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Abstract

In this review, we present an overview of joint models for longitudinal and
time-to-event data. We introduce a generalized formulation for the joint
model that incorporates multiple longitudinal outcomes of varying types.
We focus on extensions for the parametrization of the association structure
that links the longitudinal and time-to-event outcomes, estimation tech-
niques, and dynamic predictions. We also outline the software available for
the application of these models.
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1. INTRODUCTION

This article presents an overview of the suite of modeling techniques known as joint models for
longitudinal and time-to-event data. These models are applicable in settings where subjects are
followed over time, usually to monitor the progress of a disease or medical condition. That pro-
gression is typically evaluated via repeated measurements of a biomarker or biomarkers pertinent
to the disease, and it may be of clinical interest to determine the effect of such a biomarker on the
time to an event of interest (e.g., death or intervention). Since measurements of the biomarkers
are taken from the subject under study, they are deemed endogenous; that is, their value at any
given time point is dependent upon/may be altered by the occurrence of the event prior to that
time point. They are also usually measured with error, and their complete path is unknown: Their
value is only known for the specific time points at which they are measured. Standard methods
for the analysis of a time-to-event outcome with a time-varying covariate, such as the extended
Cox model, which assumes that the values of the time-varying covariate are constant in between
measurements, therefore result in biased estimates and standard errors (Prentice 1982) when used
in this context. In these same follow-up studies, it is inevitable that we should have missing data
when subjects drop out or do not adhere to the scheduled visiting times. When the probability
of a subject dropping out depends on their unobserved longitudinal measurements, this dropout
process is defined as nonrandom or informative. This process cannot then be ignored, and valid
inferences may only be made based on a joint distribution of the longitudinal measurements and
the missingness process (Rizopoulos 2012b). In both cases (endogeneity and informative miss-
ingness), the joint modeling framework provides us with a solution by postulating a relative risk
model for the time-to-event outcome, dependent on the true underlying value of the longitudinal
outcome, which is modeled using a mixed effects model, and where estimation is based on the
joint distribution of the two outcomes.

Although the most basic formulation of the model focuses on the simple association between
a single time-to-event outcome and a single continuous longitudinal outcome, extensions are
manifold. Multiple longitudinal outcomes (Lin et al. 2002, Brown et al. 2005, Chi & Ibrahim
2006, Rizopoulos & Ghosh 2011) and multiple recurrent or competing events (Elashoff et al.
2008, Williamson et al. 2008, Hu et al. 2009, Huang et al. 2011) are easily incorporated, as
are more complex association structures (Rizopoulos 2012b, 2016; Andrinopoulou et al. 2014;
Mauff et al. 2017). These models are therefore well suited to the analysis of the varying and often
complex disease dynamics under study. One use of joint models that is of particular clinical interest
is personalized predictive modeling, and the development of effective and personalized screening
methods (Garre et al. 2008, Yu et al. 2008, Proust-Lima & Taylor 2009, Rizopoulos 2011, Tomer
et al. 2017, Papageorgiou et al. 2018).

Prompted by the early work of Self & Patiwan (1992) and De Gruttola & Tu (1994) and the
formative papers by Faucett & Thomas (1996) and Wulfsohn & Tsiatis (1997), there is already
a substantial body of work on the topic of joint modeling, including several extensive reviews
conducted by Hogan & Laird (1997), Tsiatis & Davidian (2004), and Gould et al. (2015). In
the interest of brevity, in this article, we present only the shared parameter formulation of joint
models, and models where the primary interest is in survival. Our main focus is on developments in
dynamic predictions and those pertaining to the parameterization of the association structure. We
start with a description of the primary biliary cirrhosis (PBC) data set in Section 2, which is used
as an illustrative example throughout the article. Section 3 looks at the joint model, incorporating
some extensions in the initial formulation, and Section 3.1 presents a detailed discussion of various
association structures. Section 4 deals with estimation approaches, and Section 5 addresses dynamic
predictions and measures of predictive performance. Finally, in Section 6, we outline available
software.
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Figure 1
Longitudinal profiles of log(serum bilirubin) over time for eight randomly selected subjects from the primary biliary cirrhosis data set.

2. EXAMPLE DATA

PBC is a chronic liver disease that leads to cirrhosis and eventually death. The PBC data set
(Murtaugh et al. 1994) comprises information on 312 subjects who participated in a 10-year
study conducted by the Mayo Clinic. The primary outcome of interest was patient survival, and
whether this was prolonged with treatment with D-penicillamine (n = 156) compared with a
placebo (n = 154). This is an ideal data set to illustrate the various features of the joint model. Al-
though it is usually analyzed as a composite, the time-to-event outcome consists of two competing
events (death and transplantation). Follow-up measurements (scheduled at baseline, six months,
and annually thereafter) were obtained for multiple biomarkers of varying types, such as serum
bilirubin, serum cholesterol, and the presence or absence of hepatomegaly (an enlarged liver). We
also note the distinct nonlinearity of the subject-specific log(serum bilirubin) profiles depicted for
a randomly selected subset of patients in Figure 1.

3. MODEL FORMULATION

Conceptually, the joint model links a survival model with a suitable model for the endogenous
longitudinal covariate. Time-varying covariates such as serum bilirubin are defined as endogenous
if their value at any time point t may be altered by or depends upon the occurrence of an event at
some time point s < t (e.g., in the case of transplantation or death, respectively). Typically, the
longitudinal outcome is modeled via the Laird & Ware (1982) linear mixed effects model for a
continuous and normally distributed outcome. The subject-specific linear predictor of this mixed
model (or a function of the predictor) is included in the relative risk model, assuming that a time-
independent vector of shared random effects underlies both processes. The random effects account
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for both the association between the longitudinal and time-to-event outcomes and the correlation
between the repeated measurements in the longitudinal process. The two outcomes are then in-
dependent of one another, conditional on the random effects (conditional independence). In the
analysis of the PBC data set, we could look at the association between, for example, serum biliru-
bin and the composite event. However, multiple longitudinal outcomes (of varying types) have
been recorded. Extending the univariate joint model to accommodate these multiple longitudinal
outcomes allows us to incorporate more information and thereby improve the prognostic ability of
the model. We denote by T ∗

i the true event time for the ith subject, and to accommodate different
types of censoring, we introduce Ti and TU

i for the observed event times and δ ∈ {0, 1, 2, 3}, which
denotes the event indicator, with 0 corresponding to right censoring (T ∗

i > Ti ), 1 to a true event
time (T ∗

i = Ti ), 2 to left censoring (T ∗
i < Ti ), and 3 to interval censoring (Ti < T ∗

i < TU
i ). We

allow yki to denote the nki × 1 longitudinal response vector for the kth outcome (k = 1, . . . , K )
and the ith subject, with elements ykil denoting the value of the kth longitudinal outcome taken
at time point tkil , l = 1, . . . , nki. For each outcome k, we then postulate a generalized linear mixed
model (Breslow & Clayton 1993) for the conditional expectation of yki given a vector of random
effects bki:

gk[E{yki(t) | bki}] = ηki(t) = x�
ki(t)βk + z�

ki(t)bki, 1.

where the xki(t) and zki(t) are the time-dependent design vectors for the fixed effects βk and the
random effects bki, respectively, and gk(·) is a generic link function. The dimensionality and com-
position of design vectors xki(t) and zki(t) are allowed to differ between the multiple outcomes, and
they may also contain a mix of baseline and time-varying covariates. To account for the association
between the multiple longitudinal outcomes, we link their corresponding random effects. More
specifically, the complete vector of random effects bi = (b1i , b2i , . . . , bKi )T is assumed to follow a
multivariate normal distribution with mean zero and unknown q × q variance-covariance matrix
D. For the survival process, we have

hi (t | Mi (t), wi (t)) = lim
�t→0

Pr{t ≤ T ∗
i < t +�t | T ∗

i ≥ t,Mi (t), wi (t)}
�t

, t > 0

= h0(t) exp

[
γ �wi (t) +

K∑
k=1

LK∑
l=1

fkl{αkl , wi (t), bki,Mi (t)}
]

, 2.

where Mi (t) = {M1i (t), . . . ,Mki(t)}, Mki(t) = {ηki(s), 0 ≤ s < t} denotes the history of the true
unobserved longitudinal process up to time t, and wi (t) is a vector of exogenous, possibly time-
varying, covariates with corresponding regression coefficients γ . Functions fkl , parameterized
by vector αkl and discussed in detail in Section 3.1, specify which components/features of each
longitudinal outcome are included in the relative risk model. Some basic formulations (expressed
for a single outcome) extensively covered in the literature are

f {α, wi (t), bi ,Mi (t)} = αηi (t) 3.

f {α, wi (t), bi ,Mi (t)} = α1ηi (t) + α1η
′
i (t), with η′

i (t) = dηi (t)
dt

. 4.

The above formulations posit that the hazard of an event at time t may be associated with the
current underlying value of the biomarker at the same time point (Equation 3), or with the current
underlying value and the slope at the same time point (Equation 4). For Equation 3, α indicates
the change in the log hazard for a unit change in the underlying subject-specific value of the
longitudinal outcome and thus determines the strength of the association. For Equation 4, we
have the standard interpretation of α (now α1) as before, and an additional association parameter
α2, which is interpreted as the change in the log hazard for a unit increase in the slope of the
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longitudinal trajectory at the same time point, provided ηi (t) remains constant. Equation 2 also
allows for a combination of Lk functional forms per longitudinal outcome, which may also interact
with some covariates in the wi (t).

Specification of the baseline hazard function, as denoted by h0(·), is required in the joint model
formulation. Calculation of the standard errors is otherwise complicated, given that we work with
the full likelihood and not the partial likelihood as in the standard Cox model. Standard errors
may also otherwise be underestimated (Hsieh et al. 2006). Since the use of a fully parametric
distribution such as the Weibull or Gamma may be too restrictive, we opt for a parametric but
flexible specification. Both the piecewise constant and regression spline approaches have shown
satisfactory results (Rizopoulos 2012b).

These multivariate joint models have been considered by Rizopoulos & Ghosh (2011), Chi &
Ibrahim (2006), Brown et al. (2005), and Lin et al. (2002), among others. Estimation of multivariate
joint models is not straightforward since the dimension of the variance-covariance matrix for the
random effects increases with the number of outcomes K being modeled, which translates to a high
computational burden. Additionally, the more flexible the specification allowed for the xki(t) and
zki(t) design matrices, for example, in the case of highly nonlinear subject-specific profiles (such
as those of serum bilirubin), the higher the dimension of the random effects. Examples of flexible
specifications are provided by Rizopoulos et al. (2009) and Brown et al. (2005), who both made
use of B-splines with multidimensional random effects; Ding & Wang (2008), who proposed the
use of B-splines with a single multiplicative effect; Rizopoulos & Ghosh (2011), who used natural
cubic splines; and Umlauf et al. (2017), who used P-splines.

Options to reduce the computational burden include the use of an autocorrelation structure
(Proust-Lima et al. 2016) or the factorization of the random effects, as in Li et al. (2012) and
Choi et al. (2014). Alternatively, correlation between multiple longitudinal outcomes may instead
be modeled via correlated error terms, as in Chi & Ibrahim (2006). One might also specify a
common latent variable between the models, such as in Ibrahim et al. (2004) or Proust-Lima
et al. (2009), where the longitudinal processes are considered realizations of a single latent pro-
cess, which is defined in continuous time and represents the common unobserved factor that
drives the observed longitudinal trajectories. The fixed effect parameters for the multivariate
joint models have been shown to be fairly robust under misspecification of the random ef-
fects distribution, excepting those in the time-to-event model. Standard errors may be some-
what underestimated for heavily skewed distributions (Pantazis et al. 2005, Li et al. 2012). The
use of semiparametric models for the random effects has been shown to be advantageous in
avoiding this misspecification by Pantazis et al. (2005), as well as Rizopoulos & Ghosh (2011)
and Tang & Tang (2015), both of whom used a Dirichlet prior for the random effects in a
Bayesian framework. In the univariate case, simulation findings from Song et al. (2002) and
Tsiatis & Davidian (2001), later corroborated by Rizopoulos et al. (2008) and Huang et al.
(2009), suggest that parameter estimates and standard errors for the joint model are both fairly
robust.

The above model specification allows for multiple longitudinal outcomes, but does not consider
multiple failure times, for example, the competing risks in the PBC data set. Joint models that
consider a single longitudinal outcome together with competing risks are described by Rizopoulos
(2012b), Elashoff et al. (2008), Williamson et al. (2008), Hu et al. (2009), and Huang et al. (2011),
and approaches for the analysis of recurrent events are detailed by Liu et al. (2008), and Liu &
Huang (2009). Chi & Ibrahim (2006), Tang et al. (2014), Tang & Tang (2015), and Zhu et al.
(2012) address the case with both multiple longitudinal and multiple survival outcomes. Multiple
recurrent events are considered by Musoro et al. (2015) and competing risks by Andrinopoulou
et al. (2014, 2017b), Proust-Lima et al. (2016), and Li et al. (2012).
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3.1. Functional Forms

The formulation of the relative risk model in Equation 2 specifies functions fkl , allowing up to
Lk functional forms for each of K longitudinal outcomes. Dissimilar biomarkers have different
and often unknown disease mechanisms, and it may be necessary to combine various features of
any given biomarker in order to obtain a more accurate understanding of their relationship to
risk. While the current value association structure outlined in Equation 3 is simple and intuitive,
it may not always be appropriate, and fitting only this association structure may lead to incorrect
conclusions when a more complex form of association exists (Vacek 1997). In addition to the
familiar slope parameterization (Equation 4), another simple extension to the current value allows
for the use of lagged effects, where the risk of an event at time t is associated with the true value
of the underlying marker at some time t − c, where c is the lag of interest. All of the preceding
parameterizations assume that the risk of an event is associated with a feature of the longitudinal
trajectory at a single time point, as demonstrated in Figure 2b and 2c for the current value and
slope specifications. It may, however, be beneficial to allow the risk to depend on a function
of the longitudinal marker history instead (Vacek 1997, Hauptmann et al. 2000, Sylvestre &
Abrahamowicz 2009). We could consider the cumulative effect, such that

f {α, wi (t), bi ,Mi (t)} = α

∫ t

0
μi (s) ds,

or, more realistically, a weighted cumulative effect (which includes both the current value and
cumulative parameterizations as special cases):

f {α, wi (t), bi ,Mi (t)} = α

∫ t

0
� (t − s)μi (s) ds.

The parameter α then reflects the strength of the association between the risk for an event at
time t and the specific area under the longitudinal trajectory for which the weights are nonzero
(Figure 2c). Mauff et al. (2017) considered the use of the standard normal density as a weight func-
tion, which assigns larger weights to more recent measurements of the biomarker and allows for the
estimation of the period for which the weights are nonzero, through the estimation of the scale pa-
rameter. In an analysis of the PBC data set, different periods of interest were determined for each of
serum bilirubin, serum cholesterol, and hepatomegaly. An additional parameterization of interest
is the random effects association structure. In this parameterization, we include only the random
effects from the longitudinal model in the linear predictor of the relative risk model, which conveys
a distinct computational advantage, in that no numerical integration is required (see Section 4):

f {α, wi (t), bi ,Mi (t)} = αT bi .

For a simple random effects structure (intercept and slope), the interpretation of the random
effects is then the deviation from the average intercept and the average slope, and the association
parameter reflects the change in the log hazard for a unit change in this deviation. For more elab-
orate structures, however, this parameterization may be difficult to interpret (Rizopoulos 2012b,
Gould et al. 2015). In some settings it may be plausible that the association parameter α is allowed
to change during follow-up. Andrinopoulou et al. (2017a) model a time-varying coefficient using
P-splines, specifying f {λi (t), wi (t), bi ,Mi (t)} (again for a specific longitudinal outcome), where

λi (t) =
P∑

p=1

αp Bp (t).

Then αp is a set of parameters that capture the strength of association between the longitudinal and
survival outcomes and Bp (t) denotes the pth basis function of a B-spline. This method assumes a
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Figure 2
Illustration of the current value, current slope, and cumulative effect association structures. The thick black lines represent the slope of
the biomarker. The vertical dashed lines represent the time point (e.g., in panel a the biomarker value at time point 10 is associated with
the value of the hazard at the same time point).

high number of equally spaced knots, combined with a roughness penalty used to obtain sufficient
smoothness and avoid overfitting. Furthermore, Andrinopoulou & Rizopoulos (2016) look at the
use of Bayesian shrinkage methods to choose between functional forms and determine the form
best suited to the analysis in question, and Andrinopoulou et al. (2017b) and Crowther (2015) allow
for the use of different association structures for different (multivariate) longitudinal outcomes.

4. ESTIMATION

Estimation methods proposed in the literature fall under either the Bayesian or frequentist
paradigm. Both exploit the full joint likelihood derived from the joint distribution of longitu-
dinal and time-to-event outcomes. The expression for this likelihood function is derived under
the conditional independence assumption (Section 3). Ignoring conditioning on the covariates for
the sake of brevity, the expression for the likelihood is given by

L(θ | Dn) =
n∏

i=1

p(Ti , TU
i δi , y1i , . . . , yKi ; θ )

=
n∏

i=1

∫
p(Ti , TU

i , δi , y1i , . . . , yKi , bi ; θ )dbi

=
n∏

i=1

∫ {
K∏

k=1

nki∏
l=1

p(ykil | bki; θ )

}
p(Ti , TU

i , δi | bi ; θ )p(bi ; θ )dbi , 5.
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where Dn = {Ti , TU
i , δi , y1i , . . . , yKi ; i = 1, . . . , n} are the observed data, θ is the vector of all

parameters, and p(ykil | bki; θ ) is the contribution of the lth repeated measurement of the ith
subject for the kth outcome, given by

p(ykil | bki; θ ) = exp
{
[ykilψkil(bki) − ck{ψkil(bki)}] /ak(ϕ) − dk(ykil ,ϕ)

}
.

ψkil(bki) and ϕ denote the natural and dispersion parameters in the exponential family, respectively,
and where ck(·), ak(·), and dk(·) are known functions specifying the member of the exponential
family. The joint density for the survival part together with the random effects is given by

p(Ti , TU
i , δi | bi ; θ )p(bi ; θ ) =

[
hi {Ti | Mi (Ti )}

]I (δi =1)
exp

[
−

∫ Ti

0
hi {s | Mi (s)}ds

]I (δi ε{0,1})

×
⎧⎨
⎩1 − exp

[
−

∫ Ti

0
hi {s | Mi (s)}ds

]I (δi ε{0,1})⎫⎬
⎭

I (δi =2)

×
{

exp

[
−

∫ Ti

0
hi {s | Mi (s)}ds

]
− exp

[
−

∫ TU
i

0
hi {s | Mi (s)}ds

]}I (δi =3)

× 1√
(2π )q det(D)

exp(bT
i D−1bi ),

where I (·) denotes the indicator function. The unidimensional integral in the definition of the sur-
vival function does not have a closed-form solution, and thus a numerical method must be employed
for its evaluation. Standard options are the Gauss-Kronrod and Gauss-Legendre quadrature rules
(Rizopoulos 2012b).

4.1. Frequentist Estimation

Under the frequentist paradigm, estimates of the joint model parameters can be derived by maxi-
mizing the log-likelihood function (see Equation 5). Maximum likelihood estimates (MLE) can be
obtained using the expectation-maximization (EM) algorithm (Wulfsohn & Tsiatis 1997), treating
the random effects as missing data, or by maximizing the log-likelihood directly using Newton-like
approaches (Thiébaut et al. 2005, Guedj et al. 2011, Crowther et al. 2013). The main motivation
for using the EM algorithm is the closed-form M-step updates for certain parameters of the joint
model. In the E-step of the EM algorithm, the expectation of the log-likelihood function is ob-
tained with respect to the posterior distribution of the latent random effects given the observed
data and the parameters obtained in the previous M-step. The integral over the random effects in
this E-step does not have a closed form and thus needs to be solved numerically for each patient
in each iteration. To avoid this issue, Rizopoulos (2012a) has proposed pseudoadaptive Gaussian
quadrature rules. To improve the convergence of the EM algorithm, a hybrid optimization tech-
nique (Rizopoulos 2010) has also been proposed. However, in all methods (direct maximization,
EM, and the hybrid approach), in high-dimensional cases (Section 3), the integral over the random
effects becomes computationally burdensome. In these settings, the use of Laplace approximation
reduces this computational burden substantially (Rizopoulos et al. 2009).

Parameter estimates obtained using MLE are asymptotically unbiased, normal, and consistent.
The standard error for these parameter estimates is obtained from the observed Fisher infor-
mation matrix (Rizopoulos 2012b). However, inversion of the Hessian matrix to obtain standard
errors may result in numerical complications when the Hessian matrix is high dimensional.
This is especially the case when the baseline hazard in the joint model is left unspecified. In
such a scenario, the calculation of the likelihood is based on nonparametric maximum likelihood
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arguments under which the unspecified cumulative incidence function H0(t) = ∫ t
0 h0(s) ds is

replaced by a high-dimensional step function with jumps at each of the unique event times (Van
der Vaart 1998). Alternative approaches for the estimation of standard errors, such as the profile
likelihood approach, result in underestimation (Rizopoulos 2012b). To avoid these issues, Hsieh
et al. (2006) proposed the use of bootstrapping to estimate the standard errors. However, such
an approach is computationally intensive in the context of the joint model. A feasible alternative
is to postulate a flexible but parametric model for the baseline hazard h0(t). In this scenario,
inference on parameter estimates can be done using standard asymptotic maximum likelihood
theory. Consequently, the likelihood ratio, Wald, and score tests can be used for inference on
the parameter estimates. For estimation and inference on the random effects, empirical Bayes
estimation (estimation using the posterior distribution of the random effects, given the observed
data and point MLE of the parameters) is the standard approach.

In general, parameter estimation based on maximum likelihood estimation is vulnerable to
nonidentifiability, which results in unreliable parameter inference. However, for the joint model
in particular, researchers investigating applications have yet to report any issues relating to iden-
tifiability beyond those concerning the individual submodels. That is, should the mixed effect
and event process submodels satisfy identifiability conditions (not discussed in this article), so too
should the joint model (Zeng & Cai 2005).

4.2. Bayesian Estimation

Parameter estimation for joint models using a Bayesian approach involves sampling from the
posterior distribution of the parameters using standard Markov chain Monte Carlo (MCMC)
or Hamiltonian Monte Carlo algorithms. Given the wide availability of BUGS (Bayesian infer-
ence using Gibbs sampling) software, the Gibbs sampling technique is extensively used. How-
ever, in practice, Gibbs sampling may be used in combination with other approaches such as the
Metropolis-Hastings algorithm and slice sampling, among others (Wang & Taylor 2001, Xu &
Zeger 2001, Brown & Ibrahim 2003, Rizopoulos 2016). It should be noted that under the Bayesian
approach, the random effects are also considered model parameters for which we obtain a poste-
rior sample. Consequently, solving the integral over the random effects (Equation 5) is no longer
required. The complete posterior distribution of the parameters is given by

p(θ , b | Dn) ∝
n∏

i=1

p(Ti , TU
i , δi , y1i , . . . , yKi | bi , θ )p(bi | θ )p(θ ),

where p(θ ) is the joint prior distribution for parameters in θ . In practice, independent univariate
diffuse normal priors are typically used for each of βk, γ , h0, and αk. An inverse Wishart prior
is used for the covariance matrix of the random effects D, and when fitting a joint model with
a normally distributed longitudinal outcome, an inverse-Gamma prior is used for the variance
of the error terms σ 2. The ability to specify priors under the Bayesian paradigm has certain
advantages. For example, in instances where the goal is to estimate more elaborate models with
many coefficients in the relative risk submodel, and the number of events are few, shrinkage
methods such as lasso or Ridge can be easily implemented merely by changing the prior distribution
(Andrinopoulou & Rizopoulos 2016). Parameter inference proceeds as is standard under the
Bayesian approach, and model comparisons can be performed using the deviance information
criterion.

The speed of computation using the Bayesian approach is slower when compared with fre-
quentist methods when a simple univariate joint model is used. It is, however, comparable
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Table 1 Estimated coefficients for the parameters of the joint model fitted to the PBC data set

Parameter ML estimate 95% Confidence interval MCMC estimate 95% Credibility interval

β0 0.489 (0.376; 0.603) 0.476 (0.366; 0.591)

β1 0.190 (0.163; 0.216) 0.213 (0.137; 0.291)

γ1 −0.049 (−0.377; 0.279) −0.052 (−0.374; 0.28)

γ2 0.041 (0.026; 0.057) 0.044 (0.028; 0.06)

α 1.304 (1.125; 1.483) 1.335 (1.162; 1.524)

σ 2 0.121 (0.31; 0.385) 0.115 (0.326; 0.352)

Abbreviations: MCMC, Markov chain Monte Carlo; ML, maximum likelihood; PBC, primary biliary cirrhosis.

for more complex models involving nonnormal outcomes and complex association structures
(Rizopoulos 2016). Comparable computation speeds and easier implementation of more elabo-
rate models makes the Bayesian approach an attractive option.

As an illustration of the two estimation paradigms, we fit the following model to the PBC data
set: ⎧⎪⎨

⎪⎩
log{yi (t)} = ηi (t) + εi (t) = (β0 + b0i ) + (β1 + b1i ) t + εi (t) ,
hi (t) = h0 (t) exp{γ1age + γ2drug + αηi (t)},
bi ∼ N (0, D) , εi (t) ∼ N (

0, σ 2
)

,

using both frequentist and Bayesian estimation. In the above formulation, yi (t) denotes the ob-
served serum bilirubin values for the ith subject. We used a linear mixed-effects model with
random intercept and slope for the longitudinal submodel and adjusted for age and treatment
(placebo versus D-penicillamine) at baseline in the survival submodel. The current value associa-
tion structure was used, assuming that the underlying value of log(serum bilirubin) at time t has
an effect on the instantaneous risk for transplantation or death at the same time point, hi (t).

The model was fitted using function jointModel() from R package JM and function
jointModelBayes() from package JMbayes for ML and MCMC estimation, respectively
(Rizopoulos 2010, 2016). Table 1 includes the parameter estimates, along with the 95% con-
fidence and credibility intervals for ML and MCMC estimation, respectively. It should be noted,
however, that the two models are not absolutely comparable because there is a difference in the
approximation of the baseline hazard function between functions jointModel() and jointMod-

elBayes(). The former uses a B-splines approximation and the latter uses a P-splines approxi-
mation. Nevertheless, we ensured that the same number of internal knots was used in both cases.

5. DYNAMIC PREDICTIONS

Thus far we have focused on the formulation and estimation of joint models and discussed var-
ious association structures. Here we focus on predictions, which exploit the dynamic nature of
joint models. Personalized medicine has recently gathered much attention in medical research.
Physicians need predictive tools, tailored to the individual characteristics of their patients, to im-
prove decision making, optimize medical care, and facilitate communication of individual health
risks to their patients. Moreover, it is crucial that such predictive tools can be updated with new
information as soon as it becomes available. Based on a fitted joint model, subject-specific survival
probabilities, as well as predictions for future biomarker levels, may be derived for a new subject
j for whom a set of measurements Ykj(t) = {ykj(tkj l ); 0 ≤ tkj l ≤ t, l = 1, . . . , n j , k = 1, . . . , K }
for the kth longitudinal outcome and a vector of baseline covariates w j are available. Since the
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biomarker measurements are available up to time t (except for the case of interval censoring, for
which they may be available up to s > t), we may assume that subject j did not experience the
event of interest up to this time point. We can therefore determine the conditional subject-specific
survival probability that subject j survives at least up to a future time point u > t given that the
subject was event-free up to time t,

π j (u | t) = Pr{T ∗
j ≥ u | T ∗

j > t,Y1 j (t) , . . . ,YK j (t) , w j },

as well as the prediction for the subject’s longitudinal response at u,

ωkj (u | t) = E{ykj (u) | T ∗
j > t,Y1 j (t) , . . . ,YK j (t)}.

Both π j (u | t) and ωkj (u | t) can be updated to π j (u | tnew) and ωkj (u | tnew) when new infor-
mation is provided for subject j at a future time point tnew > t. To illustrate this feature, a basic
joint model was fitted to the PBC data set. The subject-specific conditional survival probabilities
for a new subject, based on this joint model, are shown in Figure 3. In Figure 3a, the prediction
is based on four serum bilirubin measurements recorded during the first two years of follow-up.
In Figure 3b, an additional value of serum bilirubin is available, leading to a steeper decrease in
the survival probability over time for this subject.

Estimation of both π j (u | t) and ωkj (u | t) is based on the corresponding posterior predic-
tive distributions, exploiting the conditional independence assumptions that were discussed in
Sections 3 and 4 (Yu et al. 2008; Proust-Lima & Taylor 2009; Rizopoulos 2011, 2012b; Taylor
et al. 2013):

π j (u | t) =
∫

Pr
(
T ∗

j ≥ u | T ∗
j > t, b j , θ

)
p

(
b j | T ∗

j > t,Y1 j (t) , . . . ,YK j (t) , θ
)

db j

=
∫ S j {u | H j

(
u, b j

)
, θ}

S j {t | H j
(
t, b j

)
, θ} p{b j | T ∗

j > t,Y1 j (t) , . . . ,YK j (t) , θ}db j ,

and

E{ykj (u) | T ∗
j > t,Y1 j (t) , . . . ,YK j (t) , θ} =

∫
E{ykj (u) | b j , θ}p

(
b j | T ∗

j > t,Y1 j (t) , . . . ,YK j (t) , θ
)

db j

= x�
kj (u) β + z�

kj (u) b̄(t)
j ,

with b̄(t)
j = ∫

b j p
(
b j | T ∗

j > t,Y1 j (t) , . . . ,YK j (t) , θ
)

db j .

The predictive performance of dynamic predictions from joint models has also received much
attention in the literature. Appropriate measures that account for the dynamic nature of such
predictions have been developed. These measures mainly focus on calibration (i.e., how the model
performs in predicting the observed data) and discrimination (i.e., how the model performs in
discriminating between patients who experienced the event and those who did not). In terms
of calibration, the expected prediction error is discussed in Henderson et al. (2002) and Schoop
et al. (2011). Aside from the dynamic feature of these predictions, the presence of censoring
needs to be accounted for when assessing their predictive performance. This is achieved using
inverse probability weighted estimators (Schoop et al. 2008, Blanche et al. 2015, Rizopoulos et al.
2017). Alternatively, information theoretic calibration measures based on the Kullback-Leibler
divergence have also been proposed (Commenges et al. 2012, Proust-Lima et al. 2014). To address
discrimination, the time-dependent area under the receiver operating characteristic curve and the
dynamic concordance index (Rizopoulos 2011, Rizopoulos et al. 2017) are commonly used.

Aside from joint models, landmark analysis may also be used to derive dynamically updated
estimates of survival probabilities. Recent work, however, has shown that dynamic predictions
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Figure 3
Conditional survival probabilities for a new subject from the primary biliary cirrhosis data set after (a) four
and (b) five serum bilirubin measurements. The vertical dashed lines represent the time point of the latest
biomarker measurement.

from joint models outperform the predictions based on landmark analysis (Ferrer et al. 2017,
Rizopoulos et al. 2017, Suresh et al. 2017). Attention must be given to the parametrization of the
joint model, especially the functional form of the association structure that links the longitudinal
and survival processes, since this may impact predictive performance. To this end, Rizopoulos
et al. (2014) proposed the use of Bayesian model averaging to combine dynamic predictions under
different association structures. This approach was further extended for the case of multivariate
joint models with competing risk survival data by Andrinopoulou et al. (2017b).

Dynamic predictions from joint models are intuitively appealing and can be used in a broad
range of applications. Recent work focuses on improving their quality and on their use in novel
settings. The P-splines approach of Andrinopoulou et al. (2017a), discussed in Section 3.1, aims to
improve the performance of dynamic predictions. A similar approach was proposed by Köhler et al.
(2017), who used P-splines in the longitudinal submodel to more precisely capture highly nonlinear
subject-specific trajectories. Dynamic predictions have also been used to develop personalized
schedules as an alternative to standard fixed and frequent follow-up schedules. The latter are
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common for all patients and do not account for disease progression over time. To address the
burden caused by such schedules, dynamic patient-specific schedules based on dynamic predictions
have been proposed by Rizopoulos et al. (2015) for the measurement of biomarkers and Tomer
et al. (2017) for the performance of prostate cancer biopsies. Sène et al. (2016) used dynamic
predictions of prostate cancer recurrence with and without the initiation of a second treatment to
assess the benefit of radiation therapy. Recently, Papageorgiou et al. (2018) proposed a flexible joint
modeling framework that enables the derivation of dynamic predictions under different scenarios
with respect to the occurrence of future intermediate events, such as changes in treatment and
serious adverse events. This application of dynamic predictions can be very useful when planning
interventions because it can be used to quantify the potential benefit (or lack thereof ) of various
treatment strategies on the risk of the clinical endpoint of interest for the individual patient.

6. SOFTWARE

The ongoing increase in theoretical research and application of joint models is accompanied by a
respective increase in the development of appropriate statistical software. Joint modeling can be
achieved with a range of tools available via standard statistical software such as R (R Core Team
2018), SAS/STAT, Stata, WinBUGS, and JAGS.

In R, there are a number of packages either dedicated to joint modeling of longitudinal and
time-to-event data or capable of joint modeling. Among them, package JM (Rizopoulos 2010),
which is based on maximum likelihood estimation employing an EM algorithm, may be used for
the joint analysis of a single continuous longitudinal outcome with either a single time-to-event
outcome or competing risks. Various baseline hazard specifications may be selected. Built upon the
Bayesian framework, package JMbayes (Rizopoulos 2016) is capable of fitting a wide range of joint
models using MCMC algorithms. The most notable feature of JMbayes is that both univariate
and multivariate joint models for continuous and categorical longitudinal outcomes are available.
Both JM and JMbayes allow for the flexible selection of various association structures and also
include tools for model diagnostic checks, derivation of dynamic predictions, and assessment of
their accuracy in terms of discrimination and calibration. In addition to these features, JMbayes
also includes the option to use time-varying effects for the association parameters using P-splines.
Another R package that uses the EM algorithm is joineR (Williamson et al. 2008, Philipson
et al. 2018). This package can be used to fit univariate joint models for a continuous longitudinal
outcome, a single time-to-event outcome with a random latent association, or a competing risks
joint model.

Multivariate joint models for multiple continuous longitudinal outcomes and time-to-event
data with a multivariate latent Gaussian process association are also available in the R package
joineRML (Hickey et al. 2018), which uses a Monte Carlo EM algorithm. Package joineRML also
includes functions to derive dynamic predictions based on the fitted joint models. The R package
frailtypack (Rondeau & Gonzalez 2005, Rondeau et al. 2012, Król et al. 2017) has been extended
and can now fit a joint model for a continuous longitudinal response and either a terminal event
or recurrent events along with a terminal event (trivariate joint model). It is also able to derive
dynamic predictions for the aforementioned joint models. Estimation in frailtypack is based
on maximum likelihood using either a parametric or semiparametric approach on the penalized
likelihood for estimation of the hazard functions. The recent addition of the function stan_jm

in package rstanarm (Stan Development Team 2016) enables the user to fit both univariate and
multivariate joint models for continuous and/or categorical longitudinal outcomes with a time-
to-event outcome using the R interface to the Stan C++ library for Bayesian estimation. Various
association structures may be selected, and functions for dynamic predictions are also available.
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Package bamlss (Umlauf et al. 2017) includes functions to fit and derive predictions for a flexible
additive joint model for a continuous longitudinal outcome and single time-to-event outcome
under the Bayesian framework. Finally, package lcmm (Proust-Lima et al. 2017a,b) may be used
to fit joint latent class models. Estimation in lcmm is based on the frequentist approach, and it
features predictive tools and the EPOCE estimator for assessing predictive accuracy.

In SAS, there are two notable macros that may be used to fit joint models for longitudinal
and time-to-event data. Macro %JM can be used to fit a shared parameter model for the joint
analysis of longitudinal and time-to-event outcomes. Gaussian and non-Gaussian distributions,
along with linear and nonlinear evolutions over time using splines, are supported for the mixed-
effects submodel. Various options for the association structure are also available. SAS macro JMfit
(Zhang et al. 2016) can also be used to fit a variety of popular joint models while providing several
measures of assessment, including the decomposition of AIC (the Akaike information criterion)
and BIC (the Bayesian information criterion) as well as �AIC and �BIC (Zhang et al. 2014).

In Stata, package stjm (Crowther 2012) can be used to fit a shared parameter joint model for a
single continuous longitudinal outcome and a single time-to-event outcome under the maximum
likelihood framework. Flexible parametrization of the linear mixed-effects submodel is supported
using either polynomials or splines along with several options for the specification of the survival
submodel. In addition, the user has the option to choose between three different association
structures to link the two processes.

This section has focused on the packages described above because they are state-of-the-art
software tools available in popular statistical environments, they are accompanied by detailed
reference manuals and documentation regarding their usage, and they are actively maintained
and likely to be extended in the future. However, the full range of software tools available is far
more extensive. Many examples of joint models use other software such as WinBUGS and JAGS,
with the code available as supplementary material or upon request from the author (Rizopoulos
& Ghosh 2011; Andrinopoulou et al. 2014, 2017b; Baghfalaki et al. 2014; Liu & Li 2016).

7. DISCUSSION

The joint analysis of longitudinal and survival data has received much attention during the past two
decades, yielding a large body of research with numerous clinical applications. As a result, a broad
range of joint models has been developed under both the frequentist and Bayesian paradigms.
The parallel development of statistical software tools that are able to implement joint models
is increasing their accessibility while steadily decreasing the computational time required to run
them. Motivated, in most cases, by the improved quality and volume of data, as well as the focus on
personalized medicine, recent work on joint models has covered topics such as multivariate joint
models, personalized screening schedules, methods for the selection of the association structure,
methods for improving the accuracy of dynamic predictions and utilizing joint models and dynamic
predictions in optimizing individualized treatment strategies, and medical decision making.

Joint models have been widely used in health studies offering many advantages, such as (a) ad-
dressing measurement error and missing data in time-dependent covariates in survival regression
models, (b) increasing efficiency in statistical inference by utilizing both the longitudinal and sur-
vival data simultaneously, (c) understanding and quantifying the association between longitudinal
and survival processes, and (d ) developing dynamic prediction tools for risk assessment. Their
disadvantages are of a practical nature: More complex models are still computationally expensive
and may be difficult to interpret and communicate to a broader audience. However, we believe
that the benefits of using joint models surpasses their practical disadvantages and that they will
continue to grow in popularity in the near future as more user-friendly software becomes available.
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