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Abstract

Algebraic statistics uses tools from algebra (especially from multilinear
algebra, commutative algebra, and computational algebra), geometry, and
combinatorics to provide insight into knotty problems in mathematical
statistics. In this review, we illustrate this on three problems related to
networks: network models for relational data, causal structure discovery,
and phylogenetics. For each problem, we give an overview of recent results
in algebraic statistics, with emphasis on the statistical achievements made
possible by these tools and their practical relevance for applications to other
scientific disciplines.
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1. INTRODUCTION

Algebraic statistics is a branch of mathematical statistics that focuses on the use of algebraic,
geometric and combinatorial methods in statistics. The term “algebraic statistics” itself was
coined as the title of a book on the use of techniques from commutative algebra in experimental
design (Pistone et al. 2001). An early influential paper (Diaconis & Sturmfels 1998) connected
the problem of sampling from conditional distributions for the analysis of categorical data to
commutative algebra, thereby showcasing the power of the interplay between these areas. In the
two decades that followed, increasing interest in applying new algebraic tools to key problems in
statistics has generated a growing literature.

The use of algebra, geometry, and combinatorics in statistics did not start a mere two decades
ago. Combinatorics and probability theory have gone hand in hand since their beginnings. The
first standard mathematical method in statistics may be the method of least squares, which has
been used extensively since shortly after 1800 and relies heavily on systems of linear equations.
Nonlinear algebra has played a major role in statistics since the 1940s; readers are directed to, for
example, Wilks (1946), Votaw (1948), James (1954), Andersson (1975), Bailey (1981), and Jensen
(1988). In addition, the development of the theory of exponential families relied heavily on con-
vex geometry (Barndorff-Nielsen 1978). However, Diaconis & Sturmfels (1998) and Pistone et al.
(2001) introduced new algebraic disciplines in statistics, including modern computational alge-
braic geometry and commutative algebra. In this review, we concentrate on the developments in
algebraic statistics in the past two decades and, in particular, on applications to networks.

The analysis of networks as relational data and to represent probabilistic interactions between
variables is becoming increasingly popular, with applications in fields including the social sci-
ences, genomics, neuroscience, economics, linguistics, and medicine. Theoretical and algorithmic
developments for exploring such data sets are found at the intersection of statistics, applied math-
ematics, and machine learning. In this review we focus on some of the key statistical problems
and their solutions using algebraic techniques in three application areas: network models (based
on relational data encoded as observations on the edges of a random network), causal structure
discovery (based on multivariate data encoded as observations on the nodes of an unknown under-
lying causal network), and phylogenetics (a particular network structure discovery problem where
the underlying network is a tree with latent variables).

Section 2 focuses on statistical models for relational data, typical uses of which arise in the
social and biological sciences. In these applications, nodes in the network may represent individu-
als, organizations, proteins, neurons, or brain regions, while links represent observed relationships
between the nodes, such as personal or organizational affinities, social or financial relationships,
binding between proteins, or physical links between brain regions. A key problem in this area is
to test whether a proposed statistical model fits the data at hand; such a test typically involves
generating a sufficiently large sample of networks from the model and comparing it to the ob-
served network. Perhaps somewhat surprisingly, algorithms for sampling networks with given net-
work statistics for goodness-of-fit testing are often efficiently encoded by algebraic constraints. In
Section 2, we outline how techniques from commutative algebra and combinatorics are applied to
this problem for several families of networkmodels for which a formal test is otherwise unavailable.

In Section 3, we turn to applications where the network structure cannot directly be observed
and we only have access to observations on the nodes of the network. Such applications range
from modeling data on consumer behavior to click statistics for ads or websites, DNA sequences
of related species, gene expression data, etc. The use of such data to gain insight into complex
phenomena requires characterizing the relationships among the observed variables. Probabilistic
graphical models explicitly capture the statistical relationships between the variables as a network.
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A good representation of a complex system should enable prediction of not only the state of one
component given the others, but also the effect that local operations have on the global system.
This requires causal modeling and use of interventional data. In Section 3, we discuss the role
that algebraic and discrete geometry play in analyzing prominent algorithms for causal structure
discovery and in developing the first provably consistent algorithms for causal inference from a
mix of observational and interventional data.

In Section 4, we discuss a particular directed network model, phylogenetic trees, for evolution-
ary reconstruction. Algebra and related areas have always been present in the study of evolutionary
processes but have played minor roles relative to combinatorics or optimization. However, since
the beginning of this century, the developments in algebraic statistics have given rise to techniques
with a major impact on three different problems in phylogenetics: model selection, model iden-
tifiability, and phylogenetic reconstruction. Models that best fit the data should only be selected
from among those whose parameters are identifiable, so understanding model identifiability is
crucial. The final step, given an evolutionary model and data, is to reconstruct the phylogenetic
tree and infer the evolutionary parameters. In Section 4, we explain how algebraic techniques can
be used to address these problems and discuss their applications to complex evolutionary models
and phylogenetic networks.

2. NETWORK MODELS FOR RELATIONAL DATA

Networkmodels for relational data, that is, various types of interactions between a fixed set of enti-
ties, such as neurons, proteins, people, or corporations, have grown in popularity in recent decades.
The interactions can be directed (e.g., affinity or one-way influence) or undirected (e.g., mutual
affiliation) and may be counted with multiplicity or weight. Consider two recently collected data
sets on statisticians who publish in five top-rated journals ( Ji & Jin 2016). The data can be repre-
sented as a bipartite graph of authors and papers, in which a link exists between nodes i and j if
author i wrote paper j; or as a citation network, in which a directed edge from i to j denotes that
paper i cites paper j; or as collapsed coauthorship or citation networks among authors (Figure 1).

Taking a model-based approach, we study the effects of various types of author interactions on
network analysis and inference by concentrating on goodness of fit of a network model. This is
central for estimating network features, appropriately simulating data, and correctly interpreting
the results. In addition, goodness-of-fit testing is considered to be very challenging in the network
science community due to the size of the networks inmany applications as well as their sparsity and
particular structure. Methods rooted in algebraic statistics help answer such questions efficiently
and reliably for a variety of network models.

Relational data can be modeled using random graphs, in which the interactions are modeled as
random variables. This results in a statistical model with random directed or undirected edges on
a fixed set of nodes. There is a rich literature on different random graph models, starting from the
classical Erdös–Rényi graphs (Erdös & Rényi 1961), exponential random graph models (ERGMs)
(Holland & Leinhardt 1981), and Markov graphs (Frank & Strauss 1986), to models that capture
more intricate relational behavior, such as stochastic block models (SBMs) (Holland et al. 1983),
latent space models (Hoff et al. 2002), and mixed membership SBMs (Airoldi et al. 2009; see also
Goldenberg et al. 2010). The question of whether any of these models provides an adequate fit to
data has received relatively little attention.

Here we consider the broad and flexible class of exponential family models for random graphs,
ERGMs. To specify an ERGM, one first selects a vector of network characteristics T (g) ⊂ R

p

that represent an interpretable and meaningful summary of the network, such as the number of
neighbors of each node or block membership. The resulting model is the collection of probability
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Figure 1

Author networks constructed from the data collected by Ji & Jin (2016). (a) In coauthorship network A, there is an undirected edge
between nodes i and j if authors i and j coauthored at least two papers. (b) In coauthorship network B, there is an undirected edge
between nodes i and j if authors i and j coauthored at least one paper. (c) In the citation network, there is a directed edge from author
i to author j if i cited at least one paper by j.

measuresM = {pθ : θ ∈ �} indexed by points in � ⊂ R
p such that for any θ ∈ �, the probability

of observing a given network G = g takes the exponential form

pθ (g) = exp{〈T (g), θ〉 − ψ (θ )},

where ψ (θ ) = log
∑

g exp{〈T (g), θ〉} is the normalizing function (also known as the log-partition
function) and T (g) is the vector of minimal sufficient statistics for M. Tools from commutative
algebra can be applied to construct a finite-sample test for goodness of fit of such a model to
the observed network, while graph-theoretic and combinatorial considerations can render the
resulting algorithms scalable and applicable in practice for large networks.

2.1. Testing Model Fit: State of the Art

Studies devoted to goodness-of-fit tests for network models fall into two categories.
Heuristic tests are based on graphical comparisons between observed statistics and the cor-

responding statistics obtained from the fitted model (see Handcock 2003, Hunter et al. 2008,
Carnegie et al. 2015). Given an observed graph gobs, the goal is to evaluate how well a model
Pθ (G) fits gobs. Let s(g) be a vector of network statistics. The most popular include the number
of edges, triangles, or two-stars in g; the vector of counts of neighbors of every node (the degree
sequence); or other summaries of a node’s connectedness or centrality in g. The graphical method
proceeds by computing a maximum likelihood estimator (MLE) θ̂ of θ and simulating several
graphs g1, . . . , gB from Pθ̂ . Departures from the model are detected by comparing the sample dis-
tribution of s(g1), . . . , s(gB ) with the observed value s(gobs ). Central to the graphical method is the
choice of complementary statistics s(g) used for evaluating the fit. Although widely used, graphical
tests have two limitations: First, they are not based on any formal discrepancy measure between
themodel and observed network since the choice of s(g) is arbitrary. Second, the distribution of the
complementary statistics is unknown under the null hypothesis, so calibration and formal type I
error rates are difficult to obtain.
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Asymptotic tests are a natural alternative and rely on formal testing criteria for evaluating
model fit. However, classical test criteria such as the log-likelihood ratio, Akaike information
criterion (AIC), or Bayesian information criterion (BIC) cannot be directly applied to general
network models, mainly because the usual asymptotics do not apply to models other than very
simplistic ones. This is due to the fact that the independent and identically distributed (i.i.d.)
assumption on the random edges does not hold, which undermines the use of results on asymp-
totic distributions of various test statistics. In addition, in many network models, the number of
parameters increases with the number of nodes. This issue was first pointed out by Fienberg &
Wasserman (1981b) and noted also in several later works (Holland & Leinhardt 1981, Hunter
et al. 2008, Chatterjee et al. 2011, Carnegie et al. 2015, Krivitsky & Kolaczyk 2015, Yan et al.
2016). In addition, many commonly used ERGMs suffer from the lack of a natural notion of
projectability (Shalizi & Rinaldo 2013), which relates the marginal distribution of a network on
p nodes to the same model on p+ 1 nodes, essentially ruling out consistency of MLEs.

To remedy these issues, one can derive modified asymptotic distributions, when they exist, of
various test statistics for special cases. For example, Yan et al. (2014) consider testing the degree-
corrected block model with the usual SBM;Wang & Bickel (2017) derive an asymptotic Gaussian
distribution of the likelihood ratio test statistic for selecting between two SBMs with different
numbers of communities; Gao & Lafferty (2017) consider testing an Erdös–Rényi model against
an SBM, construct a chi-square-like test statistic using a combination of edge, 2-star, and triangle
counts, and show that its limiting distribution is a chi-square distribution; Lei (2016) constructs
a goodness-of-fit test for the SBM by using the extreme eigenvalues of a certain residual matrix
as a test statistic and deriving its asymptotic distribution; and similarly, Banerjee & Ma (2017)
derive a central limit theorem for linear spectral statistics for testing an Erdös–Rényi model
against a two-block block model. A common limitation of these studies is that the asymptotic
distributions are derived in specialized asymptotic regimes that may not hold in practice and are
difficult to verify, given a single network. For instance, Lei (2016) shows that the asymptotic null
distribution of the test statistic requires that the entries of the estimated edge probabilities be
uniformly bounded away from 0 and 1, which rules out certain types of sparse network.

2.2. From Networks to Contingency Tables: Log-Linear Models

Network data on p nodes can be naturally summarized by a contingency table of format
p× p× i1 × · · · × ik, classifying the type of a relationship (directed, undirected, block-dependent,
etc.) that holds for each dyad in the graph. This representation means that certain ERGMs can be
represented by equivalent models for contingency tables that have a long history in the statistics
literature. The models amenable to such a representation are called log-linear ERGMs, and their
vector of sufficient statistics is a linear function of the network. For such models there exists a
matrixA such that T (g) = Ag, where the network g has been flattened to vector format. Log-linear
ERGMs encompassmany of the popularmodels in use today, including all undirected and directed
degree-based models [e.g., the β model (Chatterjee et al. 2011, Rinaldo et al. 2013)], SBMs with
or without mixed membership but with known block assignment (Holland & Leinhardt 1981,
Fienberg et al. 1985, Airoldi et al. 2009), combinations of these such as the degree-corrected SBM
(Karrer &Newman 2011), and extensions of any of these models using covariates (Yan et al. 2018).

The connection to contingency tables dates back to Fienberg &Wasserman (1981a), Fienberg
et al. (1985), and Fienberg & Wasserman (1981b), who consider some models for relational data
that were very novel at the time and remain very popular. By viewing the network representation
of the data as a union of independent dyads that can appear in various configurations, they
express in table format a set of models that are now considered canonical under the ERGM
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framework. The first advantage of this viewpoint, also pointed out in these early works, is that
the MLE can efficiently and accurately be computed using iterative proportional fitting, thus
avoiding the usual convergence issues that are the main drawback of Markov chain Monte Carlo
(MCMC) approaches typically used for ERGMs (see, e.g., Hunter et al. 2008). The second
advantage became apparent in the 2000s with the development of tools from algebraic statistics
for contingency tables: A generating set of a polynomial ideal can be translated to a set of
networks that preserve an ERGM’s sufficient statistics, then used as input to a sampling algorithm
that provides a reference set for testing model fit. Coupled with a valid discrepancy measure for
model fit also ported from the contingency table literature into networks, this approach solves
the issues outlined in Section 2.1.

2.3. Goodness-of-Fit Testing for Log-Linear Exponential Random
Graph Models

Let MT be a log-linear ERGM, where T denotes the vector of sufficient statistics. A canonical
way to test model fit is to compute the exact p-value conditional on the sufficient statistics for
the null hypothesis that pθ̂ (g) lies in the model MT , where θ̂ is the MLE, against the general
alternative [see Fienberg &Wasserman (1981b) for further motivation]. The p-value is computed
by comparing the observed network g against all other networks whose sufficient statistics are the
same; this set,

FT (g) := {g′ : T (g′ ) = T (g)},

is called the fiber of g under the model MT . In virtually all instances of interest for applications,
the fiber is too large to enumerate, so one resorts to sampling from it.

To sample from this conditional distribution for any log-linear model, Diaconis & Sturmfels
(1998) introduce a notion of a basis that can be used as input to the Metropolis–Hastings
algorithm. In the context of networks, a Markov basis of the log-linear ERGM MT is any set
of networks B = {b1, . . . , bn} for which T (bi ) = 0 and such that for any given network g and any
h ∈ FT (g), there exist bi1 , . . . , biN ∈ B that can be used to reach h from g, i.e.,

g+ bi1+ · · · + biN = h,

while walking through elements of the fiber, meaning that each partial sum u+∑N
j=0 bi j , for any

j = 1, . . . ,N , represents a valid network (see Figure 2). Note that T (u) = T (u+ bi ) means that
adding a move bi to any network does not change the values of the sufficient statistics, so to remain
in the fiber, we need only ensure that adding a move did not produce negative entries in the vector,
as the count of edges in a graph cannot be negative. The resulting Markov chain is irreducible,
symmetric, and aperiodic; Drton et al. (2009, algorithm 1.13) outline a vanilla implementation.

The connection to commutative algebra translates each move bi into a binomial: a difference of
products of indeterminates, each corresponding to a cell in the contingency table. In the example
from Figure 2, the depicted move can be written as e17e24e34e58 − e14e23e45e78, where ei j is the
indeterminate representing the dyad {i, j}. The move is thus a polynomial in the random dyads.
This translation is straightforward but leads to a fundamental and surprising result: A set of moves
is a Markov basis if and only if the corresponding binomials generate the toric ideal defined by T
(Diaconis & Sturmfels 1998). Consequently, each log-linear model does have a finiteMarkov basis
by the Hilbert basis theorem, and all the basis elements can be obtained using tools for computing
bases of toric ideals.

Markov bases are a popular theoretical construct in algebraic statistics, but in practice they pose
serious challenges in large networks, and in general for large sparse contingency tables.One is that
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Figure 2

Example of a move for the exponential random graph models with T (g) = (d1, . . . , d8) = (2, 2, 1, 2, 3, 1, 2, 1),
where di is the number of neighbors of node i. (top) From left, a starting graph g (black), set of edges to be
removed from g (blue), set of edges to be added to g (red), and the resulting graph h (black). (bottom) The move
b represented as a bicolored graph, with blue edges carrying weight −1 and red +1. Since blue edges
contribute negative neighbors, T (b) = 0 and thus T (h) = T (g).

they are complicated to compute a priori and that algebra produces many moves inapplicable to
the observed data. To circumvent this difficulty, one may construct only those moves that can be
applied to the observed network, doing so on the fly (without precomputing the entire basis) while
ensuring that the fiber is connected. Gross et al. (2017) and Karwa et al. (2016) implement such
a dynamic algorithm for generating Markov moves for the β and p1 models, some of the basic
variants of the SBMs, and combinations of these. Another difficulty concerns the mixing time of
the Markov chain constructed using Markov bases, as any chain that is slow to mix will not be
scalable to large networks in practice; to this end, we will only mention that there is a large body
of literature in discrete mathematics that implies rapid mixing of this chain for almost all fibers;
details are provided by Dillon (2016).

Example.Considering the largest connected component of the citation network of authors,
Ji & Jin (2016) count the neighbors in this directed graph and propose using them for author
rankings. We perform an exact test of model fit for the ERGM whose sufficient statistic is
this vector of neighbor counts, namely, the p1 model with dyad-specific reciprocation. As a
measure of discrepancy between the observed graph and the MLE, we use the chi-square
statistic. The p-value reported is the proportion of the sampled networks in the fiber whose
chi-square value is at least as large as that of gobs. The test is done by running the Markov
chain described by Gross et al. (2017). After N = 100,000 steps, the estimated p-value is
0.0072.

This result indicates that the p1 model does not fit the citation network of authors, so the
network may possess transitive effects and the dyads may not be independent. Similarly, we per-
form an exact test of fit of the β model in the largest connected component of the coauthorship
network A. The p-value from the goodness-of-fit test obtained by running the Markov chain for
N = 100,000 steps is 0.997. This suggests that node degrees are a surprisingly good summary
of the graph and that the degree of an author could be used to determine an author ranking.
However, this graph was obtained by thresholding the original data (a popular technique in
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Testing model fit for the exponential random graph models with node degrees and sufficient statistics. (left) Histogram of the chi-square
statistics, as a measure of discrepancy, for 100,000 networks in the fiber of the coauthorship network from Figure 1. (right) Same
information for the citation network. The vertical red line indicates the observed value of the chi-square statistic.

network analysis used to avoid multiple edges), as well as by reducing multi-author papers to pairs
of authors. These two tests are summarized in Figure 3, which depicts the sampling distributions
of the chi-square statistic. We used the usual MCMC diagnostics in R to check that the Markov
chains converged fairly well.

2.4. Generalizations to Weighted Graphs

The previous example opens up several interesting questions: How can we preserve the underlying
data structure and still use an interesting network model with scalable estimation and goodness-
of-fit methods? Karwa & Petrović (2016) argue that thresholding and reducing to a graph are not
necessary; one can instead work with a hypergraph representation of the data, which preserves
more of the coauthorship structure than the network representation. For I authors, J research ar-
eas, and K journals, consider an I × I × J× K contingency table whose (i, i′, j, k) entry counts the
number of times author i cites author i′ in research area j and journal k. A similar representation
can be obtained for the coauthorship network, where we count the number of times authors i and
j wrote a joint paper. These representations preserve the citation and coauthorship count data.We
can then collapse the table to an I × I author-by-author table and fit log-linear models to the cita-
tion counts. In essence, we seek to avoid thresholding, as in the generalized β model discussed by
Rinaldo et al. (2013) for weighted networks represented in table form. Generalizing to weighted
or multiple graphs is straightforward in the contingency table setting, with MLE algorithms un-
affected andMarkov basis algorithms becoming—perhaps surprisingly—more efficient and easier
to implement. This opens up several lines of research on generalizing these models and enriches
the network science literature with goodness-of-fit tests for many popular ERGMs.

By definition, log-linearity means that the sufficient statistics are a linear function of the graph,
which in turn implies dyadic independence.The assumption of dyadic independencemay seem re-
strictive, but Yan et al. (2018) show that it includesmany popularmodels and avoids the degeneracy
that plagues other ERGMs. In addition, Karwa et al. (2016) develop goodness-of-fit testing meth-
ods combining the Bayesian and algebraic approaches for mixture models of log-linear ERGMs,
which do not assume dyadic independence.

3. CAUSAL STRUCTURE DISCOVERY

From random graph models, where each edge of the network is associated with a random variable,
we now turn to graphical models, where each node of the network is associated with a random
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variable. In many applications, the underlying network must be learned from data on the nodes.
We here consider the problem of learning the causal relationships among the nodes.

Causal inference is the basis of scientific discovery, because it asks “why?” The gold standard
for inferring a causal relationship is a randomized controlled trial. However, in many applications,
running such trials to test for a causal effect is impractical, unethical, or prohibitively expensive, so
there have been large efforts to develop a theory of causal inference based purely on observational
data. This began with two crucial advances made independently in the 1920s. Jerzy Neyman
established a formal distinction between random variables under randomization and ordinary ran-
dom variables via the potential outcome notation (Neyman 1923). Sewall Wright independently
pioneered the use of graphs to represent cause-effect relationships using structural equation
models (Wright 1921, 1934). However, skepticism among statisticians resulted in the causal
interpretation of structural equation models being overlooked and almost forgotten [see Pearl
(2012) for a historical account]. The reemergence of causal inference from observational data in
statistics began in the 1970s and led to major contributions by Pearl (2000), Robins (1999), Rubin
(1974, 2005), and Spirtes et al. (2001).

While it has in general been unethical, too expensive or even impossible to perform large-
scale interventional studies, the development of genome editing technologies in biological
studies (Cong et al. 2013) and the explosion of interventional data in online advertisement
and education represent a unique opportunity for the development of new causal inference
methodologies. It is now possible to obtain large-scale interventional data sets relatively easily.
This calls for a theoretical and algorithmic framework for learning causal networks from a mix
of observational and interventional data.

In this section, we show how methods from algebraic geometry, combinatorics, graph the-
ory, and discrete geometry have been brought to bear in the analysis and development of causal
structure discovery algorithms. In Section 3.1, we introduce the framework of structural equation
models for causal modeling and then discuss open problems in combinatorics and graph theory
related to the degree of identifiability of causal effects. In Section 3.2, we review a prominent
causal structure discovery algorithm. It relies on the so-called faithfulness assumption, and using
algebraic geometry, we show that this assumption is very restrictive and hard to satisfy in practice.
In Section 3.3, we will discuss an alternative algorithm that makes critical use of discrete geometry
to overcome the limitations of the faithfulness assumption and leads to the first provably consis-
tent algorithm for causal inference from a mix of observational and interventional data. Finally, in
Section 3.4, we discuss various open problems and related literature in algebraic statistics.

3.1. Structural Equation Models and Markov Equivalence

We represent a causal network by a directed graphG = (V,E ) consisting of vertices V = {1, . . . , p}
and directed edges E representing direct causal relationships. We make the common assumption
that G is a directed acyclic graph (DAG), meaning there are no directed cycles i0 → i1 → · · · →
im → i0, since causal effects only act forward in time. In a structural equation model (Wright 1921,
1934), each node i ∈ V is associated with a random variableXi and is a deterministic function of its
parents, denoted by pa(i), and independent noise, denoted by εi. For example, a structural equation
model on the 4-node DAG 1→ 2, 2→ 3, 3→ 4, 1→ 4 is given by

X1 = f1(ε1), X2 = f2(X1, ε2), X3 = f3(X2, ε3), X4 = f4(X1,X3, ε4). 1.

Gaussian linear structural equation models are special instances of this model class, where
Xj =

∑
i∈pa( j) ai jXi + ε j and the noise ε = (ε1, . . . , εp) follows a Gaussian distributionN (0,D) with
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Table 1 The number of MECs, along with the ratios of the numbers of MECs to DAGs and the ratios of the counts of
MECs of size 1 (MEC1) to the total number of MECs up to 10 nodes

p (nodes) 1 2 3 4 5 6 7
# MEC 1 2 11 185 8,782 1,067,825 312,510,571
(# MEC)/(# DAG) 1.00000 0.66667 0.44000 0.34070 0.29992 0.28238 0.27443
(# MEC1)/(# MEC) 1.00000 0.50000 0.36364 0.31892 0.29788 0.28667 0.28068

p (nodes) 8 9 10
# MEC 212,133,402,500 326,266,056,291,213 1,118,902,054,495,975,141
(# MEC)/(# DAG) 0.27068 0.26888 0.26799
(# MEC1)/(# MEC) 0.27754 0.27590 0.27507

Data are from Gillispie & Perlman (2001). Abbreviations: DAG, directed acyclic graph; MEC, Markov equivalence class.

diagonal covariance matrixD. In this case, the joint distribution of X = (X1, . . . ,Xp) is a Gaussian
N (0,�), where �−1 = (I − A)D−1(I − A)T and A is the weighted adjacency matrix of G contain-
ing the causal effects ai j . While this model is of interest for its mathematical simplicity, in many
applications including genomics the linear and Gaussian assumptions are often violated and it is
preferable to work with the general nonparametric model in Equation 1.

A structural equation model encodes not only the observational distribution, i.e., the distribu-
tion of X , but also the interventional distributions. For instance, in Equation 1, an intervention
on node X3 that sets its value to 0 would change the distribution of the nodes X3 and X4, but not
the others, since they are not downstream of X2. Such an intervention could, for example, be used
to model a gene knockout experiment, where the expression of certain genes is set to zero (Cong
et al. 2013).

A structural equationmodel provides a factorization of the joint distribution,which implies cer-
tain conditional independence (CI) relations through the Markov property, namely Xi ⊥⊥ Xnd(i) |
Xpa(i), where nd(i) denotes the nondescendents of node i (see, e.g., Lauritzen 1996 for an intro-
duction to graphical models). A standard approach for causal structure discovery is to infer CI
relations from the sample distribution and then infer the DAG from these relations. However, in
general a DAG is not identifiable, since multiple DAGs can encode the same set of CI relations;
such DAGs are called Markov equivalent. Verma & Pearl (1990) provided a graphical characteri-
zation of when two DAGs are Markov equivalent, namely, when they have the same skeleton (i.e.,
undirected edges) and immoralities (i.e., induced subgraphs of the form i→ j← k).

Since from observational data it is only possible to identify a DAG up to itsMarkov equivalence
class (MEC), it is important to study the sizes of MECs and their distributions. However, while
a recurrence relation for the number of DAGs on p nodes is known (Robinson 1973), no such
formula is known for MECs. Gillispie & Perlman (2001) enumerated all MECs up to 10 nodes
(seeTable 1). The first row shows that the number of MECs grows very quickly in the number of
nodes p.The second row shows the ratio of the number ofMECs to the number of DAGs, suggest-
ing that this sequence converges to ≈1/4. This combinatorial conjecture would have important
consequences for causal inference, since it would imply that on average an MEC consists of about
4 DAGs, meaning that in general only very few interventional experiments would be required to
identify the true causal DAG. Finally, the last row suggests that the ratio of the number of MECs
of size 1 to the total number of MECs also converges to≈1/4. This would imply that ≈1/4 of all
causal DAGs can be uniquely identified without any interventional data. While a combinatorial
analysis of the number of MECs for particular families of DAGs was initiated by Radhakrishnan
et al. (2017, 2018), these problems in general are wide open.
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3.2. Causal Structure Discovery Algorithms and Faithfulness

Since the overwhelming majority of available data have been observational, most causal inference
algorithms have been developed in this setting. A standard approach to causal structure discov-
ery is constraint based, i.e., to treat causal inference as a constraint satisfaction problem, with the
constraints being the CI relations inferred from the data. A prominent example is the PC algo-
rithm (named for its authors, Peter and Clark), which starts in the complete undirected graph and
iteratively removes edges (i, j) if there exists S ⊂ V \ {i, j} such that Xi ⊥⊥ Xj | XS. This results in
the skeleton of the DAG; the immoralities are determined in a second step using the identified CI
relations.

For such an algorithm to output the correct MEC, it is necessary that the inferred CI relations
are faithful to the true DAG. In particular, it has to hold that

Xi⊥�⊥Xj | XS for all (i, j) ∈ E and all S ⊂ V \ {i, j}, 2.

which is known as the adjacency faithfulness assumption (Ramsey et al. 2006). Faithfulness viola-
tions can occur through cancellation of causal effects in the graph.Assumption 2 seems harmless at
first, since it is highly unlikely that causal effects in a DAG cancel each other out exactly.However,
CI relations are inferred from data via hypothesis testing, so Assumption 2 must be strengthened
in the finite sample regime. In the Gaussian setting, where CI relations can be tested using partial
correlations ρi j|S, Assumption 2 leads to the definition of strong faithfulness (Zhang & Spirtes
2003):

ρi j|S ≥ λ for all (i, j) ∈ E and all S ⊂ V \ {i, j},

where λ 
 √
log(p)/n to guarantee uniform consistency of the PC algorithm (Kalisch&Bühlmann

2007).
Since the strong faithfulness assumption is critical for the consistency of various prominent

causal inference algorithms, it is important to understand howmany samples are needed in general
to satisfy it. Algebraic geometry has played a major role in answering this question (Uhler et al.
2013,Lin et al. 2014).To see why, consider aGaussian linear structural equationmodel on the fully
connectedDAGon three nodes with edges 1→ 2, 1→ 3, 2→ 3.For simplicity,we assume that all
error variances are equal to unity and hence (X1,X2,X3) ∼ N (0,�), where�−1 = (I − A)(I − A)T
and A is strictly upper triangular containing the causal effects a12, a13 and a23. Since no edge
is missing, any CI relation is unfaithful to the DAG. On three nodes, there are six possible CI
relations. For Gaussian distributions, any CI relation corresponds to the vanishing of an almost
principal minor, as shown in Figure 4. Hence, faithfulness violations correspond to a collection of
real algebraic hypersurfaces and understanding how restrictive the strong faithfulness assumption
is requires the computation of the volume of tubes around these hypersurfaces. This was achieved
using tools from real algebraic geometry, namely, Crofton’s formula and the Lojasiewicz inequal-
ity in Uhler et al. (2013) and real log-canonical thresholds in Lin et al. (2014). These results
were then used to compute the scaling of number of samples to number of variables that lead
to the tubes filling up the whole space, meaning that no faithful distribution exists. In the high-
dimensional setting, this scaling was shown to be as bad as pn = O(log n), a real limitation for the
application of algorithms that rely on faithfulness, including the PC algorithm. These results also
provide an example of how methods from algebraic geometry can be applied in high-dimensional
statistics.
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X1 X2⊥⊥ det((Σ−1)13,23) = a12 = 0

X1 X3⊥⊥ det((Σ−1)12,23) = a13 + a12a23 = 0

X1 X3⊥⊥ det((Σ−1)12,13) = a2
12a23  + a12a13 + a23 = 0

X1 X2 X3|⊥⊥ det((Σ−1)1,2) = a13a23 – a12 = 0

X1 X3 X2|⊥⊥ det((Σ−1)1,3) – a13 = 0

X2 X3 X1|⊥⊥ det((Σ−1)2,3) – a23 = 0

Figure 4

The unfaithful distributions for a three-node, fully connected DAG correspond to a collection of six hypersurfaces, each of which is
defined by the vanishing of an almost principal minor; the three linear hypersurfaces are shown in pink, and the three nonlinear
hypersurfaces are in red, blue, and green. Adapted with permission from Uhler et al. (2013). Abbreviation: DAG, directed acyclic graph.

3.3. Directed Acyclic Graph Associahedra for Causal Inference
from Interventional Data

With this understanding of unfaithful distributions as a collection of hypersurfaces, it is clear that
obtaining algorithms with better consistency guarantees requires removing some hypersurfaces,
i.e., testing fewer CI relations. Given an ordering of the nodes π that is consistent with the true
DAG G (i.e., if i→ j in G, then i < j in the ordering π ), then by the Markov property, G can be
recovered by testing only one CI relation per edge, namely, using the conditioning set consisting
of all ancestors of i and j with respect to π , i.e.,

Xi ⊥⊥ Xj | XS, where S = {k ∈ V : k ≤ i or k ≤ j with respect to π} \ {i, j}. 3.

The true ordering, however, must be inferred from data. A natural approach following Occam’s
razor is to associate to each permutation π a DAG Gπ using the conditional dependence relations
in 3. and then return the sparsest permutation, i.e., the sparsest DAG among all permutations.
This approach is uniformly consistent under strictly weaker conditions than strong faithfulness,
namely, provided the sparsest DAG is in the true MEC (Raskutti & Uhler 2018). However, these
improved consistency guarantees were achieved at a high computational price, since determining
the sparsest permutation requires searching over all p! permutations.

This raises the question of whether replacing the exhaustive permutation search by a greedy
search could be used for causal inference. Greedy search algorithms are commonly applied for
causal inference, most notably greedy equivalence search, a greedy search over the space of
MECs (Chickering 2002). The convex hull of all permutations of length p gives rise to a (p− 1)-
dimensional polytope, known as the permutohedron, whose vertices are the permutations. Two
permutations are connected by an edge in the permutohedron if and only if they differ by a neigh-
boring transposition. The three-dimensional permutohedron of all permutations of length 4 is
shown in Figure 5. Solus et al. (2017) show that a greedy search in the permutohedron is consis-
tent, i.e., it outputs the correct MEC when the sample size goes to infinity, under strictly weaker
conditions than faithfulness. The sequences in Table 1 suggest that the number of MECs grows
much faster than the number of permutations. Hence, it is remarkable that a greedy search on the
space of permutations has similar consistency guarantees as greedy search on the space of MECs,
despite a large reduction in the search space.

In fact, the search space can be reduced further by identifying permutations whose DAGs Gπ

and Gπ ′ are the same, since the number of edges in such graphs is necessarily the same. Such
permutations are connected by edges in the permutohedron. Contracting these edges gives rise to
a polytope (Mohammadi et al. 2018) known as theDAG associahedron,which can also be obtained
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Figure 5

Three-dimensional permutohedron consisting of all permutations of length 4 and the DAG associahedron for a particular 4-node DAG
model; blue and green edges correspond to the conditional independence relations in this model. Adapted from Mohammadi et al.
(2018). Abbreviation: DAG, directed acyclic graph.

by a different construction, namely, by associating to each edge in the permutohedron aCI relation
as described by Morton et al. (2009) and contracting all edges corresponding to CI relations in
the underlying DAG (Mohammadi et al. 2018) (see Figure 5). Thus, DAG associahedra are a
generalization of the prominent (undirected) graph associahedra (Carr &Devadoss 2006) that are
obtained from the permutohedron by contracting all edges corresponding to separations or CI
statements in an undirected graphical model. Hence, the quest for a causal inference algorithm
that is consistent under strictly weaker conditions than faithfulness and as a consequence achieves
higher accuracy than previous algorithms in the high-dimensional setting led to the development
of DAG associahedra and new results in convex geometry that are of independent interest.

Recent years have witnessed a paradigm shift in the kinds of data collected. In genomics, but
also various other application areas, large-scale interventional data sets are being produced by de-
liberately altering components such as genes. By further reducing the search directions, the greedy
sparsest permutation search algorithm described above was extended to the first provably consis-
tent algorithm for causal inference from a mix of observational and interventional data (Wang
et al. 2017, Yang et al. 2018). For applications of these algorithms to learning gene regulatory
networks, readers are directed to, e.g., Wang et al. (2017, 2018) and Yang et al. (2018).

3.4. Open Problems and Related Literature

While faithfulness is well-understood from a geometric perspective, it is an open problem in
algebraic geometry/combinatorics to understand the assumptions needed for consistency of the
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sparsest permutation algorithm. This is of great interest, since it is conjectured that these are
the weakest assumptions that guarantee consistency of any algorithm for learning the true
MEC (Raskutti & Uhler 2018). Other polyhedral approaches for causal inference have been
described (Cussens et al. 2017, Jaakkola et al. 2010), and it would be interesting to better un-
derstand how they relate to each other. So far, we have only considered causal inference when
all variables are observed. However, for applications in the social sciences, latent variables are
ubiquitous. The FCI (fast causal inference) algorithm and its variants generalize the PC algorithm
to the latent setting (Spirtes et al. 2001). It is an open problem to generalize greedy permutation
search algorithms to the setting with latent variables. In addition, while CI relations are the only
constraints that act on structural equation models in the fully observed setting, in the latent
setting, there are additional constraints such as the Verma constraints (Richardson et al. 2017).
While a full algebraic description of these constraints is not known, for linear Gaussian structural
equation models, a large subset has recently been characterized as nested determinants (Drton
et al. 2018). In addition to these equality constraints, there are inequality constraints. Describing
these is very challenging, as demonstrated by the ongoing search for the semialgebraic description
of the set of matrices of fixed nonnegative rank (Allman et al. 2015, Kubjas et al. 2015), which
correspond to simple latent tree models in the discrete setting. Explicit knowledge of the defining
equations and inequalities is crucial to answer questions of identifiability (e.g., Allman et al. 2009)
or model selection (e.g., Drton et al. 2017, Evans 2018). Finally, we return to the beginnings of
algebraic statistics on experimental design (Pistone et al. 2001) to point out a critical problem in
the era of interventional data: deciding which interventions to perform in order to gain the most
information about the underlying causal system (e.g., Agrawal et al. 2019).

4. PHYLOGENETICS

This section treats a particular class of directed graphical models with latent variables, called phy-
logenetic trees. Algebraic tools have been used since the end of the twentieth century to address
problems in phylogenetics (Felsenstein 1978,Hendy & Penny 1989, Evans & Speed 1993,Hendy
et al. 1994). In particular, Lake (1987) and Cavender & Felsenstein (1987) opened the door to the
development of phylogenetic reconstruction methods based on the polynomial equations implied
by a particular evolutionary model and tree structure. Below, we survey this approach and then
describe the major impact that algebraic statistics has had on phylogenetic reconstruction, model
selection, and identifiability.

More detailed introductions to algebraic phylogenetics can be found in publications by Allman
& Rhodes (2007), Pachter & Sturmfels (2005), Sullivant (2018), Zwiernik (2015), and Steel (2016,
sections 7 and 8).

4.1. Phylogenetic Reconstruction

A phylogenetic tree is a tree graph whose leaves correspond to molecular sequences (for example,
the whole genome of a species or a single gene) of different living species and represents the specia-
tion process that led to them: the interior nodes represent ancestral sequences, the edges represent
evolutionary processes, and the leaves are labeled with the names of the living species. The topol-
ogy of a phylogenetic tree is the topology of the labeled graph; for example, Figure 6 shows the
three different (unrooted) tree topologies for the species {1, 2, 3, 4}, which are denoted as 12|34,
13|24, and 14|23.While phylogenetic trees can be reconstructed using a variety of data including
DNA or protein molecules, we here assume that the available data are a sequence of characters
A,C,G, and T (corresponding to the four nucleotides) of length N for each living species in the
tree.
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Figure 6

The three different unrooted phylogenetic tree topologies on leaves {1, 2, 3, 4} are denoted as 12|34 (left),
13|24 (middle), and 14|23 (right).

In order to model the evolution of nucleotide data, it is convenient to assume that the substi-
tution of nucleotides occurs randomly and follows a Markov process on the phylogenetic tree T ,
where the internal nodes are latent variables. The state space of the random variables at the nodes
of T is {A,C,G,T } and the parameters of the model are a distribution π at a fixed interior node
(which plays the role of the root) and the entries of the 4× 4 transition matricesMe associated to
the edges e ofT . According to this hiddenMarkov process onT , where two nodes are independent
given their least common ancestor, the probability of observing a character pattern at the leaves of
the tree can be expressed as a polynomial in the model parameters. Assuming that the characters
in each sequence have all evolved following the same evolutionary process and are independent
of each other, the data are N independent samples from a multinomial distribution.

Different restrictions imposed on the transition matrices give different evolutionary models,
from the simplest Jukes & Cantor (1969) model ( JC69), where π is uniform and there is only one
free parameter per edge (that is, on each edge, all conditional probabilities P(x|y) are equal if x �= y),
to the general Markov model (GMM) with no restrictions on the transition matrices or on π .

As an example, we consider the JC69 model on the tree 12|34 shown in Figure 6 relating the
set of species {1, 2, 3, 4}. Denoting by px1x2x3x4 the joint probability of observing nucleotide xi at
species i, the fact that the JC69 model is invariant under permutations of the four states implies
that

pAAAA= pCCCC = pGGGG = pTTTT,

pAAAC= pAAAG = pAAAT = · · · = pTTTG, 4.

for any parameters of the model. These are the first natural algebraic equations that arise from
this type of evolutionary model. Although they are linear equations, they can be useful in model
selection (see Section 4.3). They cannot be used to estimate the tree topology because they hold
for any joint distribution arising from a JC69 model on any of the trees in Figure 6; they are
therefore called model invariants.

Consider now

pACAC + pACGT= pACGC + pACAT, 5.

pACCA + pACTG= pACCG + pACTA. 6.

Both Equations 5 and 6 hold for any set of JC69 parameters on the tree 12|34, but Equation 5
does not hold for all distributions on the tree 13|24 and Equation 6 does not hold for 14|23 (Lake
1987). Such equations, which are satisfied for all joint distributions on a particular phylogenetic
tree but not for all distributions on another tree, are called topology invariants (Steel 2016,
section 8.3).
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These equations were used by Lake (1987) to design a statistical test based on the χ2-statistic
to infer the tree topology. These first attempts were not very successful (Huelsenbeck 1995), were
only valid for simple models, and only used two of the relevant algebraic equations (Casanellas
& Fernández-Sánchez 2010). The use of topology invariants for phylogenetic reconstruction was
thus halted until Allman & Rhodes (2008). We explain their main contribution in what follows.

Let p ∈ R
256 be a distribution of character patterns on species {1, 2, 3, 4} as above, and consider

its flattening matrix flatt12|34(p) according to the split 12|34, namely:

states at leaves 3, 4

flatt12|34(p) =

states
at

leaves
1, 2

⎛
⎜⎜⎜⎜⎜⎝

pAAAA pAAAC pAAAG . . . pAATT
pACAA pACAC pACAG . . . pACTT
pAGAA pAGAC pAGAG . . . pAGTT
. . . . . . . . . . . . . . .

pTTAA pTTAC pTTAG . . . pTTTT

⎞
⎟⎟⎟⎟⎟⎠
.

Allman & Rhodes (2008) prove that if p is a distribution from a Markov process on the tree 12|34
(in the GMM), then flatt12|34(p) has rank≤4; moreover, it has rank 16 if p is a joint distribution on
any of the two other trees 13|24, 14|23 (arising from a Markov process with generic parameters).

This result has allowed the development of new topology invariants under the GMM but also,
most importantly, the use of techniques such as rank approximation to propose methods to select
the tree that best represents the data. This approach has been exploited in work that has attracted
the attention of biologists (Chifman&Kubatko 2014, Fernández-Sánchez&Casanellas 2016) and
has allowed a generalization to the multispecies coalescent model and the use of these methods
to estimate both gene trees and species trees (Chifman & Kubatko 2015). Some of these methods
have been implemented in PAUP∗ (Swofford 2003), one of themost widely used software packages
in phylogenetics, which has opened the use of these tools to the biological community at large and
has allowed the application in areas such as biodiversity preservation (Devitt et al. 2019).

When dealing with real data, one only has access to a finite number of samples from the corre-
sponding multinomial distribution. Since many methods are based on asymptotic tests, they may
not be suitable for small samples. Current research attempts to solve this issue using statistical
tests based on algebraic tools are starting to be developed for the finite-sample regime (Gaither
& Kubatko 2016, Sumner et al. 2017).

These first approaches to algebraic phylogenetics have been restricted to trees on four species
but can be used in quartet-based methods to infer large phylogenetic trees using only quartet data
as input (that is, topologies of four species, in addition to an assessment score of the reliability
of each quartet topology) (Strimmer & von Haeseler 1996, Ranwez & Gascuel 2001, Snir & Rao
2010, Davidson et al. 2018). This approach has been used by Fernández-Sánchez & Casanellas
(2016) to provide new support for the phylogenetic tree of eight species of yeast that was suggested
by biological evidence and only obtained by certain reconstruction methods restricted to certain
models. It would be of great interest to develop algebraic methods that can directly infer large
trees; a first result in this direction is Sumner (2017).

The evolutionary models used in these algebraic approaches are more general than those com-
monly used by biologists. Indeed, the usual approach in phylogenetics is to use a continuous-time
Markov process. In this case, the transition matrixM corresponding to an edge is of typeM = etQ,
where Q is an instantaneous mutation rate matrix that operates for the duration t ≥ 0. Not all
transition matrices are of this type (i.e., not all Markov matrices are embeddable in a continuous-
time process); indeed, the logarithm of a transition matrix may not be real, and if it is real, it may
not be a rate matrix. Roca-Lacostena & Fernández-Sánchez (2018) proved that, for the Kimura

242 Casanellas • Petrović • Uhler
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three-parameter model of nucleotide substitution, the set of embeddable matrices represents only
9.4% of all transition matrices.Moreover, it is commonly assumed that Q is the same for all edges
of the tree (i.e., the Markov process is homogeneous in time) and that the process is stationary and
time reversible.This leads to one of the most commonmodels in phylogenetics, the so-called gen-
eral time-reversible (GTR) model.While restricting to this model is quite controversial (Sumner
et al. 2012) and it might be too restrictive, as we just insinuated, using a GTRmodel might be con-
venient because it considers fewer parameters than the GMM, so parameter estimation is more
feasible. Algebraic approaches to phylogenetics avoid parameter inference altogether and make
phylogenetic inference feasible for the most general Markov model, the GMM.

So far we have mainly focused on the recovery of the tree. As the number of trees grows super-
exponentially in the number of leaves, accurately recovering the tree topology is a basic first step
toward parameter recovery using methods such as maximum likelihood. Nevertheless, algebraic
statistics can also lead to important results in obtaining estimates for continuous parameters of
small phylogenetic trees. For example, using computational algebra, one can compute the num-
ber of critical points of the log-likelihood (Catanese et al. 2006) and then use tools from numerical
algebraic geometry to obtain the global optimum (Kosta & Kubjas 2019). Moreover, tools from
computational algebra have providedmajor insights into the existence of a unique global optimum
and provided analytical expressions to obtain it (Chor et al. 2006, Dinh et al. 2017). In addition
to equality constraints given by the model, the continuous parameters must also satisfy biological
constraints and stochastic conditions, which are encoded as inequality constraints. While under-
standing these semialgebraic constraints is difficult, Zwiernik & Smith (2011), Matsen (2009),
Allman et al. (2014), and Steel & Faller (2009) discuss which semialgebraic constraints suffice to
describe the model together with the algebraic constraints.

These algebraic tools are also being used in phylogenetic networks; for instance, Chifman &
Kubatko (2019) introduce a new technique based on algebraic statistics to detect events in hy-
bridization networks. These new tools for topology reconstruction are opening a new direction
for phylogenetic reconstruction, with many interesting challenges from both statistical and alge-
braic points of view.

4.2. Identifiability

Although the use of algebraic statistics for proving identifiability of parameters of statistical mod-
els in phylogenetics is primarily of theoretical interest, it has been critical for proving the consis-
tency of many phylogenetic reconstruction methods, including those based on likelihood. In the
following, we provide a short overview.

Chang (1996) used algebraic tools to prove that the GMM is generically identifiable, that is,
generic parameters are identifiable from the joint distributions of triplets of species (up to label
swapping). The same holds for simpler models.Unfortunately, identifiability becomes much more
involved for more complex models. Of particular interest are extensions that allow different sites
to evolve at different rates, either by considering a gamma distribution of rates across sites (but
assuming that all sites evolve according to the same tree topology) or by considering a mixture
model (i.e., the joint distribution p is a mixture of a certain number of distributions pi that have
arisen from trees Ti under a certain model M, with unknown trees, continuous parameters, and
mixing parameters).

One well-known model that allows for different rates is the GTR+�, where all sites evolve
based on the same tree topology and with the same instantaneous mutation rate matrix, but
the rate at which each site evolves follows a gamma distribution (of certain fixed parameters).
Although maximum likelihood estimation for this model has been widely used by the biological
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community, identifiability of its parameters was established using algebraic statistics only by
Allman et al. (2008).

As far as mixture models are concerned, the first problem is to prove identifiability of the tree
parameters. Without any constraints on the number of distributions, overfitting occurs and the
continuous parameters are not identifiable. However, with appropriate constraints, the trees can
be identified. Consider, for instance, mixtures on a single tree of four leaves evolving under the
JC69 model. Equations 5 and 6 are satisfied for all distributions on the tree 12|34, and as they are
linear, they are also satisfied for any mixture of distributions on this tree. Therefore, as mixtures
of distributions on either of the other two trees in Figure 6 do not satisfy one of these equations,
these topological invariants are able to identify the tree for this type of mixture. In a similar way,
the rank conditions mentioned in Section 4.1 allow a generalization that proves identifiability of
trees in the case of mixtures on a single tree (Rhodes & Sullivant 2012). When mixtures on two
different trees are considered, few positive results have been obtained (Allman et al. 2011). For
example, it is unknown whether, if one considers mixtures of GMM distributions on two trees T1

and T2, the pair {T1,T2} can be recovered from the mixed distribution.
Recently, algebraic tools have been used to prove the consistency of phylogenetic reconstruc-

tion methods for more complex models, including methods that reconstruct the species tree from
gene trees according to the multispecies coalescent model. This is a very active area of research
with important biological implications. For instance, Allman et al. (2018, 2019) make use of deep
algebraic tools.

Finally, in recent years there have also been incursions of algebraic statistics into questions
about identifiability of phylogenetic and hybridization networks (Gross&Long 2018,Baños 2019,
Chifman & Kubatko 2019), but many open problems remain.

4.3. Model Selection

Algebraic statistics has also been applied to phylogenetics to select the evolutionary model that
best fits the data. As mentioned above, a range of evolutionary models has been described, from
JC69 toGMM [see, for example, the Felsenstein hierarchy of Pachter & Sturmfels (2005)]. Among
them, the ones that have been deeply studied from an algebraic viewpoint are JC69, K80 (Kimura
1980), K81 (Kimura 1981), SSM (Casanellas & Sullivant 2005), and GMM. Following Kedzierska
et al. (2012), we explain here how the model invariants for these models can be used in model
selection within the framework of phylogenetic mixtures.

Model invariants on trees of n leaves for an evolutionary model M are algebraic equations
satisfied by all distributions arising from any set of parameters on the model M on any phyloge-
netic tree on n leaves. Equations 4 are an instance of model invariants for M = JC69 on trees of
four leaves. As they are linear equations, they are also satisfied for any mixture of a collection of
distributions on these trees. In general, the space of mixtures of distributions on trees on n leaves
evolving under M, i.e., the set of mixtures of any number of distributions on trees on n leaves
evolving under M, is determined by the collection of linear model invariants. Moreover, the lin-
ear model invariants forM = JC69, K80, K81, and SSM are generated by binomial equations for
any n, analogous to Equations 4 and computed by Casanellas et al. (2012), which leads to the exact
computation of the likelihood maximum for data points coming frommixtures of distributions on
a particularM. Finally, these likelihoods can be combined into an information criterion for model
selection such as corrected AIC or BIC. These tools were applied by Kedzierska et al. (2012) to
DNA data from the PANDIT (Protein and Associated Nucleotide Domains with Inferred Trees)
database: While the usual model selection method chooses the most complex model GRT+� (+
invariable sites) and gives a tree incompatible with the accepted phylogeny, the method presented
there selects a mixture of JC69 and leads to the accepted phylogenetic tree.
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5. DISCUSSION

Since its beginning in the late 1990s, the field of algebraic statistics has grown rapidly. The de-
velopment of new theory and algorithms for data analysis inspired by algebra, combinatorics, and
algebraic geometry has brought together previously disconnected communities of algebraists and
statisticians. By now, algebraic methods have touched on all major themes in statistics, including
parameter identifiability and estimation, hypothesis testing, model selection, and Bayesian infer-
ence. Conversely, problems and models from statistics have inspired significant new pure devel-
opments in algebraic combinatorics, high-dimensional commutative algebra, and computational
algebraic geometry. Various textbooks have been written on algebraic statistics, including those
of Pachter & Sturmfels (2005), Drton et al. (2009), Sullivant (2018), and Aoki et al. (2012), and
for readers interested in using algebraic tools for statistical analysis, there is a package algstat
implemented in R (Kahle 2014).

We have provided an overview of developments made possible through the use of algebraic
methods in three areas related to networks. However we did not touch upon many interesting de-
velopments of algebraic statistics. For example, significant contributions related to Markov bases
have been applied to disclosure limitation (Fienberg & Slavkovic 2004) and genetics (Malaspinas
& Uhler 2011). Another recent direction is the use of commutative algebra for experimental de-
sign in system reliability (Sáenz-de Cabezón &Wynn 2015). Finally, another domain where alge-
braic techniques have been very fruitful is for the analysis of chemical reaction networks [see, e.g.,
Müller et al. (2016) and the work cited therein]. It has been an exciting two decades for algebraic
statistics, which has had a major impact on statistical theory and its applications, and we expect
that it will expand into many further application domains.
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