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Abstract

Recent years have seen the birth of sociogenomics via the infusion of molec-
ular genetic data.We chronicle the history of genetics, focusing particularly
on post-2005 genome-wide association studies, the post-2015 big data era,
and the emergence of polygenic scores. We argue that understanding poly-
genic scores, including their genetic correlations with each other, causation,
and underlying biological architecture, is vital. We show how genetics can
be introduced to understand a myriad of topics such as fertility, educational
attainment, intergenerational social mobility,well-being, addiction, risky be-
havior, and longevity.Althoughmodels of gene-environment interaction and
correlation mirror agency and structure models in sociology, genetics is yet
to be fully discovered by this discipline. We conclude with a critical reflec-
tion on the lack of diversity, nonrepresentative samples, precision policy ap-
plications, ethics, and genetic determinism. We argue that sociogenomics
can speak to long-standing sociological questions and that sociologists can
offer innovative theoretical, measurement, and methodological innovations
to genetic research.
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INTRODUCTION

Although sociogenomics—the combination of genetics and sociology—has been deliberated for
decades (Conley 2016,Eckland 1967, Freese 2008,Guo 2006,Udry 1995), dramatic advances have
taken place in the last five years.1 Radical drops in the cost of genome sequencing and growth in
computational power precipitated an unprecedented explosion of data, novel methods, applica-
tions, and results (Conley & Fletcher 2017). As of 2020, markers for genetic loci2 were isolated
in over 4,500 studies (Mills & Rahal 2019, 2020). Traits (termed phenotypes in this literature)
ranged from height (Wood et al. 2014) and body mass index (BMI) (Locke et al. 2015) to behav-
iors often studied by sociologists such as educational attainment (EDU) (Lee et al. 2018), fertility
(Barban et al. 2016, Mathieson et al. 2020, Mills et al. 2020b), well-being (Baselmans et al. 2019),
risky behavior (Karlsson Linnér et al. 2019), same-sex sexual behavior (Ganna et al. 2019), and
substance use (Liu et al. 2019). For the first time in history, sociologists are able to ask and test
fundamentally new types of questions and also falsify previous results (Mills 2019).

Sociology has had a fractious relationship with biology and genetics (Duster 2006, Freese
& Shostak 2009). Udry (1995) attributed this tension to sociology’s Durkheimian boundaries,
where “the determining cause of a social fact should be sought among the social facts preced-
ing it” [Durkheim 1938 (1895), p. 110)]—or in other words, self-imposing deliberate blinders to
the nonsocial. While sociogenomic findings are increasingly embraced by top sociology journals
(Gaydosh et al. 2018, Liu 2018, Wedow et al. 2018), some claim that it is a dangerous enterprise
(Bliss 2018, Duster 2006).

Since the publication of previous reviews on genetics and sociology (Conley 2016, Freese &
Shostak 2009), the field has experienced radical shifts in the availability of data, new methods,
and topics under study. We do not explore previously covered topics such as geneticization,
homophily, and the genetics of geography and race, yet there remains some inevitable overlap.
Although this review is aimed at sociologists, it occupies an interdisciplinary space that demands
scientific omnivores; we thus expand our review beyond sociology journals, albeit narrowing in
on sociological topics. Readers desiring a primer in human genetics, evolution and migration,
gene-environment interaction (G×E), and instructions on how to carry out applied statistical
applications can refer to introductory texts specifically aimed at social scientists (Mills et al. 2020a).

We first chronicle the history of this research and key milestones and then focus on the
more recent molecular genetic era. We then unpack the big data revolution, multiple genetic
discoveries, and the rise of polygenic scores (PGSs) and their potential application in sociology.
Key results are reviewed, with an emphasis on core traits of interest to sociologists. G×E and
gene-environment correlation (rGE) theories are then introduced with exemplar applications
in addition to the enduring challenges. We then balance our review with a critical reflection on
the lack of diversity, nonrepresentative samples, ethics, genetic determinism, potential for policy
applications, public understanding, and risks of sociogenomics. We conclude with anticipating
the future of this research.

A BRIEF HISTORY OF BEHAVIOR GENETICS

Early Genetic Research

Abrief history of human genetic research is illustrated inFigure 1. Early research from themid- to
late-1800s (Galton 1869) and twentieth century ( Jensen 1968) focused largely on diseases but also

1The term sociogenomics was first used in 2005, but in relation to honeybees (Robinson et al. 2005).
2Genetic loci refer to locations on the genome, which are often single-nucleotide polymorphisms (SNPs).
SNPs are the way we examine single-base differences or markers in DNA that allow us to examine variation in
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Figure 1

A brief history of genetics and sociogenomics from Galton, twin and family studies, candidate genes, genome-wide association studies,
polygenic scores, causal modeling, and G×E (gene-environment interaction) to increased diversity and better prediction.

had a preoccupation with differences in cognitive ability and intelligence (Eckland 1967), often
between racial and socioeconomic groups.This research generally stemmed from intelligence tests
and attempted to use biological difference to justify punitive policies, resist desegregation and
immigration, and reinforce racial and socioeconomic inequalities (Gillborn 2016, Martschenko
et al. 2019).

Heritability and Twin Studies

Heritability forms the basis of much of our understanding of the genetic and socioenvironmental
influences on outcomes and is defined as the proportion of variation of a trait in a population that
is attributable to genetic differences. From the early 1900s, twin studies were used to derive twin
heritability. Twin heritability is estimated by comparing a trait’s correlation between identical
[monozygotic (MZ)] twins, who share virtually 100% of their genetic material, with that of
fraternal [dizygotic (DZ)] twins, who share ∼50% of segregating genetic material. If a trait
is heritable, holding environmental influences constant, individuals who are more genetically
related should be more similar. An online atlas of 17,894 twin heritability estimates showed
higher heritability for physical traits such as height (60%) and lower heritability for what are

a population. For a gentle introduction to terminology in genetics for social scientists, see Mills et al. (2020a,
chapter 1).
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often referred to as complex behavioral traits (e.g., 30% for societal values) (Polderman et al.
2015). Twin models make various assumptions, including no assortative mating, no G×E or rGEs,
the equal environment assumption, and have other issues beyond the scope of this review. While
some of these assumptions have been heavily criticized, sociological studies barely find evidence,
for example, of a violation of the equal environment assumption (i.e., that MZ twins share envi-
ronmental influences to the same extent as DZ twins) (Conley et al. 2013).We discuss alternative
estimates of heritability based on molecular genetic data and relaxing key assumptions shortly.

Candidate Gene Studies

Early candidate gene studies focused on predefined loci (often fewer than 10) based on the loci’s
supposed biological functions. Such studies were conducted largely in psychology on traits such as
externalizing and antisocial behavior (Caspi 2002), with an almost exclusive focus on neurotrans-
mission (around 90% of studies) (Duncan et al. 2014), and also in sociology (Guo et al. 2008).
A spate of early candidate gene studies were stimulated by the now infamous Caspi (2002) pub-
lication on the 5-HTTLPR region and sensitivity to stressful life events. Most of these studies
have been debunked (Duncan et al. 2014). Failure to replicate such studies was attributed to most
hypotheses being wrong, increased risk of false positives due to statistical significance norms, seri-
ously underpowered studies, and a strong publication bias toward positive findings. This situation
even led the Editor of Behavior Genetics to write, “many of the published findings in the last decade
are wrong or misleading” (Hewitt 2012, p. 1).

Candidate gene studies, however, can still be useful for certain traits or diseases such as
Alzheimer’s (APOE), obesity (FTO), and ability to metabolize alcohol (ADH1B/ALDH2), where
effect sizes are large and associations are replicated. The APOE gene, for example, explains 13%
of the heritability in Alzheimer’s disease, whereas the presence of each risk allele translates into
a fivefold increase in the risk of developing Alzheimer’s (Adams et al. 2016). In contrast, in more
complex traits associated withmultiple genes (i.e., polygenic traits), such as educational attainment
or reproductive behavior, clear candidate genes are uncommon. For example, the first three dis-
covered single-nucleotide polymorphisms (SNPs, pronounced “snips”) for one of the first EDU
genome-wide association studies (GWASs) explained only 0.2% of the overall variance in that trait
and an average increase in educational level by only one month per allele (Rietveld et al. 2013).

SOCIOGENOMICS AND THE DYNAMIC ERA OF MOLECULAR
GENETICS

The birth of the GWAS (pronounced “gee-woz”) in 2005 allowed researchers to identify associ-
ations between outcomes (phenotypes) and SNPs. SNPs are measures of single-base differences,
or markers, and are sometimes referred to as genetic loci in DNA that allow us to examine ge-
netic variation in a population. A GWAS is a method that adopts an unbiased, hypothesis-free
approach to discover SNPs that are associated with a trait—a procedure sociologists often term as
data-mining. To be considered a hit or discovery, the loci need to meet a significance threshold of
p < 5 × 10−8 (i.e., p < 0.00000005), which is Bonferroni corrected for multiple testing.3 A meta-
analysis of all data is performed, often combining summary statistics from multiple data sets to
obtain the largest sample possible. In 2018, the MTAG method (Multi-Trait Analysis of GWAS)
(Turley et al. 2018) and genomic structural equation modeling (SEM) (Grotzinger et al. 2019)

3It is p < 5 × 10−8 since only a small fraction of loci are associated with the outcome, so it is akin to testing
700,000–800,000 variants due to strong correlations between genotypes at nearby genetic variants due to LD
(see footnote 4).
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Figure 2

The growth of genome-wide association studies (GWASs) from 2007 to 2018. (a) Number of study accessions published per quarter
over time, colored according to sample size to show the growth of larger (100,001≤ n) GWASs. (b) A strong positive correlation
between the number of associations found and the number of participants used in GWASs over time. (c) Growth in the number of
unique traits examined as well as in the number of unique journals publishing GWASs over time. Figure adapted from Mills & Rahal
(2019) under the Creative Commons Attribution (CC BY 4.0) International license, derived from National Human Genome Research
Institute–European Bioinformatics Institute (NHGRI-EBI) GWAS Catalog, available at https://www.ebi.ac.uk/gwas/. Reuse of their
data is subject to the terms of use for European Molecular Biology Laboratory–European Bioinformatics Institute (EMBL-EBI)
services. For a daily updated version, see https://www.gwasdiversitymonitor.com, as described by Mills & Rahal (2020).

further advanced this approach by allowing joint analyses of summary statistics on related traits
to increase the number of discovered SNPs and understand genetic correlations of related traits.

The Genome-Wide Association Study Big Data Revolution

Since 2005, momentous changes have occurred in the field of statistical genetics in the availability
of the type and size of data, infusion of new phenotypes, more powerful genotyping and com-
putational ability, and novel statistical methods. Rapid computational and technological progress
meant that it was now possible to collect genetic data cheaply. Based on a previous review of
nearly all 4,000 GWASs as of late 2018 (Mills & Rahal 2019), Figure 2 shows the growth in
GWASs over time by sample size, particularly since 2016, as well as associations and participants
and the number of traits and journals where this research is published. Readers can also refer to
an online, real-time dashboard to explore all GWASs to date by various characteristics over time
(https://www.gwasdiversitymonitor.com, as described by Mills & Rahal 2020). Very large data
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sources emerged, particularly as of 2017, namely the 500,000-sample UK Biobank (Bycroft et al.
2018), as well as participation in research by direct-to-consumer (DTC) genetic companies with
large samples such as 23andMe. Since any particular SNP accounts for less than 0.03% of varia-
tion of a trait within a population for behavioral traits (Chabris et al. 2013), it was also recognized
that large and statistically well-powered samples were required to detect more genetic variants
and increase precision, particularly for complex polygenic traits (Dudbridge 2013).

The Rise of Polygenic Scores

Derived fromGWAS summary statistics, a PGS is a single quantitative variable that summarizes an
individual’s genetic predisposition to a trait and is themain tool or variable that sociologists can use
to integrate genetics into their research. Although there are monogenic diseases (i.e., one genetic
variant causing the disease) such as Huntington’s, the genetic architecture of complex behavioral
traits that sociologists are oftenmore interested in (e.g., education, fertility) is extremely polygenic.
Polygenicity refers to multiple genetic variants (SNPs) being associated with the outcome, with
each having a tiny association (Boyle et al. 2017). A PGS is a linear combination of multiple SNP
effects on a trait across the whole genome, weighted by the GWAS effect sizes. Formally, a PGS
is the weighted sum of a person’s genotype atM loci. A PGS for individual i can be calculated as
the sum of the reference or risk allele counts aij (0, 1, or 2) for each SNP j = 1, . . . M, multiplied
by a weight wj ,

PGSi =
M∑

j=1

ai jw j ,

where the weights wj are transformations of GWAS coefficients. A PGS is not only linear but
usually additive, because we weight each risk allele for each SNP included in the score equally,
and given the large number of SNPs, the score follows a normal distribution. An introduction to
PGSs and how to construct and use them can be found elsewhere (Dudbridge 2013, Euesden et al.
2014, Mills et al. 2020a, Ware et al. 2018).

Missing and Hidden Heritability

In the early 2010s, GREML (genome-based restricted maximum likelihood) analyses leveraged
the investigation of the genetic similarity of unrelated individuals, transcending the need to use
twin data for this purpose (Yang et al. 2011). Moving beyond the twin heritability estimates de-
scribed previously, this allowed the calculation of SNP heritability, which is the proportion of
trait variance of the total narrow-sense or additive heritability contribution of a trait based on all
measured SNPs. In addition to this, there is also GWAS heritability, which is the proportion of
variance accounted for by genetic variants derived from a GWAS discovery and combined into a
PGS.

A general surprise was that the heritability estimates derived from GWASs were considerably
lower than heritability estimates from twin and SNP heritability, prompting debates about missing
or hidden heritability (Lee et al. 2011, Manolio et al. 2009, Tropf et al. 2017). Studies of same-sex
sexual behavior, for instance, had a twin heritability of 40% and a SNP heritability of 8–25%,
with the GWAS PGS explaining less than 1% (Ganna et al. 2019, Mills 2019). SNP heritabil-
ity measures the potential ceiling of genetic explanatory power if the GWAS was statistically well
powered enough to capture all polygenic effects of the measured SNPs, among other issues (Wray
&Maier 2014). Sociologists have also shown that a key reason for the drop in heritability estimates
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is due to the potential watering down of GWAS heritability, since GWASmeta-analyses are based
on combining data from multiple historical periods, birth cohorts, and countries. This, in turn,
introduces heterogeneity in genetic effects, most likely due to G×E (Tropf et al. 2017). Assuming
homogeneity in the GWAS meta-analysis across often divergent time periods and institutional
contexts highlights effects shared across them, while twin and SNP heritability estimates are typ-
ically based on less heterogeneous data, i.e., from one country or even specific birth cohorts, that
also capture context-specific effects.

Heritability is also often misinterpreted. Crucially, it is not an individual-level estimate; rather,
it is about the population from which calculations emanate, and it is also not equivalent to inher-
itance (Visscher et al. 2008). Since heritability estimates do not isolate specific genetic variants,
they cannot be easily used to model individual or subgroup mechanisms, which is unsatisfying for
sociologists’ focus on underlying mechanisms. Low heritability also does not necessarily entail
the absence of genetics (Visscher et al. 2008). Although the number of eyes you have is largely ex-
plained by genetics, since it is the same in everyone and has been suppressed by natural selection,
there is no genetic variance and hence zero heritability. If there is variance in the number of eyes,
it is only due to environmental causes (i.e., losing an eye).Heritability also does not relate to mean
differences in or between populations. The Dutch grew 20 centimeters (almost 8 inches) over the
past 200 years, and although height has a strong genetic basis and there is evidence of natural
selection, most of the change is attributed to environmental shifts in diet and health (Stulp et al.
2015). Since estimates are population specific, they provide relatively little information on the ef-
fects of social environments such as family, education, employment and gender systems, welfare
regimes, historical period, and birth cohort variation (de Vlaming et al. 2017, Tropf et al. 2017).

Genetic Correlations

Using amethod called linkage disequilibrium (LD) score regression,which exploits the LD4 struc-
ture of the data to show how likely different traits are to share the same genetic loci, researchers
started to compare the summary statistics from GWAS discoveries to reveal genetic correlations
and similarities across traits (Finucane et al. 2015). Figure 3 illustrates correlations for the most
recent GWAS of age at first birth (AFB) (Mills et al. 2020b) and EDU (Lee et al. 2018) for 22
related traits, grouped by various categories.5 If the genetic correlation between two traits is 1, all
genetic variance in trait 1 and 2 has a common base. If the genetic correlation is 0, the genetically
based variance between trait 1 and 2 is independent.

Focusing on AFB, we see strong positive correlations and genetic overlap particularly with the
behavioral trait of EDU [0.74, standard error (SE) 0.01] and to some extent openness to experience
(0.19, SE 0.07) but also reproductive traits such as age at menarche (0.17, SE 0.03) and menopause
(0.19, SE 0.03). There is also a strong positive correlation with AFB and age at initiation of smok-
ing,with both variables capturing a unique window into adolescence and early adulthood (0.73, SE
0.03). Logically, there is a strong negative correlation with number of children ever born (NEB)
(−0.69, SE 0.02), since later AFB is tied with lower overall levels of fertility and with traits such
as ever smoking (−0.47, SE 0.02) and BMI (−0.27, SE 0.01).

4LD is a measure of the nonrandom association between alleles at different genetic loci at the same chromo-
some in a given population. An allele refers to each of the two or more alternative forms of a SNP, found at the
same place on a chromosome, that arise by mutation. SNPs are in LD when the frequency of association of
their alleles is higher than expected under random assortment. LD therefore concerns patterns of correlations
between SNPs.
5Results are based on the most recent GWAS of all traits, with references available in Mills et al. (2020b).
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Genetic correlations of age at first birth (orange) and educational attainment (blue) with various traits. Horizontal bars represent 95%
confidence intervals.

The genetic correlations between AFB and EDU have a striking overlap, explored in detail
elsewhere (Mills et al. 2020b).We see a clustering of staying in education longer with postponing
first birth; having fewer children; later sexual intercourse; being more open, less neurotic, or less
depressed; higher well-being; being less likely to have ever smoked (and if they did,much later and
less); taller; higher birth weight; and lower BMI and waist-hip ratio. With strong caveats about
causality, population stratification, selection in environments, social mediators, and diversity of the
data, an unforgiving interpretation is that we seem to have isolated middle-class genes. Crucially,
a sociologist immediately sees that genetic correlations are not necessarily measuring only genetic
effects. Correlations are likely picking up multiple environmentally mediated pathways and sam-
ple selection in addition to ubiquitous biological pleiotropy (see the next section). The fact that
genetic results implicitly contain multiple socio-environmental factors could explain how lower
socioeconomic status, for instance, is correlated with higher levels of substance use, risky and
externalizing behavior, unhealthy eating, and the inability to realize one’s educational potential,
explored shortly in our section titled Gene-Environment Interplay.

Understanding Shared Genetic Architecture

A crucial element to understanding genetic correlations and interpreting PGS estimates is the
shared genetic architecture of traits (van Rheenen et al. 2019, Young et al. 2019). Two aspects are
important in this respect: genotype-phenotype (trait) associations and genetic pleiotropy across
traits.
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Genotype-phenotype associations.Genotype-phenotype associations can emerge for several
reasons. First, there are direct effects, which are biological. For example, some SNPs isolated for
late AFB and low number of children in men have been associated with lower sperm quality and
mobility in downstream biological analyses (Barban et al. 2016).

Second, there might be environmental confounding due to population stratification, which
refers to the population structure or patterns found in the genetic data that allow us to determine
an individual’s origins and that are often mirrored by geography (Conley 2016, Novembre et al.
2008). A common example used to explain this is the so-called chopstick gene (Hamer & Sirota
2000). If we ran a global GWAS on chopstick usage, we would identify variants more prevalent in
Southeast Asia. This would not be due to direct genetic effects but rather rGE for cultural rea-
sons and also differences in allele frequencies of geographically situated groups due to population
stratification and historical migration patterns (Hamer& Sirota 2000). For theUnited States, state
clustering has been observed for genetic variants associated with smoking and EDU (Domingue
et al. 2016). Another study illustrates that genetic clustering in the United Kingdom reflects re-
cent migration driven by socioeconomic status (Abdellaoui et al. 2019). In our upcoming section
titled Gene-Environment Correlation, we discuss the related topic of social genetic effects and
sorting.

Third, there might be indirect effects, or what has been termed genetic nurture (Kong et al.
2018).Using genetic data from parents and offspring,Kong et al. (2018) demonstrated that parents
transfer not only their genetic material related to EDU. Rather, through nontransmitted genetic
material, they also produce environmental conditions of nurture conducive to higher education
and social mobility, discussed in more detail shortly. Finally, due to assortative mating such as
by education, the effect of a causal variant may also capture these correlated inherited variants,
potentially resulting in an overestimation of direct genetic effects (Robinson et al. 2017).This links
with the literature on assortative mating in sociology related to population composition (Schwartz
2013), with some research already undertaken but considerably more room for sociologists to
explore (Domingue et al. 2014).

Pleiotropy.Genetic correlations are related to pleiotropy in biology, which is when one gene is
associated with two or more traits. Pleiotropy is now considered to be ubiquitous, leading some
to argue that gene regulatory networks are so interconnected that all genes affect the functions of
others, with pleiotropy so pervasive that we should think in terms of not polygenic but omnigenic
models (Boyle et al. 2017). A recent study examining over 4,000 GWASs in 558 traits found that
90% of trait-associated genetic loci overlap with loci from multiple traits (Watanabe et al. 2019).

Three pleiotropy scenarios have been described: horizontal (biological), vertical (mediated),
and spurious (van Rheenen et al. 2019). Horizontal pleiotropy refers to associations that could be
spurious due to genes that have a common cause, or in other words, amodel of when a specific gene
has a direct effect on two traits. For example, certain SNPsmay influence both bipolar disorder and
neuroticism or, as in Figure 3, both AFB and years of EDU could be influenced by personality
or risk aversion traits. Vertical or mediated pleiotropy is a genetic correlation that emerges if
the genetic variants are, for instance, causal for EDU but also associated with fertility behavior
due to a causal effect of education on fertility behavior. Spurious pleiotropy is when there is no
direct link between a genetic variant and multiple phenotypes and also no direct link between the
phenotypes. For example, it could be that SNPs that have a causal effect on both smoking and risk
behavior are in close proximity but are not independently inherited (due to LD).This would result
in a spurious association between the outcomes, and the genetic basis is divergent (Young et al.
2019).
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From Correlation to Causation

Until now, the discussion has largely focused on correlation, the size and direction of the genetic
association between variables, whereas there has been increased adoption and development of
causal models (Conley & Zhang 2018). A variety of multivariate causal sociogenomic models have
applied direct, reverse, bidirectional,mediation, andmoderationmodels (for details, seeMills et al.
2020a, chapter 2).

Mendelian randomization (MR) is one of the most widely used statistical techniques in this
area to examine causal effects and uses PGSs as an instrument, thereby exploiting the random
assignment of an individuals’ genotype at conception (Davey Smith 2005). MR is essentially an
instrumental variable (IV) approach, statistically akin to a randomized control trial. The IV in
MR assumes that it is associated with the exposure but not with any confounder of the exposure-
outcome association and contends that there is no causal pathway from the IV to the outcome
other than via the exposure.

MR is widely applied but often suffers from its inability to meet basic model assumptions. One
of the main violations is the exclusion restriction assumption, which assumes that the only way
in which the instrument should affect the outcome is via the exposure. Yet since PGSs are the
sum of many genetic effects scattered across the genome (with widespread pleiotropy and biolog-
ical pathways less often understood), it is likely that the PGS will violate this assumption. One
recent solution has been MR-Egger, which tests for pleiotropic violation of the exclusion restric-
tion assumption via an unconstrained intercept of a regression of the gene-outcome on the gene-
exposure associations (Burgess & Thompson 2017). The intercept from MR-Egger regression is
interpreted as the average pleiotropic effect, with a nonzero intercept indicating the presence of
pleiotropy and subsequent violation of the exclusion restriction assumption.6 Another recent ex-
tension is MR-TRYX (from TReasure Your eXceptions), which exploits horizontal pleiotropy to
identify alternative causal pathways (Cho et al. 2020).

An extension of the MR framework is genetic instrumental variable regression (GIV) (DiPrete
et al. 2018), which aims to control for biological pleiotropic effects. The method splits a GWAS
sample into two independent subsamples and estimates two separate conditional PGSs. One PGS
is then used to instrument for the other, deriving a new estimated PGS (GIV) free of measurement
error that can be used in the second stage of analysis.

Applications usingMR abound. A creative study was the interaction of the education PGS with
the IV of veteran status from the US Vietnam War–era draft lottery (Schmitz & Conley 2017),
which found that veterans with below-average PGSs had fewer years of education than compara-
ble nonveterans. This suggested that the exogenous environmental influence of the draft lottery
induced heterogeneous treatment effects by genetic disposition. Using the education PGS, other
research found a causal negative effect of education on allostatic load (exposures that accumulate
across the life course), BMI, and HbA1c (average blood glucose levels) (Ding et al. 2019). Another
study by Davies et al. (2018b) used a regression discontinuity design for PGSs and a school reform
to investigate the causal effects of staying in school for longer or shorter periods of time on health
outcomes. Staying in school reduced the risk of diabetes and mortality, but there was evidence of
violation of model assumptions, such as a causal effect of height on EDU, likely due to assortative
mating.

A recent technique is genomic SEM, which interrogates the underlying causality of correla-
tions when fitting genetic multivariate regression models (Grotzinger et al. 2019). It estimates a

6There are also other techniques, such as a weighted median method that permits valid genetic variants to
contribute more weight to the analysis and avoid the estimate being influenced by noisy and invalid genetic
instruments (Bowden et al. 2016).
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genetic variance-covariance matrix from GWAS summary statistics for multiple traits using mul-
tivariate LD score regression. For sociologists, this type of model may seem more familiar, since
it requires that theory and an understanding of causal mechanisms are specified in advance. Ge-
nomic SEM is not a method to infer causality per se, but rather a useful tool to estimate assumed
causal relationships and compare how these theoretical models fit the data. The researcher speci-
fies causal genetic pathways among multiple traits, producing estimates of the genetic correlation
of X with Y, independent of Z. Recent applications include how the genetic relationship between
psychiatric traits [e.g., attention deficit hyperactivity disorder (ADHD)] and externalizing behav-
ior on age at first sex and AFB is potentially mediated by EDU (Mills et al. 2020b). There are also
many additional useful functions of the software such as increasing the power of GWAS findings
or identifying variants that are common or heterogeneous across various traits. A recent study used
Genomic SEM, for instance, to estimate GWAS-by-subtraction for non-cognitive skills by residu-
alizing SNP associations with educational attainment independent of cognitive ability (Demange
et al. 2020).

GENOME-WIDE ASSOCIATION STUDIES OF SOCIOGENOMIC
BEHAVIORAL OUTCOMES

How Sociologists Can Apply Genetic Discoveries in Sociological Research

Themost relevant application of recent genetic discoveries for empirical sociologists entering this
area of research is the application of PGSs derived from the summary statistics of large GWAS
discoveries. In this section, we introduce the most recent results on selected traits relevant to
sociologists, which are often embraced by neighboring disciplines but yet to be fully discovered
by sociologists. Since there are thousands of traits discovered, mostly related to diseases, we cover
only a fraction of the discovered behavioral outcomes.

Data and computing requirements.To undertake this research, an obvious requirement is a
data set that contains both genetic data and the trait of interest. Several data archives exist such
as the US-based dbGaP or METADAC in the United Kingdom. Data available for public release
by certified researchers include the UK Biobank, the Health and Retirement Study (HRS), Add
Health: National Longitudinal Study of Adolescent to Adult Health, theWisconsin Longitudinal
Study (WLS), and Understanding Society: The UKHousehold Longitudinal Study (UKHLS). A
list of around 2,000 data sources from the largest GWAS to date can be found elsewhere (GitHub
site linked in Mills & Rahal 2019).7 Since genomic data are truly big data, computational de-
mands are high and generally demand moving to a cluster computing environment and arranging
considerable storage.8

Obtaining genome-wide association study summary statistics. All GWAS discoveries can be
interactively explored in the NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/), the
Atlas of GWAS Summary Statistics (http://atlas.ctglab.nl; Watanabe et al. 2019), and a dash-
board searchable by trait that focuses on GWAS ancestry and geographical diversity (https://

7A list of around 2,000 of the most used data sources for the largest one-third of GWASs between 2005 and
2018 linked with Mills & Rahal (2019) can be found here (https://github.com/crahal/GWASReview/blob/
master/tables/Manually_Curated_Cohorts.csv).
8The imputed data of the UK Biobank, for instance, are around 2.1 terabytes, which then scale in a linear
fashion with the number of SNPs and individuals. Although computing time is of course highly dependent
on the type of analysis, for a simple association analysis, running a standard (BOLT-LMM) association on the
UK Biobank takes around 100 MB of RAM and several days to run if it is given eight processors to use.
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www.gwasdiversitymonitor.com;Mills &Rahal 2020). In some cases, expertly constructed PGSs
are already provided with the data release (e.g.,HRS, AddHealth,WLS). If the constructed scores
are not available, most summary statistics can be found at the GWAS Catalog website. Alterna-
tively, a GWAS of virtually all traits in the UK Biobank has been made available online by Ben
Neale’s lab (http://www.nealelab.is/uk-biobank/). If only raw summary statistics are obtained,
it is the task of the researcher to create PGSs, which requires advanced skills, particularly if adopt-
ing a Bayesian approach using LDPred (Euesden et al. 2014,Mills et al. 2020a, Vilhjálmsson et al.
2015). Researchers should also ensure that if the data set where the PGS will be applied was in
the original GWAS discovery, it must be removed before calculating the PGS (for details, see
Mills et al. 2020a, chapters 5, 10). The inclusion of genetic variables into statistical models also
needs to be conducted with considerable care, with the introduction of additional control variables
(e.g., principle components), and applied only within ancestry groups (Martin et al. 2017), with
increasing acknowledgment that PGSs may also vary by age, sex, and socioeconomic status within
ancestry groups (Mostafavi et al. 2020,Mills et a. 2020b) or across birth cohort and country (Tropf
et al. 2017).

Educational Attainment, Cognitive Traits, and Household Income

Socioeconomic markers are core topics within sociology. As of 2020, three GWASs examined
EDU, defined by years of education and typically inferred from country-specific international
standard classification of education measures. The first GWAS appeared in 2013 (Rietveld et al.
2013), with a second study of around 300,000 individuals identifying 74 genetic loci (Okbay et al.
2016b), followed by a 2018 study that included 1.1 million individuals and identified around 1,300
loci (Lee et al. 2018). The combined PGSs for the latest study predicted around 11% of the total
variance (incremental R2), which neared R2 effect estimates of classic predictors in sociology such
as parents’ education (19%), cognitive ability (14%), and income (6%). A series of related GWASs
have been conducted on general cognitive ability (148 loci) (Davies et al. 2018a), intelligence
(Savage et al. 2018), and noncognitive skills (Demange et al. 2020). Additional GWASs include
social deprivation and household incomemeasured in 112,151 individuals in the United Kingdom
(Hill et al. 2016), extended in 2019 to find 149 loci for income in a larger sample (Hill et al. 2019a).
Examples of studies applying these scores are discussed in the section titled From Correlation to
Causation and are addressed in later sections.

Reproduction, Fertility, and Sexual Behavior

There is a history of integrating biology into the study of fertility and sexual behavior, particularly
in demography (Kohler et al. 1999). Previous twin studies demonstrated that fertility was highly
heritable (up to 40%) across multiple cohorts and countries (Mills &Tropf 2015). SNP heritability
is 15% for AFB and 10% for NEB (Tropf et al. 2015). In 2016, the first GWAS on AFB and
NEB was conducted on samples of around 250,000 (AFB) and 345,000 (NEB), identifying 10
independent loci for AFB and 2 for NEB (Barban et al. 2016).

This research was extended in 2020 by two considerably larger studies. One was of AFB
(∼540,000) and age at first sexual intercourse (AFS) (∼389,000) (Mills et al. 2020b). The most
recent study isolated almost 100 and 300 loci for AFB and AFS, respectively, and additional sex-
specific loci,with an explained variance of the PGSs of 5–6%,once again edging toward the predic-
tive power of classic demographic and sociological variables. A second extension examined NEB
(∼717,000) and childlessness (∼450,000), identifying almost 50 new loci but uniquely linking the
contemporary findings to ancient genome data, showing evidence of natural selection (Mathieson
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et al. 2020). Related work includes age of onset at menarche (Perry et al. 2014), age at menopause
(Stolk et al. 2012), and age at voice breaking for boys (Day et al. 2015).

Multiple applications exist, such as how a higher PGS propensity toward younger childbearing
predicts teen pregnancy (Belsky et al. 2019) or is higher for girls raised in homes with an absent
father (Gaydosh et al. 2018). Others show how a later AFB PGS is linked to longevity (Mills
et al. 2020b, Mostafavi et al. 2017), to a longer healthy life span (Zenin et al. 2019), and with
infertility and hormonal traits such as sex-steroid receptors (Maney 2017). An increase in one
standard deviation of the PGS ofNEB is associatedwith a decrease of around 9% in the probability
of remaining childless for women (Mills et al. 2018). One-standard-deviation increases in the age
at first sexual intercourse and birth PGSs are associated with a 7.3- and 6.3-month delay in sexual
debut and age at birth, respectively (Mills et al. 2020b).

Well-Being and Psychological Traits

Psychological traits are a large area of research in this field, with only a fraction discussed here.
A 2016 study of well-being that found 3 variants (Okbay et al. 2016a) was eclipsed by another
with 2 million cases that found 304 signals (Baselmans et al. 2019). Other studies have exam-
ined self-reported health (Harris et al. 2016), lack of perseverance, and impulsivity (Sanchez-
Roige et al. 2019). Considerable research has examined personality dimensions such as neuroti-
cism (Baselmans et al. 2019), with some studies showing that PGSs related to lower anxiety, ten-
sion, and worry are associated with genetic variants of better self-rated health, higher intelligence,
and longer life (Hill et al. 2019b). Others have found a genetic correlation between ADHD, ex-
ternalizing behavior and substance use (e.g., early smoking) with earlier sexual intercourse and
births (Mills et al. 2020b). Several large studies have also been published on depressive symptoms
(Baselmans et al. 2019).

Risk Tolerance, Risky Behavior, and Addiction

Risk tolerance and risky behavior, often related to substance use, externalizing behavior, and be-
havioral disinhibition, particularly in adolescence, is another sizeable area of research. In 2019,
the largest study on risk tolerance was published, which isolated 99 genetic loci (Karlsson Linnér
et al. 2019), looking at related traits such as risk-taking tendency, adventurousness, automobile
speeding, and number of sexual partners. In another study of more than 1.2 million individuals,
566 genetic variants were detected associated with multiple stages of tobacco use (initiation, ces-
sation, level) and alcohol use, of which 150 locations were shared between traits (Liu et al. 2019).
Interestingly, smoking variants increased the risk for many health conditions, while alcohol use
showed a negative association. The genetics of smoking has been a strong area of research, since
plausible biological pathways that control nicotinic, dopaminergic, and glutamatergic neurotrans-
mission were found. This has resulted in multiple applications within sociology, often focusing on
G×E (Boardman et al. 2010, 2011; Fletcher 2012). Other recent studies have found variants re-
lated to alcohol dependence and consumption (Kranzler et al. 2019, Liu et al. 2019) or links with
risky behavior and early substance use with early sexual intercourse and births (Mills et al. 2020b).

Longevity- and Mortality-Related Traits

Ageing, mortality, morbidity, and healthy life spans are other substantial areas of research. Recent
findings isolated 25 loci related to parental (mother’s and father’s) longevity, with overlaps of 8
loci tied to survival, Alzheimer’s disease, and cardiovascular disease (Pilling et al. 2017). Another
study found sex-specific loci related to longevity in Han Chinese, albeit with a very small sample
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(Zeng et al. 2018), with a larger study finding six loci associated with parental life span (Wright
et al. 2019), and another examined the human life span beyond 40 years ( Joshi et al. 2016) and
the health span (Zenin et al. 2019). Most GWAS discoveries have been in the area of health and
disease. There are a multitude of studies of disease and causes of death that we do not report,
with some, for instance, examining suicide, such as attempts and their relationship to depression
(Mullins et al. 2019). The expectation is that there will be a continued expansion of the discovery
of multiple traits relevant to sociologists.

INTERGENERATIONAL TRANSMISSION OF BEHAVIOR
AND SOCIAL MOBILITY

A sustained area of sociogenomics research is in the area of the intergenerational transmission of
behavior and social mobility. The transmission of EDU, life course outcomes, and impact of the
parental environment have been studied for decades by stratification and mobility researchers in
sociology (Breen & Jonsson 2005, Erikson & Goldthorpe 1993, Ganzeboom et al. 1991, Sorokin
1927). Yet, there is surprisingly little attention paid to sociological foundations in recent genetic
research, with ample room for sociologists to explore and innovate this area of research.

A large study examined whether the education PGS was related to socioeconomic mobility
across the life course in the United States, England and Wales, and New Zealand (Belsky et al.
2018).They found that the PGS was associated with social attainment and uncovered an rGEwith
those with higher PGSs growing up in higher-socioeconomic households. Education PGSs were
linked to social mobility, regardless of children’s origins; children with higher PGSs for EDU had
better outcomes in terms of education, occupation, and wealth. This finding also held in com-
parison to siblings in the same family. Since genetic effects were attenuated when controlling for
social origins, the association between education-related genetics and social attainment reflected
the impact of parents’ genetics on the creation of family environments.

This discussion relates to a recent study mentioned above and published in Science (Kong et al.
2018), which modeled the intergenerational transmission of education using unique multigener-
ational trio (mother, father, child) genetic data from Iceland and resulted in top geneticists dis-
covering the importance of sociology.9 With genetic and phenotypic data from both parents and
offspring, the researchers were able to identify the 50% of the parental genome that had been
passed on to a child as well as the 50% that had not. The authors demonstrated that not only
do genes transmit information from parents to offspring but there must be another transmission
channel: a social one. They found that both the inherited and noninherited genes for EDU have
an impact on the child’s education, with stronger effects from the mother. Since there was no bio-
logical pathway in which the noninherited genetic variants could impact children, they concluded
that the environment parents create based on their nontransmitted genes has a causal impact on
their EDU,which the authors termed genetic nurture.The impact of the inequality of opportunity
and family background on subsequent EDU has, however, been long established within sociology
(Ganzeboom et al. 1991).

Another study found that only 3% of the intergenerational correlation of EDU was explained
by genetic effects (Conley et al. 2015). A more recent study using the same data, three genera-
tions, and the new educational PGSs found genetic effects of around 7% (Liu 2018). Rescaling
results from PGSs of heritability from other studies to deal with missing heritability, some studies
showed that around one-fifth of the intergenerational transmission of education is due to genetic

9In personal communication, a top geneticist and author confessed “I didn’t at first want to learn about soci-
ology, but now I realize that I have to. I have no choice.”
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inheritance (Conley et al. 2015, Tucker-Drob 2017). This suggests that although sociologists can
no longer ignore the role of genetics, contrary to what some behavioral geneticists claim (Plomin
2018), family, school, neighborhood, and socioeconomic factors still play the strongest role. A re-
cent study by Selzam et al. (2019) suggested that genetic nurture is entirely driven by parents’
socioeconomic status, whereas others demonstrated that genetics may directly influence parent-
ing (Wertz et al. 2019a) and that genetic nurturing effects might not stem only from the inter-
generational transmission of education. Work examining parental investment has pointed to the
continued importance of considering both genetic and socioenvironmental factors (Wertz et al.
2019b). One crucial implication of these findings is that genetic discovery likely overestimates
genetic effects due to rGE. Potential solutions are to conduct within-family analyses in discovery
and prediction, yet within-family prediction might also underestimate the true effects on PGSs
(Trejo & Domingue 2019).

GENE-ENVIRONMENT INTERPLAY

Gene-environment interplay includes G×E and rGE.More research has focused on G×E, which
studies whether the effect of the genotype varies across different environments, whereas rGE is
the process by which an individual’s genotype influences or is associated with exposure to the
environment (i.e., how genes and the environment operate in tandem).

Gene-Environment Interaction

Perhaps one of the most compelling areas of research for sociologists has been the promise of
G×E (Conley 2016, Freese & Shostak 2009). Four main theoretical models have been used to un-
derstandG×E: the diathesis–stress, bioecological (social compensation), differential susceptibility,
and social control models. Recognition of how the social environment (social structure) enables
and constrains agency forms the basis of most sociological thinking.

The diathesis–stress (also known as vulnerability, contextual triggering) model assumes that a
predisposition for a trait lies dormant until triggered by an environmental stressor (Monroe &
Simons 1991). Often inspired by the now-controversial Caspi (2002) study, many have applied
this approach. In testing both diathesis–stress and the protective influence of genes, a higher PGS
for well-being buffered against increased depressive symptoms following the death of a spouse
(Domingue et al. 2017b). Another study validated this theory, showing how a higher PGS for
major depressive disorder became relevant only after a series of stressful life events (Arnau-Soler
et al. 2019).

The bioecological (or social compensation) model supposes that genetic influences are maxi-
mized in stable, adaptive, and often higher-socioeconomic environments, enabling individuals to
reach their genetic potential (Bronfenbrenner & Ceci 1994). Seminal work by Turkheimer et al.
(2003) showed G×E by socioeconomic status, demonstrating that the heritability of IQ is the
highest in families with high socioeconomic status and lowest in families with low socioeconomic
status. This work tested the classic Scarr-Rowe hypothesis (Scarr-Salapatek 1971) that families
with high resources can help their children realize their genetic potential and echoes our above
discussion of intergenerational social mobility. Others demonstrated that students with higher
education PGSs were tracked to more advanced math courses and remained there longer, with
advantaged schools tracking higher-PGS students into advanced courses and protecting those
with lower PGSs from dropping out (Harden et al. 2019).

Growing research has demonstrated G×E by how cross-national and social structural differ-
ences impact heritability and PGS prediction (Belsky et al. 2018, Engzell & Tropf 2019, Rimfeld
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et al. 2018, Tropf et al. 2017). A meta-analysis (Tucker-Drob & Bates 2016) showed that the vari-
ability of IQ by socioeconomic status held for the United States but did not extend to Europe
or Australia, likely due to a safety net for disadvantaged households. A study in Florida, how-
ever, found no evidence that socioeconomic status moderated the genetic influence of test scores
(Figlio et al. 2017). Rimfeld et al. (2018) analyzed the interaction between education PGSs and
political system based on the Soviet and post-Soviet era in Estonia, finding that the independence
of Estonia was related to a higher predictive power for the PGSs for both education and occupa-
tional status. The theoretical reasoning was that the transition from a communist to a capitalist
society under meritocratic principles enabled one’s genetic potential to unfold. Another study
meta-analyzing previous research from 10 Western countries showed that populations and birth
cohorts with higher social mobility shared higher heritability of EDU and lower environmental
influences (Engzell & Tropf 2019).

Whereas the diathesis–stress model focuses almost exclusively on negative environmental in-
fluences, the differential susceptibility model argues that plasticity varies by individual, with some
individuals more genetically susceptible (orchids) to both positive and negative environments,
while others remain resilient across all situations (dandelions) (Belsky & Pluess 2009). This has
been applied, for instance, to examine the orchid effect of how physical health differs with respect
to marital relationship quality (South & Krueger 2013).

The social control or social pushmodel supposes that genetic influences are filtered or buffered
in particular environments such as by social norms or structural constraints (e.g., taxes, banning
smoking in public places) (Shanahan & Hofer 2005). A study by Guo et al. (2015) applied social
control and learning theory, utilizing the random assignment of college students as a natural ex-
periment to estimate the social and genetic influence of drinking behavior. They found that room
assignment to a peer who engaged in precollege drinking increased binge drinking for individuals
with a moderate genetic predisposition for drinking. Other applications include how having the
social control of a romantic partner limits alcohol misuse (Barr et al. 2019) or how the heritability
of smoking was significantly reduced in US states that introduced restrictive policies on the sale
of cigarettes and higher taxes (Boardman 2009).

Wedow et al. (2018) theoretically extended the typical gene-environment paradigm to a mul-
tidimensional framework, analyzing how environmental changes jointly modify genetic effects on
multiple outcomes. They found that throughout the past century, the genetic correlation between
EDU and smoking behavior increased. Potential explanations for this phenomenon of so-called
genetic correlation–by-environment interaction (rG×E) included shared genetic influences on
education and smoking behavior, for example, based on risk behavior.

Gene-Environment Correlation

A longstanding area of research has been how an individual’s genotype influences or is associated
with exposure to the environment. The three main rGE processes are passive, evocative, and ac-
tive rGE (Plomin et al. 1977). Passive rGE is the association between the genotype a child inherits
from parents and the environment where she or he is raised. Assortative mating of highly educated
parents, for instance, results in genetic transmission of cognitive ability but also creates an envi-
ronment of learning, monitoring, and higher educational expectations (Kong et al. 2018). In a test
of the PGSs of education and parental caregiving, PGSs predicted warm, sensitive, and stimulating
caregiving and positive home environments, with scores mediated by parent’s cognitive abilities
and self-control skills (Wertz et al. 2019a).

Evocative (or reactive) rGE is when an individual’s heritable traits evoke reactions from others
in the environment. If someone, for instance, is naturally prone to being introverted or shy, they
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may appear unapproachable or aloof, which may in turn reinforce that trait through reactions to
them. Active rGE (or niche creation) is when individuals actively select or create environments as-
sociated with their own genetic predispositions and could include risk-taking or, conversely, seek-
ing highly regulated environments. This links with research on social genetic effects or the effects
of peers’ genotypes on ego’s social outcomes. A provocative claim is that friends assort based on
their genome, which in turn directly influences the social outcomes of an individual (Domingue
& Belsky 2017, Domingue et al. 2018). This work has been criticized, however, by those claiming
that the genome-wide relationship between friends is extremely small and explained by subtle pop-
ulation stratification, with the significant individual-friend educational PGS association expected
under homophily, even without social genetic effects (Yengo et al. 2019).

Challenges and Solutions for Gene-Environment Interplay Research

The use of PGSs for the detection of G×E remains challenging because they might be noisy
and underpowered, which has led to several unexpected null findings in the literature (Trejo et al.
2018).There are several persistent challenges but also potential solutions (for a summary, seeMills
et al. 2020a).

An initial problem is that the theoretical models underlyingG×E described previously are gen-
erally not formalized and often overlap,with an inability to articulate plausible biological pathways
for G×E associations, which in turn leads to a black box explanation. A second problem is con-
siderable noise in models due to an inconsistent measurement of the environmental exposure or
trait at the stage of either the initial GWAS or subsequent replication attempts. When including
variables that need to represent exogenous environmental shocks, researchers need to carefully
consider their actual exogeneity (Conley 2017). There are also often a multitude of environmen-
tal influences, which is rarely acknowledged in simple one-event, exogenous-shock frameworks.
Recently, structured linear mixed models were developed to identify and characterize genetic loci
that are more likely to interact with one or more environments, allowing the examination of in-
teractions across hundreds of environmental variables (Moore et al. 2019). Third, when the envi-
ronment is viewed as a proximate environmental moderator (e.g., maternal smoking), it is often
considerably downstream from the social environmental factors that structure the actual exposure
(Boardman et al. 2013). A fourth issue is that there is often too much attention placed on the in-
dividual environment, negating environmental influences such as normative, legislative, religious,
and cultural influences, or even that of the natural environment (e.g., pollution), and other factors
that likewise shape behavior.

A fifth, more glaring issue is the lack of statistical power and large samples that are required
to detect effects in G×E models, with power calculations rarely conducted. A sixth concern is
selection and the lack of environmental diversity in many genetic and medical data sets (Mills
& Rahal 2019, 2020), elaborated upon below. A seventh issue is that the interaction is sensitive
to the scaling of the metric, necessitating consideration of both multiplicative and additive scales
(Mills et al. 2020a). Finally, detected interactions may actually be driven by confounders (e.g.,
age, socioeconomic status) rather than by genetic or environmental variables when researchers
incorrectly enter confounders as covariates in general linear models—a problem that is easily
rectified (Keller 2014).

rGEs are exceedingly difficult to study, since the relationships between environmental exposure
and the outcome are often the result of a complex and reciprocal causal process. Passive rGE, for
example, may measure a spurious relationship between the environment and a trait. Innovations
include quasi-experimental designs of statistical matching of sibling pairs to rule out evocative
rGEs related to men’s marital status and antisocial behavior ( Jaffee et al. 2013). One cleverly
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designed study tested a passive rGE by examining parents whose children were conceived via
assisted reproductive technologies.The parents were biologically related to the child but also used
external sperm, egg, or embryo donation, resulting in a split sample of some children related to
both parents, some the mother only, and some the father only (Rice et al. 2013). This allowed the
authors to examine depression in parents and children and evaluate how it was related to parental
behavior and positivity and how this varied by children’s genetic relatedness to their parents.

DIVERSITY AND NONREPRESENTATIVE SAMPLES

Lack of Diversity Exacerbates Inequality and Threatens Applicability

Although genetic research is often introduced in optimistic terms, a serious issue undermining ge-
netic research is the lack of ancestral, geographic, and demographic diversity in the data that are
currently used. The term ancestry that is used in human genetics is not interchangeable with the
terms race or ethnicity used within sociology. Race is a socially and politically derived construct
and not a biological category, which has been discussed extensively elsewhere (Conley 2016,Mills
et al. 2020a,Nelson 2016). Ancestry in genetics mirrors geography, migration patterns, and popu-
lation stratification by continents, countries, or regions (Conley 2016;Mills et al. 2020a, chapter 3;
Mills & Rahal 2020). Using broad terms adopted by geneticists, Mills & Rahal (2019) found that
212 unique terms were used to classify individuals in relation to race, region, country, ethnicity,
and ancestry.10

All GWASs (2005–2018) are overwhelmingly conducted on individuals of European ances-
try, ranging from between 88% in 2017 to 95% in 2007 (Mills & Rahal 2019), and quasi-daily
real-time monitoring of diversity is now in place from funders, governments, journal editors, and
researchers to push for accountability (Mills & Rahal 2020). Contrary to two-point time compar-
isons that suggested increased diversity (Popejoy & Fullerton 2016), diversity has in fact decreased
over time (Mills & Rahal 2019, 2020). Although studies of Asian ancestry groups increased, ge-
netic discoveries using particularly African, African-American, or Afro-Caribbean and Hispanic
and Latin American ancestry groups remain astoundingly scant (Mills & Rahal 2020) (Figure 2).
At the initial discovery phase, all GWASs of cancer research, for instance, in 2019, consisted of
96.3% individuals of European ancestry compared with 0.1% of African, 0% of African-American
and Afro-Caribbean, and 0.5%Hispanic or Latin American ancestries (Mills & Rahal 2020). A re-
cent study of people from rural Uganda, for instance, showed that a genetic variant derived from
European ancestry groups that is commonly used to diagnose diabetes would result in the in-
correct diagnosis of diabetes in the Ugandan population (Gurdasani et al. 2019). Furthermore,
72% of all genetic discoveries emanated from using data from people from just three coun-
tries (United States, United Kingdom, and Iceland), which is striking since results for complex
traits vary by country of origin (Tropf et al. 2017). Data from Iceland, which has a population of
around 300,000, were responsible for around 12% of all genetic discoveries (Mills & Rahal 2019,
table 2).

10The coding and data are openly available for other researchers to download, replicate, refine, or use (https://
github.com/crahal/GWASReview) in addition to an extension in Mills & Rahal (2020). The approach and
results fromMills & Rahal (2019) differ from a previous sociological study that mapped ancestry labels against
theUSCensus racial classification system (Panofsky&Bliss 2017).The Panofsky&Bliss (2017) study included
only selected early studies from one journal, and it was not explained or justified as to why the ancestry of all
studies (including non-US studies) was mapped to the context-specific US racial classification system (but it
was possibly intentional ambiguity or scientific authority).
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Problems and Solutions for Nonrepresentative Samples

Similar to other disciplines such as psychology that base their research on WEIRD (western,
educated, industrialized, rich, and democratic) samples (Henrich et al. 2010), our current genetic
knowledge from GWASs not only misses information from around roughly 76% of the world’s
population but is highly nonrepresentative (Mills&Rahal 2019, 2020).Nonrepresentative samples
in genetics translate into an overrepresentation of individuals in the data who are often older,
healthier, and female (Mills & Rahal 2019). Sex differences have been largely unexplored, yet
there are known genetically related sex differences, particularly for complex traits (Khramtsova
et al. 2019). Research in the area of reproduction and sexual behavior, for instance, has found
different sex-specific loci and divergent downstream biological affects by sex (Barban et al. 2016,
Ganna et al. 2019, Mills et al. 2020b). Others have shown how the prediction accuracy of PGSs
depends on the age or sex composition of theGWAS discovery sample and study design (Mostafavi
et al. 2020).

Sociologists and demographers place considerable importance on representativeness, gener-
alizability, external validity, and examining heterogeneity of effects across contexts and groups.
Conversely, geneticists and epidemiologists are generally more invested in internal validity and
the notion of universal associations and causal effect, thereby negating the need for representative
samples (Elwood 2013). Some argue that representativeness should even be avoided, since, given
universal causal effects, external validity emanates from the understanding of causal mechanisms,
also in the absence of statistical generalizability (Rothman et al. 2013).

Many recent genetic discoveries are now drawn from the 500,000 samples of the UK Biobank,
which has a 5.5% response rate and is overrepresented by healthy, low-BMI, nonsmoking, high-
socioeconomic individuals (Fry et al. 2017). Many argue that, although prevalence and incidence
should be judged with caution in these nonrepresentative samples, measures of association and es-
timates are valid since they do not require representative populations.These samples have become
the cornerstones for genetic discovery and drug development.

We contend that the myth of not requiring a representative sample is highly problematic for
many genetic analyses.While some argue that exposure-disease correlations are still generalizable
(Fry et al. 2017), we now know that genetic associations are modifiable (de Vlaming et al. 2017,
Wedow et al. 2018), particularly for behavioral and lifestyle outcomes (Tropf et al. 2017). These
modifiers bias the GWAS estimates toward those that are mainly true for that overrepresented
group.

Second, selection also impacts the predicted results in the target (i.e., nondiscovery) data. Sam-
ple selection clearly has the potential to influence measures of association. Whether or not an
association observed in one study is similar in another target population (i.e., has external validity)
is dependent upon the distribution of the exposure-outcome relationship in the discovery and tar-
get populations. Using a simulated empirical example, a recent study examined the transferability
of the association with a disease that differed across an original healthy volunteer sample, which
was then applied to a target population where the disease prevalence differed (Keyes &Westreich
2019). Countering the claim that representativity of the sample did not matter, the magnitude
of the association was in fact highly dependent on the prevalence of other factors that interact
with the exposure and outcome. They showed that as the prevalence of the trait decreased, the
magnitude of the association also decreased.

We contend that this serious issue could be solved by developing weighting methods to ad-
just for results in the study sample to match results in the target population, such as for mortal-
ity selection in the HRS (Domingue et al. 2017a), a common procedure used with sociological
and demographic data. Other solutions could involve modeling known moderators or selection

www.annualreviews.org • The Coming of Age of Sociogenomics 571



models such as a Heckman selection model (Heckman 1979). In the end, however, collection of
more representative and diverse data and diversification of the reference groups and tools used in
these analyses would be a longer-term solution.

GENETIC SOCIAL POLICY AND ETHICS

Can Genetics Be Used to Develop Precision Policy Measures?

Some sociologists staunchly oppose the use of genetics, particularly in relation to the study of
EDU, arguing that it is the backdoor to eugenics (Bliss 2018). Although multiple reviews have
pointed out large factual errors and overstated claims in the aforementioned work (Freese 2018),
this and other carefully researched work (Duster 2006, Nelson 2016, Reardon 2017) still raises
vital questions about the use and understanding of genetic results. Prominent behavioral geneticist
Robert Plomin (Plomin 2018, Plomin & von Stumm 2018), for instance, argued that the PGSs
for EDU could be used akin to precision medicine to develop precision education tools. It may
be that PGSs might eventually be useful to determine early dyslexia or other traits that are often
diagnosed much later.

Beyond obvious ethical concerns, however, there remain core technical barriers to applying
current intelligence, cognitive ability, and EDU genetic scores for educational policy. First, given
the fact that these genetic scores largely emanate from European ancestry groups in healthy and
wealthy populations—and we know that PGSs derived from one ancestry group cannot be reli-
ably applied to another group—these policies would exacerbate existing inequalities (Martin et al.
2017, 2019). Genetic policy applications thus have the potential to enhance already advantaged
groups and even increase socioeconomic disparities (Selzam et al. 2019). Second, even if diversity
in samples increases, there remains an implicit bias against non-European ancestry groups in the
technical tools that are used such as the limited reference panels used to generate PGSs for non-
European ancestry groups (M.S. Kim et al. 2018). Third, the ubiquity of pleiotropy means that
the biologically causal function of genes is often a black box, making genetically-based interven-
tions ineffective and risking unintended consequences. As noted earlier, the genetic correlation
between EDU and AFB is 0.74, signaling an extremely high genetic overlap between these two
traits. EDU genetically-based policies could thus also inadvertently influence the timing of fer-
tility. Fourth, there is often poor measurement and harmonization of the phenotype or outcomes
of studies, making them imprecise. It is particularly in this area of research where sociologists are
masters of measurement in education, family, other lifestyle indicators, and the social structural
environment where clear contributions can be made. A fifth point is that the PGSs for complex
polygenic traits are simply not precision measurements. Although proponents argue that we could
use, for instance, the upper percentile PGSs for precision education policy (Plomin & von Stumm
2018), if we look at a scatterplot from their own article, someone with a PGS in the 98th per-
centile could score anywhere between the 2nd and 98th percentile. Put differently, if someone
asked you to board a plane within the 2nd to 98th percentile range of crashing, we would hope
that you would not get on. Finally, in contrast to medical research, where it might be necessary
to predict a condition or disease before its manifestation, no PGS will predict educational success
better than measured educational success. A recent study showed no additional explanatory power
of the EDU PGS on top of previous achievement (Morris et al. 2019).

Genetic Determinism, Identity, Public Understanding, and Privacy Risks

A final emerging area of research is the infiltration of genetic data into everyday lives, identity
politics, public understanding, and risks of privacy and identification. With the growth of DTC
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genetics companies, millions of individuals are being genotyped and interpreting results without
a genetic counselor (Khan & Mittelman 2018). Nelson (2016, p. 69) recently elaborated that the
rise in genetic genealogy testing “aligns with an enduring human desire: the search for roots and
identity.” There is not only a drive to understand oneself but also a tendency for individuals to
attribute more scientific validity to genetic results, even in light of small predictions with mixed
results on whether receiving results actually alters health behavior (McBride et al. 2010).

The new freedom of discovering one’s genome, however, is accompanied with risks, described
in detail elsewhere (see Mills et al. 2020a, chapter 14). Personal information risks include unmask-
ing adoptions, infidelity, or nondisclosed family secrets. The commercialization of genetic tests
means that DTC companies often pair horoscope-like predictions for psychological or lifestyle
characteristics with more solid predictors related to physical traits such as hair color, where ge-
netics is more straightforward, making it difficult for a nonexpert to distinguish reality.

A growing risk is privacy and identification. A 2018 study analyzing 1.28 million anonymous
individuals using MyHeritage data found that 60% of Americans of European ancestry can be
identified via one of their relatives (Erlich et al. 2018). Public genetic databases like GEDmatch
and DTCs have been used to solve rape and murder cold cases (Mills et al. 2020a), with a recent
study showing that 30% of people in forensic databases can be linked to relatives in consumer
databases ( J. Kim et al. 2018). Since these databases are overrepresented by individuals of Euro-
pean ancestry, their use for forensic purposes may in fact counter previous inequalities of incar-
cerated minority groups. There are, likewise, continued concerns about using genetic results for
embryo selection or designer babies, with a recent study showing that using polygenic scores to
screen for IQ or height would have limited utility (Karavani et al. 2019). Some also fear that the
results could be used for or against so-called cures or interventions for behaviors such as same-sex
behavior (Mills 2019). Another concern is genetic discrimination by an employer or insurance
company. International coverage is mixed, with individuals in the United States protected by the
2008 Genetic InformationNon-Discrimination Act, yet not all groups (e.g., employers with fewer
than 15 employees, US military, disability) receive protection (Hudson et al. 2008).

A final worry is that right-wing groups and pseudoscientists misuse genetic data to propagate
racism and misinformation.This hidden racism is often based in hereditarian writing, with groups
presenting their work as neutrally scientific, full of promise for a new society, and adopting a
supposedly empirical and colorblind façade (Gillborn 2016). This misuse has taken place in cases
such as a flawed analysis applying educational PGSs among 53 Jewish respondents in a data set,
with sociologists quick to invalidate on technical grounds (Freese et al. 2019). Rather surprisingly
(as of early 2020), the Editor of the article in question decided not to retract it from the American
Psychological Association journal where it was published, even after direct contact was made to
clearly signal the analytical mistakes (correspondence with M.C. Mills available upon request). It
remains a difficult balance of whether to ignore weak and incorrect research or give it unwarranted
oxygen.

CONCLUSION

We have highlighted astonishing developments within sociogenomics, particularly in the last
decade, in addition to what we hope has been a balanced and diverse review of the literature
and data. The advent of molecular genetic data has offered unprecedented possibilities and the
potential to expand many sociological theories and empirical and statistical applications. Instead
of remaining confined in twin-based behavior genetic models, limited to often calculating the
level of heritability of a trait, for the first time we can move toward understanding how genetic
predispositions are related to outcomes and how they interact across various environmental cir-
cumstances. We have moved beyond the nature versus nurture debate and can for the first time
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look at the interaction between nature and nurture. This will open exciting new avenues of re-
search into age-old topics in sociology such as assortative mating, EDU, social mobility, fertility
and reproduction, health, intergenerational transmission of behavior, risky behavior, substance
use, externalizing behavior, and beyond.

What would happen if sociologists stood behindDurkheim and ignored sociogenomics and the
integration of genetics into their research? For some topics that are biologically distant and with
little or no genetic component, ignoring genetics will likely make no difference, and it is likely
a waste to pursue. Yet for other topics that have a plausible biological link, such as fertility and
reproductive behavior, for instance, where PGSs alone now explain 5–6% of the overall variance
and have both a social and a biological component,moving forward without considering both may
be a mistake. Or, can the latest PGS for EDU that predicts around 10% of the overall variance be
ignored? This new field has the potential to change the type of social science data that are collected
and also how sociologists conduct their research. The ability to include PGSs in our sociological
toolkit is momentous. Theorists may also need to rethink many theoretical models that have a
high reliance on individual agency and choice and ignore innate genetic predispositions and their
interaction and correlation with the social environment.

Yet as our critical review reveals, we still need to understand both what the PGSs are measuring
and the nature of genetic correlations and pleiotropy.We furthermore highlight the current lack of
diversity in data collection and the absence of representativeness in the majority of contemporary
data sources. Likewise, little attention is paid to the variation of within-ancestry PGSs (e.g., by
sex, age, historical period, birth cohort, country, socioeconomic status) and the imprecision of
measurement of some outcomes and the environment (Mostafavi et al. 2020). This means that
sociologists can no longer ignore genetics and also that genetics needs sociological thinking.

Given the speed at which genetics and sociogenomics have developed,we anticipate an exciting
future. For sociologists, prospects include the integration of more diverse data, particularly from
African, African-American, and Hispanic and Latin American initiatives, and also data with richer
socioeconomic and geographical backgrounds and that are longitudinal to examine changes across
the life course.Other frontiers include projects able tomeasuremore of the genome, deep and pre-
cision phenotypes (traits), and environment to better detect G×E. This includes initiatives to link
sociogenomic data to administrative and health records and devices (e.g., accelerometer). For this
area of research to truly flourish, however, students and researchers must not only acquire skills
that are disciplinary-specific to sociology but also look beyond borders to develop genetic, bio-
logical, statistical, and programming skills. These are increasingly available in specialized courses,
summer schools, and textbooks that actively engage social scientists (Mills et al. 2020a). Sociolo-
gists can opt to be active and equal participants in this field, codeveloping new theories, methods,
data, and findings, or choose to stand by and watch as other disciplines study their core topics,
often lacking the insight of decades of sociological research.
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