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Abstract

Methods textbooks in sociology and other social sciences routinely recom-
mend the use of the logit or probit model when an outcome variable is binary,
an ordered logit or ordered probit when it is ordinal, and a multinomial logit
when it has more than two categories. But these methodological guidelines
take little or no account of a body of work that, over the past 30 years, has
pointed to problematic aspects of these nonlinear probability models and,
particularly, to difficulties in interpreting their parameters. In this review,
we draw on that literature to explain the problems, show how they manifest
themselves in research, discuss the strengths and weaknesses of alternatives
that have been suggested, and point to lines of further analysis.

39

https://doi.org/10.1146/annurev-soc-073117-041429
https://doi.org/10.1146/annurev-soc-073117-041429
https://www.annualreviews.org/doi/full/10.1146/annurev-soc-073117-041429


SO44CH03_Breen ARI 13 June 2018 8:59

INTRODUCTION

Sociologists and other social scientists often use the logit or probit model when an outcome variable
is binary, an ordered logit or ordered probit when it is ordinal, and a multinomial logit when it has
more than two categories. However, empirical applications of these nonlinear probability models
(NLPMs) seldom take account of a body of work that, over the past three decades, has pointed to
their problematic aspects and, particularly, to difficulties in interpreting their parameters.

The problems stem from the fact that, unlike in linear regression models, in logits, probits, and
other NLPMs, the mean and variance of the dependent variable are not separately identified. This
has two immediate implications: First, when comparing the coefficients from the same NLPM
fitted to two or more groups, we need to be cautious in how we interpret them, and we need to
be aware of how the assumptions on which the model is based will affect these interpretations.
Second, the same holds for comparisons of the coefficients of the same variable in two or more
differently specified models fitted to the same sample. An example of the first case—comparisons
of the coefficients from the same model fitted to different groups—would arise if we wanted
to know whether a particular variable had a stronger effect on an outcome among men rather
than women, or Asians rather than Whites. The second case—comparisons of the coefficients
from different models fitted to the same sample—could occur if we wanted to know how the
coefficient for a particular variable changed when we added possible confounders or mediators to
our model. Comparisons of both sorts continue to be made routinely, apparently with little thought
for whether the conclusions drawn are warranted, despite the cautions expressed in some recent
papers by sociologists (Allison 1999, Mood 2010, Karlson et al. 2012) that, to a large extent, echo
warnings made as far back as the early 1980s by sociologists, economists, and statisticians (Lee 1982;
Winship & Mare 1984; Gail et al. 1984; Yatchew & Griliches 1985; Gail 1986; Hauck et al. 1991;
Neuhaus et al. 1991; Robinson & Jewell 1991; Swait & Louviere 1993; Cameron & Heckman 1998;
Agresti 2002; Wooldridge 2002; Ai & Norton 2003; Cramer 2003, 2007; Mare 2006; Breen et al.
2013, 2014; Breen & Karlson 2013). Beyond these two simple examples, the problems we mention
complicate the path decomposition of effects into direct and indirect components and severely
complicate the interpretation of causal effects in both experimental and observational settings.

In this review, we draw on the literature of the past 30 years to explain the problems of NLPMs,
show how these problems manifest themselves in a range of empirical research settings, discuss the
strengths and weaknesses of alternatives that have been suggested, and point to what we believe
are fruitful lines of further analysis. We begin by explaining the relevant differences between linear
models and nonlinear probability models.

NONLINEAR PROBABILITY MODELS

We use the term NLPM to refer to the class of regression models for discrete, dependent variables
that make a nonlinear transformation to obtain a model that is linear in its parameters. Among
the best known is the logistic response (logit) model, which specifies the conditional mean of a
discrete outcome variable as a logistic function of covariates. The probit model is similar but uses
the cumulative normal instead of the logistic.

NLPMs can be derived from two different perspectives that reflect a famous controversy in
statistics involving Karl Pearson and his former student, George Udny Yule (Agresti 2002). The
first perspective (championed by Yule) assumes that the outcome is genuinely categorical or truly
discrete: In this case, the probability of an observation being in a particular category is expressed
as a nonlinear function of a set of predictors. This is sometimes referred to as the transformational
approach (Powers & Xie 2008). The second perspective, that of Pearson, assumes that the discrete
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outcome variable is a partially observed continuous latent variable. This is sometimes referred to
as the latent variable approach. To illustrate the two perspectives, consider the binary outcome of
completing a four-year college degree. The first perspective would regard completing college as
a truly discrete event: A person either completes college or they do not. The second perspective
might instead argue that individuals have a latent propensity to acquire education, and some have
a propensity great enough to complete college while others do not.

Although the two perspectives differ, they are empirically indistinguishable. We begin by using
the latent variable approach to explain the difference between these models and linear regression
models, and we focus initially on models in which the observed outcome is binary rather than
ordered or multinomial. We return later to the transformational approach.

Assume that we have a continuous outcome variable, Y∗, and one or more predictor variables,
X. In a linear regression, we would write the relationship between these in the form

Y ∗
i = β0 + β1Xi + εi . 1.

In Equation 1, ε is the error term. Using an estimator such as ordinary least squares (OLS), we
would obtain estimates of the βs and the residual variance σ 2

ε . Now, assume we observe not Y∗ but
a binary variable, Y, that takes the value 1 if Y∗ exceeds a threshold (say, τ ) and 0 otherwise. We
might then fit a logit or probit model to estimate the relationship between X and Y. Our choice
implies a distribution for the error term of the original equation, Equation 1. For the probit model,
we are implicitly assuming that ε follows a Normal distribution; for the logit, we are assuming
that it follows a logistic distribution.

In either case, we would fit the model

h(Pr(Yi = 1)) = b0 + b1Xi, 2.

where h( ) indicates either the probit or logit transformation. The relationship between the parame-
ters of the underlying linear model for Y∗ and the parameters of the NLPM for Y is straightforward:
b = β

s . The logit or probit coefficient is equal to the corresponding linear regression coefficient
divided by s, a scale factor. The scale factor is defined as s = σε/ω, where σε is the true standard
deviation of the underlying linear model’s error term and ω is an assumed standard deviation (1
in the Normal case and π/

√
3 for the logistic).1 The scale factor thus expresses, in multiplicative

form, the degree to which the true standard deviation of the underlying linear model differs from
the standard deviation of the assumed standard distribution.

We first point out that in NLPMs, unlike in the linear model, there are not separate parameters
for the coefficients and the residual variance; the coefficients themselves (the βs) are not identified
separately from the residual variation (as captured by the scale factor, s). Sometimes the coefficients
are said to be “identified only up to scale” (Cameron & Heckman 1998, p. 281). Second, we point
out that interpretation of the bs rests entirely on assumptions about the true standard deviation,
σε, and these are untestable because in real applications the only data we have are the binary Y and
the predictor X (in other words, we do not know the true standard deviation of the error term in
the underlying linear model).2 The recent sociological literature on NLPMs (Allison 1999, Mood
2010, Karlson et al. 2012, Breen et al. 2014) has focused on the problems that this property of the

1Throughout this article, we use the term “true” to refer to the data-generating process, that is, the real-world process assumed
to have generated the data we observe.
2To some extent this property has been hidden from view in books that introduce these models by the assumption of a
scale parameter of unity, s = 1, which implies that σε = 1 (for the probit) or σε = π/

√
3 for the logit. For example, in his

well-known book, Maddala (1983, p. 23) wrote of the probit model: “It can be easily seen . . . that we can estimate only β/σ

and not β and σ separately. Hence, we might as well assume σε = 1 to start with.”
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models causes for comparisons of coefficients across different models. These coefficients can differ
because the relationship between X and Y∗ differs and/or because the residual standard deviations
differ. When we compare the coefficients of different models fitted to the same data, it is inevitable
that the models will differ in their residual standard deviation. When we compare estimates from
the same model fitted to different groups, there is always the possibility that any differences we
see are driven by differences between them in their residual variances. We deal in detail with both
these cases later.

TRULY BINARY OUTCOMES

We have outlined the problems in interpreting the coefficients of NLPMs using the latent vari-
able approach, but we can also think of the outcome, Y, as truly binary and not as the observed
realization of a latent variable. In this case, the logit and probit transformations are just conve-
nient ways of modeling the relationship between the outcome and the predictor variables. In the
authors’ experience, there is a widespread belief that, because the two perspectives make different
assumptions about the nature of the dependent variable, they entail different consequences for
applied research. In what follows, we demonstrate why we consider this belief unfounded (see
Allison 1999 for a similar argument).

In the transformational approach, the equations for the logit or probit models have no explicit
error term. Therefore, when we motivate their use through this approach, we must think of residual
variation in these models in terms of omitted covariates. As before, Y denotes a binary, dependent
variable and X denotes a predictor, but now we let U denote an omitted covariate independent of
X. Under a probit model (with h being the probit transformation), we can write:

Pr(Y = 1|X , U ) = h−1(μ + βX + γ U ). 3.

We take this model to be the one that has generated the data. Because we do not observe U, the
model we estimate is

Pr(Y = 1|X ) = h−1(a + bX ). 4.

To see the relationship between b and β, we integrate the first equation over U. Zeger et al. (1988)
showed that, under the assumption that γ U follows a Normal distribution,3 the relationship
between the regression coefficients of X in Equations 3 and 4 is

b = β√
1 + γ 2var(U )

. 5.

For the logit, a closed-form expression is not available, but Zeger et al. (1988) derive the approx-
imate relationship between the estimated and true coefficients:

b ≈ β

√
π2/3

1.14γ 2var(U ) + π2/3
= β√

1 + 0.35γ 2var(U )
. 6.

The denominator in Equations 5 and 6 is always larger than 1 (except in the instances where the
omitted covariate has no impact on the outcome or is degenerate), and so b is a downwardly biased
estimate of β (which we have assumed to be the true effect of X on Y ). The degree of bias depends
on the impact of the omitted covariate, γ , and the dispersion in the omitted variable, var(U ).
U is assumed to be independent of X, and so its omission cannot confound the estimate of β in

3The normality assumption is innocuous and serves only expository purposes. Derivations based on less restrictive assumption
yield similar results (see Neuhaus et al. 1991).
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the conventional sense. Consequently, omitting covariates that are independent of the predictor
variable of interest will downwardly bias the estimated logit or probit coefficient. This is not the
case in ordinary linear regression, where the inclusion of another predictor that is independent of
the main predictor will have no effect on the latter’s coefficient.

For completeness, we show briefly how the omitted variable approach works in the latent
variable case. The data-generating process is assumed to be as follows:

Y ∗ = β0 + β1 X + γ U + ε,

Y = 1 if Y ∗ > τ ,

Y = 0 otherwise.

As before, U is unobserved and independent of X and of ε, which we now assume to have either
a standard Normal or standard logistic distribution. As before, the logit or probit model that we
can estimate is

h(Pr(Yi = 1)) = b0 + b1Xi,

where b = β

s , whereas the logit or probit model corresponding to the data-generating model is

h(Pr(Yi = 1)) = b ′
0 + b ′

1Xi + b ′
2Ui ,

where b ′ = β ′
s ′ . The scale factors are the ratio of the residual standard deviation to the assumed

standard deviation of the error, so we can approximate the relationship between b and b ′ as

b = b ′√
1 + b ′2

2 var(U )
7.

for the probit (Yatchew & Griliches 1985) and

b = b ′√
1 + 0.304 · b ′2

2 var(U )
8.

for the logit (Breen & Karlson 2013). b is a downwardly biased estimate of b ′, and therefore,
as before, also of β. If we use a probit model and assume the scale parameter of the original
model equals unity, s ′ = 1, Equation 7 reduces to the bias for the transformational approach in
Equation 5. Comparing Equations 6 and 8, we find that this relationship holds only approximately
for the logit, although the difference between the two is substantively unimportant. Whether we
use the latent variable approach or the transformational approach, we always recover a downwardly
biased estimate of the effect of the variable of interest in the case of omitted variables, and the bias
occurs even when the omitted covariates are unrelated to the predictor of interest.

In the remainder of this article, we give a nontechnical overview of the issues that arise in
interpreting coefficients from NLPMs, providing references to publications containing relevant
derivations, proofs, and simulations. For the sake of clarity, we focus on the logit and probit
models for binary outcomes, but we stress that all the issues and problems we identify also apply to
NLPMs for ordered outcomes (the ordered logit and ordered probit) and to the multinomial and
conditional logit models for more than two categorical outcomes. Breen et al. (2014) and Breen
& Karlson (2013) show the extensions to both cases.

COMPARISONS OF COEFFICIENTS ACROSS SAME-SAMPLE
NESTED MODELS

Many sociological papers include a table that reports the results of a set of nested regressions,
in the first of which the outcome, Y, is regressed on a single predictor variable of interest, X.
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Subsequent models add control variables that are thought to be either confounders or mediators
of the X-Y relationship. Attention focuses on how the addition of these controls changes the size
of the coefficient of X. Often the goal is to discover how much this coefficient can be reduced
and which control variables are chiefly responsible. This is a valid strategy when the models are
linear, but when NLPMs are used, changes in the coefficient of X across nested models do not
straightforwardly reflect mediation or confounding.

Regardless of whether we adopt the latent variable or transformational approach, adding vari-
ables to the model will have two effects: The residual variance will decline in magnitude (provided
that the new variables have additional explanatory power) and the relationship between the out-
come and the predictor variables already in the model will change (unless the new variables are
orthogonal to them). In a linear model, these two effects are captured separately, through reduc-
tion in the variance of the residuals and change in the coefficients of the variables, but in NLPMs
they are confounded. In, say, a logit model regressing a college completion dummy on parental
socioeconomic status (SES), the addition of control variables will reduce the residual variance and
thus also the scale factor, and this will make the SES coefficient grow larger. This will happen even
if the controls are independent of SES. But suppose we include a measure of cognitive ability as
one of our controls. Ability would be expected to affect the outcome and be correlated with SES.
Although we would expect the inclusion of ability to reduce the SES coefficient (it might serve
as both a mediator and a confounder), the decline in the scale factor (due to the reduction in the
residual variance) will have the opposite effect. Thus, rather than a decline in the coefficient for
SES, we might observe no change or even an increase. In general, estimates of change in a logit
or probit coefficient caused by the introduction of control variables will be biased toward zero,
and so one cannot directly compare coefficients from NLPMs across nested models fitted to the
same sample. One manifestation of this will occur when the coefficient of the predictor of interest
appears to be remarkably robust to the introduction of controls that, at first glance, should have
caused it to decline.

Examples of such comparisons are easily found in most leading social science journals. One
comes from Breen & Goldthorpe (1999). They used data on respondents to the British National
Child Development Study and fitted a multinomial logit model with a person’s social class position
at age 33 as the outcome variable and dummy variables for social class origins as the predictors
of interest. They then added controls for ability, measured at age 10, and effort, measured at age
16. Comparing the initial estimates for class origins with the conditional estimates, they write,
“while there is some reduction in the . . . (class origin) parameters . . . this is rather variable and
could not in any instance be described as more than modest. In other words, even when we control
for both ability and effort . . . substantial inequalities in class mobility chances are still clearly in
evidence” (Breen & Goldthorpe 1999, p. 14, parentheses added). But, because ability and effort
are correlated with class origins and associated with class destinations, the conditional estimates
on which Breen & Goldthorpe focused are certainly upwardly biased, leading them to understate
the degree to which mobility chances are mediated by ability and effort (though we do not know
how great this understatement is).

COMPARISONS OF COEFFICIENTS ACROSS GROUPS

The second problem on which attention has focused concerns comparisons of the coefficients
of the same model fitted to different groups (this is equivalent to the problem of interpreting
interaction effects in NLPMs; see Ai & Norton 2003). Allison (1999) lucidly explained this problem
to sociologists. It arises because the residual variation, and thus the scale factor, may differ between
groups. Suppose we fit our logit model for college completion to Whites and Asians separately,
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with the aim of comparing the effect of SES. A naı̈ve approach would look at how the logit of
college completion changed, given a one-unit change in SES, in each group—in other words,
compare bWhite with bAsian (b being the logit coefficient for SES). But, using the latent variable
formulation of the logit and letting s denote the scale factor, we have

bWhite = βWhite

sWhite
,

bAsian = βAsian

sAsian
,

and so any difference that we observe may be due to differences in the real relationship between
SES and college completion (captured by the βs) or in the scale factors.

The residual variance could differ between Whites and Asians for many reasons. For example,
if omitted variables unrelated to SES are more important for completing college among Whites
than among Asians, then the scale factors would differ. Whether this is true cannot be known
from the available data (these data comprise the dummy Y, our measure of SES, and a dummy for
group membership). So, whereas in the first problem (of comparing coefficients between different
models) we know that the scale factors differ and we know the direction of the bias, in this case we
do not. We do not know whether comparisons across groups are biased or not by differences in
residual variation, and if they are biased, we do not know the extent or even the direction of the
bias.

We can see the same problem using the transformational approach (Allison 1999, p. 190). Here,
residual variation is captured by the effect of an omitted, orthogonal covariate. If we fit a probit
model to the two groups to examine whether the effect of SES is stronger among one group or
the other, then according to Equation 5,

bWhite = βWhite√
1 + γ 2

White
var(UWhite)

and

bAsian = βAsian√
1 + γ 2

Asian
var(UAsian)

,

so any difference that we observe in the estimates could be due to differences between Whites and
Asians in the impact, γ 2, or variance, var(U ), of the omitted covariates, or both. The data do not
allow us to separately identify these two sources of the difference.

Instances of coefficient comparisons between groups are very easy to find: Comparisons be-
tween men and women, Blacks and Whites, and different countries are routine in sociological
research. For example, Breen et al. (2009) used an ordered logit model to investigate change in the
relationship between class origins and educational attainment across five birth cohorts born during
the twentieth century in eight European countries. They focus on within-country comparisons,
so their estimates are open to bias from differences in residual variation in each cohort. In this
case, however, reanalyses using methods that are robust to differences in residual variation (these
are discussed below) lend support to their conclusion that the relationship between social class
origins and educational attainment declined over the twentieth century (Breen et al. 2014).

INTERPRETING COEFFICIENTS

The literature we have drawn on generally assumes that the goal is to estimate the regression
parameters of the assumed underlying model for the latent outcome, Y∗. In many cases, this
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assumption is warranted, most obviously when using an ordered logit or ordered probit model.
When we model the responses to a Likert-type attitudinal item, for example, we inevitably think
in terms of an underlying continuous attitude. But there are many applications in which we are
not concerned with any underling continuum. This is not to say that in such cases the binary
outcome did not arise from a continuous latent variable (this is perhaps as much a philosophical
as a sociological question). Rather, it is a matter of what quantity we want to estimate: Is it a
parameter from an assumed latent variable regression or a measure of the probability of being in
one outcome category rather than another? Does this choice have consequences for any of the
problems we have reviewed?

Imagine we have data from a randomized controlled trial (RCT), which takes the form of
a binary outcome Y and a treatment indicator X. A natural measure of the average treatment
effect (ATE) is the odds ratio—in this case the ratio, between the treated and untreated, of a
favorable versus an unfavorable outcome. The difficulties of interpreting odds ratios from RCTs
have long been recognized (Gail et al. 1984, Gail 1986, Robinson & Jewell 1991, Hauck et al.
1991). Randomization ensures that estimates of the ATE are not confounded in linear models,
but it is usually thought desirable to control for measured covariates to increase the precision of
the estimate (Fisher 1935, Cox 1958). Including such covariates in a logit model, however, will
increase the magnitude of the estimated odds ratio. Gail et al. (1984, p. 443) show that, for certain
nonlinear models (including the logit), “randomization does not always lead to asymptotically
unbiased estimates of treatment effects when needed covariates are omitted.” Hauck et al. (1991,
p. 77) called these variables “mavericks” because their omission biases the estimate of the odds ratio
in an RCT, yet they are not conventional confounders. However, these covariates may not have
been measured in the study. Put differently, estimates of the ATE in terms of odds ratios could
differ between two populations simply because of differences in their composition not captured
by the included covariates.

Statisticians draw a distinction between subject-specific (SS) and population-averaged (PA)
effects: “The principal distinction between SS and PA models is whether the regression coefficients
describe an individual’s or the average population response to changing [the predictor] x” (Zeger
et al. 1988, p. 1050). The distinction is also sometimes referred to as being between marginal
(PA) and conditional (SS) models. The odds ratio from an RCT is a PA effect and, as Hauck et al.
(1998, p. 253) point out, “When population-averaged models average, the results are necessarily
averaged over the distribution of the omitted covariates in the trial. Two trials with the same
treatment, outcome, and included covariates can have different measures of treatment effect solely
because of differing distributions of the omitted covariates. It would be more scientifically sound
to compare results for differing treatments if estimated treatment effects did not depend on the
differing covariate distributions of the trials.” Agresti (2002) makes the same point,4 and Allison
(1999, p. 191) expresses a widely held view about the usefulness of SS and PA estimates: “For purely
descriptive purposes, comparison of population-averaged coefficients may be acceptable. But if
the goal is to make inferences about causal relationships, a focus on subject-specific coefficients
seems more appropriate.”

PA and SS effects may be useful to researchers in different ways (Rodrı́guez 2008, 2015). To
illustrate this, we return to the example of comparing the SES effect on college completion between
populations—in this case, between two birth cohorts for which the availability of college differs
as a result of reforms in tertiary education. We make four assumptions. First, the population in
each cohort can be divided into two mutually exclusive groups of individuals: The first group has a

4Lee & Nelder (2004) similarly regard the conditional or SS model to be more fundamental (see also Allison 2009).
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low preference for going to college, the second has a high preference, and we assume that college
completion is more likely for individuals in the high preference group. Second, college preference
is unrelated to SES in both cohorts. Third, the fraction in the high preference group is larger in
the second cohort, perhaps as a result of educational reforms.5 Fourth, the underlying SES effect
expressed as an odds ratio for each preference group (the SS odds ratio) does not change over
cohorts.

Under these four assumptions, the SS odds ratios are the same in the two cohorts, whereas
the PA odds ratios (the unconditional odds ratio in each cohort) differ because of the changing
distribution of the college preference. In this situation, changes in PA effects depend on factors
unrelated to SES. The change in the PA odds ratios is descriptively true: The average college
completion response to a unit change in SES would indeed have declined over time, but the effect
of SES on college completion would nevertheless have stayed unchanged. The usefulness of the
PA and SS odds ratios depends on the question that is being addressed, but it is important not to
confuse the two.

SOLUTIONS: I. INTERPRETING COEFFICIENTS

Because NLPM coefficients are always attenuated (they are lower bounds to the true or underlying
coefficients unless all relevant covariates are included), it is difficult to interpret their magnitude
in substantive terms. We can, however, be confident of their sign, and their statistical significance
is also unaffected by the attenuation bias (Breen & Karlson 2013). Furthermore, the sizes of
coefficients of different covariates within the same NLPM can be compared because the attenuation
bias is the same for all of them (Train 2009). For the same reason, ratios of coefficients from the
same model will accurately reflect the relationship between the true or underlying coefficients.

Y-standardization has long been a popular approach among sociologists (McKelvey & Zavoina
1975, Winship & Mare 1984, Long 1997, Karlson 2015). Y-standardization refers to standardizing
NLPM coefficients to make them interpretable in the same way as OLS regression coefficients
that have been standardized on the outcome variable. The standardization in the NLPM is on the
latent outcome, Y ∗, not the observed, binary outcome:6

bYSTD = β

sd(Y ∗)
.

We can recover this coefficient from the logit or probit model. Using Equation 1, we can write
the variance of Y ∗ as

σ 2
Y ∗ = β2

1 var(X ) + var(ε).

Bearing in mind that β1 = b1s and that ε = s ω, the variance of Y ∗ is

σ 2
Y ∗ = s 2b2

1 var(X ) + s 2 var(ω) = s 2 [
b2

1 var(X ) + var(ω)
]

,

we can then recover the Y-standardized coefficient:

bYSTD
1 = β1

sd(Y ∗)
= b1s√

s 2[b2
1 var(X ) + var(ω)]

= b1√
b2

1 var(X ) + var(ω)
. 9.

5The reforms might make college completion less demanding and this may shift the preferences for some individuals toward
college completion.
6The “Y” in Y-standardization refers to the latent propensity, which we denote Y∗. In our terminology, the name for the
technique would be Y∗-standardization although we continue to refer to it as Y-standardization for consistency.
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The Y-standardized coefficient involves only estimable or known quantities. It has the same in-
terpretation as standardized coefficients in linear regression, and when the predictor variable of
interest, X, is binary, the Y-standardized coefficient equals the effect size measure known as Co-
hen’s D (Breen & Karlson 2013).

More recently, marginal effects have become popular, not least because they express relation-
ships on the probability scale and so are easy to interpret. The marginal effect refers to the expected
change in the probability of success, Pr(Y = 1), for a unit change in X. In the logit model, the
individual marginal effect is

bME
i = b logit p̂i (1 − p̂i ) , 10.

where b logit is the coefficient estimated from a logit model and p̂i is the predicted probability for the
individual unit (indexed by i ). From these individual effects, two marginal effects can be derived.7

One is the marginal effect at the mean of the other covariates in the model. This is calculated by
using the means of the covariates to estimate predicted probabilities and then using the formula in
Equation 10 to calculate the marginal effect. The other is the average marginal effect or average
partial effect (Wooldridge 2002). This is the average of the individual marginal effects (shown in
Equation 10). The two measures often yield substantively similar results, but while the marginal
effect at the mean is the effect for the possibly hypothetical person whose covariates all take the
average values, the average marginal effect is the marginal effect on average, i.e., for a person
picked at random. Thus, the marginal effect at the mean is conditional on holding covariates at
their mean, while the average marginal effect is sensitive to the particular distribution of covariates
in the population. Because marginal effects are unaffected by omitted covariates independent of
the predictor of interest (Cramer 2007), they do not suffer from the attenuation bias described
earlier.8

Both Y-standardized coefficients and average marginal effects provide readily interpretable
effect estimates. Returning to the example of the effect of SES on college completion, a Y-
standardized coefficient of 0.50 would tell us that, for a standard deviation change in SES, the
expected change in the underlying college propensity is half a standard deviation. An average
marginal effect of 0.1 would tell us that a standard deviation increase in SES increases the proba-
bility of completing college by 10 percentage points on average.

SOLUTIONS: II. COMPARING COEFFICIENTS ACROSS MODELS

Karlson et al. (2012) proposed the KHB (Karlson, Holm, and Breen) method as a way of assessing
the degree to which the addition of controls changes the impact of a predictor of interest. The logic
of the method is straightforward. We have two NLPMs: The first, or reduced, model includes
only X as a predictor, and the second, or full, model adds another predictor, Z, presumed to be
a confounder or mediator of the X-Y relationship. Its addition could change the coefficient for X
through both confounding and rescaling, but we can identify the effect of rescaling by fitting a
further model in which the predictors are X and the residuals from a linear regression of Z on X.
By construction, this residualized Z will be orthogonal to X and therefore cannot confound the
X-Y relationship. However, it will have the same conditional relationship with Y as the original Z,
and so the model will have the same error term and thus same scale factor as the full model. After

7A third option is to draw the predicted probabilities as a function of covariates (Long 1997). This allows researchers to inspect
possible nonlinearities that are neglected in the two marginal effect measures.
8Cramer (2007) also shows that marginal effects computed from the logit model are robust to deviations from the assumption
of a logistically distributed latent error term.
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identifying the effect of rescaling in this way, it then becomes possible to calculate the impact
of confounding, net of rescaling. Breen et al. (2013) show how this can be used to carry out a
path-analytic decomposition, into direct and indirect effects, of systems of equations estimated
using NLPMs. The method is implemented in a user-written Stata routine called KHB (Kohler
et al. 2011).

The KHB method, Y-standardization, and average marginal effects are all unaffected by rescal-
ing, so they can be used to measure the change in the effect of the predictor of interest when controls
are added. However, as Karlson et al. (2012) point out, this is not the only problem. If we assume
that the latent error term of, say, the full model, has a logistic distribution, then the error of the
reduced model cannot be logistic; its distribution will depend on the true distribution of the error
in the full model and the distribution of the variable(s) omitted from the reduced model. In their
simulations, Karlson et al. (2012, p. 300) find that their own method is unaffected by this (as they
explain, “our model compares the full model with a reparameterization of the full model, thereby
holding the error distribution constant across the full and reduced models”), whereas average
marginal effects, Y-standardization, and the linear probability model (LPM) are affected. This is
unlikely to be substantively important unless the difference in error distributions between the full
and reduced models is large, but because these distributions are unobservable we cannot know
how great the difference is.

SOLUTIONS: III. COMPARING COEFFICIENTS BETWEEN GROUPS

Solutions to the problems in comparing NLPM coefficients across groups have been reviewed
and assessed by Breen et al. (2014); they include the use of predicted probabilities (Long 2009)
and several approaches already discussed (marginal effects, Y-standardization).

The naı̈ve comparison of NLPM coefficients from different groups rests on the untestable
assumption of a common residual variance. However, as Allison (1999) points out, other cross-
group constraints will also serve to make the coefficients comparable: For example, if one coefficient
was known to be equal in all groups, this would identify group differences in the other coefficients.
To solve the cross-group comparison problem, Williams (2009) argues for using location-scale
models (McCullagh 1980) in which the residual variances themselves are modeled. However, these
models constrain the thresholds (identifying where the latent continuum is broken into distinct
categories) to be equal across groups, and without strong theory there is no reason to impose any
such constraint. Thus, comparisons of NLPM coefficients between groups rely on assumptions
that cannot be tested against the data.

Breen et al. (2014) show that one can recover the correlations between the predictors and
the latent Y ∗ from the parameters of NLPMs, and so one can also recover the standardized
regression coefficients. They discuss the circumstances under which these quantities might be
useful in making comparisons between groups or populations.

THE LINEAR PROBABILITY MODEL

When logit and probit models were introduced to sociologists they were often argued to be
preferable to the more straightforward LPM because the LPM is heteroskedastic (though this is
easily fixed using sandwich estimators) and the predicted probabilities are not bounded between 0
and 1. However, in recent years, because of its straightforward interpretation and also because of
the problems with NLPMs we have discussed, the LPM has made a strong comeback, especially
among economists (see, for example, Angrist & Pischke 2009). Because the LPM is a linear model,
it does not suffer from any of the interpretational problems that the scale factor introduces in logit
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and probit models. It models the probability of the outcome as a linear function of covariates and
therefore consistently recovers the conditional expectation of the outcome (Greene 2011). Perhaps
most importantly, when we use the LPM to analyze an RCT, regressing the dummy outcome on
the dummy treatment indicator will return an unbiased estimate of the ATE measured on the
probability scale.

LPM coefficients are closely related to average marginal effects derived from logit or probit
models. In models including only a binary predictor, the two will be identical.9 In models including
multiple predictors or continuous covariates, they will differ, but often not by very much, because
they use slightly different weighting schemes (Holm et al. 2015).

The many advantages of the LPM have made it an increasingly popular choice for modeling
binary outcomes. In an RCT with a binary outcome, the LPM coefficient measures the difference
in the probability of a positive outcome between treated and controls: It is an absolute effect
measure. However, effects can also be stated in relative terms. The odds ratio is one example.10

In contrast to LPM coefficients, the odds ratio depends on the baseline probabilities, and for
changing baselines these effect measures will also change even when these changes are unrelated
to the treatment dummy. This will not be the case for the LPM and therefore, more generally,
differences in LPM coefficients between populations or groups may not correspond to differences
using odds ratios.

PRACTICAL SUGGESTIONS

Interpreting coefficients from NLPMs presents researchers with some serious challenges that do
not exist for linear models. These challenges are not specific to whether one adopts a transforma-
tional or latent variable approach to NLPMs; in both cases, the magnitudes of their coefficients
depend on omitted variables even when these variables are independent of the predictor variable
of interest. For this reason, caution is called for in the interpretation of parameters from these
models. Based on our review of the recent literature, we suggest the following six items of practical
advice.

1. Researchers can always compare the magnitude of NLPM coefficients within the same model
because the effects of omitted covariates operate the same way on all coefficients (that is,
they are affected by a common scale factor).

2. The absolute magnitude of NLPM coefficients cannot be interpreted meaningfully because
it depends arbitrarily on residual variation or omitted covariates. However, because the
coefficients are always attenuated, their sign and statistical significance can be interpreted.
If, for example, an estimated coefficient is positive and statistically significant, then we know
that the true or underlying coefficient will also be positive and statistically significant.

3. For comparing NLPM coefficients across models fitted to the same sample, we recommend
using the method of Karlson et al. (2012), which provides a general way of controlling for
the effects of rescaling. The formulae and methods in Breen et al. (2013) can be used to

9More generally, in fully saturated models including only discrete covariates, the LPM and the logit model will yield the same
estimates of the predicted probabilities because they both describe the data perfectly.
10Yet another relative measure is the risk ratio or relative risk, which is defined as the ratio between the conditional means
of the binary outcome for treated and controls. In contrast to odds ratios, risk ratios are not affected by controlling for
orthogonal confounders (Greenland et al. 1999). Odds ratios and risk ratios will be very close to each other for rare outcomes,
and risk ratios can be recovered from odds ratios for common outcomes (see Greenland 2004). Risk ratios, however, are not
symmetrical, meaning that their values will differ depending on whether one evaluates the conditional probability of success
or of failure (Cummings 2009).
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decompose total effects into direct and indirect effects. Another option would be to abandon
NLPM coefficients altogether and instead use the LPM to obtain effects expressed on the
probability scale, as these are unaffected by the rescaling issue and have a very straightforward
interpretation.11

4. If we are concerned with empirical description, NLPM coefficients from the same model
fitted to different samples can be compared: They are population averaged statistics. But
if we care about effects, then the problem of comparing NLPM coefficients across models
fitted to different samples has no satisfactory solution. Generalized NLPMs—known as
location-scale or heterogeneous choice models—that allow the scale factor to vary between
groups depend on untestable assumptions. For certain comparisons, the methods based on
Y-standardization discussed in Breen et al. (2014) may be useful. LPMs can be used for group
comparisons because the magnitude of LPM coefficients does not depend on orthogonal
omitted covariates.

5. For RCTs with binary outcomes, Y-standardized coefficients will yield an effect size measure
known as Cohen’s D. The LPM will give effects on the probability scale.

6. When reporting and interpreting odds ratios, it is important to be aware of the distinction
between marginal and conditional odds ratios. There is not one odds ratio—rather, there
are many, depending on the covariates included in the model. Researchers should be explicit
about whether their research question is better addressed with conditional (SS) or marginal
(PA) odds ratios. For descriptive purposes, the latter may suffice, but when our interest is in
underlying mechanisms, the SS odds ratios will be appropriate.

FURTHER RESEARCH

In recent years, nonparametric regression techniques have become a popular alternative to con-
ventional regression techniques, particularly in economics. Nonparametric regression techniques
model the conditional expectation of the outcome at local points in the distribution of the pre-
dictor variable, and visual displays are often used to show the functional relationship between
two variables. These models can be extended to binary outcomes, in which case they model the
conditional probability at local values of the predictor variable. Because these techniques make
very few distributional assumptions they might be well suited to make robust comparisons across
groups. These methods may also potentially be combined with the KHB approach to yield robust
analyses of mediation and confounding.

The distinction between PA and SS models originates in the statistical literature on NLPMs for
repeated responses, that is, random effects or multilevel models (Neuhaus et al. 1991; Rodrı́guez
2008, 2015). These models and their applications in sociological research are reviewed in Guo &
Zhao (2000). The models exploit the clustering of the data by individuals or any other larger unit to
model the distribution of omitted covariates orthogonal to the predictor of interest. They therefore
provide estimates of SS effects (where subject in SS refers to the clustering unit), whereas other
approaches yield the PA effects (so-called generalized estimating equations). Thus, with clustered
data, researchers can evaluate the difference between the two in a concrete, empirical study. This
may be a fruitful research agenda in some sociological applications.

NLPMs appear in several techniques commonly employed by sociologists. In some cases, this
is innocuous. The first stage of the widely used Heckman approach to address sample selection bias

11The method of Karlson et al. (2012) extends to average partial effects, meaning that the method can also yield effects on
the probability scale.
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usually involves estimating a probit model. Here, the scaling issue does not cause problems because
the method uses the predicted probabilities, rather than the coefficient estimates, to correct for
nonrandom selection. In contrast, conclusions from discrete time event history models are based
on the interpretation of NLPM coefficients. Here, we are concerned with the parameters of the
model for the underlying latent variable (in this case, time) but we estimate a set of (usually) logit
models, one for each discrete time period, with the dependent variable being whether or not
the transition in question occurred in that period, given that the transition had not already been
made. It is widely appreciated that the successive loss of cases from the data can lead to bias in the
coefficient estimates (Vaupel & Yashin 1985, Cameron & Heckman 1998, Rodrı́guez 2015) but it
seems to be less appreciated that, for the same reason, the logit models in each period will differ in
their residual variance (see Holm & Jaeger 2011). One implication is that comparing coefficients
over time in discrete time event history models suffers from the same difficulties as comparisons
of NLPM coefficients between different groups. This is an area that would reward further study.
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