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Abstract

Topological data analysis (TDA) can broadly be described as a collection
of data analysis methods that find structure in data. These methods include
clustering, manifold estimation, nonlinear dimension reduction, mode esti-
mation, ridge estimation and persistent homology. This paper reviews some
of these methods.
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1. INTRODUCTION

Topological data analysis (TDA) refers to statistical methods that find structure in data. As the
name suggests, these methods make use of topological ideas. Often, the term TDA is used narrowly
to describe a particular method called persistent homology (discussed in Section 4). In this review,
I take a broader perspective: I use the term TDA to refer to a large class of data analysis methods
that use notions of shape and connectivity. The advantage of taking this broader definition of
TDA is that it provides more context for recently developed methods. The disadvantage is that
my review must necessarily be incomplete. In particular, I omit any reference to classical notions
of shape, such as shape manifolds (Kendall 1984, Patrangenaru & Ellingson 2015) and related
ideas, because they are a bit far afield from topics in this article.

Clustering is the simplest example of TDA. Clustering is a huge topic, and I only discuss density
clustering, since this connects clustering to other methods in TDA. I also selectively review aspects
of manifold estimation (also called manifold learning), nonlinear dimension reduction, mode and
ridge estimation, and persistent homology.

In my view, the main purpose of TDA is to help the data analyst summarize and visualize
complex datasets. Whether or not TDA can be used to make scientific discoveries is still unclear.
There is another field that deals with the topological and geometric structure of data: computa-
tional geometry. The main difference is that in TDA we treat the data as random points, whereas
in computational geometry the data are usually seen as fixed.

Throughout this article, we assume that we observe a sample

X 1, . . . , Xn ∼ P , 1.

where the distribution P is supported on some set X ⊂ R
d . Some of the technical results cited

require either that P have sufficiently thin tails or that X be compact.
Many of the methods in this article are implemented in the R package TDA, available at

https://cran.r-project.org/web/packages/TDA/index.html. A tutorial on the package can be
found in Fasy et al. (2014a).

2. DENSITY CLUSTERS

Clustering is perhaps the oldest and simplest version of TDA. The connection between clustering
and topology is clearest if we focus on density-based methods for clustering.

2.1. Level Set Clusters

Let X1, . . . , Xn be a random sample from a distribution P with density p , where Xi ∈ X ⊂ R
d .

Density clusters are sets with high density. Hartigan (1975, 1981) formalized this as follows. For
any t ≥ 0, define the upper level set

Lt = {
x : p(x) > t

}
. 2.

The density clusters at level t, denoted by Ct , are the connected components of Lt . The set of all
density clusters is

C =
⋃
t≥0

Ct . 3.

Figure 1a shows a density function, and Figure 1b shows the level set clusters corresponding to
one particular value of t.
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Figure 1
(a) A density function p . (b) Density clusters corresponding to Lt = {x : p(x) > t}. (c) The density tree
corresponding to p is shown under the density. The leaves of the tree correspond to modes. The branches
correspond to connected components of the level sets.

The estimated upper level set is

L̂t = {
x : p̂(x) > t

}
, 4.

where p̂ is any density estimator. A common choice is the kernel density estimator

p̂h(x) = 1
n

n∑
i=1

1
hd

K
( ||x − Xi ||

h

)
, 5.

where h > 0 is the bandwidth and K is the kernel. The theoretical properties of the estimator
L̂t are discussed, for example, by Cadre (2006) and Rinaldo & Wasserman (2010). In particular,
Cadre (2006) shows, under regularity conditions and appropriate h, thatμ(L̂t�Lt) = OP (1/

√
nhd ),

where μ is Lebesgue measure and A�B is the set difference between two sets A and B.
To find the clusters, we need to get the connected components of L̂t . Let It = {i : p̂h(Xi ) > t}.

Create a graph whose nodes correspond to (Xi : i ∈ It). Put an edge between two nodes Xi and
X j if ||Xi − X j || ≤ ε, where ε > 0 is a tuning parameter. (In practice ε = 2h often seems to
work well.) The connected components Ĉ1, Ĉ2, . . . of the graph estimate the clusters at level t.
The number of connected components is denoted by β0, which is the zeroth-order Betti number.
This is discussed in more detail in Section 4.1.

Related to level sets is the concept of excess mass. Given a class of sets C, the excess mass
functional is defined to be

E(t) = sup{P (C) − tμ(C) : C ∈ C}, 6.

and any set C ∈ C such that P (C) − tμ(C) = E(t) is called a generalized t-cluster. If C is taken to
be all measurable sets and the density is bounded and continuous, then the upper level set Lt is the
unique t-cluster. The excess mass functional is studied in Polonik (1995) and Müller & Sawitzki
(1991).

One question that arises in the use of level set clustering is, How do we choose t? One possibility
is to choose t to cover some prescribed fraction 1 − β of the total mass; thus we choose t to satisfy∫

L̂t
p̂(s )ds = 1 − β. Another idea is to look at clusters at all levels t. This leads us to the idea of

density trees.
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2.2. Density Trees

The set of all density clusters C has a tree structure: If A, B ∈ C, then either A ⊂ B or B ⊂ A or
A

⋂
B = ∅. For this reason, we can visually represent a density and its clusters as a tree, which we

denote by Tp or T(p). Note that Tp is technically a collection of level sets, but it can be represented
as a two-dimensional tree as in the Figure 1c. The tree, shown under the density function, shows
the number of level sets and shows when level sets merge. For example, if we cut across at some level
t, then the number of branches of the tree corresponds to the number of connected components
of the level set. The leaves of the tree correspond to the modes of the density.

The tree is called a density tree or cluster tree. This tree provides a convenient, two-dimensional
visualization of a density regardless of the dimension d of the space in which the data lie.

Two density trees have the same shape if their tree structure is the same. Chen et al. (2016)
make this precise as follows. For a given tree Tp , define a distance on the tree between two points
x and y by

dTp (x, y) = |p(x) + p(y) − 2mp (x, y)|,
where

mp (x, y) = sup{t : there exists C ∈ Ct such that x, y ∈ C}
is called the merge height (Eldridge et al. 2015). For any two clusters C1, C2 ∈ Tp , we first define
λ1 = sup{t : C1 ∈ Ct}, and λ2 analogously. We then define the tree distance function on Tp by

dTp (C1, C2) = λ1 + λ2 − 2mp (C1, C2), 7.

where

mp (C1, C2) = sup{λ ∈ R : there exists C ∈ Tp such that C1, C2 ⊂ C}.
This extends the earlier definition dTp so that it defines a distance between sets. Now dTp defines
a distance on the tree, and it induces a topology on Tp . Given two densities p and q , we say Tp

is homeomorphic to Tq , written Tp ∼= Tq , if there exists a bicontinuous map from Tp to Tq . This
means that Tp and Tq have the same shape—in other words, they have the same tree structure.
An example is shown in Figure 2.

The density tree can be estimated by plugging in any density estimator. The estimated tree is
denoted by T̂ —usually based on a kernel density estimator p̂h , which provides a nice visualization
of the cluster structure of the data. Another choice of estimator is the k-nearest neighbor estimator,
as in Chaudhuri & Dasgupta (2010).

To estimate the shape of the density tree, it is not necessary to let the bandwidth h go to 0
as n increases. Let ph(x) = E[ p̂h(x)] be the mean of the estimator. It can be shown that, under

a b c

Figure 2
(a,b) Density trees in panels a and b are homeomorphic; there exists a bicontinuous map from one tree to the
other. (c) The third tree is not homeomorphic to the other two. Thus, the first two trees represent densities
with the same shape.
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weak conditions, there exists h0 > 0 such that, for all 0 < h < h0, T(ph) ∼= T(p). This means
that it suffices to estimate Tph for any small h > 0. This has important practical implications since
Tph can be estimated at the rate OP (n−1/2) independent of the dimensions d . Compare this to
estimating p in the L2 loss; the best rate under standard smoothness conditions is OP (n−2/(4+d )),
which is slow for large dimensions d . The key point is that estimating the cluster structure is easier
than estimating the density itself. In other words, you can estimate p poorly but still get the shape
of the tree correct. The reader is directed to Chen et al. (2016) for more details.

The bootstrap can be used to get confidence sets for the density tree (Chen et al. 2016). Let
Pn be the empirical measure that puts mass 1/n at each data point. Draw an independent and
identically distributed sample X ∗

1 , . . . , X ∗
n ∼ Pn and compute the density estimator p̂∗

h . Repeat this
process B times to get density estimates p̂∗(1)

h , . . . , p̂∗(B)
h and define

F̂n(t) = 1
B

B∑
j=1

I (
√

n|| p̂∗( j )
h − p̂h ||∞ > t),

where I is the indicator function. For large B, F̂n approximates

Fn(t) = P (
√

n|| p̂h − ph ||∞ > t).

Let t̂α = F̂−1
n (1 − α), which approximates tα = F−1

n (1 − α). Then

lim
n→∞

P (T(ph) ∈ T ) = 1 − α,

where

T =
⎧⎨⎩T(p) : ||p − p̂h ||∞ ≤ t̂α√

n

⎫⎬⎭.
Thus, T is an asymptotic confidence set for the tree. The critical value t̂α can be used to prune
nonsignificant leaves and branches from T̂ (see Figure 3).
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Figure 3
Example of density tree using the bootstrap from Chen et al. (2016), showing (a) the data and (b) the tree. The solid lines are the pruned
trees; the dashed lines are leaves and branches that have been pruned away because they are smaller than the bootstrap significance level
2̂tα (indicated in the top right corner of panel b). The colors on the left correspond to clusters in the tree on the right.
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A density tree is Hartigan consistent if, with probability tending to 1, the correct cluster struc-
ture is recovered. Generally, density trees based on consistent density estimators will be Hartigan
consistent. For more on Hartigan consistency, see Chaudhuri & Dasgupta (2010), Eldridge et al.
(2015), and Balakrishnan et al. (2013).

2.3. Mode Clustering and Morse Theory

Another density clustering method is mode clustering (Arias-Castro et al. 2015; Chacón 2012,
2015; Chacón & Duong 2013; Cheng 1995; Comaniciu & Meer 2002; Li et al. 2007). The idea
is to find modes of the density and then define clusters as the basins of attraction of the modes. A
point m is a (local) mode if there exists an open neighborhood N of x such that p(x) > p(y) for
every y ∈ N such that y �= x. Suppose that p has k local modes M = {m1, . . . , mk}. Assume that
p has gradient g and Hessian H.

A point x is a critical point if g(x) = (0, . . . , 0)T. The function p is a Morse function if the
Hessian is nondegenerate at each critical point (Milnor 2016). We will assume that p is Morse.
In this case, m is a local mode if and only if g(m) = (0, . . . , 0)T and λ1(H(m)) < 0, where λ1(A)
denotes the largest eigenvalue of the matrix A.

Now let x be an arbitrary point. If we follow the steepest ascent path starting at x, we will
eventually end up at one of the modes.1 Thus, each point x in the sample space is assigned to a
mode m j . We say that m j is the destination of x, which is written

dest(x) = m j .

The path πx : R → R
d that leads from x to a mode is defined by the differential equation

π ′
x(t) = ∇ p(πx(t)), πx(0) = x.

The set of points assigned to mode m j is called the basin of attraction of m j and is denoted by
C j . The sets C1, . . . , Ck are the population clusters. Figure 4a shows a bivariate density with four
modes, and Figure 4b shows the partition induced by the modes.

To estimate the clusters, we find the modes M̂ = {m̂1, . . . , m̂r } of the density estimate. A simple
algorithm called the mean shift algorithm (Cheng 1995, Comaniciu & Meer 2002) can be used to
find the modes and to find the destination of any point x. For any given x, we define the iteration

x( j+1) =
∑

i Xi K
(

||x( j )−Xi ||
h

)
∑

i K
(

||x( j )−Xi ||
h

)
(see Figure 5). The convergence of this algorithm is studied in Arias-Castro et al. (2015).

It can be shown under suitable regularity conditions that the modes of the kernel density
estimate are consistent estimates modes of the true density (see Genovese et al. 2016). Once
again, however, it is not necessary to estimate the density well to estimate the mode clusters well.
Specifically, define

c (x, y) =
{

1 if dest(x) = dest(y)
0 if dest(x) �= dest(y).

Thus, c (x, y) = 1 if x and y are in the same cluster. Similarly, the estimated clusters define a
function ĉ . Let C1, . . . , Ck be the model clusters. Let t1, . . . , tk be constants and let C j (tj ) = {x ∈
C j : p(x) > tj }. The sets C1(t1), . . . , C(tk) are called cluster cores, and these are the high density

1This is true for all x except on a set of Lebesgue measure 0.

506 Wasserman



ST05CH21_Wasserman ARI 25 January 2018 11:48

ba

Figure 4
(a) A density with four modes. (b) The partition (basins of attraction) of the space induced by the modes. These are the population
clusters.

points within the clusters. Let Core = {Xi : Xi ∈ ⋃
j C j (tj )} be the data points in the cluster

cores. Azizyan et al. (2015) show that, if t1, . . . , tk are sufficiently large, then

P(̂c (X j , Xk) �= c (X j , Xk) for any X j , Xk ∈ Core) ≤ e−nb

for some b > 0, independent of the dimension. This means that high density points can be
accurately clustered using mode clustering.

Figure 5
The mean shift algorithm. The data are represented by the black dots. The two modes of the density
estimate are the two blue dots. The red curves show the mean shift paths; each data point moves along its
path toward a mode as we iterate the algorithm.
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Figure 6
The Swiss-roll dataset. The ambient dimension is d = 3, but the data are supported on a set S of dimension
r = 2.

3. LOW DIMENSIONAL SUBSETS

Sometimes the distribution P is supported on a set S of dimension r with r < d . (Recall that
Xi has dimension d .) The set S might be of scientific interest, and it is also useful for dimension
reduction. Sometimes the support of P is d-dimensional, but we are interested in finding a set S
of dimension r < d that has a high concentration of mass.

Figure 6 shows an example known as the Swiss-roll dataset. Here, the ambient dimension is
d = 3, but the support of the distribution S is a manifold of intrinsic dimension r = 2. Figure 7
shows a more complex example. Here, d = 2, but clearly there is an r = 1 intrinsic dimensional
subset S with a high concentration of data. (This dataset mimics what we often see in some datasets
from astrophysics.) The set S is quite complex and is not a smooth manifold. The red lines show
an estimate of S based on the techniques described in Section 3.3.

3.1. Manifolds

In the simplest case, the set S is a smooth, compact submanifold of dimension r . The term manifold
learning can refer either to methods for estimating the set S or to dimension reduction methods
that assume that the data are on (or near) a manifold. Principal component analysis can be thought
of as a special case of manifold learning in which the data are assumed to lie near an affine subspace.

As a motivating example, consider images of a person’s face as the person moves his or her
head. Each image can be regarded as a high-dimensional vector. For example, a 16 by 16 image is
a vector in R

d where d = 16 × 16 = 256. However, the set of images will not fill up R
256. As the

person moves his or her head, these vectors are likely to trace out a surface of dimension r = 3,
corresponding to the three degrees of freedom corresponding to the motion of the head.
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Figure 7
These data are two dimensional, but there is a set S of dimension r = 1 with a high concentration of data.
The red lines show an estimate of S using the methods in Section 3.3.

3.1.1. Estimating S. An estimator of S is Ŝ = ⋃n
i=1 B(Xi , εn), which was suggested (in a different

context) by Devroye & Wise (1980). The estimator Ŝ is d-dimensional, but it does converge to
S in the following sense (Chazal et al. 2014b, Cuevas 2009, Cuevas et al. 2001, Fasy et al. 2014b,
Niyogi et al. 2008). The Hausdorff distance H(A, B) between two sets A and B is

H(A, B) = inf{ε : A ⊂ B ⊕ ε and B ⊂ A ⊕ ε}, 8.

where

A ⊕ ε =
⋃
x∈A

B(x, ε)

and B(x, ε) denotes a ball of radius ε centered at x. Suppose there exists c > 0 such that, for
every x ∈ S and every small ε, P (B(x, ε)) ≥ c εr . Further, assume that the number of balls of size
ε required to cover S is C(1/ε)r . These assumptions mean that S is r-dimensional (and not too
curved) and that P spreads its mass over all of S. Then

P (H(Ŝ, S) > ε) ≤ Cr−d e−nc εd
.

Hence, if we choose εn � (log n/n)1/r , then

H(Ŝ, S) = OP

(
log n

n

)1/r

,

where H is the Hausdorff distance defined in Equation 8. However, better rates are possible
under some conditions. The difficulty of estimating S as defined by minimax theory is given under
various sets of assumptions by Genovese et al. (2012a,b).

It is unlikely that a sample will fall precisely on a submanifold S. A more realistic model is that
we observe Y1, . . . , Yn, where Yi = Xi +εi , where X1, . . . , Xn ∼ G is a sample from a distribution G
supported on S and ε1, . . . , εn are a sample from a noise distribution such as a Gaussian. In this case,
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Genovese et al. (2012a) showed that estimating S is hopeless; the minimax rate of convergence is
logarithmic. However, it is possible to estimate an r-dimensional, high density region R that is
close to S. The set R corresponds to a ridge in the density of Y (see Section 3.3).

3.1.2. Estimating the topology of a manifold. Another problem is to find an estimate Ŝ of S
that is topologically similar to S. If, for example, S is a three-dimensional image (see Section 7.2),
then requiring Ŝ to be topologically similar ensures that Ŝ “looks like” S in some sense. But what
does “topologically similar” mean?

Two sets S and T (equipped with topologies) are homeomorphic if there exists a bicontinuous
map from S to T . Markov (1958) proved that, in general, the question of whether two spaces are
homeomorphic is undecidable for dimension greater than four.

Fortunately, it is possible to determine if two spaces are homologically equivalent. Homology
is a way of defining topological features algebraically using group theory. The zeroth order homol-
ogy of a set corresponds to its connected components. The first order homology corresponds to
one-dimensional holes (like a donut), the second order homology corresponds to two-dimensional
holes (like a soccer ball), and so on. If two sets are homeomorphic then they are homologically
equivalent. However, the reverse is not true. Thus, homological equivalence is weaker than topo-
logical equivalence.

We discuss homology in more detail in Section 4.1. But here, we mention one of the first
results about topology and statistics due to Niyogi et al. (2008). They showed that

Ŝ =
n⋃

i=1

B(Xi , ε)

has the same homology as S with high probability, as long as S has positive reach and ε is small
relative to the reach. The reach of S is the largest real number r such that any point x that is a
distance less than r from S has a unique projection on S. The result assumes the data are sampled
from a distribution supported on the submanifold S. Extensions that allow for noise are given by
Niyogi et al. (2011). An unsolved problem is to find a data-driven method for choosing the tuning
parameter ε. The assumption that S has positive reach can be weakened: Chazal et al. (2009) define
a quantity calledμ-reach that is weaker than reach, and they show that topological reconstructions
are possible using this weaker regularity assumption.

3.1.3. Dimension reduction. There are many methods that leverage the fact that the data are
supported on a low dimensional set S without explicitly producing an estimate Ŝ that is close
to S in Hausdorff distance. Examples include Isomap (Tenenbaum et al. 2000, De’ath 1999),
local linear embedding (Roweis & Saul 2000), diffusion maps (Coifman & Lafon 2006), Laplacian
eigenmaps (Belkin & Niyogi 2001) and many others (Lee & Verleysen 2007). Here, I give a very
brief description of Isomap.

The first step in Isomap is to form a graph from the data. For example, we connect two points
Xi and X j if ||Xi −X j || ≤ ε, where ε is a tuning parameter and || · || is Euclidean distance. Next we
define the distance between two points as the shortest path between the two points among all paths
in the graph that connect them. We now have a distance matrix D, where Di j is the shortest path
between Xi and X j . The hope is that Di j approximates the geodesic distance between Xi and X j on
the manifold. Finally, we use a standard dimension reduction method, such as multidimensional
scaling (MDS), to embed the data in R

r while trying to preserve the distances Di j as closely as
possible. For example, we find a map φ to minimize the distortion

∑
i< j [D2

i , j −||φ(Xi )−φ(X j )||2].
The transformed data Zi = φ(Xi ) now live in a lower dimensional space. Thus we have used the
fact that the data live on a manifold, to perform a dimension reduction.
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Figure 8
After applying Isomap to the Swiss-roll dataset with ε = 5, we recover the underlying two-dimensional structure.

Figure 8 shows the result of applying Isomap to the Swiss-roll data using ε = 5. In this case,
we perfectly recover the underlying structure. However, Isomap is a fragile procedure. It is very
sensitive to outliers and the choice of tuning parameters. Other methods, such as diffusion maps
and ridge estimation, are more robust.

3.2. Estimating Intrinsic Dimension

Many manifold estimation methods assume that the intrinsic dimension r of the manifold is known.
In practice, we need to estimate the dimension. There is a large literature on this problem. Some
examples include Costa & Hero (2004), Hein & Audibert (2005), Kégl (2002), Levina & Bickel
(2004), Little et al. (2011), and Lombardi et al. (2011). Minimax theory for dimension estimation
is provided by Koltchinskii (2000) and Kim et al. (2016). Estimating the intrinsic dimension when
the data are only approximately supported on a lower dimensional set is much harder than the
case where their support is precisely a lower dimensional set.

3.3. Ridges

Most manifold learning methods assume that the distribution P is supported on some manifold
S. This is a very strong and unrealistic assumption. A weaker assumption is that there may exist
some low dimensional sets where the density p has a relatively high local concentration. One way
to make this more precise is through the idea of density ridges.

A density ridge is a low dimensional set with large density. But the distribution P may not
even have a density. To deal with this issue, we define the smoothed distribution Ph obtained by
convolving P with a Gaussian. Specifically, Ph is the distribution with density

ph(x) =
∫

Kh (x − u) dP (u),

where Kh(x) = h−d (2π )−d/2e−||x||2/(2h2). Note that ph is the mean of the kernel density estimator
with bandwidth h. The smoothed distribution Ph always has a density, even if P does not. In
topological inference, we imagine using a small but positive h. It is not necessary to let h tend to 0
as we usual do in density estimation. The salient topological features of P will be preserved by Ph .

Let gh be the gradient of ph and let H h be the Hessian. Recall that a mode of ph is a point x
with gh(x) = (0, . . . , 0)T and λ1(H h(x)) < 0. A mode is a zero-dimensional ridge. More generally,
an r-dimensional ridge is a set with sharp density in some directions, much like the ridge of a
mountain (see Figure 9). In fact, there are many ways to define a ridge (see Eberly 1996). We use
the following definition. At a point x, we will define a local tangent space of dimension r and local
normal space of dimension d − r . Then x is a ridge point if it is a local mode in the direction of
the normal. More precisely, let λ1(x) ≥ · · · λd (x) be the eigenvalues of the Hessian H(x) and let

www.annualreviews.org • Topological Data Analysis 511



ST05CH21_Wasserman ARI 25 January 2018 11:48

Figure 9
This is a plot of a two-dimensional density function with a clearly defined one-dimensional ridge (blue circle).
The density above the ridge is in red.

v1(x), . . . , vd (x) be the corresponding eigenvectors. Let V r (x) = [vr+1(x) · · · vd (x)] and define the
projected gradient of p by

Gr (x) = V r (x)V r (x)T g(x).

The r-ridge is

Rr (p) = {x : Gr (x) = 0, λr+1(x) < 0}.
Under suitable regularity conditions, this is indeed an r-dimensional set.

The ridge can be estimated by the ridge of a kernel density estimate. Specifically, we take
R̂ = Rr ( p̂h) to be the ridge of the kernel estimator. The properties of this estimator were studied
by Genovese et al. (2014) and Chen et al. (2015a). An algorithm for finding the ridge set of p̂h was
given by Ozertem & Erdogmus (2011) and is called the subspace constrained mean shift (SCMS)
algorithm. Examples are shown in Figures 7 and 10, and a further example is in Section 7.

Ridges can be related to manifolds as follows (Genovese et al. 2014). Suppose we observe
Y1, . . . , Yn where Yi = Xi + σεi , X1, . . . , Xn ∼ G is a sample from a distribution G supported on a
manifold S, and ε1, . . . , εn are a sample from a noise distribution such as a Gaussian. As mentioned
earlier, S can only be estimated at a logarithmic rate. However, if σ is small enough and S has
positive reach, then the density p of Y will have a well-defined ridge R such that H(R, S) = O(σ ).
Furthermore, R is topologically similar to S in a certain sense described by Genovese et al. (2014).
In fact, ph will have a ridge Rh such that H(Rh , S) = O(σ + h), and Rh can be estimated at rate
OP (

√
log n/n) independently of the dimension.
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Figure 10
The data for this figure are generated as Yi = Xi + εi , where the Xi are sampled from a circle and εi are
bivariate Gaussian. The ridge R̂ of the kernel density estimator is found using the subspace constrained
mean shift (SCMS) algorithm and is shown in red.

An example is shown in Figure 10. The data are generated as follows. We sample X1, . . . , Xn

from a circle. Then we set Yi = Xi + εi , where ε1, . . . , εn are draws from a bivariate Normal with
mean (0, 0). Next we find the kernel density estimator based on Y1, . . . , Yn and we find the ridge R̂
of the kernel estimator using the SCMS algorithm. The data are the black points in the plot, and
the estimated ridge is shown in red. Notice that the data are full dimensional but the estimated
ridge is one dimensional.

3.4. Stratified Spaces

Another generalization of manifold learning is to assume that the support of P is a stratified space,
which means that the space can be decomposed into several intersecting submanifolds. Estimation
of stratified spaces is much less developed than manifold estimation. Some examples include those
presented by Bendich et al. (2007), Skraba & Wang (2014), and Bendich et al. (2007). Ridge based
methods as discussed in Section 3.3 seem to work well in this case, but so far, this has not been
established theoretically. A promising new approach due to Arias-Castro et al. (2011) is based on
a version of local principal component analysis.

4. PERSISTENT HOMOLOGY

Persistent homology is a multiscale approach to quantifying topological features in data
(Edelsbrunner & Harer 2008, 2010; Edelsbrunner et al. 2002). This is the branch of TDA that
gets the most attention, and some researchers view TDA and persistent homology as synonymous.

A quick, intuitive idea of persistent homology is given in Figures 11 and 12. Here, we see
some data, and we also see the set

⋃n
i=1 B(Xi , ε) for various values of ε. The key observation is
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a b c d

Figure 11
(a) The support S of the distribution. (b–d ) Union of balls

⋃n
i=1 B(Xi , ε), approximately 60 data points drawn from a uniform on S, with

ε = 0.03, 0.10, 0.30.

that the topological features appear and disappear as ε increases. For example, when ε = 0, there
are n connected components (that is, n disconnected balls). As ε increases, some of the connected
components die (that is, they merge) until only one connected component remains. (A connected
components consists of overlapping balls.) Similarly, at a certain value of ε, a hole is born. The
hole dies at a larger value of ε.

Thus, each feature has a birth time and a death time. The left plot in Figure 12 is a barcode
plot, which represents the birth time and death time of each feature as a bar. The right plot is
a persistence diagram, where each feature is a point on the diagram and the coordinates of the
points are the birth time and death time. Features with a long lifetime correspond to points far
from the diagonal. With this simple example in mind, we delve into more detail.

Hole

Birth Death

0 0.5 1.0 1.5 2.0 2.5 3.0

Time
0 0.5 1.0 1.5 2.0 2.5 3.0

0

0.5

1.0

1.5

2.0

2.5

3.0

Birth

Death

ba

Figure 12
(a) The barcode plot corresponding to the data from Figure 11. The gray lines show the birth and death of each connected component
as ε increases. The red line shows the birth and death of the hole as ε increases. (b) The persistence diagram. In this case, the birth and
death time of each feature is represented by a point on the diagram. The blue points correspond to connected components. The red
triangle corresponds to the hole. Points close to the diagonal have a short lifetime.
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b

β0 = 2; β1 = 1β0 = 1; β1 = 2

a

Figure 13
(a) This set has one connected component and two holes, and hence β0 = 1 and β1 = 2. (b) This set has two
connected components and one hole, and hence β0 = 2 and β1 = 1.

4.1. Homology

It is not possible to give a thorough review of homology given the present space constraints, but we
can give a short, intuitive description that will suffice for what follows. More details are provided
in Fasy et al. (2014b). Good introductions can be found in Hatcher (2000) and Edelsbrunner &
Harer (2010).

Homology characterizes sets based on connected components and holes. Consider the set in
Figure 13a. The set has one connected component and two holes. We write β0 = 1 and β1 = 2.
The numbers β0,β1, . . . are called Betti numbers. Intuitively, β0 is the number of connected
components, β1 is the number of one-dimensional holes, β2 is the number of two-dimensional
holes, and so on. (More formally, β j is the rank of the j th homology group.) The set in Figure 13b
has two connected components and one hole, thus, β0 = 2 and β1 = 1. These holes are one-
dimensional: They can be surrounded by a loop (like a piece of string). The inside of a soccer ball is
a two dimensional hole. To surround it, we need a surface. For a soccer ball, β0 = 1,β1 = 0,β2 = 1.
For a torus (a hollowed out donut), β0 = 1,β1 = 2,β2 = 1.

The formal definition of homology uses the language of group theory. (The equivalence class
of loops surrounding a hole have a group structure.) The details are not needed to understand the
rest of this article. Persistent homology examines these homological features from a multiscale
perspective.

4.2. Distance Functions and Persistent Homology

A good starting point for explaining persistent homology is the distance function. Given a set S,
the distance function is defined to be

dS(x) = inf
y∈S

||x − y ||,

where || · || is Euclidean distance. The lower level sets of the distance function are

Lε = {x : dS(x) ≤ ε}.

We also have that

Lε =
⋃
x∈S

B(x, ε).

So Lε can be thought of either as a union of balls, or as the lower level set of the distance function.
As ε increases, the sets Lε evolve. Topological features—connected components and holes—will
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Birth

Death

Figure 14
The bottleneck distance between two persistence diagrams is computed by finding the best matching
between the two diagrams. This plot shows two diagrams that have been overlaid, with the points from the
two diagrams represented by two colors. The matching is indicated by the lines joining the points from the
two diagrams. Note that some points—those with short lifetimes—are matched to the diagonal.

appear and disappear. Consider the circle

S = {(x, y) : x2 + y2 = 1}.
The set Lε is an annulus of radius ε. For all values of ε, Lε has one connected component. For
0 ≤ ε < 1, the set Lε has one hole. The hole dies at ε = 1. Thus, the hole has birth time ε = 0
and death time ε = 1. In general, these features can be represented as a persistence diagram D, as
in Figure 12. The diagram D represents the persistent homology of S.

Technically, the persistence diagram D is a multiset consisting of all pairs of points on the
plot as well as all points on the diagonal. Given two diagrams D1 and D2, the bottleneck distance
defined by

δ∞(D1, D2) = inf
γ

sup
z∈D1

||z − γ (z)||∞, 9.

where γ ranges over all bijections between D1 and D2. Intuitively, this is like overlaying the two
diagrams and asking how much we have to shift the points on the diagrams to make them the same
(see Figure 14).

Now suppose we observe a sample X1, . . . , Xn drawn from a distribution P supported on S.
The empirical distance function is

d̂ (x) = min
1≤i≤n

||x − Xi ||.

Note that the lower level sets of d̂ are precisely the union of balls described in the last section:

L̂ε = {x : d̂ (x) ≤ ε} =
n⋃

i=1

B(Xi , ε).

The persistence diagram D̂ defined by these lower level sets is an estimate of the underlying
diagram D.
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The empirical distance function is the most commonly used method for defining the persistence
diagram of a dataset in the field of computational topology. But from a statistical point of view,
this is a very poor choice. It is clear that d̂ is highly nonrobust. Even a few outliers will play havoc
with the estimator.

Fortunately, more robust and statistically sound methods are available. The first, and perhaps
most natural for statisticians, is to replace the lower level sets of the empirical distance function
with the upper level sets of a density estimator. This approach has been suggested by Phillips et al.
(2015), Chazal et al. (2014a), Bobrowski et al. (2014), Chung et al. (2009), and Bubenik (2015).
The idea is to consider the upper level sets L̂t = {x : p̂h(x) > t}. As t varies from supx p̂h(x)
down to 0, the sets L̂t evolve and the birth and death times of features are again recorded on a
persistence diagram. In this case, the birth times are actually after the death times. This is just an
artifact from using upper level sets instead of lower level sets.

An alternative is to redefine the distance function to be intrinsically more robust. Specifically,
Chazal et al. (2011) defined the distance to a measure (DTM) as follows. Let 0 ≤ m ≤ 1 be a scale
parameter and define

d 2
m(x) = 1

m

∫ m

0
δ2

a (x)da ,

where

δa (x) = inf{r > 0 : P (B(x, r)) > a}.
We can think of dm as a function T(P ) of the distribution P . The plug-in estimate of dm obtained
by inserting the empirical distribution in place of P is

d̂ 2
m(x) = 1

k

k∑
i=1

||x − Xi (x)||2,

where k = �mn� and X j (x) denote the data after reordering them, so that ||X1(x)− x|| ≥ ||X2(x)−
m|| ≥ · · ·. In other words, d̂ 2

m(x) is just the average squared distance to the k-nearest neighbors.
The definition of dm is not arbitrary. The function dm preserves certain crucial properties

that the distance function has, but it changes gracefully as we allow more and more noise. It is
essentially a smooth, probabilistic version of the distance function. The properties of the DTM
are discussed by Chazal et al. (2011, 2014a, 2015).

Whether we use the kernel density estimator or the DTM, we would like to have a way to
decide when topological features are statistically significant. Chazal et al. (2014a) and Fasy et al.
(2014b) suggest the following method. Let

F (t) = P (
√

n δ∞(D̂, D) ≤ t),

where D is the true diagram and D̂ is the estimated diagram. Any point on the diagram that is
farther than tα = F−1(1 − α) from the diagonal is considered significant at level α. Of course, F
is not known but can be estimated by the bootstrap:

F̂ (t) = 1
B

B∑
j=1

I (
√

nd∞(D̂∗
j , D̂) ≤ t),

where D̂∗
1 , . . . , D̂∗

B are the diagrams based on B bootstrap samples. Then t̂α = F̂−1(1 − α) is an
estimate of tα .

Example. We sampled 1,000 observations from a circle in R
2. Gaussian noise was then

added to each observation. Then we added 100 outliers sampled uniformly from the
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Figure 15
Data sampled from a circle, with Gaussian noise added. There are also 100 outliers sampled uniformly from
the square.

square. The data are shown in Figure 15. Figure 16 shows the kernel density estimator
(h = 0.02) and the persistence diagram based on the upper level sets of the estimator.
The points in the pink band are not significant at level α = 0.1 (based on the bootstrap).
The two points that are significant correspond to one connected component (blue dot)
and one hole (red triangle). Figure 17 shows a similar analysis of the same data using the
DTM with m = 0.1. Generally, we find that the significant features are more prominent
using the DTM rather than the kernel density estimator. Also, the DTM is less sensitive
to the choice of tuning parameter, although it is not known why this is true.

4.3. Simplicial Complexes

The persistence diagram is not computed directly from L̂ε . Instead, one forms an object called
a Čech complex. The Čech complex Cε is defined as follows. All singletons are included in Cε ;
these are zero-dimensional simplices. All pairs of points Xi , X j such that ||Xi − X j || ≤ ε are
included in Cε ; these are one-dimensional simplices. Each triple Xi , X j , Xk such that B(Xi , ε/2) ∩
B(X j , ε/2) ∩ B(Xk, ε/2) is nonempty, is included in Cε ; these are two-dimensional simplices—and
so on. The Čech complex is an example of a simplicial complex. A collection of simplices is a
simplicial complex if it satisfies the following condition: If F is a simplex in Cε and E is a face of F ,
then E is also on Cε . It can be shown that the homology of L̂ε is the same as the homology of Cε .
But the homology of Cε can be computed using basic matrix operations. This is how homology is
computed in practice (Edelsbrunner & Harer 2010). Persistent homology relates the complexes as
ε varies. Again, all the relevant computations can be reduced to linear algebra. Working directly
with the Čech complex is computationally prohibitive. In practice, one often uses the Vietoris-
Rips complex Vε , which is defined as follows. A simplex is included in Vε if each pair of vertices is
no more than ε apart. It can be shown that the persistent homology defined by Vε approximates
the persistent homology defined by Cε .
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Figure 16
(a) The kernel density estimator. (b) The persistence diagram corresponding to the upper level sets of the estimator. The points above
the pink band are significant compared to the bootstrap critical value. Note that one connected component (blue dot) and one hole (red
triangle) are significant.

4.4. Back to Density Clustering

Chazal et al. (2013) have shown that persistent homology can be used as a tool for density clustering.
This idea was further examined by Genovese et al. (2016). Thus, we have come full circle and
returned to the topic of Section 2.

Holeba
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Figure 17
(a) The distance to a measure (DTM). (b) The persistence diagram corresponding to the lower level sets of the DTM. The points above
the pink band are significant compared with the bootstrap critical value. Note that one connected component (blue dot) and one hole
(red triangle) are significant.

www.annualreviews.org • Topological Data Analysis 519



ST05CH21_Wasserman ARI 25 January 2018 11:48

−5 0 5

b1 b1

b2

b4

b3b3

b4
d4

d3 d4d1 d2

d3

b2

d2

d1

Birth

Death

ba

Figure 18
(a) Starting at the top of the density and moving down, each mode has a birth time b and a death time d . (b) The persistence diagram
plots the points (d1, b1), . . . , (d4, b4). Modes with a long lifetime are far from the diagonal.

Recall the mode clustering method described in Section 2.3. We estimate the density and find
the modes m̂1, . . . , m̂k and the basins of attraction C1, . . . , Ck corresponding to the modes.

But we can use more information. In the language of persistent homology, each mode has
a lifetime (see Figure 18). Suppose we start with t = supx p(x). We find the upper level set
Lt = {x : p(x) ≥ t}. Now we let t decrease. (We can think of t as time, but in this case, time runs
backwards, since it starts at a large number and tends to zero.) Every time we get to a new mode, a
new connected component of Lt is born. However, as t decreases, the connected components can
merge. When they merge, the most recently created component is considered to be dead while
the other component is still alive. This is called the elder rule. Proceeding this way, small modes
correspond to level sets with short lifetimes, and strong modes correspond to level sets with long
lifetimes. We can plot the information as a persistence diagram, as in Figure 18b.

We can use this representation of the modes to decide which modes of a density estimator are
significant (Chazal et al. 2013, 2014a). Define t̂α by

P

(√
n|| p̂∗

h − p̂h || > t̂α
∣∣∣ X1, . . . , Xn

)
= α,

where p̂∗
h is based on a bootstrap sample X ∗

1 , . . . , X ∗
n drawn from the empirical distribution Pn.

The above probability can be estimated by

1
B

B∑
j=1

I (
√

n|| p̂∗
h − p̂h || > t).

Any mode whose corresponding point on the persistence diagram is farther than t̂α from the
diagonal is considered a significant mode.

5. TUNING PARAMETERS AND LOSS FUNCTIONS

Virtually every method we have discussed in this article requires the choice of a tuning parameter.
For example, many of the methods involve a kernel density estimator which requires a bandwidth h.
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Figure 19
(a) A density p and a level set {p > t}. (b) The smoothed density ph and the level set {ph > t}. The latter is biased but captures the shape
of the true level set. The red line is t, which defines the level set. The blue data show the corresponding level set.

But the usual methods for choosing tuning parameters may not be appropriate for TDA. In fact,
the problem of choosing tuning parameters is one of the biggest open challenges in TDA.

Let us consider the problem of estimating a density p with the kernel estimator p̂h . The usual
L2 risk is E[

∫
( p̂h(x)− p(x))2dx]. Under standard smoothness assumptions, the optimal bandwidth

h � n−1/(4+d ) yielding a risk of order n−4/(4+d ).
In TDA, we are interested in shape, not L2 loss (or Lp loss for any p). And, as I have mentioned

earlier, it may not even be necessary to let h tend to zero to capture the relevant shape information.
In Section 2.2 we saw that, in some cases, the density tree T(ph) has the same shape as the true
tree T(p), even for fixed h > 0. Here, ph(x) = E[ p̂h(x)].

Similarly, consider estimating a ridge R of a density p . In general, the ridge can only be
estimated at rate OP (n−2/(8+d )) (Genovese et al. 2014). Now suppose we use a small but fixed
(nondecreasing) bandwidth h. Usually, the ridge Rh of ph is a reasonably good but slightly biased
approximation to R. But R can be estimated at rate OP (

√
log n/n). We are often better off living

with the bias and estimating Rh instead of R.
In fact, one could argue that any shape information that can only be recovered with small

bandwidths is very subtle and cannot be reliably estimated. The salient structure can be recovered
with a fixed bandwidth. To explain this in more detail, we consider two examples from Chen et al.
(2015b).

Figure 19a shows a density p . The blue points at the bottom show the level set L = {x : p >
0.05}. The right plot shows ph for h = 0.2, and the blue points at the bottom show the level set
Lh = {x : ph > 0.05}. The smoothed-out density ph is biased, and the level set Lh loses the small
details of L. But Lh contains the main part of L, and it may be more honest to say that L̂h is an
estimate of Lh .

As a second example, let P = (1/3)φ(x; −5, 1) + (1/3)δ0 + (1/3)φ(x; 5, 1), where φ is a Normal
density and δ0 is a point mass at zero. Of course, this distribution does not even have a density.
Figure 20a shows the density of the absolutely continuous part of P , with a vertical line to show
the point mass. The right plot shows ph , which is a smooth, well-defined density. Again, the blue
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Figure 20
(a) A distribution with a continuous component and a point mass at 0. (b) The smoothed density ph . The level set Lh is biased but is
estimable, and it approximates the main features of L. The blue data show the corresponding level set.

points show the level sets. As before, ph is biased (as is Lh). But ph is well-defined, as is Lh , and p̂h

and L̂h are accurate estimators of ph and Lh . Moreover, Lh contains the most important qualitative
information about L, namely, that there are three connected components, one of which is small.

The idea of viewing ph as the estimand is not new. The “scale space” approach to smoothing
explicitly argues that we should view p̂h as an estimate of ph , and ph is then regarded as a view of
p at a particular resolution. This idea is discussed in detail by Chaudhuri & Marron (1999, 2000)
and Godtliebsen et al. (2002).

If we do decide to base TDA on tuning parameters that do not go to zero as n increases, then
we need new methods for choosing tuning parameters. One possibility, suggested by Chazal et al.
(2014a) and Guibas et al. (2013), is to choose the tuning parameter that maximizes the number of
significant topological features. In particular, Chazal et al. (2014a) use the bootstrap to assess the
significance of topological features, and then they choose the smoothing parameter to maximize
the number of such features. This maximal significance approach is promising, but so far there is
no theory to support the idea.

The problem of choosing tuning parameters thus remains one of the greatest challenges in
TDA. In fact, the same problem permeates the clustering literature. To date, there is no agreement
on how to choose k in k-means clustering, for example.

6. DATA VISUALIZATION AND EMBEDDINGS

Topological ideas play a role in data visualization, either explicitly or implicitly. In fact, many
TDA methods may be regarded as visualization methods. For example, density trees, persistence
diagrams, and manifold learning all provide low dimensional representations of the data that are
easy to visualize.

Some data visualization methods work by embedding the data in R
2 and then simply plotting

the data. Consider a point cloud X1, . . . , Xn, where Xi ∈ R
d . Let ψ : R

d → R
2 and let Zi = ψ(Xi ).

Because the points Z1, . . . , Zn are in R
2, we can easily plot the Zi s. Perhaps the most familiar
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version is MDS, where ψ is chosen to be a linear function minimizing some measure of distance
between the original pairwise distances ||Xi − X j ||2 and the embedded distances ||Zi − Zj ||2. In
particular, if we minimize

∑
i �= j (||Xi − X j ||2 −||Zi − Zj ||2), then the solution is to project the data

onto the first two principal components.
But traditional MDS does a poor job of preserving local structure such as clusters. Local,

nonlinear versions of MDS do a better job of preserving local structure. An example is Laplacian
eigenmaps, which was proposed by Belkin & Niyogi (2003). Here, we choose ψ to minimize∑

i , j Wi j ||Zi − Zj ||2 (subject to some constraints), where the Wi j are localization weights such
as Wi j = e−||Xi −X j ||2/(2h2). The resulting embedding does a good job of preserving local structure.
However, Maaten & Hinton (2008) noted that local methods of this type can cause the data to
be too crowded together. They proposed a new method called t-distributed stochastic neighbor
embedding (t-SNE) which seems to work better, but they provided no justification for the method.
Carreira-Perpiñán (2010) provided an explanation of why t-SNE works. He showed that t-SNE
optimizes a criterion that essentially contains two terms, one promoting localization and the other
causing points to repel each other. Based on this insight, he proposed a new method called elastic
embedding that explicitly has a term encouraging clusters to stay together and a term that repels
points from each other. What is notable about t-SNE and elastic embedding is that they preserve
clusters and loops. The loops are apparently preserved due to the repelling term. It appears, in
other words, that these methods preserve topological features of the data.

This leads to the following question: Is it possible to derive low dimensional embedding meth-
ods that explicitly preserve topological features of the data? This is an interesting open question.

7. APPLICATIONS

7.1. The Cosmic Web

The matter in the Universe is distributed in a complex, spider-web-like pattern known as the
cosmic web. Understanding and quantifying this structure is one of the challenges of modern
cosmology. Figure 21 shows a two-dimensional slice of data consisting of some galaxies from
the Sloan Digital Sky Survey (www.sdss.org), as analyzed by Chen et al. (2015c). The blue
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Figure 21
A filament map from Chen et al. (2015c). The data are galaxies from the Sloan Digital Sky Survey. The blue
lines are detected filaments. The red dots are clusters. Right ascension and declination measure position in
the sky using, essentially, longitude and latitude. Adapted with permission from Chen et al. (2015c).
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Figure 22
A three-dimensional image. Classifying such images requires features that are invariant to small
deformations of the image. Topological data analysis can potentially provide such features.

lines are filaments that were found using the ridge methods discussed in Section 3.3. Also shown
are clusters (red dots) that were found by previous researchers. Filament maps like this permit
researchers to investigate questions about how structure formed in our Universe. For example,
Chen et al. (2015d) investigated how the properties of galaxies differ depending on the distance
from filaments.

Several papers, such as those of Van de Weygaert et al. (2010, 2011a,b), have used homology
and persistent homology to study the structure of the cosmic web. These papers use TDA to
quantify the clusters, holes, and voids in astronomical data. Sousbie et al. (2011) and Sousbie
(2011) use Morse theory to model the filamentary structures of the cosmic web.

7.2. Images

Many researchers have used some form of TDA for image analysis. Consider Figure 22, which
shows a three-dimensional image of a rabbit. Given a large collection of such images, possibly
corrupted by noise, we would like to define features that can be used for classifying such images.
It is critical that the features be invariant to shifts, rotations, and small deformations. Topological
methods are thus a promising source of relevant features. A number of papers have used TDA to
define such features, for example, Bonis et al. (2016), Li et al. (2014), and Carrière et al. (2015).

TDA has also been used in the classification of two-dimensional images. For example, Singh
et al. (2014) considered breast cancer histology images. These images show the arrangement of
cells of tissue samples. An example of a histology image is given in Figure 23.

A typical image has many clumps and voids, so TDA may be an appropriate method for
summarizing the images. Singh et al. (2014) used the Betti numbers as a function of scale as
features for a classifier. The goal was to discriminate different subtypes of cancer. They achieved
a classification accuracy of 69.86 percent, which was better than competing methods.

7.3. Proteins

Kovacev-Nikolic et al. (2016) used TDA to study the maltose binding protein, which is a protein
found in Escherichia coli. An example of such a protein is given in Figure 24. The protein is
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Figure 23
An example of a histology image from http://medicalpicturesinfo.com/histology/.

a dynamic structure and the changes in structure are of biological relevance. Quoting Kovacev-
Nikolic et al. (2016, p. 21),

A major conformational change in the protein occurs when a smaller molecule called a ligand attaches
to the protein molecule...Ligand-induced conformational changes are important because the biological
function of the protein occurs through a transition from a ligand-free (apo) to a ligand-bound (holo)
structure

The protein can be in an open or closed conformation, and the closed conformation is due to
having a captured ligand. The goal of the authors is to classify the state of the protein.

Each protein is represented by 370 points (corresponding to amino acids) in three-dimensional
space. The authors construct a dynamic model of the protein structure (since the structure changes
over time) from which they define dynamical distances between the 370 points. Thus, a pro-
tein is represented by a 370 by 370 distance matrix. From the distance matrix, they construct a

Figure 24
A maltose binding protein. The image of the protein is from http://lilith.nec.aps.anl.gov/Structures/
Publications.htm.
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persistence diagram. Next, they convert the persistence diagrams into a set of functions called
landscapes, as defined by Bubenik (2015). Turning the diagram into a set of one-dimensional
functions makes it easier to use standard statistical tools. In particular, they do a two-sample per-
mutation test using the integrated distances between the landscape functions as a test statistic.
The p-value is 5.83 × 10−4, suggesting a difference between the open and closed conforma-
tions. This suggests that landscapes can be used to classify proteins as open or closed. They also
show that certain sites on the protein, known as active sites, are associated with loops in the
protein.

7.4. Other Applications

Here I briefly mention a few other examples of TDA.
The Euler characteristic is a topological quantity that I did not describe in this article owing

to space limitations. However, it has played an important role in various aspects of probability as
well as to applications in astrophysics and neuroscience (Adler & Taylor 2009; Taylor & Worsley
2007; Worsley 1994, 1995, 1996). The Euler characteristic has also been used for classification
of shapes (Richardson & Werman 2014; see also Turner et al. 2014). Bendich et al. (2010) used
topological methods to study the interactions between root systems of plants.

Carstens & Horadam (2013) used persistent homology to describe the structure of collaboration
networks. Xia et al. (2015) used TDA in the analysis of biomolecules. Adcock et al. (2014) used
TDA to classify images of lesions of the liver. Chung et al. (2009) used persistence diagrams
constructed from data on cortical thickness to distinguish control subjects and autistic subjects.

Offroy & Duponchel (2016) reviewed the role of TDA in chemometrics. Bendich et al. (2016)
used persistent homology to study the structure of brain arteries. There is now a substantial liter-
ature on TDA in neuroscience, including Arai et al. (2014), Babichev & Dabaghian (2016), Basso
et al. (2016), Bendich et al. (2016), Brown & Gedeon (2012), Cassidy et al. (2015), Chen et al.
(2014), Choi et al. (2014), Chung et al. (2009), Curto (2016), Curto & Itskov (2008), Curto et al.
(2013, 2015), Curto & Youngs (2015), Dabaghian et al. (2011, 2012, 2014), Dabaghian (2015),
Dlotko et al. (2016), Ellis & Klein (2014), Giusti & Itskov (2013), Giusti et al. (2015, 2016),
Hoffman et al. (2016), Jeffs et al. (2015), Kanari et al. (2016), Khalid et al. (2014), Kim
et al. (2014), Lee et al. (2011), Lienkaemper et al. (2015), Manin (2015), Masulli & Villa
(2015), Petri et al. (2014), Pirino et al. (2014), Singh et al. (2008), Sizemore et al. (2016a,b),
Spreemann et al. (2015), Stolz (2014), Yoo et al. (2016), and Zeeman (1965). The website
http://www.chadgiusti.com/bib.html maintains a bibliography of references in this area.

8. CONCLUSION: THE FUTURE OF TDA

TDA is an exciting area and is full of interesting ideas. But so far, it has had little impact on data
analysis. Is this because the techniques are new? Is it because the techniques are too complicated?
Or is it because the methods are simply not that useful in practice?

Right now, it is hard to know the answer. My personal opinion is that TDA is a very spe-
cialized tool that is useful in a small set of problems. For example, it seems to be an excellent
tool for summarizing data relating to the cosmic web, but I doubt that TDA will ever become
a general-purpose tool like regression. The exception is clustering, which of course is used rou-
tinely, although some might argue that it is a stretch to consider clustering part of TDA. I have
seen a number of examples in which complicated TDA methods were used to analyze data but
no effort was made to compare these methods to simpler, more traditional statistical methods.
It is my hope that, in the next few years, researchers will do thorough comparisons of standard
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statistical methods with TDA in a number of scientific areas so that we can truly assess the value
of these new methods.
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