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Abstract

We take stock of the major changes in methodology for studying the impacts
of international agricultural research, focusing on the period 2006-2020.
Impact assessment of agricultural research has a long and recognized tra-
dition. Until the mid-2000s, such assessments were dominated by a model
of demand for and supply of agricultural products in partial equilibrium.
The basic ideas for this approach were sketched out by Griliches more than
half a century ago. We describe the implications of heightened standards of
evidence for good practice in three domains of research design: causal infer-
ence, valid measurement, and statistical representativeness. We document
advances in each of these domains and review recent evidence that demon-
strates the lessons that can be learned from adopting these practices, empha-
sizing the importance of evidence at-scale, the need to consider portfolios of
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innovations at a national level, and the challenges of accounting for innovations that are promoted
as bundles.

1. INTRODUCTION
1.1. Does It Pay to Invest in Agricultural Research?

Impact assessment of investments in agricultural research has a long and proud tradition, aimed
largely at providing answers to the question of whether research offers a good return on investment
relative to other possible uses. Until the mid-2000s, impact assessment studies typically relied
on models of demand for and supply of agricultural products in partial equilibrium. The basic
framework for this approach was sketched out more than halfa century ago (Griliches 1957, 1958).
Griliches had observed the rate of adoption of hybrid maize varieties in different US states and
created a simple model for linking the benefits from higher maize yields back to investments in
research.

The appeal of such an approach lies in its simplicity. The first task in implementing the model
is an adoption study to establish whether specific innovations originating from research activi-
ties have been adopted at a large scale. The impact of a widely adopted innovation on aggregate
agricultural productivity is then modeled as a technology-induced change in the marginal cost
curve for the commodity in question: Griliches’ k-shift (Fulginiti 2010). The magnitude of this
shift is calculated using yield advantage data from agronomic trials, econometric analyses, or other
sources. All else being equal, the economic surplus generated is assumed to be shared between pro-
ducers and consumers. Surpluses can be projected forward or backward in time to represent the
dynamic flow of benefits obtained from research-derived productivity gains. This setup has
the tremendous advantage that the benefits can be directly compared to the total funding used
in the research in a cost-benefit analysis. Estimates of the economic returns to research using such
an approach have been produced periodically (Alston et al. 1995, Raitzer & Kelley 2008), and
there remains some demand for these aggregate numbers.

However, the methods used to generate such internal rate of return (IRR) calculations are
heavily dependent on strong assumptions, sometimes leading to numbers that are implausibly
large (Hurley et al. 2016, Rao et al. 2020). Hurley et al. (2016) note that the calculation of IRRs is
clearly inconsistent with the realities of the benefit and cost streams associated with agricultural
research. Rao et al. (2020) propose a modified internal rate of return; building on aggregate evi-
dence from 2,829 evaluations in the database of the International Science and Technology Practice
and Policy (InSTePP, v3.0) program, Rao et al. (2020) calculate the IRR for agricultural research
to be 14.3%. This is still high, suggesting that aid investments in agricultural research pay off
handsomely but at a more realistic order of magnitude than earlier estimates.

A slight modification of the standard approach has been to calculate the returns to research
by measuring changes in total factor productivity (TFP) in agriculture over some geography and
time period, and then to use regression analysis to tease out the contributions from research in-
vestments, as distinct from other sources of variation across time and space. Macro versions of this
approach are modeled on the work of Fuglie and various coauthors (summarized by Fuglie 2018).
Increasingly, however, researchers have sought to measure TFP change at the micro level, linked
to specific technologies or innovations (see Pingali 2012 for a set of high-quality examples). How-
ever, the nature of agricultural production—subject as it is to risk and characterized by enormous
heterogeneity—makes TFP calculations tricky at best, as documented by Gollin & Udry (2021).
Not least among the challenges is the measurement of all relevant inputs and outputs.
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More fundamentally, the aggregate rate of return generated by higher agricultural output is at
best an incomplete measure of welfare gains. Indeed, output growth may be an entirely unhelpful
metric in the era of the United Nations (UN) Sustainable Development Goals (SDGs). Interna-
tional agricultural research now targets a wide range of objectives, including climate adaptation,
environmental health, poverty reduction, and resilience, among others. Despite these method-
ological and conceptual concerns, the institutional history of regularly publishing studies on the
impact of investments arguably made the CGIAR of the late 1990s a leader in estimating develop-
ment aid effectiveness. Many other institutions operating in the field of international development
were investing less in impact assessment, less systematically, and less often. The introduction of
the UN Millennium Development Goals was a turning point in donors’ expectations regarding
aid effectiveness and had significant implications for impact assessment methodology.

Donor agencies became interested in a wider set of pathways from agricultural research to
impact and increasingly expect to see evidence of impact on development outcomes that address
specific societal concerns: cutting poverty, reducing food insecurity, improving nutrition, and en-
suring environmental sustainability. In theory, the impact of agricultural research on some of these
high-level objectives can be estimated using the same family of partial equilibrium models, though
it would require an even stronger set of assumptions than the earlier IRR calculations. Hence, in
practice, impact assessment must adapt to using evidence from a broader range of methods to stay
relevant. Such a shift requires a conceptual move away from a narrow focus on land productivity,
accompanied by a series of methodological shifts.

Although agricultural productivity conceptually should measure a ratio of output to all inputs,
agricultural productivity has often been treated as synonymous with agricultural yields (kg/ha).
Yields may be the relevant metric to maximize when agricultural land area is limiting, but in
many contexts, development programs care more about increasing farmers’ income by increas-
ing their labor productivity ($US/hour worked), rather than their land productivity. In contexts
where people living in poverty are primarily found in rural areas and are working in agriculture,
labor productivity growth probably maps more directly into poverty reduction than does land pro-
ductivity growth (Macours 2019). If the objective is for agricultural research to help reduce global
poverty, we should be troubled by evidence showing that partial productivity gains in agriculture
have been biased in favor of land rather than labor throughout Sub-Saharan Africa since the turn
of the millennium (Barrett & Upton 2013). Identifying the kinds of research investments that will
increase labor productivity may be difficult ex ante, which is why it is important to obtain rigor-
ous causal evidence on which innovations successfully increase labor productivity. Taking the task
seriously is likely to be critical to any attempt to achieve poverty reduction through international
agricultural research (Gollin et al. 2018). Similarly, focusing research efforts on yield enhancement
is not necessarily the best strategy to increasing food and nutrition security, and it certainly does
not automatically lead to environmental sustainability. All of this argues for an important role for
impact assessment results to feed back into priority setting.

1.2. Does It Pay to Be Ignorant?

In a 2002 paper, Lant Pritchett (2002) developed a model addressing what he saw as the chronic
underinvestment in rigorous evaluation in international development, exploring the interplay
between advocates (program directors) and those providing resources (voting public). Advocates
must secure resources for their programs—they are the entrepreneurs of the development indus-
try. Advocates believe that they know the true effectiveness of their programs and that a rigorous
evaluation will reveal this true effectiveness. Advocates can pursue one of two strategies to secure
resources. The first is to subject their program to rigorous impact evaluation and offer the
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evidence from these evaluations to donors. The alternative strategy is to pilot and persuade—that
is, to implement the program in a location, to show that it is not physically impossible to do so,
and then to invest in communication materials to persuade donors to give money to replicate this
“success.” Pritchett shows that in many circumstances pursuing rigorous evaluation is simply not
rational from the perspective of the program director. Rather, it pays to be ignorant of the true
effectiveness of the program. The resources that could be spent on rigorous impact evaluation are
better spent on communication, which allows advocates to get even better at persuading donors
that their programs are effective.

In 2006, the Center for Global Development published its landmark report “When Will We
Ever Learn?” (Savedoff et al. 2006), which laid out the extent to which the lack of rigorous evidence
in international development was a pervasive problem. It brought to the surface some long-term
issues in our understanding of aid effectiveness and led to the creation of the International Ini-
tiative for Impact Evaluation (3ie). In the period following the publication, several factors came
together to generate both a greater demand for and supply of rigorous impact evaluations in the
development sector.

Certainly, more funding was made available for impact evaluation than ever before, supported
by high-level multilateral agreements such as the Paris Declaration on Aid Effectiveness and the
Accra Agenda for Action (OECD 2005, 2008). The past 20 years have also seen several other in-
stitutional innovations that have helped program directors generate evidence and secure funds
for evaluations from donors that expect rigor rather than pilot and persuade type communi-
cations. The Abdul Latif Jameel Poverty Action Lab (J-PAL) is a global network of academic
researchers established in 2003 at MIT and has been running randomized controlled trials (RCTs)
with a range of development agencies and providing training for thousands of development ac-
tors. Innovations for Poverty Action (IPA) was founded in 2002, became an early partner with
J-PAL, and is now an international nonprofit implementing RCTs with researchers in countries
worldwide. Other academic initiatives soon followed [e.g., the Center for Effective Global Action
(CEGA) at the University of California, Berkeley], and many donor agencies also increased their
in-house capacity and requirements for rigorous impact evaluations. Today, research conducted in
many institutions outside academia, including multilateral development banks (e.g., World Bank,
InterAmerican Development Bank) and private sector organizations (e.g., IDinsight or Mathe-
matica) also relies heavily on RCTs to evaluate the impact of development interventions. This
also applies to IFPRI (International Food Policy Research Institute), one of the CGIAR centers,
which has been strongly involved in RCT research since the early 2000s, notably in evaluating
innovative social protection programs in Latin America (Skoufias 2005).

In addition, advisory bodies emerged, such as GiveWell, New Philanthropy Capital, and Im-
pactMatters, created to foster greater effectiveness in the multibillion-dollar nongovernmental
organization industry and social impact investing firms. In recent years, this trend has tipped over
to a global movement and online community for effective altruism. Effective altruism’s goal is to
ensure that a commitment to helping others is married to an equal commitment to ensuring that
such help does indeed help. The philosophy of William MacAskill—effective altruism’s figurehead
and best-selling author (MacAskill 2015)—would simply not work had there not been an explo-
sion in the kind of impact evidence that allows the virtuous to dedicate themselves to allocating
their capital to effective altruistic interventions.

1.3. Defining the Rigor Revolution

The move from a Griliches-inspired ex post impact assessment toolkit toward a broader range of
empirical methodology has taken its time to be realized in agricultural research. Concerns about
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outdated methodology were raised by a review of social science practice in CGIAR many years
ago (Barrett et al. 2009). Over the past 15 years, the international agricultural research system has
been through a series of reforms with different articulations of its impact pathways. The status
quo can now be characterized as an ever-broader range of outcome metrics being of interest to
donors. The funders of development interventions, including research, have new and high expec-
tations of the quality of evidence, particularly in relation to causality and measurement, reflecting
the advances of the past two decades. While the empirical and conceptual challenges for rigorous
impact assessment are large, the need to embrace the rigor revolution is real. In the absence of co-
herent and plausible strategies for tracking results and measuring impacts, there are concerns that
research funders will become more risk averse and set their own idiosyncratic standards for indi-
cators, formats, time lines, and priorities. Our hope is that this review points in a more productive
direction.

WEe describe a rigor revolution that has taken place in evidential standards regarding the impact
of agricultural research. We see this as an expansion of the frontier of good empirical practice in
three dimensions:

m Measurement: toward accurate and valid measurement of treatment (i.e., research-
derived agricultural technology use) and outcomes (e.g., productivity, poverty, nutrition,
environmental health);

m Causality: toward a research design that allows for an unbiased causal relationship between
treatment and outcomes; and

m Scale: toward estimates that are representative of a policy-relevant scale.

We review all three dimensions in the next sections, with a specific focus on evaluating
innovations that originate from agricultural research. Two recent and highly relevant reviews com-
plement ours. Dillon et al. (2020) tackle the relationship between measurement and causality, and
Carletto et al. (2021) address strategies for reconciling measurement concerns with a desire to
reach large scale.

2. MEASUREMENT MATTERS
2.1. Sowing Doubt

Genetic technologies, in the form of improved varieties of major food crops, lie at the heart of
the history of agricultural research’s contribution to international development. Reliable data on
the adoption of improved varieties therefore have long been recognized as the cornerstone of any
assessment of the impact of investments in plant breeding research (Walker & Crissman 1996,
Walker et al. 2008). The early period of the Green Revolution in Asia in the 1960s and 1970s
was underwritten by a huge turnover of genetic material in farmers’ fields. Semi-dwarf varieties
of wheat and rice, bred by scientists working for the nascent International Maize and Wheat Im-
provement Center (CIMMYT) and International Rice Research Institute (IRRI), spread rapidly
through the irrigated wheat and rice production systems of several Asian countries (Dalrymple
1978). The adoption of these improved varieties represented a significant shift, from the traditional
tall-standing varieties that put much of their energy into vertical growth (and therefore relatively
less into the production of grain) to shorter plants that had a much higher yield of grain per unit of
area. The improved varieties were immediately noticeable to the naked eye; they looked different,
allowing for reliable estimates of adoption rates through experts’ or farmers’ report. While the
initial improved varieties for rice and wheat were easy to identify in the field, improved varieties
from other crops were often less visibly distinct. Moreover, subsequent improvements on sec-
ondary target traits for breeding in cereals have built on the original high-yielding varieties. This
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has led to a situation where it is difficult to identify varieties in the field—not only new generations
of improved varieties compared with older generations of improved varieties, but also improved
varieties compared with landraces. The diversification of breeding effort across crops and across
traits hence poses a deep challenge to measuring the adoption of new varieties in farmers’ fields,
particularly in smallholder contexts characterized by complex, informal seed systems. Adoption
data have always been scarce, and yet obtaining such data has in some ways become even harder
over the past few decades.

Fortunately, disruptive technological change, with the development and commercialization of
next generation sequencers, has pushed down the cost of sequencing DNA so sharply over the
past two decades that the technology has beaten Moore’s law.! Between 2007 and 2009, the cost
to sequence a million base pairs fell from the high hundreds of dollars to less than one dollar. We
are now at a point where the laboratory costs are manageable, and the use of genotyping can be
considered a core part of the methodological toolkit for impact evaluation of genetic technologies
in agriculture. Establishing proof of concept for the use of DNA fingerprinting in generating
variety adoption estimates started with small-scale pilots beginning in 2012 (Maredia et al. 2016)
and eventually reached nationally representative scale in Nigeria (Wossen et al. 2017) and Ethiopia
(Jaleta et al. 2020, Kosmowski et al. 2020).

This work is part of a growing literature on measurement improvement in agriculture (Beegle
et al. 2012; Carletto et al. 2016, 2021; Kilic & Sohnesen 2015; De Weerdt et al. 2020; Laajaj &
Macours 2021). The literature employs measurement experiments, in which the same data are col-
lected in multiple ways to test for consistency across methods. When one data collection method
offers a clear benchmark for accuracy (as is the case for DNA fingerprinting), it becomes possible
to test the extent and nature of the measurement error in other methods. Stevenson et al. (2023)
collected data sets from author teams that had published validation studies of farmer-reported
survey data on adoption of improved varieties, in which the DNA fingerprinting approach was
used as the benchmark. On average, across a wide variety of crops and regions, farmers correctly
identify a variety as improved only 71.2% of the time, with both underestimates and overesti-
mates being very common. Moreover, with breeding targeting multiple traits (stress resistance,
nutritional content, etc.) we need measurement methods that allow us to quantify adoption of
specific varieties and traits, rather than simply identifying varieties as improved or traditional (as
was common in earlier studies). The same data show that only 24.1% of farmer responses about
the varietal name match the DNA fingerprinting results. Thus, even if farmers may have a func-
tional knowledge of the variety and its traits (which itself is not a given), the preponderance of local
names for varieties make it often impossible to get accurate varietal-specific data out of household
surveys using survey questions alone.

The findings of these studies raise questions about the accuracy of the accumulated stock of
knowledge about varietal diffusion to date. Although it has simply not been possible to carry out
this kind of empirical check on our methods before, methodological advances now allow us to
update the knowledge base. Hence, rather than being too pessimistic about what these results
mean, we highlight several examples of how integrating DNA fingerprinting into impact studies
can expand the kinds of questions we can hope to answer.

'DNA sequencing is the process of determining the specific order of nucleotides: the bases or building blocks,
namely adenine (A), guanine (G), cytosine (C), and thymine (T), in a strand of DNA. DNA fingerprinting is
the process of matching samples of genetic material collected from individuals to known reference profiles.
The DNA extracted from samples of plant tissue from farmers’ fields is compared to the DNA extracted from
reference samples representing (ideally) the universe of varieties that could be present in a specific country.
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Wossen et al. (2017) compare farmer-reported crop variety data to varietal identification
through DNA sequencing from cassava leaf material. The proportion of errors in the self-reported
data is substantial, and the likelihood that farmers misreport varietal status is correlated with ed-
ucation and access to information. When the same model linking productivity to varietal status is
estimated twice—once using self-reported data on varietal status and a second time using DNA-
fingerprinted varietal status—the productivity advantage of improved varieties over landraces goes
up 18 percentage points (from 42% to 60%). Abay et al. (2023) parse out the broader behavioral
and inferential implications of misreporting (recorded mismeasured data are different from the
respondents’ true beliefs, which are accurate) versus misperceptions (recorded mismeasured data
reflect the respondents’ mistaken beliefs). Misperceptions regarding crop varietal identity can af-
fect farmers’ decision making on complementary inputs and hence also affect productivity through
that channel. Using maize varietal data from Ethiopia (as reported by Kosmowski et al. 2020),
Mallia (2022) leverages administrative data on the roll-out of a program of seed market reform
to generate an instrument for correct classification. Comparing maize farmers that know they are
cultivating an improved variety (true positives) to those that do not (false negatives) shows that
the former use more fertilizers and hired labor at harvest than those who do not realize they are
cultivating an improved variety.

Through the application of DNA fingerprinting,” we are learning a lot about the true nature of
farmer management of planting material, including about the level of seed impurity and farmers
mixing multiple varieties in single plots, as is often the reality in Sub-Saharan Africa. This chal-
lenges the concept of varietal adoption as a discrete binary decision that can be neatly analyzed in
an econometric model and calls for further advances on measuring adoption and diffusion of new
genetic technologies at scale.

2.2. New Approaches to Old Measurement Challenges

Research on natural resource management (NRM) innovations, including those that are designed
to support adaptation to climate change, now represents a significant proportion of total invest-
ment in the CGIAR. However, there have been few efforts to track adoption of NRM technologies
or practices at large scale (Barrett 2003, Erenstein & Laxmi 2008, Barrett et al. 2009, Stevenson
& Vlek 2018, Stevenson et al. 2019). As a previous review has highlighted (Renkow & Byerlee
2010), one possible explanation for this lack of attention to tracking adoption has been a lack of
clear methodology. For example, the Food and Agriculture Organization of the United Nations
(FAO) compiles global estimates of the area under conservation agriculture, but these data are
often based on the opinion of a single expert in each country.

Certainly, there is no single gold-standard method for measuring adoption of NRM technolo-
gies that could serve as a reference, and many NRM technologies are complex bundles of practices,
including some that are directly observable at a single point in time (e.g., whether a field has been
plowed or not) combined with others that are dynamic practices (e.g., crop rotation). There is,

?Different specific DNA fingerprinting assays can be deployed for addressing different research questions/
contexts. See the review by Poets et al. (2020) for an overview. In general terms, at the time of publication,
$US10 per sample for lab costs is a reasonable guide for budgeting (this includes DNA extraction from tissue,
genotyping, and reporting), with some important variation on either side of that figure, depending on the
crop, size of the job, etc. Arguably more of a hurdle are all the implications for fieldwork timing (i.e., the need
to collect leaf or grain samples at a specific moment of maturity during the crop season), the need to engage
a combination of skills across disciplines, meticulous sampling handling steps from fieldwork to lab, and the
time and negotiation required in compiling reference material of varieties of the crop in question.
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however, significant potential to harness the dynamic technological change taking place in data
collection (e.g., remote sensing) in the service of assessing the technological change taking place
in agricultural development.

Aker & Jack (2021) examine barriers to adoption of demi-lune water harvesting technologies
(an NRM practice that is observable with remote sensing) in Niger through a large RCT. They
find little evidence of liquidity or credit constraints limiting adoption. Training increases the share
of adopters by over 90 percentage points, and adoption in turn raises output and results in spatial
spillovers up to three years after treatment. Remotely sensed imagery will allow for further analysis
of dynamic changes in adoption/disadoption over the long run. Very-high-quality reference data
are needed to train remote sensing approaches for such an application, work that is fraught with
potential pitfalls (as highlighted by Alix-Garcia & Millimet 2023), but with significant potential
for positive results when done correctly. Studies are starting to use remote sensing to analyze
the outcomes of changes in NRM practices. For example, Jayachandran et al. (2017) use remote
sensing information on forest cover to document the impact of a payment for environmental
services program in Uganda.

Nutrition outcomes are one area of research outcomes with a long tradition of testing the
validity of the metrics used. A standard approach to measurement can and has been established.
Anthropometric measurement provides an objective indicator that is standardized and compa-
rable across settings, and other standardized biophysical markers (e.g., anemia tests) can also be
appropriate (depending on the intervention studied) and scalable. By contrast, metrics for social
or complex ecological phenomena are unlikely candidates for any future universal standard for
data collection and some will always need to be defined in context-specific ways, instead of aiming
for standardized metrics. There is ongoing work to identify better ways to measure certain social
outcomes, such as women’s empowerment (Doss et al. 2020, Quisumbing et al. 2021, Calvi et al.
2022, Jayachandran et al. 2023), in ways that can be systematically compared across contexts, and
to reduce the cost of using those best-practice metrics that have been tested and confirmed.

3. CAUSALITY AND BIAS
3.1. Adoption Is a Choice

Establishing whether a farmer’s outcomes improve because she adopted a new agricultural tech-
nology is fundamentally difficult because in almost all cases the farmer self-selected into using this
technology. She presumably had a good reason to do so, and her decision making likely included
consideration of a great many factors, such as the availability of alternative technologies; com-
plementarity with her soil; her land and labor endowment; her access to other inputs, credit, or
insurance; her access to output markets; trade-offs between higher yields and more risks; or food
security considerations. She is likely to have imperfect information about many of these aspects;
she needs to account for uncertainty related to weather, pests, prices, or health shocks; and she
must factor in potential dynamic gains from learning. She will likely draw on her past experiences
to make inferences about some of these uncertainties, and she may make mistakes in the process.
The probability of making mistakes may depend on her skills and experience. These and many
other factors are being considered by all farmers potentially exposed to a new technology. In any
given season, some of them end up adopting, whereas others do not. Comparing outcomes for
farmers who adopt with those who do not adopt will lead to a fundamentally biased estimation of
the gains from adoption. This follows simply because those who decided to use a new technology
did so because they expected it to be beneficial for their case and in their particular circumstances.
Given the sheer magnitude of factors that enter the decision-making process, it is almost always
impossible for the empirical researcher to take these factors into account ex post.
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Some quantitative empirical methods are built on the assumption that we can observe, and
therefore control for, the major factors that condition adoption. Such selection on observables
methods, such as propensity score matching, are hence particularly ill suited to shed light on the
impacts of agricultural technologies. This was clearly argued by de Janvry et al. (2011), who high-
light the need for microeconomic impact analysis with explicit research designs based on either
natural or randomized experiments. In some cases, institutional knowledge about the rollout of a
new technology may provide natural temporal variation that can be exploited to identify impacts,
when verification of the plausibility of the underlying assumptions is feasible. In other cases, ge-
ographical discontinuities or external factors driving technology availability in ways unrelated to
potential impacts can help establish counterfactuals. In short, impact evaluations should seek ex-
ogenous sources of variation in access to technologies and need to be able to document the origins
of variation to support the assumptions underlying the empirical estimates.

In RCTs, the treatment assignment is specifically manipulated by the researchers so that the or-
thogonality assumption holds in expectation, which is the central advantage of the method (Oakes
2018). However, randomization in and of itself does not guarantee orthogonality, but instead only
buys balance between treatment and control in expectation. Deaton & Cartwright (2017) argue
that the orthogonality assumption must be defended on a case-by-case basis, and most good RCT
studies include checks for balance on observables. Focusing specifically on RCT5 in agriculture in
developing countries, Barrett & Carter (2010) also point to the importance of correctly character-
izing the environmental and structural conditions to draw the appropriate inference from the often
highly stylized experimental designs. Rosenzweig & Udry (2020) go further and point to methods
to incorporate information on external shocks into impact assessment to increase external validity.

Violations of SUTVA (Stable Unit Treatment Value Assumption; Angrist et al. 1996) are the
other obvious concern in RCTs that relate to agricultural technology, especially when they are
not conducted at the right scale. As Imbens (2018) argues, such violations may sometimes simply
need to be accounted for through relevant design adaptations, or in other contexts may actually
be the main focus of the analysis. Randomizing over relatively large geographic units can allow
researchers to specifically test for learning spillovers into the control group (Behaghel et al. 2020).
Saturation designs that experimentally vary the density with which access to a new specific tech-
nology is offered can also lead to important insights into social learning and diffusion (Baird et al.
2018, Bernard et al. 2023). The chapter by de Janvry et al. (2017) discusses in more detail these and
other considerations for applying RCTs in agriculture and provides specific guidelines for how to
avoid common pitfalls and maximize on lessons learned.

The literature has shown that heeding these guidelines has enabled important advances in our
understanding of information diffusion and farmers’ learning. Farmers’ learning about agricultural
innovations from more than one source can be important, as shown using social network data and
a field experiment in Malawi (Beaman et al. 2021). Demonstration through field days to observe
and hear about experiences and outcomes with a new rice variety can also increase adoption (Dar
etal. 2020, Emerick & Dar 2021). However, social learning can lead to slower adoption than direct
exposure if networks are segregated or small (Beaman & Dillon 2018), and heterogeneous benefits
can limit diffusion (Magnan et al. 2015). Trial farmers that more closely resemble those farmers
that are targeted (BenYishay & Mobarak 2018) or private input suppliers with for-profit motives
(Dar et al. 2020) may be more effective.

The goal of a good impact evaluation is to establish not only whether a specific technology
improved outcomes, but also how and for whom. Given the complexity of farmers’ decision mak-
ing, as already outlined, behavioral responses to new technologies can be at least as, or even more,
important in determining development outcomes as the improvement embedded in a technology
per se. For example, Bulte et al. (2014) show that households adjust labor efforts when they are
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knowingly testing new technologies, but not otherwise. Given that we are interested in impacts in
real life, we generally do not want to switch off such adjustments because impact evaluations ought
to be designed to measure the different potential behavioral adjustments implicit in the process of
adoption (de Janvry et al. 2017). Behavioral adjustments by active economic agents with access to
a new agricultural technology can be anticipated and should be measured to ensure that the most
important adjustments or strategies do not go unobserved. Ultimately, it is the combination of the
intended treatment and the behavioral response that we are interested in knowing about from a
policy perspective and to quantify overall impacts. Emerick et al. (2016) provide a powerful case
in point in showing that farmers who adopted the Swarna-Subl rice variety in India also adopted
a more labor-intensive planting method and increased their cultivated area, fertilizer usage, and
credit demand. It is through these behavioral responses that the returns to the new technology
were substantially increased.

Managing the quality of the design and implementation of RCTs is essential to avoid pitfalls
and assure that relevant lessons can be learned. This includes careful consideration of the nature of
the treatment that is being applied and the population it is applied to so that it can inform about
impacts and the possible causal pathways in which it can affect outcomes beyond the specific
case of the experiment. The methods used to select populations on whom new technologies are
initially tested and how the testing is carried out might well limit the potential payoffs of the
development of new technologies. Agronomic trials conducted with farmers are often still highly
controlled by the researchers to maximize the agronomic insights. Yield gains obtained in such
trials are typically compared with the costs of inputs to determine whether a certain technology
could potentially be profitable. The conclusions of such calculations guide not only dissemination
efforts, but also further research efforts. Yet yield gains obtained in typical agronomic trials are
notvery representative of yield gains the average farmer could obtain in real-world settings. Laajaj
et al. (2020) study mechanisms through which the returns estimated from on-farm trials might
not necessarily provide good estimates of gains from adoption in real-world circumstances. They
focus on the role of farmer and plot selection, but also on measurement questions, and the role
of effort and complementary technical advice—all sources of bias that are regularly overlooked.
Accounting for these factors leads to large adjustments in yield and yield increment calculations.
These results in turn help understand the dynamic learning and adoption patterns by different
types of farmers following the trials (Laajaj & Macours 2016). Similar collaborations between
biophysical and economists in the design and analysis of future trials will be useful to draw broader
lessons and analyze different trade-offs and selection concerns.

3.2. Methodological Pluralism

Well-designed and implemented RCTs can generally provide more rigorous causal identification
than a reliance on observational data and econometric tools that are necessarily based on more
stringent assumptions. Because the researcher directly manipulates the treatment assignment and
hence by design can assure that treatment assignment is not correlated with possible confounders,
causal inference requires a more limited set of assumptions than alternative microeconometric
methods. Therefore, when the objective is to learn the impact of a newly developed technology
at the microlevel and before it is widely diffused, RCTs can provide a level of rigor higher than
that attainable with other methods. Meaningful lessons can particularly be learned from the RCTs
when they are preceded and informed by good diagnostics through preliminary qualitative work
and piloting.

Sometimes, however, the key impact question one aims to answer is about impact and effective-
ness once innovations have scaled across broad agricultural landscapes, well beyond the geographic
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scope of an original causal design. Or we may want to know about long-term effects some years
after initial rollout when farmers have been able to learn and we could expect their behavioral
reactions to have changed. In certain cases, the exogenous variation in exposure created by the
initial randomized assignment will persist even after many years, allowing for a longer-term anal-
ysis of dynamic adoption and disadoption decisions. In other settings, rigorous long-term causal
estimates need to rely on methods other than randomized assignment. Meenakshi et al. (2021)
discuss designs of a series of nonexperimental studies, using panel methods and two-way fixed-
effect estimations relying on roll-out data of technologies, or agronomical advice, and provide
promising examples. Finally, in examining aggregate impacts over time or space, there is poten-
tial promise in combining estimates of impact from RCTs with estimates of adoption established
using observational studies. This is an area that needs further validation research.

Measuring the impacts of policy influence work or institutional changes can also be challenging
with an RCT, except where these have localized effects. Research focused on agricultural policies
and institutions typically does not have large populations of potential users/adopters, as is the
case for farmer-focused technologies. For these research investments, theory-based approaches—
defined by White (2009, p. 272) as “examining the assumptions underlying the causal chain from
inputs to outcomes and impact”—offer much potential. Even so, they need to account for the fact
that many policy interventions and/or institutional innovations are often part of complex designs
that aim to address multiple development challenges. Focusing on a subset of such packages risks
failing to evaluate synergies between program parts (Stern et al. 2012). For those agricultural, food,
or natural resource policy innovations targeting individual households or communities, lessons can
be learned from rigorous studies around social protection programs, where there is now a long
tradition of evaluating the impact of complex packages and policy innovations (Quisumbing et al.
2020), going from the original body of evidence on conditional cash transfers (reviewed by Parker
& Todd 2017) to the more recent evidence on graduation approaches (Banerjee et al. 2015).

Impact assessment of research aimed at landscape-level NRM, policy, and institutions often
needs to tackle two additional challenges. Namely that there is rarely (#) a large number of obser-
vations (e.g., nation states adopting a new policy or watersheds taking on a specific approach to
NRM), and (b)) homogeneity in the treatment because contextual adaptation of institutions, NRM
practices, and policies is the norm, not the exception. As this will make it hard to identify a source
of exogenous variation needed for microlevel causal inference, the methods that can apply where
these two conditions hold (small N, i.e., very limited population of units to observe, and vary-
ing or context-dependent treatments) will be quite different from situations where they do not.
Defining what it means to do rigorous impact evaluation in such cases is an urgent and impor-
tant task. Given the scale of investment in policy, institutions, and landscape-level NRM research,
this is a space where methodological advances with and by the international agricultural research
community can make a major contribution to the scientific community more broadly.

3.3. Meta-Analyses and Ensuring the Correct Baby:Bathwater Ratio

The challenges of methodological pluralism come into sharp relief in the process of systemat-
ically reviewing the state of knowledge on specific topics. Systematic reviews, which “appraise
and synthesize the available high-quality evidence” (https://www.3ieimpact.org/evidence-hub/
publications/systematic-reviews) on a specific question, are increasingly influential in evidence-
based policy in medicine (through the Cochrane Collaboration), social programs (Campbell
Collaboration), and the international development sector writ large (3ie). They can indeed be
powerful tools to aggregate evidence across studies conducted in different contexts and using dif-
ferent methods and to derive conclusions with wider external validity than individual studies. To
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conduct such reviews, researchers typically comprehensively and systematically search the uni-
verse of published evidence on a specific question and can filter out studies based on specified
quality criteria. The devil is in the details of these quality criteria—if they are too loose we in-
crease the risk that low-quality or biased studies will influence the overall result; when they are
too strict we might throw the baby out with the bathwater.

Take the example of a study carried out by Loevinsohn et al. (2013). Their systematic review,
commissioned by the UK government’s Department for International Development, set out to
answer the question “Under what circumstances and conditions does adoption of technology re-
sult in increased agricultural productivity?” The authors screened 20,299 papers at the first stage,
passing a healthy 214 through to the second stage. However, only five of these papers passed the
second-stage screening. Rejecting 209 out of 214 papers hampered the ability to answer the broad
question on heterogeneity that the review aimed to answer. Herdt & Mine (2017) revisited the
same set of studies using a slightly less restrictive set of criteria, retaining 30 studies—still a consid-
erable cull of 184 papers that were relevant but simply not of sufficient quality for inclusion. They
also set out to answer a more modest question and ultimately established that of the 30 studies,
most pointed to a positive relationship between technology use and productivity and income.

Stewart et al. (2015) carried out a systematic review of the impacts of training, innovations, and
new technologies for African smallholder farmers. From a very large screening, they ultimately
retained only 19 studies owing to a lack of rigorous research evidence. Given the methodologi-
cal diversity of the retained studies—a mix of RCTs and econometric analysis from observational
data—an excellent feature of this systematic review is the process through which the authors score
the studies for risk of bias arising from confounding, selection problems, departures from the
intended intervention, missing data, measurement problems, and selective reporting of results.
Garbero et al. (2018) take a further step. In reviewing the impact literature on improved varieties,
the authors first score the studies for risk of bias and then regress the effect sizes from the studies
on these bias scores. Their overall result from a meta-analysis of results from 20 relevant studies
assessing outcomes related to poverty, income, or expenditure show statistically significant impacts
on the order of 6% to 32% relative to comparison farmers. When these effect sizes are regressed
on the risk of bias scores for the studies, those examining poverty outcomes show a positive corre-
lation, suggesting that biased impact assessment design for poverty studies could be inflating the
effect size.

The issue of standards of evidence when comparing across methodologies remains a challenge,
but the risk-of-bias scoring carried out by Garbero et al. (2018) and Stewart et al. (2015) show
us productive ways forward. There is much more work to be done on the specific approaches
to statistical meta-analyses that are appropriate for agricultural innovations for which a critical
mass of rigorous studies have been carried out. Gechter & Meager (2022), for instance, provide a
meta-analysis method to combine observational studies with possible bias in causal estimates with
experimental studies with possible site selection bias. Given the context specificity of many agricul-
tural innovations, such advances are likely particularly valuable for moving toward more credible
and actionable conclusions from impact assessments on innovations resulting from international
agricultural research.

Finally, the existing meta-studies also raise a different type of concern: Even if they can ex-
clude studies based on the lack of rigorous evidence, or include bias corrections, their conclusions
are necessarily derived from studies that have been conducted and published. However, the tech-
nologies subjected to impact assessment are typically cherry-picked in the first place. Moreover,
the population of published studies may have been subject to the so-called file-drawer problems
and publication bias (Christensen & Miguel 2018, Andrews & Kasy 2019). Together, these factors
bias the distribution of published results upward, relative to a strategy of selecting, evaluating,
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and publishing assessments from a random sample of candidate technologies. The development
of trial registries and preanalysis plans aims to address these concerns (Olken 2015, Banerjee et al.
2020), but to date, these approaches are largely used only for RCT studies, pointing to important
room for improvement in studies relying on other methods for causal inference.

4. UNDERSTANDING AGRICULTURAL RESEARCH IMPACTS
ON A LARGE SCALE

4.1. Accurate Diffusion Data at a Policy-Relevant Scale

Empirical studies establishing causal evidence on farmers’ behavioral responses to the availability
of new technologies and practices are a key part of establishing credible evidence of impacts of
agricultural research. The low take-up of innovations that is often observed in real-life settings
contains equally important information about the potential profitability of innovations that is all
too often ignored. If farmers decide not to adopt a new technology or practice, or when policy
makers decide not to pursue proposed institutional innovations, they likely have good reasons not
to do so. Rigorously documenting adoption rates for large representative populations is hence
complementary to studies identifying causal relationships. While many adoption studies are com-
missioned for individual technologies, they often involve small, nonrepresentative samples and
short time frames (Doss 2006) and are consequently of limited value. The question should not be
whether some selected farmers adopted a particular innovation once, but rather whether a large
share of farmers representative of a population targeted by the innovation decide to adopt and con-
tinue to use the innovation in the seasons after the initial adoption. This suggests the need to move
from many small-scale, one-shot surveys to fewer, well-designed, and representative longitudinal
surveys. Such a vision is best achieved through partnerships with institutions that have a compara-
tive advantage in surveys in countries of highest priority to the international agricultural research
community, such as the national statistical institutes and the World Bank. By building on existing
investments in surveys designed to help countries monitor their progress on the SDGs, such part-
nerships that help improve and build in measurement of innovations resulting from international
agricultural research also form the basis for subsequent analytical work linking innovations to the
final outcomes targeted by the research investments.

Such a philosophy underpins a series of long-run studies in progress by the CGIAR Standing
Panel on Impact Assessment in Ethiopia, Uganda, Vietnam, and Bangladesh—all countries with
high past and current research investments. The rationale of these country studies is to work with
the statistical agencies of these high-priority countries to embed new data collection protocols
(including DNA fingerprinting, new modules on NRM, livestock, water management, etc.) into al-
ready existing nationally representative household panel surveys. The first major output from this
strand of research is the “Shining a Brighter Light” report on Ethiopia (Kosmowski et al. 2020).

This study starts from a compilation of comprehensive information on agricultural research
activities in Ethiopia over a 20-year period (2000-2020) through interviews with research lead-
ers, scientists, and government officials and an extensive review of published studies and project
documents. This stocktaking exercise led to the identification of 52 innovations and 26 claims
of policy influence. Data collection protocols for a subset of 18 research-related innovations for
which background evidence suggested they had scaled were then integrated into the Ethiopian
Socioeconomic Survey (ESS), a regionally and nationally representative household panel sur-
vey in 2015-2016 and 2018-2019. Protocols were based on validation experiments and other

3A further round (2021-2022) was recently completed, with most of the same data collection protocols
retained. Data should be in the public domain in late 2023.
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measurement improvement work (Kosmowski et al. 2017, 2019) assuring that best-practice, ob-
jective, and reliable data were collected. These then yield credible estimates that between 4.1 and
11.0 million Ethiopian households had been reached by CGIAR-related innovations. The lower
bound estimate is for those innovations with observable features that allow for a confident link
back to CGIAR research efforts. The upper bound should be interpreted as the potential reach:
the number of households that in theory could benefit. Although many innovations are being
adopted by some farmers, only a few are reaching large numbers of households in Ethiopia. This
is arguably as expected, given the large uncertainties underlying agriculture research for develop-
ment and inherent to any innovation system. Even so, by considering the innovations stemming
from the broad effort of the international agricultural research efforts in Ethiopia all together, the
evidence provides a system-level picture across many different innovations and science areas. The
three innovations with the largest reach—soil and water conservation practices, improved maize
varieties, and crossbred poultry—span three major domains of agricultural research (i.e., NRM,
crop breeding, and livestock research). There is also a common thread of supportive government
policies, in turn influenced by policy research, that undergirds these success stories. As such, the
evidence clearly points to the importance of analyzing socio-technical bundles together (Barrett
et al. 2020), while allowing for testing of synergies and substitution at the farm level.

Embedding measures of innovations into socioeconomic surveys allows one to not just calcu-
late the aggregate numbers, but also analyze who is adopting, which can provide crucial feedback
evidence into assumptions underlying the theories-of-change of the individual innovations. Relat-
edly, the panel nature of the surveys facilitates analyzing dynamic changes, tracing scaling where
it happens, and also documenting disadoption when that is the case. Measuring disadoption is ar-
guably much more important than most agricultural researchers acknowledge. It can help reveal
where new technologies and practices failed to deliver returns for the farmers who tried them or
otherwise became obsolete. In many ways, disadoption is more challenging for impact assessment,
as it is harder to establish a good counterfactual through randomization. Moreover, the institu-
tional incentives for individual researchers or centers to pursue such an endeavor may be unclear,
which argues for an independent entity to facilitate the kinds of longitudinal country-level analyses
that can help to understand these dynamics.

4.2. Causal Linkages Across Scales

Some impact pathways from agricultural research are complex, particularly those mediated by
markets and over borders, suggesting the need for models at a macrolevel. The microfounda-
tions of macro models—particularly off-the-shelf models—need close and sustained scrutiny.
Detailed microeconomic analyses are required to help answer questions related to, for example,
the modeling of labor demand in processes of technological change.

Most of the macro models used for agricultural impact assessment are based on some combi-
nation of partial equilibrium analysis and general equilibrium modeling. In all cases, one primitive
of the model is typically an initial level and/or a growth rate in TFP, and the models then allow
simulation of how a new technology or innovation leads to changes in the TFP level or growth
rate and further outcomes. Wiebe et al. (2021) present a thoughtful cross-commodity application
of this approach.* In this sense, macro models may be highly complementary to detailed micro
analysis of productivity growth. A careful micro estimate of TFP increases in a particular crop

*The widely used IFPRI IMPACT model (as presented by Robinson et al. 2015) offers an example of this kind
of analysis; the structure of the model makes it well suited for altering productivity in one or many commodities
at the level of a single country (De Pinto et al. 2017, Mason d’Croz et al. 2020) or multiple countries.
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could be inserted into a macro model, which could then be used to generate estimates of the
economy-wide impacts of the research impact. A challenge, however, is that it can be quite diffi-
cult even with detailed micro analysis to separate the TFP impact of research from the impacts
of other kinds of TFP shifters (such as improvements in institutions or weather-related factors).
As noted above, even with the richest data, measurement of TFP is challenging, given the het-
erogeneity and stochasticity that are intrinsic to agricultural production systems (Gollin & Udry
2021). To some extent, these challenges are reduced when micro data are aggregated (as pointed
out by Aragén et al. 2022), but macro data are not always constructed from aggregation, at least
in many low-income-country contexts. National-level statistics on agricultural production have
frequently been criticized on the grounds that the underlying methods are opaque and the data
cannot be linked to any explicit sampling strategy.

A different problem is that macro models used for impact assessment often require estimates
of average TFP changes over broad geographies. Calibrating these models with data from micro
studies conducted in narrower geographies and location-specific estimates is problematic. For
instance, if the micro studies have been carried out in locations that are particularly favorable
to the technology, the models will tend to overestimate the benefits of the technology. Thus, a
challenge remains in finding appropriate micro evidence to feed into the macro models.

A further problem is that macro models necessarily and inevitably build in strong assumptions
about functional forms as well as model closure assumptions. These assumptions are difficult to
test or assess through standard sensitivity analysis, but they can often matter a great deal for the
outcomes of interest. For instance, models must make assumptions about production functions,
such as the elasticities of substitution between capital, land, and labor or about the functional forms
used to produce output from intermediate inputs. These assumptions are not innocuous, in the
sense that they can have quantitatively significant effects on outcomes of interest.

Similarly, most models make assumptions about how consumers perceive domestic goods in
relation to imported substitutes. This is particularly important in models that allow for agricul-
tural trade, such as the widely used GTAP model (Corong et al. 2017) or the MIRAGRODEP
model (Laborde et al. 2013). Is domestic rice a perfect substitute for imported rice? If so, then
consumers will dramatically switch between the two goods depending on which is less expensive.
Most models instead assume a different relationship between imports and domestically produced
goods, using some version of an Armington aggregator that converts domestic goods and imports
into a single composite good that is consumed. But the specific form of the aggregator will mat-
ter: A Cobb-Douglas aggregator will imply that consumers will always devote a constant fraction
of their expenditure on rice to imports and a constant fraction to domestic production. Alterna-
tively, a Leontief aggregator will imply that, regardless of prices, consumers will always consume
the two goods in specific proportions. These may seem like technical details, but they have quite
different implications for a model’s predictions. In a similar vein, models will be sensitive to as-
sumptions that are built into a model about the substitutability of different crops and commodities
for different categories of use.

How should we understand rigor in the context of models? The challenge is not a new one; see,
for example, reflections from 20 years ago by Devarajan & Robinson (2002) or Valenzuela et al.
(2007). The generally accepted best practice is to validate models by testing them against data
other than those that were used to calibrate them. Because these models are typically calibrated
such that they duplicate historical data, it is not always obvious how they can be validated in
this way. Practitioners sometimes object that there is no feasible way to run counterfactuals or to
test the sensitivity of the model structure. They will normally offer some alternative scenarios for
certain key parameters (low, medium, or high population growth; or two scenarios for productivity
growth). But the deeper structures of the models are very seldom tested.
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One feasible way to validate the model and test these deeper structures is to engage in a kind
of historical forecasting. One might, for instance, take one of these commonly used models and,
instead of calibrating it to the data from 2000 to 2015, calibrate it instead to data from 1985 to
2000 and see how well the model then predicts the period from 2000 onward. In other words, the
point would be to show how well the model predicts out of the sample to which it is calibrated.
One could equally take the model, as calibrated to data from 2000 to 2015 and feed it with base
year data from 1985 to see how well it matches observations from 1985 to 2000. Any of these
exercises would allow for some (qualitative) evaluation of the model against data other than those
to which it was originally calibrated. If the model performs well out of the sample, in this fashion,
then we can trust it more for forecasting.

Another (more limited) way to test the model is to calibrate to one set of variables and see how
well the model then matches the data on a different set of variables. For instance, the calibration
could involve feeding in data on agricultural inputs and output, with the validation based on seeing
how well the calibrated model performs in matching variables such as service-sector productivity
or nonagricultural employment. This approach is less satisfactory, in that there are often under-
lying arithmetic or algebraic links that imply certain relationships will hold among the variables
in the model, so that the two sets of variables are not in fact independent. But to the extent that
a calibration to one set of variables can generate a good fit for other variables, and to the extent
that these other variables can be claimed to be plausibly unrelated, this may be an acceptable way
of validating the model.

5. CONCLUSION AND SUMMARY

Cataloguing and tracking the outputs from the international agricultural research system and de-
termining whether and how these outputs lead to development outcomes are an enterprise worthy
of significant investment. International and national research centers are incentivized to advocate
for their own effectiveness. In the absence of strong and consistent demand for rigor from donors,
those centers with the most able communications teams will be those that are best able to capture
a larger share of the total funding to the system.

The primary objective of impact evaluation studies and subsequent systematic reviews should
be to help the international agricultural research system reach its goals in orienting new research
toward areas with potentially high payoffs. This requires putting in place feedback mechanisms
that allow scientists to learn from the evaluations and adapt to their findings. In turn, the design of
new impact evaluations should explicitly account for scientists’ own questions and concerns about
the trade-offs implied by certain technologies. Thus, establishing credible causal evidence requires
a further shift toward planning that anticipates smart evaluation designs: Once such designs are in
place, they allow researchers to study both expected and unexpected behavioral responses and to
understand the pathways to impacts as well as the underlying reasons for potential lack of impact.
Credibly documenting and learning from such zero results is arguably even more important than
establishing success stories.

The rigor revolution demands that we do better in the following ways. First, we need to in-
stitutionalize reliable data collection related to international agricultural research activities along
the results chain from investments to outputs to outcomes. One practical approach toward this
goal is to focus on a few key countries where large investments have occurred as a first step toward
catching up after years of neglect, following the template set by the “Shining a Brighter Light”
study (Kosmowski et al. 2020). This helps the international agricultural research community to
reconnect with its historical track record of collecting longitudinal data, best illustrated by the
large body of literature resulting from the longitudinal ICRISAT villages data sets. The potential
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for a new generation of longitudinal studies lies in combining carefully implemented geolocated
surveys featuring DNA fingerprinting of the major crops and livestock, reliable data on farmers’
management practices, and detailed socioeconomic data, with information on the policy and in-
stitutional environment. Data quality should be of the highest priority. If this is done right, it also
allows taking full advantage of the vast data output from the latest wave of remote sensors to in-
terpolate certain indicators between survey waves and possibly make out-of-sample predictions
for other geographic areas.

Second, impact evaluation and efficacy studies need to focus on causal relationships for which
we have the greatest uncertainty and for which information would have the highest value. In ar-
ticulating a theory of change for a new research-derived innovation there typically are a few key
assumptions for which there is substantial uncertainty about whether they hold, which in turn can
have large implications for the potential of the innovation to scale. These uncertainties should
help inform where scarce resources for impact evaluation should be allocated. This suggests shift-
ing away from searching for what works in the abstract and toward finding out why certain things
work and others do not in particular contexts. As highlighted in myriad ways throughout this
review, farmers’ behavioral responses should be factored in as an important component of man-
agement, and accurately measuring different technologies through best-practice methods should
be a priority. Finally, making methodological breakthroughs on tracing policy influence or measur-
ing the outcomes from capacity-building efforts remain challenges in the future. More generally,
the integration across data types and methodological approaches offers tremendous potential.
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