researchers typically need to summarize
large amounts of information (Plantinga&Lewis 2014). Lewis& Plantinga (2007) investigate the
effects of a per-acre afforestation subsidy on forest fragmentation in South Carolina. For each
value of the subsidy, they simulate 500 landscapes. As discussed above, each landscape is con-
sistent with the underlying stochastic rules governing land-use transitions. To summarize the
features of each landscape, the FRAGSTATS software program (McGarigal et al. 2012) is used to
compute landscape metrics, including the percentage of the landscape in core forest (i.e., a forest
patch that is more than a specified distance from the nearest nonforest edge) and the mean forest
patch size. Lewis & Plantinga use this information to construct distributions for the landscape
metrics and different levels of the subsidy. As Figure 3 shows, a $25-per-acre subsidy shifts the core
forest distribution to the right relative to abaselinewith no subsidy. Lewis et al. (2011) use a similar
approach to compute distributions over a biological score for different policies and cost levels.

The study of Bateman et al. (2013) differs from most other studies in this literature in that it
estimates monetary values for nonmarket benefits associatedwith land-use policies, as opposed to
just measuring the physical change in an environmental outcome. In particular, these authors
report monetized changes in carbon emissions, outdoor recreation, and urban greenspace. The
outdoor recreation analysis makes use of a trip generation function that estimates the number of
trips from each location, given characteristics of the population at the location and travel time to
and attributes of destination sites. The number, location, and characteristics of these destination
sites, and thus the number of visits to them, vary under different land-use policies. The value of
visits is estimated using results from a trip valuation meta-analysis. Bateman et al. present maps
showing changes in the values of these nonmarket goods under alternative policy scenarios.

The results from optimization models are often presented as efficiency frontiers. For example,
Polasky et al. (2008) maximize an aggregate biodiversity score subject to a constraint on the total
value of land in the study area. By varying the constraint, they trace out an efficiency frontier
between biodiversity score and total land value. In an interesting comparison, the authors show
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that the current landscape lies well within the efficiency frontier. Rabotyagov et al. (2010) solve
a multiobjective optimization problem, which yields a three-dimensional frontier. Figure 4 shows
the estimated trade-offs between phosphorus and nitrogen loadings and costs of agricultural
practices. These analyses identify the allocation of land that achieves a given biophysical target in
a cost-effective manner. The use of benefits estimates, as in Bateman et al. (2013), can identify the
allocation that maximizes net benefits. Although results such as these are especially useful, reliable
benefits estimates are not always available or are difficult to obtain, especially in the case of nonuse
values (Bateman et al. 2013).

4. DISCUSSION

This article reviews the growing literature in resource economics that involves the integration of
economic land-use and biophysical models. Many biophysical models include sophisticated
representations of biological and physical processes but exclude human influences on the system
or treat them in a cursoryway.However, economists are surely guilty at times of giving insufficient
attention to important interactions of human systemswith the natural environment. Integration of
economic land-use models with biophysical models allows for a more comprehensive analysis of
the human and natural systems. Biophysicalmodels (of terrestrial systems) typically contain aGIS-
based representation of the landscape, providing a direct linkage to economic models of land-use
decisions.

This review demonstrates the progress that resource economists have made in incorporating
biophysical models into their analyses. In early studies, aggregate changes in land use were typi-
cally converted into proportional changes in biophysical variables. For example, changes in bird
abundance in Matthews et al. (2002) are proportional to county-level changes in forest and
agricultural land. More recent analyses have integrated fine-scale land-use models with bio-
physical models that account for complex spatial processes. Such integration has allowed for
more in-depth economic analyses of environmental problems such as Gulf of Mexico hypoxia
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(Rabotyagov et al. 2010), biodiversity loss (Polasky et al. 2008), and ecosystem service provision
(Bateman et al. 2013). An important question, however, is whether the complexity of economic
and biophysical models has appreciable effects on policy recommendations (Nelson et al. 2008). If
simplemodels provide the same insights, then researchers need not expend time and effort onmore
sophisticated approaches. Nelson et al. (2008) conduct an analysis of trade-offs between species
conservation and carbon sequestration using both simple and complex models. They find that
greatermodel complexity did not have a large effect onmodeling results or policy advice, although
they acknowledge that differences in model assumptions and output metrics made comparisons
difficult. Additional analyses are needed to determine whether complex modeling efforts are
warranted.

For the most part, the studies reviewed here use either an econometric or an optimization
approach. The advantage of optimization is that it identifies land-use patterns that efficiently
achieve given biophysical goals. This approach provides crucial information to policy makers
about trade-offs among competing objectives or, in the best of circumstances, cases in which goals
are complementary (e.g., Nalle et al. 2004). The shortcoming of optimization studies is that they
usually say little about how to achieve efficient solutions in practice. Reserve site selection studies,
for example, often assume that inducing private landowners to add their land to a reserve network
simply requires compensating them for the average rent in the area. The results of a landowner
survey by van Kooten et al. (2002) suggest significant transactions costs associated with policies
designed to convert agricultural land to forest.

Because they are estimated with observational data, econometric land-use models reflect how
landowners have actually responded to the incentives they face in markets. As such, econometric
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studies have the potential to measure more accurately how landowners will respond to land-use
policies. Or, put differently, the models may implicitly capture the influence of factors that af-
fect landowner decision making in practice but that are difficult to represent explicitly in opti-
mization studies (Stavins 1999). Comparisons of studies on the costs of carbon sequestration in
forests find that econometric-based estimates are generally higher than those produced in opti-
mization studies (Dempsey et al. 2010). The findings from the carbon sequestration literature
suggest that optimization studies provide a lower bound on the costs of policy-induced changes in
environmental variables. A second advantage of econometric models is that they allow the re-
searcher to represent asymmetric information between government agencies and landowners. For
example, a landowner’s willingness to accept a payment for converting her land to an alternative
use is private information that the landowner has a disincentive to share with the conservation
agency implementing the policy. In contrast to optimization studies that assume common
knowledge about landowner opportunity costs, econometric land-use models can be used to
explicitly model information asymmetries (Lewis et al. 2011, Mason & Plantinga 2013).

Fortunately, the econometric and optimization approaches are not mutually exclusive. Nelson
et al. (2008) and Lewis et al. (2011) simulate land-use policies using an econometric approach and
then, with the same basic data, use optimization to estimate efficiency frontiers. They evaluate the
performance of different land-use policies in achieving biophysical goals, finding that inmost such
cases a small percentage of the efficient outcome is achieved. The difference is largely due to
asymmetric information aboutwillingness to accept, which prevents perfect targeting of incentives
for land conversion. Bateman et al. (2013) also combine econometric and optimization ap-
proaches. Econometric models are used in policy simulations, and then optimization is used to
determine the optimal spatial targeting of alternative policies. Additional research is needed to
bridge the gap between efficient land-use patterns and what can be achieved with tractable,
politically acceptable policies. Integrated economic land-use and biophysical models that combine
econometric and optimization approaches can help achieve this goal.
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