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Abstract

Machine learning is a field at the intersection of statistics and computer sci-
ence that uses algorithms to extract information and knowledge from data.
Its applications increasingly find their way into economics, political science,
and sociology.We offer a brief introduction to this vast toolbox and illustrate
its current uses in the social sciences, including distilling measures from new
data sources, such as text and images; characterizing population heterogene-
ity; improving causal inference; and offering predictions to aid policy deci-
sions and theory development.We argue that, in addition to serving similar
purposes in sociology, machine learning tools can speak to long-standing
questions on the limitations of the linear modeling framework, the criteria
for evaluating empirical findings, transparency around the context of discov-
ery, and the epistemological core of the discipline.
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Algorithm: a set of
instructions telling a
computer what to do

Supervised machine
learning: methods
that use training data
of paired input (X ) and
output (Y ) samples to
learn parameters that
predict Y from X in
new data

Unsupervised
machine learning:
methods to summarize
or characterize input
data (X ) without
reference to a
ground-truth output
(Y )

INTRODUCTION

Machine learning (ML) seeks to automate discovery from data. It represents a breakthrough in
computer science, where past intelligent systems typically involved fixed algorithms (logical sets of
instructions) that coded the desired output for all possible inputs. Now, intelligent systems learn
from data and estimate complex functions that discover representations of some input (X ), or link
the input to an output (Y ) in order to make predictions on new data ( Jordan & Mitchell 2015).
ML can be viewed as an offshoot of nonparametric statistics (Kleinberg et al. 2015).

We can classify ML tools by how they learn (extract information) from data.Different varieties
of ML use different algorithms that invoke different assumptions about the principles underlying
intelligence (Domingos 2015). We can also categorize ML tools by the kind of experience they
are allowed to have during the learning process (Goodfellow et al. 2016), and we use this latter
categorization here.

In supervised machine learning (SML), the algorithm observes an output (Y ) for each input
(X ). That output gives the algorithm a target to predict and acts as a teacher. In unsupervised
machine learning (UML), the algorithm only observes the input. It needs to make sense of the
data without a teacher providing the correct answers—in fact, there are often no correct answers.1

We start with a brief (and somewhat technical) description of SML and UML and follow with
examples of social science applications.We cannot give a comprehensive account, given the sprawl
of the topic, but we hope to provide enough coverage to allow readers to follow up on different
ideas.Our concluding remarks state whyMLmatters for sociology and how these tools can address
some long-standing questions in the field.

SUPERVISED MACHINE LEARNING

SML involves searching for functions, f (X ), that predict an output (the dependent variable, Y )
given an input (the explanatory or independent variable,X ). In SML, the prediction task is called
classification when the output is discrete, and regression when it is continuous. One can consider
different classes of functions, such as linear models, decision trees, or neural networks. Let us
take the linear model as a tool for prediction.2 We have an input vector, X , and want to make a
prediction on the output,Y , denoted as Ŷ , with the model

Y = f (X ) = XTβ,

where XT is the vector transpose and β is the vector of coefficients.
Suppose we use ordinary least squares (OLS)—the most commonly used method in

sociology—to estimate the function, f (X ), from data. We pick the coefficients, β, that mini-
mize the sum of squared residuals—one of many possible loss functions in ML—from data with n
observations:

n∑

i=1

[yi − f (xi )]2. 1.

1Supervised and unsupervised learning are not formally defined terms (Goodfellow et al. 2016). Many ML
algorithms can be used for both tasks. Scholars have proposed alternative labels, such as predictive and repre-
sentation learning (Grosse 2013). There are other kinds of learning not captured with a binary categorization.
In so-called reinforcement learning, the algorithm observes only some indication of the output (e.g., the end
result of a chess game but not the rewards/costs associated with each move) ( Jordan & Mitchell 2015).
2Uppercase letters (e.g., X or Y ) denote variable vectors, and lowercase letters refer to observed values (e.g.,
xi is the ith value of X ).
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Generalization error:
the prediction error of
a model on new data
(also known as test
error)

Model: a formal
representation of our
assumptions about the
world

Regularizer:
a term that penalizes
estimation variance in
out-of-sample
predictions

CLASSICAL STATISTICS VERSUS MACHINE LEARNING

Breiman (2001b) describes two cultures of statistical analysis: data modeling and algorithmic modeling. Donoho
(2017) updates the terms as generative modeling and predictive modeling. Classical statistics follows generative
modeling. The central goal is inference, that is, to understand how an outcome is related to inputs. The analyst
proposes a stochastic model that could have generated the data, and estimates the parameters of the model from
the data. Generative modeling leads to simple and interpretable models but often ignores model uncertainty and
out-of-sample performance. ML follows predictive modeling. The central goal is prediction, that is, to forecast
the outcome for future inputs. The analyst treats the underlying generative model for the data as unknown and
considers the predictive accuracy of alternative models on new data. Predictive modeling favors complex models
that perform well out of sample, but can produce black-box results that offer little insight on the mechanism linking
the inputs to the output.

This strategy ensures estimates of β that give the best fit in sample, but not necessarily the best
predictions out of sample (i.e., on new data) (see sidebar titled Classical Statistics Versus Machine
Learning).

To see that, consider the generalization error of theOLSmodel, that is, the expected prediction
error on new data. This error comprises two components: bias and variance (Hastie et al. 2009). A
model has bias if it produces estimates of the outcome that are consistently wrong in a particular
direction (e.g., a clock that is always an hour late). Amodel has variance if its estimates deviate from
the expected values across samples (e.g., a clock that alternates between fast and slow) (Domingos
2015). OLS minimizes in-sample error (Equation 1), but it can still have high generalization error
if it yields high-variance estimates (Kleinberg et al. 2015).

To minimize generalization error, SML makes a trade-off between bias and variance—that is,
unlike OLS, the methods allow for bias in order to reduce variance (Athey & Imbens 2017).3 For
example, an SML technique is to minimize

n∑

i=1

[yi − f (xi )]2 + λR( f ), 2.

that is, in-sample error plus a regularizer, R( f ), that penalizes functions that create variance
(Kleinberg et al. 2015, Mullainathan & Spiess 2017). An important decision is to select λ, which
sets the relative price for variance (Kleinberg et al. 2015). In OLS, that price is set to zero. In SML
methods, the price is determined using the data (more on that later).

For example, in linear models, larger coefficients yield more variance in predictions. A pop-
ular SML technique called lasso (least absolute shrinkage and selection operator) introduces a
regularizer,

R( f ) =
p∑

j=1

|β j|, 3.

that equals the sum of the absolute values of the coefficients, β j ( j = 1, . . . , p) (Tibshirani 1996).
The optimal function, f (X ), now needs to select coefficients that minimize the sum of squared
residuals while also yielding the smallest absolute coefficient sum.

3One can find a similar approach in multilevel models popular in sociology where cluster parameters are
deliberately biased (Gelman & Hill 2007).
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Training error:
the error of a model on
training data (e.g., sum
of squared residuals)

Overfitting:
the concept of a model
fitting the data at hand
well, but not
generalizing to new
data

Empirical tuning:
using the data to
optimize model
design, including the
choice of the
regularization weight

SML techniques seek to achieve an ideal balance between reducing the in-sample and out-
of-sample error (i.e., training and generalization error, respectively). This goal helps avoid two
pitfalls of data analysis: underfitting and overfitting. Underfitting occurs when a model fits the
data at hand poorly: As a simple example, an OLS model with only a linear term linking an input
to output offers a poor fit if the true relationship is quadratic. Overfitting occurs when a model fits
the data at hand too well and fails to predict the output for new inputs; for example, an OLSmodel
withN inputs (plus a constant) will perfectly fitN data points, but it will likely not generalize well
to new observations (Belloni et al. 2014).

Underfitting means we miss part of the signal in the data; we remain blind to some of its
patterns. Overfitting means we capture not just the signal, but also the noise—the idiosyncratic
factors that vary from sample to sample—and hallucinate patterns that are not there (Domingos
2015).

Through regularization, SML effectively searches for functions that are sufficiently complex
to fit the underlying signal without fitting the noise. One way to regularize is to restrain model
parameters. Let us consider lasso. The regularizer in Equation 3 puts a bound on the sum of
absolute values of the coefficients. It can be shown that lasso favors sparse models, where a small
number of inputs have nonzero coefficients, and effectively restrainsmodel complexity (Tibshirani
1996).

Now consider regression trees, another function class in SML. The method proceeds by par-
titioning the inputs into separate regions in a tree-like structure and returning a separate output
estimate (Ŷ ) for each region. Say we want to predict whether someone migrates, using individ-
ual attributes of age and education. A tree might first split into two branches by age (young and
old), and then each branch might split into two by education (college degree or not). Each termi-
nal node (leaf ) corresponds to a migration prediction (e.g., 1 for young college graduates). With
enough splits in the tree, one can perfectly predict each observation in sample. To prevent overfit-
ting, a typical regularizer controls the tree depth and, thus, makes us search not for the best fitting
tree overall, but the best fitting tree among those of a certain depth (Mullainathan & Spiess 2017).

How do we select the model that offers the right compromise between in-sample and out-of-
sample fit? To answer this question, we need to decide, first, on how to regularize [measure model
variance/complexity, R( f )] and, second, on how much to regularize [set the price for variance/
complexity, λ, in Equation 2].

In SML, we start the analysis by picking a function class and a regularizer. There are many
function classes and many associated regularizers (see the sidebar titled Some Supervised Ma-
chine Learning Techniques). The so-called no free lunch theorem proves that no ML method (or
no form of regularization) is universally better than any other (Wolpert & Macready 1997); the
task is not to seek the best overall method, but the best method for the particular question at hand
(Goodfellow et al. 2016, but see Domingos 2015 for a counterargument). The general recommen-
dation is to use the substantive question at hand to guide these choices.4 With the function class
and regularizer in hand, we turn to data to choose the optimal model complexity. Put differently,
in SML, we use the data not just to estimate the model parameters (e.g., coefficients, β, in lasso),
but also for tuning regularization parameters (e.g., the price for variance/complexity, λ).

What sets SML apart from classical statistical estimation, then, are two essential features: regu-
larization and the data-driven choice of regularization parameters (also known as empirical tuning)
(Athey & Imbens 2017, Kleinberg et al. 2015, Mullainathan & Spiess 2017). These features allow

4Hastie et al. (2009, table 10.1) compare different methods on several criteria (e.g., interpretability, predictive
power, ability to deal with different kinds of data). Athey & Imbens (2016), Athey (2017), and Abadie & Kasy
(2017) link SMLmethods to traditional tools and questions in economics.Olson et al. (2018) offer an empirical
comparison on bioinformatics data.
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Training data: sample
used to fit the model

Cross-validation:
a method to estimate
and validate a model
on different partitions
of data

SOME SUPERVISED MACHINE LEARNING TECHNIQUES

� Penalized regression: a linear model of output (Y ) as a function of inputs (XTβ). Regularizers include
∑p

j=1 |β j|
for lasso,

∑p
j=1 β2

j for ridge regression, and α
∑p

j=1 |β j| + (1 − α)
∑p

j=1 β2
j for elastic net regression. Penalized

regression shrinks coefficients toward zero; estimates need to be interpreted with caution (Athey & Imbens
2016).

� Classification and regression trees: a tree-like model that describes a sequence of splits in the input space (X )
that predict an output (Y ) at the end node. Regularizers include tree depth and number of leaves. This model
captures nonlinearities and interactions in inputs. A version called random forests averages over multiple trees
(Breiman 2001a), leading to more accurate predictions but less interpretable relationships of X to Y.

� Nearest neighbor: a method that relies on user-defined distances to average k nearest neighbors of a new input
(X ) to predict output (Y ). The number of neighbors (k) is a regularizer. It offers black-box predictions with little
insight into the relationship between X and Y.

� Neural networks/deep learning: a multilayer setup that models the output (Y ) as a concatenation of simple
nonlinear functions of the linear combinations of inputs (X ) (neurons). Regularizers include the number of layers
and the number of neurons per layer.

researchers to consider complex functions and more inputs (polynomial terms, high-order inter-
actions, and, in some cases, more variables than observations) without overfitting the data. This
flexibility contrasts sharply with classical statistics, where one typically selects a small number of
inputs and a simple functional form to relate the inputs to the output.

One way SML uses data, therefore, is for model selection, that is, to estimate the performance
of alternative models (functions, regularization parameters) to choose the best one. This process
requires solving an optimization problem. Another way SML uses data is for model assessment,
that is, after settling on a final model, estimating its generalization (prediction) error on new data
(Hastie et al. 2009).

A crucial step in SML is to separate the data used for model selection from the data used for
model assessment. In fact, in an idealized setup, one creates three, not two, separate data sets.
Training data are used to fit the model; validation data are put aside to select among different
models (or to select among the different parameterizations of the same model); and finally, test
(or hold-out) data are kept in the vault to compute the generalization error of the selected model.
There is no generic rule for determining the ideal partition, but typically, a researcher can reserve
half of the data for training, and a quarter each for validation and testing (Hastie et al. 2009).

Splitting the data in this way comes at a cost, however. By reserving a validation and test set, we
reduce the chance of overfitting but now run the risk of underfitting because there are fewer data
left for estimation (Yarkoni &Westfall 2017). To achieve a middle ground, we can reserve the test
data but combine training and validation sets into one, especially if the data are small.We can then
recycle the training data for validation purposes (e.g., to select the optimal degree of complexity).
One version of this process, called k-fold cross-validation, involves randomly splitting the data
into k subsets (folds), and then successively fitting the data to k− 1 of the folds and evaluating the
model performance on the kth fold.

Consider the regression-tree example above. We can divide the training data into k = 5 folds,
use four of the folds to grow a tree with a particular depth (complexity), and then predict the
output (migration) separately on the excluded fold, repeating for each of the five folds. We can
then repeat the same process with a different tree depth and pick the complexity level that min-
imizes the average prediction error across the left-out folds (see Varma & Simon 2006 for more
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Validation data:
sample used to select
among different
models

Test data: Sample
reserved to compute
the generalization
error of the selected
model (hold–out data)

sophisticated nested cross-validation). In the final step, we can use the test data to compute the
predictive accuracy (generalization error) of the selected model.

In SML, there are model-averaging techniques to improve predictive performance. For exam-
ple, bagging involves averaging across models estimated on different bootstrap samples (where
one draws N observations with replacement from a sample of size N ). Boosting involves giving
more weight to misclassified observations over repeated estimation (Hastie et al. 2009).

SUPERVISED MACHINE LEARNING FOR POLICY PREDICTIONS,
CAUSAL INFERENCE, AND DATA AUGMENTATION

SML uses flexible functions of inputs to predict an output. Some SML tools, such as nearest
neighbor, have no parameters at all. Other methods, such as lasso, give parameter estimates, β̂,
but those estimates are not always consistent (that is, they do not converge to the true value as N
grows) (Knight & Fu 2000).

Social scientists are used to working with statistical models that produce parameter estimates
with particular properties (unbiased and consistent). But SML is not designed for recovering β̂.
Instead, SML is good at solving what Mullainathan & Spiess (2017, p. 88) call Ŷ tasks. Social
scientists (mostly economists) have identified three classes of Ŷ tasks: predictions for policy and
theory development, certain procedures for causal inference, and data augmentation [for reviews,
see Mullainathan & Spiess (2017) for predictive modeling in economics, Cranmer & Desmarais
(2017) for political science, and Yarkoni & Westfall (2017) for psychology].

Predictions for Policy and Theory Development

SML is a useful tool for policy predictions if the researcher is not immediately interested in un-
derstanding the relationship between X and Y, but rather in using X to predict Y in new data.
Policy predictions impose a clear goal (Ŷ ) and performance metric (difference between Y and Ŷ ),
and they allow for a common-task framework where different teams can compete on the same
question (Donoho 2017). For example, the company Kaggle hosts competitions (http://www.
kaggle.com/competitions) where contestants train models on shared data and compete on pre-
dictive accuracy.

Economist Glaeser and colleagues (2016) used this idea to set up a competition to produce
predictive algorithms for city governments. Salganik and collaborators started a challenge to pre-
dict educational (and other) outcomes in the Fragile Families and Child Wellbeing Study data
(http://www.fragilefamilieschallenge.org/). The organizing team judged the submissions from
150 multidisciplinary teams on predictive accuracy on test (hold-out) data. In the ongoing second
phase, the team plans to conduct an in-depth study of the discrepant cases in the winning model
(e.g., students who beat the odds) and, thus, envisions the predictions as a first step to generating
new insights and theory, not as an end goal.

Scholars apply SML to various questions in economics, demographics, political science, and
criminology. Kleinberg et al. (2015) use a lasso model to predict which patients would benefit
most from joint replacement surgery among Medicare beneficiaries. Billari et al. (2006) rely on
decision trees to discriminate between Italians and Austrians in terms of the timing, sequencing,
and quantum of life-course events. Cederman &Weidmann (2017) discuss how SML can predict
deadly conflict. Beck et al. (2000) use neural networks to forecast militarized international dis-
putes. Brandt et al. (2011) employ automated coding of news stories to predict Palestinian-Israeli
conflicts, and Perry (2013) applies random forests to predict violent episodes in Africa. Berk (2012)
reviews his extensive work that uses SML for predictions of criminal risk. These scholars use their
predictions as a starting point for disentangling the process in question and for pushing existing
theory.
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Kleinberg et al. (2017), for example, illustrate howmachine predictions can help us understand
the process underlying judicial decisions. The authors first train a gradient-boosted decision tree
model to predict judges’ bail-or-release decisions in New York City, and then they use the quasi-
random assignment of judges to cases to explain the sources of the discrepancy between model
predictions and actual decisions. Their findings show that judges overweight the current charge,
releasing high-risk cases if their present charge is minor and detaining low-risk ones if the present
charge is serious. These findings reveal important insights on human decision-making and carry
the potential to inspire new theory. From a policy standpoint, the authors’ predictivemodel, if used
in practice, promises significant welfare gains over human decisions without eroding important
social values (e.g., racial equality): reducing the reoffending rate by 25%with no increase in jailing
rate or, alternatively, pulling down the jailing rate by 42% with no increase in reoffending rate.

An important discussion in the literature is on how SML tools should weight different kinds of
prediction errors. Berk et al. (2016), for example, apply random forests to forecast repeat offenses
in domestic violence cases. In consultation with stakeholders, the authors weight false negatives
(where the model predicts no repeat offense when there is one) 10 times more heavily than false
positives (where themodel predicts repeat offense when there is none).Theirmodel, consequently,
produces highly accurate predictions of no-offense cases (which require very strong evidence), but
less accurate forecasts of repeat offenses (many of which do not end up occurring).

There are legitimate concerns that SML predictions (and the data on which they are based)
can perpetuate social inequalities (Barocas & Selbst 2016, Harcourt 2007, Starr 2014). What if
predicted offenders are disproportionately drawn from minority groups? What if predicted ben-
eficiaries of health interventions are mostly high-status individuals?

Scholars now acknowledge an inherent trade-off between predictive accuracy and algorithmic
fairness (Berk et al. 2018, Hardt et al. 2016, Kleinberg et al. 2016). An open question is how to
define fairness. While most definitions relate to treatment of protected groups, one can opera-
tionalize fairness in many different ways (Berk et al. 2018, Narayanan 2018).

To see the complexity of the problem, consider a predictive algorithm that outputs loan deci-
sions (Ŷ ) from credit scores (X ) (Hardt et al. 2016). Assume the algorithm produces more accurate
predictions for men than women and recommends more loans to be given to men. One way to
make the algorithm fair is to exclude applicants’ gender from the data, but this solution fails if gen-
der is correlated with another input, such as income. Another way is to seek demographic parity,
that is, to constrain the model so that gender has no correlation with the loan decision. But this
constraint might generate disparity in some other characteristic (Dwork et al. 2012). Yet another
way to define fair is to impose equal opportunity (Hardt et al. 2016), that is, to force the model
to make men and women equally likely to qualify for loans within a given subpopulation (e.g.,
individuals who pay back their loans).

Different definitions of fairness yield different outcomes.And it is difficult (if not impossible) to
implement multiple definitions at the same time (Berk et al. 2018). Addressing algorithmic fairness
is not just a technical issue in ML; it requires us—as a society—to consider difficult trade-offs.5

Causal Inference

Social scientists are often interested in identifying the causal effect of an input (treatment) on an
output. SML tools can help in certain causal inference procedures that involve prediction tasks.

5Similar moral dilemmas abound in the use of ML in new technologies, such as self-driving cars (Greene
2016). Survey experiments show that while people agree that an algorithm should minimize casualties, they
are not thrilled with the prospect of riding in a utilitarian car that can sacrifice its driver for the greater good
(Bonnefon et al. 2016).
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We provide some basic intuition and examples from this rather technical literature and refer the
readers to Athey & Imbens (2017) and Mullainathan & Spiess (2017) for comprehensive reviews,
and to Pearl & Mackenzie (2018) and Peters et al. (2017) for general frameworks that link ML to
causality.

As a primer, consider the fundamental problem of causal inference: We observe an individ-
ual (or any unit of analysis) in one condition alone (treatment or control) and cannot measure
individual-level variation in the effect of the treatment (for authoritative reviews of causal infer-
ence in the social sciences, see Morgan &Winship 2007, 2014).We instead focus on an aggregate
average effect that we treat as homogeneous across the population (Xie 2013). In experimental
design, we randomly assign individuals to treatment and control groups and directly estimate
the average causal effect by comparing the mean output between the groups (Imbens & Rubin
2015).

Social scientists now use SML to identify heterogeneous treatment effects in subpopulations
in existing experimental data. For example, Imai & Ratkovic (2013) discover groups of workers
differentially affected by a job training program.They interact the treatment (i.e., being in the pro-
gram) with different inputs and use a lasso model to select the inputs that are most important in
predicting increases in worker earnings. Similarly, Athey & Imbens (2016) develop causal trees to
estimate treatment effects for subgroups. Different from standard regression trees in ML (where
one seeks to minimize the error in predictions, Ŷ ), causal trees focus on minimizing the error in
treatment effects.One can then obtain valid inference for each leaf (subgroup) with honest estima-
tion, that is, by using half the sample to build the tree (select the optimal partition of inputs), and
the other half to estimate the treatment effects within the leaves.Wager &Athey (2018) extend the
method to random forests that average across many causal trees and allow for personalized treat-
ment effects (where each individual observation gets a distinct estimate). Similarly, Grimmer et al.
(2017) propose ensemble methods that weight several ML models and discover heterogeneous
treatment effects in data from two existing political science experiments.

Most empirical work in sociology relies on observational data where we do not control assign-
ment to treatment. One way to estimate the causal effect in this case is to assume the potential
output to be independent of assignment to treatment, conditional on other observed inputs.Under
this so-called selection-on-observables assumption, we can estimate a causal effect by matching
treatment and control groups on their propensity score (that is, the likelihood of being in the
treatment group conditional on inputs). Estimation of this score is well suited to SML as it in-
volves a prediction task (where the effects of inputs are not of interest). Recent work uses boosting
(McCaffrey et al. 2004), neural networks (Setoguchi et al. 2008,Westreich et al. 2010), and regres-
sion trees for this task (Diamond & Sekhon 2013, Hill 2011, Lee et al. 2010, Wyss et al. 2014) as
alternatives to traditional logistic regression.

In some cases, the selection-on-observables assumption does not hold, and we suspect that
some unobserved inputs are correlated with both the assignment to treatment and the output,
creating omitted variable bias in estimation. Regularization in SML could lead to exclusion of
some inputs from the model, amplifying this bias. Similarly, with many inputs, one generally runs
the risk of model misspecification (Belloni et al. 2014,Ho et al. 2007,King&Nielsen 2019,Muñoz
& Young 2018, Raftery 1995, Young&Holsteen 2017). Athey & Imbens (2015) develop a measure
of sensitivity to misspecification. Belloni et al. (2017) propose double selection of inputs to address
potential omitted variable bias.This procedure involves solving two prediction tasks to determine,
first, the inputs correlated with the treatment and, second, those correlated with the output. The
union of these two sets of inputs enters an OLS regression of the output, leading to parameter
estimates with improved properties (Belloni et al. 2014, 2017; Chernozhukov et al. 2017).
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Another way to address the omitted variable bias is to find an instrument—an input that is
correlated with the output only through its correlation with assignment to treatment (Angrist
et al. 1996).We can then regress the treatment (a given input,X ) on the instrument (Z), and then
use the predicted values (Ẑ) as an input in the output (Y ) regression. Because the first stage in this
instrumental variables regression involves a prediction task, we can use SML tools. There are now
many examples of this application in the econometrics literature. Belloni et al. (2012) use lasso to
produce first-stage predictions in data with many potential instruments, while Carrasco (2012)
and Hartford et al. (2016) turn to ridge regression and neural networks, respectively.

Data Augmentation and Imputation

Scholars use SML for data linking and augmentation.6 Feigenbaum (2015), for example, inputs
human-coded data to train SML algorithms to link individuals across census waves. Abramitzky
et al. (2019) develop a fully automated method to estimate probabilities of matches across cen-
sus waves, and then measure intergenerational occupational mobility. Using a nested design,
Bernheim et al. (2013) recruit a subset of survey respondents to participate in a lab experi-
ment and use their responses in the lab as training data to impute responses for the remain-
ing sample. Blumenstock et al. (2015) collect survey responses from a subset of cell phone
users in Rwanda as training data to predict the wealth and well-being of one million phone
users.

Scholars are similarly turning to supervised topic modeling (Blei & McAuliffe 2010) to use
human-identified topics as training data to classify a larger set of documents (Hopkins & King
2010, Mohr et al. 2013). For instance, Chong et al. (2009) apply this approach successfully to
predict topics for image labels and annotations.

Researchers are also using SML for missing data imputation. Farhangfar et al. (2008) inves-
tigate the performance of different ML classifiers in fifteen data sets and find that, although no
method is universally best, naive-Bayes and support vectormachine classifiers perform particularly
well in imputing missing values.More recently, Sovilj et al. (2016) use Gaussian mixture models to
estimate the underlying distribution of data and an extreme learning machine (a type of one-layer
neural network) for data imputation. Their approach, evaluated in six different data sets, yields
more accurate values compared with conditional mean imputation.

UNSUPERVISED MACHINE LEARNING

UML searches for a representation of the inputs that is more useful thanX itself (Goodfellow et al.
2016). Some UML tools reduce the dimensionality of the data (e.g., principal component anal-
ysis, factor analysis, topic modeling). Other methods partition the data into groups (e.g., cluster
analysis, latent class analysis, sequence analysis, community detection) (see the sidebar titled Some
Unsupervised Machine Learning Techniques).7 There is no target output to predict, no teacher
showing the algorithm what it should aim for, and no immediate measure of success. Researchers
use heuristic tools to evaluate the results.

6In theML community, researchers use the term data augmentation to also refer to the technique of artificially
increasing your training data in order to improve the predictive performance of ML classifiers. This strategy
is widely used in deep neural networks for image recognition (e.g., Wong et al. 2016) but remains outside the
scope of our review.
7There are excellent reviews of latent class analysis (Bollen 2002), sequence analysis (Abbott & Tsay 2000,
Cornwell 2015), and community detection (Fortunato 2010, Fortunato & Hric 2016,Watts 2004).
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SOME UNSUPERVISED MACHINE LEARNING TECHNIQUES

� Principal component analysis: discovers a small number of linear combinations of the inputs that are uncor-
related with one another and capture most of the variability in the data. These linear combinations (principal
components) can be used as inputs in subsequent analysis (e.g., in regression to predict some output)

� Factor analysis: discovers latent (unobserved) factors that account for the correlation in inputs; returns factor
loadings for each input that can be used to interpret the factors

� Cluster analysis: groups observations into a given number of clusters so that observations in a cluster are
more similar to one another than to observations in other clusters; returns cluster membership for each
observation

� Latent class analysis: discovers latent classes of observations that can account for the correlations in observed
categorical inputs; returns probability of class membership for each observation

� Sequence analysis: compares sequences (ordered elements or events) with optimal matching to discover
groups of observations with similar patterns (typically with cluster analysis)

� Topic modeling: discovers latent topics in text data based on co-occurrence of words across documents
� Community detection: identifies communities in networks (graphs) based on structural position of nodes

Unsupervised Machine Learning for Measurement and Discovery

Social scientists can use UML for measurement and discovery. The output from UML (data par-
titioned or projected onto a lower dimension) typically becomes an input that allows subsequent
analysis or theorizing. In the absence of a ground truth, researchers need to pay particular atten-
tion to model checking, and validate their results using statistical, substantive, or external criteria.

Generating measures from complex data.UML can produce measures from data to be used in
subsequent statistical analysis. Sociologists have long used principal components and factor anal-
ysis to reduce many inputs into a smaller set. Social scientists now use UML to process new kinds
of data (images or text). Economists, for example, classify satellite images with UML to generate
measures (deforestation, pollution, night lights, and so on) that relate to economic outputs (see
Donaldson & Storeygard 2016 for a review). Sociologists categorize text to develop proxies for
discourse in the media (DiMaggio et al. 2013), state documents (Mohr et al. 2013) and academic
publications (McFarland et al. 2013). For more information about text analysis, readers are di-
rected to articles by Bail (2014), Blei (2012), Evans & Aceves (2016), Grimmer & Stewart (2013),
and Mohr & Bogdanov (2013).

Following a long tradition, sociologists also use UML to group social network data. Earlier
applications, such as block models, employed structural equivalence (sharing neighbors) to eval-
uate similarity and to then partition the network into subgroups (Breiger et al. 1975,White et al.
1976). Recent improvements involve using centrality (instead of equivalence) measures to discover
communities (Girvan &Newman 2002), assuming generative probabilistic distributions (Nowicki
& Snijders 2001) that help in model selection (Handcock et al. 2007), allowing for mixed mem-
bership in communities (Airoldi et al. 2008), and considering temporal dynamics (Matias &Miele
2017, Xing et al. 2010, Yang et al. 2011) and latent social structure (Hoff et al. 2002).

Characterizing population heterogeneity.UML can help characterize population heterogene-
ity. For example, Bail (2008) applies fuzzy cluster analysis (which allows cases to belong to multiple
groups) to discover three configurations of symbolic boundaries between immigrants and natives
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in Europe. Bonikowski & DiMaggio (2016) employ latent class analysis to characterize four types
of popular nationalism in the United States. Frye & Trinitapoli (2015) use sequence analysis to
discover five distinct event sequences that characterize discrepancies between women’s ideal and
experienced prelude to sex in Malawi. Killewald & Zhuo (2018) employ the same method to iden-
tify four maternal employment patterns of American mothers. Garip (2012, 2016) uses cluster
analysis to identify four distinct groups among first-time Mexico-US migrants. Goldberg (2011)
develops relational class analysis that considers associations between individuals’ survey responses
(rather than responses themselves) to discover three separate logics of cultural distinction around
musical tastes. Baldassarri & Goldberg (2014) apply the same tool to identify three configurations
of political beliefs among Americans.

These examples use a variety of methods, but share a common goal.They search for the hidden
structure in a population that would be presumed homogeneous under the traditional statistical
approach (Xie 2007, 2013; Duncan 1982). This approach often yields new hypotheses that emerge
from data.

Model checking.Unlike prediction problems, there is often no ground truth in UML; there-
fore, model checking is an important step. Researchers use statistical validation techniques that
involve some heuristic measure to capture whether, for example, clusters (Garip 2012, Killewald
& Zhuo 2018), latent classes (Bonikowski & DiMaggio 2016), or topics (DiMaggio et al. 2013)
are well separated. Scholars employ substantive validation to see if the produced partitions co-
here with existing typologies or, more generally, with human judgement. Grimmer & King (2011)
offer a method for computer-assisted clustering. The method allows researchers to explore and
select from thousands of partitions produced by different clustering methods and, thus, puts their
domain knowledge at the center (Grimmer & Stewart 2013).

Researchers also resort to external validation that brings new data to evaluate whether iden-
tified patterns confirm expectations. Bail (2008), for example, shows that three types of symbolic
boundaries emerging from attitudinal data are associated with country-level immigration patterns
and integration philosophies in Europe. Bonikowski & DiMaggio (2016) find that four varieties
of nationalism in the United States correlate with social and policy attitudes that were not used in
the identification of the typology. DiMaggio et al. (2013) check that topics identified in the news
coverage of government assistance to the arts respond to other news events in hypothesized ways.
Garip (2016) confirms that four migrant types, obtained by clustering survey responses alone,
relate differently to macrolevel economic and political indicators.

MACHINE LEARNING: NEW ANSWERS TO OLD QUESTIONS

While many of the ML tools are quite new to sociology, the problems they address are not. Below
we discuss howML can speak to some long-standing concerns in our field, and point to promising
directions for future research.

Supervised Machine Learning Helps Us Break Away from General
Linear Reality

In quantitative sociology, we often follow the classical statistics approach: Assume a distribution of
the data, select a few inputs, and specify a parametric (typically linear) model to relate the inputs
to an output (Breiman 2001a, Donoho 2017). We tend to favor models that seem to align with
common sense (Watts 2014). We consider some alternative specifications (for example, nested
models that gradually introduce controls) but do not exhaust all possibilities (Varian 2014) or
fully take into account model uncertainty (Western 1996, Young 2009).
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SML allows us to include many inputs (including higher-order terms and interactions) and
complex functions that connect inputs to the output. It helps break away from the linear model
imposed by OLS (Abbott 2001). It helps us avoid underfitting (missing part of the signal) and
mine the data effectively without overfitting (capturing the noise as well as the signal). This gain
comes at a cost. Predictive tools in SML typically do not yield reliable estimates of the effects of
particular inputs (β̂), and indeed, some methods only produce black-box results.

Sociologists can identify pure prediction (Ŷ ) problems where different research teams can po-
tentially compete in a common-task framework (Donoho 2017). Economists, for example, are
already using SML to make policy predictions (Kleinberg et al. 2015). Sociologists can further use
predictions as a starting point to understand underlying social process and to develop theory. So-
ciologists can also use their expertise in processes of stratification to inform debates on the ethics
of predictive modeling, and its fairness to different social groups (Berk et al. 2018).

Another direction for sociologists is to use SML to improve classical statistical techniques.
Economists now apply SML to prediction tasks within the causal-inference framework, for exam-
ple, estimation of the propensity score in matching (Westreich et al. 2010) or the first-stage equa-
tion in instrumental variables (Belloni et al. 2012), and identification of heterogeneous treatment
effects in existing experimental data (Athey & Imbens 2016). One particularly fruitful application
(and one that is highly relevant to sociologists given our typical attention to omitted variable bias)
involves using SML for model selection (Belloni et al. 2014, 2017).

Machine Learning Allows Us to Study Population Heterogeneity

Quantitative sociology often takes a deductive approach, where the researcher derives hypotheses
from a theory to test on data. This approach, inspired by classical physics, can act as a strait-
jacket that limits the questions we can ask and the methods we can use (Lieberson & Lynn
2002).

To fit our work into the mold of hypothesis testing, we flatten social theories into a few vari-
ables and estimate the average effect of each variable in some given population. We neglect that
most theories offer sometimes-true statements (Coleman 1964) that hold under specific condi-
tions and for specific groups of individuals. We also pit multiple theories against one another to
determine the best fit empirically. We ignore the possibility that different mechanisms might be
simultaneously at work [what Goldberg (2011) calls equifinality or what Watts (2014) refers to as
the indeterminacy problem]. We rule out heterogeneity in explanation a priori.

It is these concerns about causal complexity that have led Ragin (1987) to develop a toolbox
(qualitative comparative analysis) to identify different causal bundles (configurations of various
conditions) that underlie some historical phenomenon, and Abbott (1995) to advocate for se-
quence analysis as a way to characterize configurations of events that inform social outcomes.

ML offers new tools to characterize population heterogeneity. Economists use SML to un-
cover heterogeneous treatment effects in experimental data (Athey & Imbens 2016). Sociologists
use UML to discover subgroups in populations and then link the emergence of each subgroup
to various external factors (Bail 2008, Bonikowski & DiMaggio 2016, Garip 2012). This latter
approach is akin to searching for ideal types (Weber 1978) as a first step to developing theory
(Swedberg 2014). Indeed, Muller et al. (2016) and Baumer et al. (2017) make an insightful con-
nection of ML to inductive reasoning in the social sciences (and the grounded theory approach in
particular).

By expanding their tool kit to include ML, sociologists can better consider heterogeneity and
close the gap between their pluralistic stance when it comes to embracing different theories and
their monism when it comes to testing those theories with data.
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Supervised Machine Learning Makes Us Sensitive to Researcher
Degrees of Freedom and Replication

In sociology, we commonly estimate and evaluate a model on the same sample and run the risk of
overfitting. SML gives us the crucial idea that we need to validate our results on new data (or with
efficient partitioning of the original data, also known as cross-validation).

When we test a model out of sample, not only do we minimize the risk of overfitting (to which
models with low R2—share of explained variation—are especially vulnerable), but also we evaluate
the overall performance of a model in explaining an output. We get more information on the
strength of underlying theory, in other words, than is typically available with in-sample estimates
(e.g., coefficients in an OLS model) (Watts 2014).

Out-of-sample testing can also help address what Yarkoni & Westfall (2017) call procedural
overfitting (also known as p-hacking) that can occur during data cleaning ormodel selection.There
are many choices available to us (researcher degrees of freedom) that might influence the results
(Simmons et al. 2011, King & Nielsen 2019).8 Any time we use the data to optimize over these
degrees of freedom (for example, choosing variables that give the best fit), we need to conduct an
out-of-sample test (or cross-validation) to evaluate the true performance of our choices. A related
activity at the research community level is to encourage independent replication studies, which
would serve as out-of-sample tests (Freese 2007).

Machine Learning Offers Tools for Exploration and Discovery

In quantitative sociology, we mostly engage in exploratory work, but couch it in the language of
hypothesis testing. We often use flexible research designs and statistical models until we learn
something new and interesting, but present our results as if we were confirming a hypothesis that
we knew all along.We give our readers the context of justification, but not the context of discovery
(Popper 1935). This practice makes it difficult to teach our students research design or encourage
creative theorizing (Swedberg 2014).

ML gives us a vast array of tools to explore and learn from data, but for these tools to be
useful in sociology, we first need to distinguish exploratory work from confirmatory research.
Conducting confirmatory research requires minimizing researcher degrees of freedom, ideally
by preregistering hypotheses and other design choices in a public forum (e.g., the Open Science
Framework) (Baldassarri & Abascal 2017, Hofman et al. 2017, Ioannidis & Doucouliagos 2013,
Simmons et al. 2011, Watts 2014).

Many of us do not conduct confirmatory work in this strict sense. Instead we go back and forth
between data, statistical models, and theory until we gain a novel insight. Presenting such efforts as
exploratory allows us to truthfully describe where our ideas come from. It frees us to use ML (and
other) tools for discovery and creative conceptualization. It helps us generate novel hypotheses
for subsequent confirmatory work. Recognition of exploratory work, however, requires support
from journals and an expansion of scientific values.

Machine Learning Provides a Diverse Set of Tools That Can Inform
a Diverse Set of Questions

In sociology, we rely largely on a hypothesis testing framework and classical statistical approach.
We routinely fit our questions to this setup and use data to estimate the effects of some input on

8This issue has led to heated debates in psychology where researchers have been unable to replicate some
well-known experimental findings (Simmons et al. 2011, Open Sci. Collab. 2015).

www.annualreviews.org • Machine Learning for Sociology 39



SO45CH02_Garip ARjats.cls June 18, 2019 13:19

an output. ML not only helps us improve parts of this strategy, but also gives us tools that can
inspire new questions. How well does a set of inputs, for example, predict an output? How do
these predictions deviate from observed outcomes and why? Or what is the underlying structure
of some input? How is that structure related to external factors? Answering these questions can
help us push theory forward or generate new hypotheses. Indeed, in some of the best social science
applications, the results fromML provide not an end goal, but the starting point for further anal-
ysis and conceptualization. As such, ML tools complement, but do not replace, existing methods
in sociology.

SUMMARY POINTS

1. Classical statistics focuses on inference (estimating parameters, β, that link the output,
Y , to inputs,X ); supervised machine learning (SML) aims at prediction (using inputs X
to forecast unobserved output Ŷ ).

2. SML balances in-sample and out-of-sample fit through regularization (i.e., penalizing
model complexity and estimation variance) and empirical tuning (i.e., data-driven choice)
of regularization parameters.

3. Unsupervised machine learning (UML) discovers underlying structure in data (e.g.,
principal components, clusters, latent classes) that needs to be validated with statistical,
substantive, or external evidence.

4. Sociologists can apply SML to predict outputs, to use the predictions as a starting point
to understand underlying social process, or to improve classical statistical techniques.

5. Sociologists can use UML to describe and classify inputs, and to conceptualize on the
basis of the descriptions.

FUTURE ISSUES

1. What are the prediction (Ŷ ) questions in sociology?

2. What can the deviations from predictions reveal about the underlying social process?

3. What are the criteria for evaluating predictive fairness?

4. How can we use predictions given by SML or descriptions produced by UML to
theorize?

5. How can we validate the findings of ML applications?
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