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Abstract

I discuss the concept of complexity and the burgeoning field of complex
systems and their relevance to sociology. I begin by comparing and con-
trasting various definitions of complexity and then describe the attributes of
systems capable of producing complexity: diversity, networked interactions,
interdependent behavior, and adaptation. Next, I survey the contributions of
complexity sciences with the most resonance with sociology. I organize those
contributions into four categories: dynamics, aggregation, distributions, and
functional properties of structure and diversity. On the basis of that survey,
I conclude that incorporating complexity science into sociology requires the
introduction of new models and methodologies as well as a more expansive
approach to empirical research, and that the benefits of a deeper engagement
with complexity will be substantial.
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INTRODUCTION

In this article, I describe a collection of ideas, models, results, theories, and techniques all loosely
subsumed under the label of complexity science and discuss their sociological relevance and their
potential impact on the field. The protodiscipline of complexity science garners substantial atten-
tion in both academic journals and the popular press owing partly to the growing complexity of
the world and partly to the abundance of high-dimensional data. Advocates argue that complex
systems methods enlarge the set of questions we can consider, the types of data we can gather and
employ, and the classes of phenomena that we can identify and analyze. They also argue that tak-
ing a complexity perspective obliges us to reconsider closely held assumptions and preconceptions
about how the world works and how systems aggregate.

Some scholars see the complexity sciences as transformative, as a “new kind of science” that
will disrupt current scientific practices (Wolfram 2002). I stake a more modest claim and suggest
that the complexity sciences hold promise as a complement to existing methods of social scientific
inquiry by shining light and focus on unasked questions. They represent another arrow in our
methodological quiver (Castellani & Hafferty 2009) that will improve social science and help us
guide and design policy choices (Colander & Kupers 2014).

To be clear about my aims, I present a personal (and somewhat idiosyncratic) coverage of the
measures, findings, concepts, and models from complex systems that have sociological relevance.
Along the way, I comment on a selective smattering of published sociological examples, but I
make no attempt at a comprehensive review of the literature at the intersection of sociology
and complexity. This implies that I leave out some of the best examples of complexity research in
sociology. I ask then that this piece be read as a review of a set of ideas and not as a more traditional
review of the literature.

The relevance of complexity to sociology begins with a resonance. The discipline of sociology,
as I perceive it from the outside, attempts to make sense of interactions of individuals and aggre-
gations of individuals—groups, classes, and societies—and to explore how those interactions are
shaped by human psychology, culture, social structure, and formal institutions. Briefly put, soci-
ology sees actors as situated—within networks, categories, and place. Unlike in, say, economics,
these contexts or fields play a central role (Bourdieu 1984, 1993).

Sociology engages both change and progress as opposed to presuming equilibrium. From a so-
ciological perspective, our social, economic, and political lives are dynamic—admitting new ideas,
categories, and technologies. Those innovations can produce complex (nonstationary) dynamics.
Finally, parts of sociology accept the possibility that a group can have emergent properties that
exist independent of its members (Byrne & Callaghan 2014, Little 2012, Sawyer 2005).

Many of these same organizing ideas and beliefs of the field of sociology occupy central positions
within complex systems (Xie 2007). Briefly put, complex systems consist of situated, adaptive,
diverse individuals whose interactions produce higher-order structures (self-organization) and
functionalities (emergence). Complexity scientists, like sociologists, are interested in properties
of those systems. Are they robust? How do behaviors aggregate? What structures form? What
patterns emerge? What distributions across types arise? How durable are entities? Do these systems
become more complex over time? What is known to date is both impressive and partial. We know
that complex systems tend to be nonpredictable, hard to describe or define, prone to large events,
and often produce long-tailed distributions across types (Miller & Page 2007, Mitchell 2009).

I can with some confidence claim (using Venn terminology) that a meaningful part of sociology
overlaps with a substantial subset of the complexity sciences. That is, although much of what soci-
ologists study can be thought of as occurring within a complex system, not all of it does. Further,
although complex systems include sociological concerns, much of what is studied within complex
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systems has little to do with sociology. For example, complex systems scientists study social inter-
actions that are less central to sociology, such as traffic patterns (Nagel & Paczuski 1995), financial
collapse (Goldin & Mariathasan 2014), and international politics ( Jervis 1998). Moreover, the
bulk of complex systems research does not include humans at all. It focuses on physical, biological,
and ecological systems. Thus, one can find complex systems models of magnets, neurons, bees,
forest fires, and avalanches.

In contemplating the intersection between sociology and complexity, I see the greatest potential
for sociological gain in the acquisition and application of models. I say this because the sandbox
of complexity scientists contains an abundance of them, many of which have direct or indirect
applications to the social world. Some models explore theoretical questions such as whether a
system will produce an equilibrium, complexity, or randomness (Page 2008, Hidalgo et al. 2014,
Wolfram 2002) or how a system is impacted by network structure (Newman 2010, Watts 2004),
interdependence (Durlauf & Ioannides 2010), diversity (Page 2007, 2010), or learning (Epstein
2014, Vriend 2000). Many of these models can be connected to spatial and temporal data and then
applied to topics ranging from social organization (Helbing 2010) to the spread of culture, ideas,
and disease (Tassier 2013).

Some refer to complex systems models as transdisciplinary because they satisfy the one-to-
many property; by that I mean that models developed for one purpose can be applied to many
others. Models developed to explore the spread of diseases have been applied to the spread of
crime (Akers & Lanier 2009), obesity (Akers & Lanier 2009), and Justin Bieber (Tweedle & Smith
2011). This application is accomplished by thinking of a behavior, say, downloading a Bieber song,
as akin to a disease. Just as a friend may give you the measles, she may also give you Bieber fever.
The difference is that Bieber fever spreads over the Internet, whereas the measles spread over a
physical social network. But to first approximation, both phenomena can be captured as spread
over a network.

In the sections that follow, I describe concepts, ideas, and insights produced by these models.
These fall under the broad categories of dynamics, aggregation, distributions, and the functional
properties of diversity and structure. I discuss each in turn and then comment on the changes
required within sociology for complexity sciences to take root and on the potential for taking new,
big data to these models. In order to make the remainder of the essay understandable, I first briefly
describe what is meant by complexity and complex systems and introduce necessary terminology.

COMPLEXITY AND COMPLEX ADAPTIVE SYSTEMS

The concept of complexity can be applied to a wide-ranging set of systems and phenomena.
The brain, the global financial system, the tax code, international politics, middle school, protein
folding, ecosystems, and ant colonies can and have been described as complex. Given this diversity
of applications of complexity, one cannot expect a single measure or statistic to capture the essence
of complexity (Mitchell 2009, Page 2010). This creates a problem and an opportunity. The problem
is that for the field to transition from what organizational theorist Michael Cohen once called “a
festival of metaphors” to an actual science requires well-defined terms and concepts, and that means
measures. But no single measure can capture the myriad meanings and nuances of the concept of
complexity. The opportunity lies in the potential for a variety of measures to collectively play that
role, in that each measure captures part of what is meant by “complex.”

The existing set of measures can be seen either as a motley collection of failed attempts or as
an ensemble of perspectives, in which each sheds light on some aspects of complexity. I believe
the latter characterization to be the more accurate. We gain a deep understanding of the concept
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by engaging multiple definitions and exploring their overlaps and distinctiveness. For that reason,
I begin with a brief characterization of the various types of complexity measures.

The measures can be best explained by having a set of data in mind. Consider a set of concurrent
time series of data, perhaps a collection of daily prices for the stocks in the S&P 500 or the daily-
changing playlists on the smartphones of the students at Tappan Middle School in Ann Arbor,
Michigan. Each set could be characterized as complex according to a variety of measures. First,
each would be difficult to describe, and by that I literally mean that each would take many words
to communicate. In the formal language of computer science, each has a substantial description
length or Kolmogorov complexity.

Second, the stock prices and playlists would be neither a simple pattern nor random (Wolfram
2002). Each set would both have order and lack order. Third, if one could identify and remove
the randomness from each set of time series, elaborate structures would remain. Physicists call the
remaining structure predictive information or excess entropy (see Prokopenko et al. 2009). Excess
entropy is the nonrandom uncertainty that you could eventually figure out if you had enough time
and the right model. A large amount of excess entropy implies that predicting future values would
be a challenge.

Further, each set of series would be difficult to reproduce, whether by a bottom-up evolution-
ary system or in a top-down engineered fashion. Minimal models that would create statistically
indistinguishable collections of time series would have to contain many relevant states.1 Such
processes are said to have high statistical complexity (Shalizi et al. 2004). Finally, these data can
also be interpreted as containing substantial information (Adami 2002). This is particularly true of
playlists. They embed information about the environment within which the choices were made,
an insight that should be familiar to sociologists but was more novel to other disciplines.

These many formal characterizations reveal the many facets of complexity: having defined
structure that may embed meaning and being not easily defined, predicted, explained, built, or
evolved. As I have stated more pithily elsewhere (Page 2010), complexity can be thought of as
BOAR (between ordered and random) as well as DEEEP (difficult to explain, evolve, engineer,
or predict). All these ideas of what complexity is have been formalized as mathematical measures
and agree with intuitive notions of complexity, i.e., that something that is complex is not simple.
It’s hard to understand.

Complexity, as just defined, is a phenomenological property. The existence of complexity begs
the question of how it arises. Most often, it is produced by complex systems. These systems tend
to have four attributes. First, they include diverse entities. Diversity may be innate, as is the case
of the various species in an ecosystem, or it may emerge from the process of interactions, as occurs
in cell differentiation from (nearly) identical strands of DNA.

Second, the diverse entities in a complex system interact within an interaction structure.
In some cases this structure is best represented as a fixed network—a person’s place in an
organizational hierarchy may be fixed in the short term. In other instances, the structure may
be more ephemeral. The people whom we physically encounter on a daily basis are a dynamic,
perpetually novel network.

Third, individual behaviors are interdependent, i.e., one person’s action or behavior influences
the behavior of others. That influence could be substantial (e.g., the invasion of one country by
another induces multiple immediate reactions by others) or more subtle (e.g., seeing a stranger
with a new style of haircut or dress may change what a person perceives as socially acceptable).

1By a relevant state I mean one that the process visits with a nontrivial probability.
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Last, and perhaps most important, the entities adapt or learn. The entities change not only
their behaviors, but also their connections and interdependencies. Adaptation can be at the level of
the entities themselves, as is the case in a social system, or it can be at the population level, as is the
case in ecologies. In social systems, both types of change occur. Individuals learn. Organizations
that do not perform may not survive for long. How the entities learn, whether individual or social,
whether by experimentation, mimicry, or selection, matters (Vriend 2000). The learning rule
determines the dynamics of the systems, which in turn influences what happens next (Golman &
Page 2009).

Systems with these properties, so-called complex systems, have the potential to produce com-
plexity. But they need not. An economy is a complex system. But parts of the economy are stable
and predictable. Thus, it would be more accurate (though pedantic) to use the terminology “sys-
tems capable of complexity” rather than “complex systems.”

To state this insight more formally, a complex system, whether it be composed of ants, firms,
countries, or multinational corporations, has the potential to produce multiple classes of outcomes:
equilibria, patterns, complexity, and randomness (Wolfram 2002). Here patterns include both
periodic patterns, such as business cycles, and trends, such as reductions in crime, a growing
acceptance of inequality, or declines in social capital (Putnam 2000).

A given complex system will often produce multiple classes of outcomes. Consider the world
market for oil. A graph of oil production over the past 60 years shows an approximately linear
trend (the Gulf Wars create the deviations). Oil production tracks global economic growth so
it exhibits a simple pattern. A graph of oil prices over that same period reveals complexity. The
time series is between ordered and random. It is also difficult to describe, explain, or predict (see
Figure 1). In a word, it is complex.

The past few decades have produced sustained and modest progress on general theories of
complex systems (Tao 2012). I use the plural because no single general theory probably exists.
This position rests on what some call the nonelephant problem, in reference to a quip attributed
to both John von Neumann and Stanislaw Ulam that the set of nonlinear functions is akin to the
set of nonelephant animals (Fisher 1987). The set of possible complex systems may just be too
large for there to exist properties that hold across all realizations.

A problem with any general theory of complex systems is that it would seem to propose that
identical phenomena occur in the brain, economies, cities, weather systems, ecologies, financial
markets, intellectual communities, and ant colonies. Could this really be so? On the one hand,
obviously not. Ant colonies do not produce hurricanes or suffer epileptic seizures. On the other
hand, yes. The set of nonelephants shares many properties. Almost all exhibit clustering in volatil-
ity, and most are paradoxically both robust ( Jen 2005) and prone to large events (Ramo 2009).
Many complex systems also produce long-tailed, i.e., nonnormal, distributions. Distributions of
city sizes, lengths of traffic jams, firm sizes, war deaths, species abundance, and numbers of ci-
tations all have long tails. Although no single causal model can explain the similar distributions,
there do appear to be a handful of fundamental causes, e.g., positive reinforcement, self-organized
criticality, that explain most cases, a point I return to at length later below.

Other common properties of complex systems include self-organization, emergence, bound-
aries and levels (Holland 2014), path dependence, threshold phenomena (a.k.a. tipping points),
production of novelty (barely 10% of the firms in the 1955 Fortune 500 remain on that list today),
and tension in balancing exploration with exploitation. These phenomena can all be found in so-
cial, biological, ecological, economic, and virtual worlds. This is why, as noted above, complexity
science is promoted as transdisciplinary, as providing concepts that apply to multiple domains.
So even though complex systems may lack a single unifying theory, the field contains a sufficient
number of coherent and related understandings to constitute a body of knowledge.
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Figure 1
Complex and patterned phenomena produced by the same system. Modified with permission from the Wall Street Journal, Bureau of
Economic Analysis, BP Statistical Review of World Energy, June 2008. Abbreviations: GDP, gross domestic product; WTI, West
Texas Intermediate.

THE AGGREGATION DIAGRAM

To frame the contributions of complexity theory, I rely on the aggregation diagram (Figure 2).
This diagram captures the fact that a complex systems approach to science begins from the bottom-
up (Iwasa et al. 1987). The fundamental units of analysis are agents, not a set of variables (Macy
& Willer 2002).2 The agents are endowed with behaviors, situated in social space, and set loose
(Epstein 2014, Miller & Page 2007). The aggregate behavior of the system might be an equilibrium,
a pattern, near randomness, or complexity. Think of dropping off a child at camp, arranging said
child’s gear in a cabin, and then driving off and letting whatever happens happen.

This is shown in the diagram as follows: At a given instance in time (time t in the diagram),
a set of micro-level agents (these could be people or organizations) takes actions. These actions
are represented in the lower-left-hand corner of the figure. These actions aggregate to produce
phenomena at higher levels (denoted by Yt). I have drawn the diagram with only two levels; a more
accurate version would include meso levels (Little 2012). People create groups, groups produce
society, and so on.

2This primacy of agents (Wellman 2014) differentiates complex systems models from system dynamics models that rely on
flows between aggregate state variables (Sterman 2000).
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Figure 2
The aggregation diagram.

As shown in the diagram, in the next period (t + 1), agents again take actions, hence the system
is inherently dynamic. The diagram intentionally provides no hints about the assumed micro-level
behavior. Within the broad tent of complex systems, one can assume a variety of behaviors, from
rational to rule based, to psychologically biased, to culturally driven. The only requirement is that
the behavior can be described using either a mathematical or an algorithmic representation. The
behaviors will often depend on both the previous actions of others and the macro-level properties
of the system. For example, an individual’s choice to return to school or to take a new job may
depend on the actions of other individuals as well as conditions in the macro economy.

The diagram also makes clear that the macro-level variables can produce their own dynamics.
The inclusion of the causal arrow at the top of the diagram distinguishes the aggregation diagram
from Coleman’s boat (Little 2012). The possibility of distinct macro-to-macro (or meso-to-meso)
dynamics rests partly on the existence of self-organized and emergent properties: meso- and
macro-level properties that cannot exist at the micro level (Sawyer 2005). These may be system-
level properties such as robustness or efficiency, or they may be more specific actions such as
guiding a ship to port (Hutchins 1996). Rather than say the whole is more than the sum of its
parts, complex systems scholars tend to quote the physicist Philip Anderson (1972), who wrote
that “more is different.” His phrase captures the fact that the macro and the micro can differ in
essence.

The diagram obliges us to try to explain the macro-level properties and dynamics in terms
of the micro-level interactions and to think in terms of a population of interacting entities that
produce macro-level patterns. It is easier to make the causal linkage in physical systems because the
fundamental units of analysis, such as carbon atoms or simple magnets, are often identical. The
fundamental units of sociology—people—are unique, which makes understanding aggregation
more difficult.

For this reason, the emergence of distinct macro-level patterns, properties, and functionalities
is best expressed in physical systems. Water exhibits properties such as wetness and viscosity
that the molecules do not possess. These macro-level properties can exhibit their own dynamics,
such as the flow of water over rocks. Ideally, these emergence properties and their dynamics are
understandable, such as when physicists understand wave formations or when social scientists can
explain how flows of pedestrians emerge from micro-level behavior (Helbing 2010), but they need
not be. Some emergent phenomena such as consciousness remain mysterious.
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As should be clear from the aggregation diagram, a complex systems perspective makes no
assumption about the types of allowable micro- and macro-level phenomena. A system could
settle into an equilibrium, form patterns, exhibit complexity, or even produce one thing after
another with no structure at all. If we can write down a potential function, a function with a
maximum (minimum) such that whenever the system is not in equilibrium, the potential increases
(decreases) by at least some fixed amount, then we know the system will equilibrate.

However, if a system includes interdependencies, such as when a trade between two parties
materially affects another, then a potential function need not exist. This point merits unpacking.
At a bazaar (a pure exchange economy), two people trade only if each benefits. Those not party to
the trade are unaffected. Thus, any trade increases total utility (happiness), so a potential function
exists and trade must eventually stop. The same logic applies to coordination games (Page 1997)
and anticoordination games (Page 2001), such as choosing when to go shopping and when to go
to the gym. In contrast, in international relations, politics, or business, an alliance may benefit the
two parties that form it, but may harm others. Total utility may decrease. We, therefore, have no
guarantee that the process will stop because the process of alliance formation is not universally
utility increasing. Instead of an equilibrium, the system may produce a pattern or, more likely,
complexity.

DYNAMICS

As mentioned above, in a complex system, dynamics occur at both the micro and macro levels.
In some cases the macro dynamics are best explained in reference to the micro-level behaviors,
but in other cases they are not (Shalizi et al. 2004). These micro-level actions are often rule based
and adaptive. In a complex systems model of dating or mate selection, the agents may follow rules
that respond to local and global information. Those rules would produce patterns. As agents learn
those patterns, they adjust their behavior accordingly. The result may be an equilibrium or, more
often, yet another pattern. Over time, the system might well produce a sequence of nonstationarity
patterns, i.e., complexity (LeBaron 2001).

This idea of patterns building upon patterns contrasts with the dynamic, stochastic, general,
equilibrium (DSGE) models predominant in macroeconomics. In these models, the economy is
assumed to be in an equilibrium. Each agent solves for that equilibrium and assumes that everyone
else does as well. Dynamics arise due to shocks and to the responses on the part of agents to
achieve the new equilibrium. These models can be seen as a sequence of paths to equilibrium. In
a complex systems model, the agents would not possess such teleological prowess. They would
base their behavior on past patterns. To the extent they might anticipate the future, they need
not do so perfectly.

If one knows the rules that agents follow, one can, in some cases, prove that there exists an
equilibrium by appealing to a fixed-point theorem. However, the existence of an equilibrium does
not guarantee that a collection of learning agents will attain that equilibrium (Epstein 2007). A
mantra among complex systems thinkers is, “If you didn’t grow it, you didn’t show it.” Further, a
system may have multiple equilibria; which, if any, is attained can depend on the initial state of the
system, how individuals learn (Golman & Page 2009), or how they are connected ( Jackson 2010).

To be more precise, complex systems models exhibit sensitivity to initial conditions and path
dependence. This insight has implications for the practice of sociological research. Consider
the Music Lab experiments by Salganik et al. (2006). In these experiments, individuals could
sample and then download music. In one treatment, subjects could not see what music others had
downloaded. In a second treatment, they could, and as a result, people downloaded the same music
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as others—a positive feedback. The positive feedbacks produce a longer-tailed distribution. More
relevant to this discussion, they also produce path dependence: Final outcomes are contingent on
the outcomes that occur along the way (Page 2006).

Path dependence should be of interest to sociologists for both normative and positive reasons.
In the Music Lab experiments, the most downloaded songs may have benefitted as much (or more)
from luck as from skill. Similarly, an academic paper with 500 citations may owe its success as
much to positive feedbacks as to quality, so may sales of any product in which consumers based
their choices on the actions of others (Denrell & Liu 2012).

Path dependence also has implications for positive analysis. The contingency of outcomes
creates a problem for what might be called end-of-process regression analysis. Ignoring dynamics
and considering only end-of-process data may lead to incorrect inferences. Some of the features of
songs or papers that correlate with more downloads may have causal effects, but other features
might be idiosyncratic. A complexity perspective forces one to explore the extent of outcome
contingency, of how much outcomes depend on the dynamic behavior in the system.

Positive feedbacks are just one of many possible features of a system that can influence dynamics
and outcomes. Nontrivial dynamics arise for a variety of reasons. They can arise from population-
level effects. For example, in a pairing model initial pairings may be nonrepresentative of the
population. Those unmatched items will not be representative of the initial population, changing
the environment for the remaining individuals (Xie et al. 2015).

Interesting dynamics can also arise through niche construction and destruction (Holland 2014).
In game theory, agent-based models of repeated play of the prisoners’ dilemma produces epochs of
cooperation as agents develop ways of identifying other cooperators. This produces a cooperative
niche in the space of behavior rules (Axelrod 1997). Such niches may survive for many periods
until an agent figures out how to exploit the cooperators, destroying the niche and producing an
epoch of defection.

AGGREGATION

The second set of contributions concerns aggregation. Complex systems often produce non-
intuitive, even paradoxical, aggregate results. Scholars have developed a variety of models that
help unpack some of the mysteries of aggregation. These models demonstrate how simple rules
can produce complexity (Wolfram 2002) and how sophisticated micro-level rules can produce
aggregate-level statistical equilibria.

This latter phenomenon occurs in the El Farol Bar problem (Arthur 1994). In this model, each
agent must decide whether to attend a weekly event or stay home. Each agent would prefer to
attend, but not if too many others do. Over time, agents learn rules for whether to attend on the
basis of the sequence of past attendance figures. On average, the optimal number of people attend.
A time series of weekly attendance looks like a random variation near the optimal value, even
though at the micro level it consists of an elaborate ecology of evolving rules. This disconnect
between micro and macro can also be seen in real financial markets in which brilliant individuals
and teams formulate elaborate strategies but the net result is a pattern of prices that is nearly
random (LeBaron 2001).

To describe some of what has been learned about aggregation in complex systems, I first
discuss how the attributes of complex systems contribute to the creation of complexity through
aggregation. I then describe how changing levels of diversity, connectedness, interdependence,
and the rate of learning result in more or less complexity at the aggregate level. Last, I turn to the
question of how aggregation can produce self-organization and emergence.
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Aggregation and Complexity: Tuning the Dials

In exploring aggregation, many “what if ” questions arise. What if we increase this parameter?
What if we make agents more adaptive, more diverse, or less connected? To answer these ques-
tions, traditional methods must be expanded. In an equilibrium model, one subjects the model to
comparative statics analysis by changing parameters and evaluating the change in the equilibrium:
What happens to economic growth if we lower taxes, to crime if we increase punishment, to voter
turnout if candidates go negative, and so on? Complex systems models do not necessarily produce
equilibria, so a standard comparative statics analysis is often not possible. One cannot compare
equilibria if equilibria do not exist.

Equally problematic, one cannot just expand the classes of outcomes and talk about comparative
dynamics, comparative patterns, and comparative randomness because changing a variable may
change the class of outcome. A system in equilibrium may become complex when a parameter
changes. Such a class of outcome changes are more common than one might think. From the
study of chaos and nonlinear dynamics, we know that systems can move from having a single
equilibrium to having two equilibria (a bifurcation) or from an equilibrium state to a periodic
orbit or to randomness (a phase transition).

These changes in the class of outcome can occur abruptly at critical values, or tipping points.
Tipping points can be contextual (i.e., small changes in a parameter that affect the behavior of
the system) or direct (i.e., actions that cause the system to head toward a particular state or class
of outcomes) (Lamberson & Page 2012). A contextual tip occurs when a population becomes
sufficiently irate for an uprising to be likely. A direct tip is the action that sets the uprising
in motion. After a contextual tip occurs, the change is unavoidable. Ascribing that unavoidable
change to a particular action may miss the point (Omerod 2012, Watts 2011).

That said, it is not as though changes in the core attributes of complex systems—diversity,
connectedness, interdependence, and rate of adaptation—produce arbitrary outcomes, or that
complex systems are impossible to understand. To the contrary, many general patterns exist.
Most notably, complexity does not occur at the extremes. Complexity occurs in an in-between
region (Miller & Page 2007).

To see why this is the case, imagine four dials in which each dial represents one attribute of a
complex system, and then imagine tuning those dials. Let us first increase connectedness, holding
the other attributes constant. Imagine a collection of banks that are not at all connected, such as
was the case perhaps a hundred years ago. If a bank fails, there exists no systems-level effect of
note. The bank just fails. Now let us increase connectivity and assume that banks borrow and loan
money to banks to which they are connected. Now, if a bank fails, it will no longer be able to
pay off the money it borrowed from other banks. This could cause those banks to fail and cause
a cascade. Thus, increasing connectivity leads to an increased likelihood of large events and also
increased complexity—as each bank operates within its niche.

Now, let us increase connectivity even more. If every bank is connected to every other bank, a
single bank failure will be absorbed by the system. Moreover, each bank operates in an identical
context—each is connected to every other. The system is not complex.

These effects are evident in Figure 3a,b. It shows the probability of large bank failures as a func-
tion of the degree of interconnectedness in a model of financial interdependence written by Elliot
et al. (2014). As interconnectedness increases, failures become more likely, but as connectedness
increases, the likelihood drops off.

Relatedly, a variety of models consider agents playing fixed strategies in the game prisoners’
dilemma, in which better strategies grow faster in the population (replicator dynamics). When
these agents are placed in a one-dimensional network, nothing interesting happens. In models
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Figure 3
Bank failures as a function of interdependence. (a) Effects of diversification: the percentage of organizations failing as a function of
expected degree for θ = 0.93 (c = 0.5, n = 100). (b) Effects of diversification for several failure thresholds: percentage of organizations
failing as a function of expected degree for various levels of θ (c = 0.5, n = 100). Figure and caption reproduced with permission from
Elliot et al. 2014.

with three or more dimensions, one strategy comes to dominate; however, in two dimensions the
resulting dynamics are complex. This result, shown in computer simulations, has been replicated
biologically (Kerr et al. 2002). Again, complexity happens in the in-between region.

Next, we can tune the diversity dial. If each agent is identical, the system will not be complex.
As we increase diversity, and by this I mean diversity of behavior, then the system may well become
complex. But if each agent behaves in a unique way, then the micro-level behavior will be random,
so that at the system level a law of large numbers logic will apply and the result will be a statistical
equilibrium. At the micro level, the system may be complex in that it will be hard to define, but it
will not produce complexity.

The third dial corresponds to interdependence. The effects of changing interdependence can
perhaps best be seen in the context of social interaction models (Durlauf & Ioannides 2010).
Consider a set of agents arranged on a rectangular grid who can choose one of two actions, up
(+1) and down (−1). In an application of the model, these actions might represent choosing
whether or not to adopt a given behavior, e.g., working hard in school, doing drugs, or they might
represent a choice among two technologies. To start the model, each agent begins with an initial
action—either up or down. Assume the two actions are equally likely.

In a social interaction model, each agent has a neighborhood of influencers. For the moment
think of these either as the four neighbors to the north, south, east, and west (the Ising model)
or as the entire grid (the Curie-Weiss model). These influencers can cause an agent to change
its action. Assume the following behavioral rule: With some probability s (for social pressure) an
agent chooses the action that matches the action of a majority of its neighbors. With probability
(1 − s), it chooses randomly. If s is small, then the system will have, on average, close to half of the
agents choosing each action. As the amount of social pressure (s) increases, the system tips so that
rather than having one equilibria, the system has two: one with a large number of agents choosing
up and one with a large number choosing down. At this critical value, the model produces complex
dynamics and patterns. Once again, complexity occurs in the intermediate range of values. Low
social pressure results in no complexity (equal numbers of each action) and high social pressure
leads to homogeneity. In between lies complexity.
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Finally, and briefly as the general logic should now be clear, consider changing the rate of
adaption or learning. If agents follow fixed rules, then some system can produce complex dynamics
(Wolfram 2002), but only for well-chosen sets of rules. If the adaptivity dial is set infinitely high,
then it is “as if ” the agents can rationally expect what will happen, and the agents will always take
the optimal action. The result will be similar to economic models that assume rational expectations:
an equilibrium. In the middle, when agents adapt and learn at more moderate rates, they produce
aggregate patterns. They then learn those patterns and create new patterns.

Aggregation: Self-Organization and Emergence

Aggregation within complex systems can produce patterns, functionalities, and properties that do
not or cannot exist at the micro level. This is often called emergence. Consciousness in the brain,
culture in a society, and (as mentioned) the wetness of water all exist at the macro level but cannot
be maintained by a single constituent part. One molecule of water cannot be wet.

Emergence can happen at multiple levels. Information embedded in DNA and in the environ-
ment combines to produce differentiated cells. In turn, combinations of these cells form organs
and organ systems. Each level has functionalities that do not exist at the level below it. A similar
characterization applies to people, groups, and societies. Each aggregation produces entities that
have different capacities and can exhibit distinct sets of properties.

Here I make a distinction between emergence and self-organization. By the former I mean
properties and functions, and by the latter I mean patterns or forms. The flocking of birds,
segregation by race, and the rhythmic clapping of individuals in an audience are self-organized
patterns. Consciousness, culture, and collective cognition are examples of emergence. In each
case, a functionality exists at a macro level that did not exist at the micro level (Hutchins 1996).

Self-organization and micro-level rules. Within sociology, an understanding of the concept
of self-organization is particularly relevant for explaining and evaluating at macro-level patterns.
As known from Schelling’s (1971) segregation model, patterns that emerge need not align with
micro-level preferences and behaviors. In his model, Schelling (1971) assumed a homogeneous,
threshold-based behavior rule for residential relocation—people relocated if less than a fixed
fraction of their neighbors belonged to their same racial group or income class. He found that
even with a (relatively) tolerant threshold, the system self-organizes into segregated communities.

Here we have a disconnect between the micro and the macro. But that occurs within an
extremely stylized model that makes no attempts at realism. Schelling’s model assumes a homoge-
neous threshold rule and two types of agents who exist in equal proportions. He makes no effort
to calibrate his model.

Bruch & Mare (2006) consider a more plausible linear behavioral rule with a probabilistic
component (in effect a random utility model). They also calibrate their model to preferences
derived from the Detroit Area Study. The original analysis by Bruch & Mare revealed far less
segregation than Schelling’s model did. Bruch & Mare’s results were challenged by van de Rijt
et al. (2009), who found a coding error, identified parameters under which segregation is even more
extreme under linear rules with errors, and showed that if the random component is sufficiently
large, segregation decreases.

Subsequent analysis by Bruch & Mare (2012) shows how the extent of segregation depends on
the slope of the linear rules and on the size of the error term. Relatedly, Xie & Zhou (2012) show
how segregation is attenuated by individual-level heterogeneity because more tolerant individuals
hold racially mixed neighborhoods together.

My reasons for this brief and incomplete review are twofold: to classify Schelling’s model and
its predecessors as examples of self-organization and to highlight the robustness of the main result.
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One can change the threshold rule to a linear rule, one can ramp up or down the extent of ran-
domness, and one can make the agents heterogeneous, and for a rather large range of parameters,
the system will produce some degree of segregation (Bruch 2014). This occurs because relocation
produces two types of positive feedbacks. First, it increases the probability that individuals in the
old neighborhood of the same type as the individual who moved will want to move. Second, it
increases the probability that individuals of the opposite type in the new neighborhood of the
individual who moved will now want to relocate. These positive feedbacks create an amplification
that manifests itself in segregation beyond what a linear appraisal of preferences would suggest.

Emergence Versus Self-Organization

Racial segregation is self-organization because it is a pattern and not a new function, such as
consciousness, which is emergent. The distinction between self-organization and emergence is
blurrier than what might be thought because patterns can also have functionalities. The small-
world property (Watts 2004) of social networks can be considered emergent. Small-world networks
have a low average path length, colloquially known as the six degrees of separation phenomenon.
People do not build networks with the goal of connecting to the musician Wynton Marsalis in
five steps, but their networks allow them to do so, and that feature occurs without anyone trying
to make it so.

Emergence in social systems takes many forms. Here I focus on two forms: systemic robustness
and group-level phenomena. Many complex systems, e.g., our brain, our bodies, ecosystems,
economies, political systems (Bednar 2008), and the Internet, among others, exhibit remarkable
robustness. This occurs even though the primary incentives of the agents in each of these systems
are not systemic robustness, but individual success. This could be chalked up to intelligent system
design. But few social systems other than political systems have designers, and even those designers
have limited control.3 Ecosystems have no blueprint, nor does the brain.

In some systems, robustness emerges because the parts adapt. Agents possess or evolve reper-
toires that enable them to respond to internal dynamics and external stimuli ( Jen 2005). If each
type of agent remains viable, then so too does the system. Adaptive parts imply a robust system.
The behavioral plasticity of the parts finds echo in assemblage theory, in which components can
move between systems (DeLanda 2006). Thus, assemblages can perform a variety of functions
as opposed to one specific function. Note that the aggregate system changes as a result of the
adaptations, so it should not be seen as a fixed entity. That is why complexity scientists distinguish
robustness from stability. Stable systems return to the previous equilibria. Robust systems keep
adapting, but perhaps in different ways.

The flip side of robustness is, of course, systemic risk (see Centeno et al. 2015). Just as robustness
can be an emergent property, so too can the potential for large events. As mentioned above,
complex systems often produce an abundance of both very small event sizes and, on occasion,
large event sizes. The lack of a central planner should be a cause for concern. A complex system
is not guaranteed robust.

Next, consider emergent group-level functionalities. In social systems, groups can be consid-
ered an aggregate, and properties of groups can differ from and exceed those of individuals (Sawyer
2005). Just as a brain can perform operations that far exceed the capabilities of any one neuron,
so too can groups perform tasks that no one person could achieve. Hutchins (1996) provides an

3The literature on design focuses on creating systems with efficient equilibria and not robust outcomes (Page 2012, Reiter
1977).
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account of how no single person guides a ship into port. That ability is a property of a network of
individuals who communicate. The same might be said of the ability to run any organization or
of the functioning of society writ large. No one runs the economy. Its functioning or failure is an
emergent property of individual actions aggregating.

Emergent functionalities of groups occur at multiple levels of aggregation in a variety of con-
texts. An otherworldly performance by a jazz trio, a brilliant play by a sports team, and a breath-
taking staging of Shakespeare are emergent. They are not properties of the parts. Their existence
depends on the connections between individuals and on the communication that occurs along
those connections (Sawyer 2005).

DISTRIBUTIONS

Within a complex system, the core entities are often diverse. Thus, an analysis of a complex system
focuses both on characterizing that diversity and on considering its implications. I first take up
distributions and then discuss the implications of the levels of diversity.

Even if all the agents start out identical, they will often learn to take different actions, so diversity
levels will be endogenous. Further, because complex systems often produce paths of outcomes and
not equilibria, one must often compare distributions of outcomes as opposed to equilibria when
making normative and positive assessments of causal effects. Most importantly, the interactions
in a complex system imply that distributions are often not normal (Weaver 1948). Therefore, to
understand a complex system, one needs to know more than just means and variances. One needs
to also analyze the full distribution, whether it be of behaviors, outcomes, or durations.

In many cases, these distributions are long tailed. They have more small events and more large
events than would occur for a normally distributed variable. One explanation for the preponder-
ance of long tails lies in the fact that complex systems include both positive and negative feedbacks.
Positive feedbacks produce longer tails for an obvious reason: More begets more. Negative feed-
backs produce long tails for a different reason. Keep in mind that long tails are relative to overall
variation. By reducing fluctuations, negative feedbacks lower variance and increase the relative
lengths of tails. Imagine a system in which either negative or positive feedbacks predominate.
When the former predominate, the system produces large events. When the latter predominate,
the system produces many more small events. In each case, the distributions of outcomes are
(relatively) long tailed.

Whereas normal distributions arise because of a central limit theorem logic, long-tailed distri-
butions can arise for any number of reasons. Here, I describe four processes that can produce long
tails. The first process is multiplicative effects. If random shocks are multiplied together rather
than added, then the resulting distribution will be lognormal. Many complex systems models in-
clude replicator dynamics, in which the number of types in a population grows proportional to
that type’s relative fitness. This is an example of a multiplicative effect and thus will also produce
a long tail.4

Although a lognormal distribution has a longer tail than normal, many complex systems produce
an even longer-tailed distribution known as a power law.5 Power laws can be produced by several
models, three of which seem most germane to sociology (Newman 2005).

The first model, preferential attachment, captures the Matthew effect (Merton 1968), in which
the rich get richer rendering the poor relatively poorer. In a preferential attachment model, new

4Nearly all ecosystems exhibit long-tailed species abundance distributions (Hubbell 2001).
5In a power-law distribution, the frequency of an event of size x can be written as x to a negative power.
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entities arrive sequentially. Imagine that the first arrival creates a type. For all other arrivals assume
that with a probability close to 1, a new arrival chooses an existing type and with the remaining
small probability, it creates a new type. If an individual’s probability of choosing a particular type is
proportional to that type’s relative population (more begets more), then the resulting distribution
will be a power law.6

As an example, if the probability that a person moves to a city or works for a firm is proportional
to the city’s population or the firm’s size, then city sizes and firm sizes will be distributed according
to a power law. To a first approximation, both are power-law distributed, as are academic paper
citation counts, website links, industries within cities, and book sales (Bettencourt & West 2010,
Newman 2003).7 Here we see more evidence of the transdisciplinary promise of complexity
theory: Cities, the Internet, and citations are all covered by the same model. The nonelephants
share a feature.

The second model that produces power laws relies on a phenomenon called self-organized
criticality (Bak 1996, Hidalgo et al. 2014). Imagine dropping grains of sand on a table until a pile
forms. The pile is a critical state; i.e., when you add a grain of sand, there exists a possibility of an
avalanche, a large event. Some models suggest that traffic may also evolve to a critical state (Nagel
& Paczuski 1995). Drivers may choose to enter freeways and, once on the freeway, to leave gaps
between adjacent cars so that the entire system is poised to produce large events. Some scholars
argue that the same logic might apply to financial networks, international political agreements,
electric power grids, or even the social fabric of diverse societies (Centeno et al. 2015, Goldin &
Mariathasan 2014). These are intuitions worth exploring. Complex systems models provide the
tools to do so.

Notice that preferential attachment produces power laws in populations, e.g., cities, firms,
number of citations, and that self-organized criticality produces a power-law distribution in the
magnitude of events, e.g., avalanches, market collapses, traffic jams, and war deaths. The third
model, random-walk return times, explains power-law distributions in duration. Recall that in
a complex systems model, we often begin with agents that are assigned types. Imagine that the
number of agents of each type follows a random walk; that is, in each period it is as likely to
increase by 1 as it is to decrease by 1. It can then be shown that the distribution of duration over
types will be a power law (Newman 2005).

The preponderance of long-tailed distributions in complex systems is surprising. The standard
assumption in most cases is a normal distribution. Any deviations from normal would have required
explanation. Complex systems models imply that, in many cases, long-tailed distributions should be
the outcome; thus, any size distribution that is not long tailed must be explained. In the sociological
context, one might then be forced to demonstrate whether an approximately normal distribution
should occur (by central limit theorem thinking) or whether it is the result of structural constraints
imposed by society that prevents a long tail.

DIVERSITY AND STRUCTURE

The final set of findings from the complexity sciences relevant to sociology concerns the functional
properties of diversity and structure. Diversity (distinct types) and variation (distinctions within a
type) play a larger role in sociology than in economics and political science, although not to the

6Recall from the discussion of the Music Lab experiments that even if we can predict the distribution of outcomes, path
dependence implies that we will not be able to predict with much accuracy where a given type will lie in that distribution.
7See Shalizi (2013) for a critique of the fit of these distributions.
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extent that they do in ecology and anthropology, in which they are fundamental. It would not be
inaccurate to say that the fundamental question of ecology is, Why do we see the diversity we do?

Sociologists capture diversity both categorically and continuously. Examples of the former
include distinctions by socioeconomic class, race, ethnicity, or gender, and examples of the latter
include levels of tolerance (Xie & Zhou 2012), ages, or levels of risk aversion. Sociology and
demography, in particular, place much more emphasis on diversity than do economics and political
science. What complex systems can add to this accounting for and appreciation of difference is a
set of insights into the functional contributions of some forms of diversity.

Complex systems research identifies several such contributions of diverse behaviors. They can
contribute to the robustness or instability of a system, signal phase transitions, drive innovation
by enabling faster systems-level learning, and underpin the phenomenon of collective intelligence
(Page 2010). The first functional role of diversity, the contribution to robustness and instability,
is perhaps the best understood. Ashby’s law of variety explains how diversity enhances robustness.
A system with more types can respond to more types of disturbances. You cannot chop down a
tree with a screwdriver. You cannot salve a wound with a beggartick.

The feedbacks in a system determine whether diversity can increase robustness. If the feedbacks
are either negative or only weakly positive, then diversity will increase robustness, because the
most extreme move first and diffuse the dynamics. If the feedbacks are strongly positive, then
heterogeneity can produce instability, as one person takes an action, causing another to do so,
which in turn causes more to act (as occurs in models of riots, Granovetter 1978). Note that
in the racial segregation models described above, even though positive feedbacks exist, they are
sufficiently weak such that adding diversity reduces segregation (Xie & Zhou 2012).

The second role of diversity, how increases in variation can signal tips or phase transitions
(Scheffer et al. 2009), relies on the following logic: When a system is about to undergo a change,
say, from one equilibrium to another, the previous equilibrium becomes less powerful. This is
modeled on a landscape as a fitness peak that is less steep. Selection then has less force, flattening
the peak. This flattening enables more variation. Variation portends the search for a new peak,
i.e., a change to the system.

Diversity can also be linked to innovation. For biological systems Fisher’s fundamental the-
orem states that the rate of adaptation in an evolutionary system is proportional to the amount
of variation. The logic here is again straightforward: Greater variety implies more high-fitness
and more low-fitness individuals. The former increase the rate of adaptation. In social contexts,
diversity, in the form of distinct representations and problem-solving tools, can speed learning
by reducing the number of common local optima (Page 2007). When one person gets stuck on a
problem, another is likely to find a way out.

Finally, diversity in both sensory apparatuses and models contributes to collective intelligence.
Recall that in a complex system individuals are situated locally; they likely have distinct information
and experiences. This diversity of situations begets diversity in how the agents interpret their
worlds. Diversity therefore begets diversity. The result of that diversity is that the collective can
be more accurate than any member in it. It can be shown that a diverse crowd is necessarily more
accurate than the average of its members (Page 2007).

Each of these properties, robustness, innovativeness, and collective intelligence, is emergent;
thus, they could have been included in the previous section. However, the extent to which they
emerge depends on the diversity maintained by the system. And, as already mentioned, too much
diversity can prevent structure from emerging. The dial can be turned too far. Thus, complex
systems often balance exploration of the new with exploitation of the successful so that they have
neither too little nor too much diversity.
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Diversity also contributes to dynamics. As a thought experiment, imagine a system composed
of a collection of entities of identical size. Suppose that each entity has a value or weight that
fluctuates within some fixed percentage of its current value. A time series of the value would be
normally distributed with relatively modest fluctuations. Now suppose that the entities have values
that are distributed according to a power law, and make the same assumption about entity-level
fluctuations. The aggregates exhibit much greater volatility because the averaging will be uneven.
The fluctuations of large entities will have substantial effects. This thought experiment may well
explain the Great Moderation, the stability of the US economy that began in the mid-1980s and
continued for nearly two decades. During that time, the distribution of firm sizes was less long
tailed owing to a transition from large manufacturers, such as General Motors, to large retailers,
such as Walmart (Carvalho & Gabaix 2013).

Just as diversity plays a functional role in complex systems, so too does structure. A substantial
literature in sociology demonstrates how an individual’s position within society contributes to
power, influence, and social capital (Burt 1992, 2005). Complex systems models often analyze the
effect of the entire structure (Omerod 2012). For example, Golub & Jackson (2012) find that the
speed of learning depends on the extent of homophily. In their influential paper, Centola & Macy
(2007) find that long ties, which were intuitively thought to speed diffusion, can have the opposite
effect when the innovations require reinforcement. In a similar vein, Lloyd-Smith et al. (2005)
show that superspreaders, or highly connected people, can cause a disease to spread much more
quickly than predicted by models that assume random mixing.

Diversity and structure also interact. The recent work of Padgett & Powell (2012) describes
in detail the interdependent functional aspects of network structure and diversity. The authors
explain how diverse actors construct networks of relations and how these relationships create
niches. The niches in turn create opportunities for new types of agents. To oversimplify a rich,
empirically embedded collection of models and case studies, Padgett & Powell demonstrate how
people create networks and networks create people. Diversity can therefore be understood in the
context of structure and structure can be understood partly as a result of diversity.

The crux of Padgett & Powell’s logic is that diverse agents embedded in a structure can produce
functional substructures, namely autocatalytic sets of behaviors. These sets can loosely be thought
of as virtuous circles of activities, which can be seen as emergent functionalities. Autocatalytic
interactions exist across multiple networks—social, political, and economic. These linked networks
lead to innovation by making beneficial connections more likely, as actors linked in one domain
tend to have common interests in related domains.

DISCUSSION

In this article, I have described how complex systems research provides models, ideas, and insights
that have direct bearing on topics of interest to mainstream sociologists and how sociology might
benefit from a deeper engagement with research on complexity. Rather than reiterate points made
in the main body of the article, I conclude with three observations.

First, the relationship between sociology and complexity is path dependent. Complexity science
did not exist when sociology was formed. This means that the core ideas from complexity science
can occupy a central place in sociology only if sociologists discovered them first. In many cases,
such as in paradoxes of aggregation and the importance of network structure, that is true. Imagine,
though, that the timing had been different, that complexity science had been explicated in full (this,
by the way, has yet to occur) prior to the creation of sociology. Complex systems might then be
considered foundational to the study of sociology given the resonance between the two disciplines.
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Second, the availability of big data means that sociologists can at times link complex systems
models to data. There now exist network-level data and distributional data that would have been
impractical to gather even a decade ago. Third, social interactions that take place virtually can
be monitored. One can also perform experiments over the Internet that resemble or even mimic
real-world interactions (see Watts 2011 for an in-depth review). This observation links to the
previous one: Big data is increasingly part of the real world. Activities such as shopping, dating,
voicing opinions, exploring ideas, and having fun used to take place primarily in the physical realm.
Big data was impossible to gather. Because many of these activities now take place virtually, they
can be captured to create big data.

None of what has been described should imply that the absorption of complexity models
and ideas will be easy. Empirically based complex systems models require new methodological
approaches. First, their micro-level assumptions on behavior must fit what the individuals do. This
might seem like fitting assumptions, and to some extent it is, but it is more proper to think of this
as estimating the lower level of the aggregation diagram. Second, the macro-level predictions of
the model must also be consistent with the empirically estimated micro-level behaviors. Finally,
the macro-level predictions must be supported, i.e., not rejected by the data.

In other words, (a) the micro-level assumptions in the model must fit micro-level data, (b) the
micro-level behaviors must produce the macro-level properties (here one often uses an agent-
based model), and (c) the macro-level properties that emerge in the model must fit macro-level
data. Those are high hurdles. Those sociologists who have succeeded at all three tasks (see Bruch
& Mare 2006, 2012; Centola & Macy 2007) have been, to no one’s surprise, acknowledged by the
discipline.

Finally, the science of complexity, though far from complete, has on offer a large and growing
set of useful models and insights. They come from a variety of disciplines and cover everything,
from the role of network structure to the functional values of diversity. The idea that models
from physics, physiology, and ecology could inform sociology (May et al. 2008), though not
controversial, points toward a path not often followed. But it should be followed. By engaging
and applying a richer set of models, sociologists expand the set of lenses through which they see
the social world and improve the discipline. In sum, sociologists should listen. The nonelephants
have something to say.
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