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Abstract

When analyzing time-to-event data, it often happens that a certain fraction
of the data corresponds to subjects who will never experience the event of
interest. These event times are considered as infinite and the subjects are
said to be cured. Survival models that take this feature into account are
commonly referred to as cure models. This article reviews the literature
on cure regression models in which the event time (response) is subject to
random right censoring and has a positive probability to be equal to infinity.
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1. INTRODUCTION

In classical survival analysis, one of the main assumptions is to consider that all subjects will
eventually experience the event of interest. But it often happens that a fraction of subjects will
never experience it. These subjects are usually considered as having infinite survival times and are
said to be cured. In order to take this feature into account, classical survival models have been
extended to what are commonly referred to as cure models. These models borrow their name from
their natural area of application, namely, from medical studies where one is interested in the time
until recurrence of a certain disease. Some patients will never suffer a relapse of a given disease
and are hence cured of their disease. Another prominent example comes from economics, where
one is often interested in the time until an unemployed person finds a new job. Some unemployed
people will actually never find a new job, so they have an infinite duration of unemployment. In
economics, cure models are often called split population models (see Schmidt & Witte 1989),
referring to the fact that the population is split in two groups, namely, the cured ones and those
who are susceptible to the event of interest. A third example comes from the area of reliability,
where engineers are interested in the time until a machine or device fails, and some of them
never fail. Engineers often talk about limited-failure population life models (see Meeker 1987).
Other examples can be found in finance (time until a bank goes bankrupt), marketing (time until
someone buys a new product), insurance (time until warranty claim), demography (time until
someone marries), sociology (time until a rearrest for released prisoners), and education (time
taken to solve a problem), among others.

In all the above examples, the variable of interest is a nonnegative random variable T represent-
ing the time until the event of interest occurs. We suppose that this variable is subject to random
right censoring, that is, instead of observing T , we observe Y = min(T , C) and � = I (T ≤ C),
where I (.) is the indicator function and C is the random censoring time. When a cure fraction is
present, the survival function S(t) = P (T > t) of T is such that limt→∞S(t) > 0, and this limiting
value, denoted by 1− p , corresponds to the proportion of cured subjects, called the cure rate. Due
to the presence of right censoring, we never observe T when it equals infinity. In fact, when� = 1
(uncensored observation), we know for sure that the individual is susceptible (uncured), whereas
when� = 0 (censored observation) he or she can belong to either of the two subpopulations, and
we do not know which one.

In order to illustrate the existence of a cure fraction, we simulate 300 data points from a model
in which 32% of the observations are cured and 40% are censored, accounting not only for the
cured observations but also for the censored uncured observations, which represent 8% of the
population. In Figure 1 we show the Kaplan & Meier (1958) estimator (hereafter the Kaplan-
Meier estimator) of these 300 observations with different representations of the censoring times.
As can be seen, there is a clear plateau in the right tail, of which the height is an estimator of the
cure proportion 1 − p . However, it is well known that the Kaplan-Meier estimator is inconsistent
in the right tail when the last follow-up time is a censoring time. It is clear that certain conditions
need to be fulfilled in order to be sure that the height of the plateau accurately estimates 1 − p .
In fact, it could happen that some of the observations in the plateau correspond to censored
uncured observations, and in that case the height of the plateau will be larger than 1 − p . So
how can we know what the cure fraction is if we cannot distinguish cured observations from large
censored uncured observations? Formal identifiability conditions are given later in this article,
but informally speaking, we can say that if we have a long plateau that contains a large number of
data points, we can be confident that (almost) all observations in the plateau correspond to cured
observations, as in the simulated example. Often the context of the study also tells us whether
there is a cure fraction or not.
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Figure 1
Kaplan & Meier (1958) estimator for 300 data points simulated from a model containing a cure fraction.

We suppose now that we observe a set of covariates X, and another set of covariates Z, which
might be identical to X or partially or completely different from X. In the literature, two main fami-
lies of cure regression models have been proposed, called mixture cure models and promotion time
cure models. The latter models are also called bounded cumulative hazard models or proportional
hazards (PH) cure models. The mixture cure model was proposed by Boag (1949) and Berkson &
Gage (1952) (see also Farewell 1982) and belongs to the class of two-part models that considers
jointly the modeling of a response variable for two different groups identified by a binary variable.
Such models have been investigated for semicontinuous data, for count data with the so-called
zero-inflated Poisson models, and for longitudinal data (see Farewell et al. 2017 for an extensive re-
view on two-part models for longitudinal data). In the context of survival data with a cure fraction,
the mixture cure model writes the survival function Spop(t|x, z) = P (T > t|X = x, Z = z) as

Spop(t|x, z) = 1 − p(x) + p(x)Su(t|z), 1.

where p(x) = P (B = 1|X = x) is the probability of being susceptible (often called the incidence
of the model), and Su(t|z) = P (T > t|Z = z, B = 1) is the (proper) conditional survival function
of the susceptibles (often called the latency of the model). Here, B = I (T < ∞) is the latent
binary variable indicating whether someone is cured or not. Equivalently, we can write the model
as Fpop(t|x, z) = p(x)Fu(t|z), where Fpop = 1 − Spop and Fu = 1 − Su . Note that all that the
model given in Expression 1 says is that the cure rate only depends on X (and not on Z) and that
the conditional survival function of the susceptibles only depends on Z (and not on X). Further
model assumptions can be made on p(x) and on Su(t|z), leading to parametric, semiparametric, or
nonparametric families of mixture cure models. For the cure rate 1 − p(x), the logistic model is
commonly assumed, whereas for the survival function of the susceptibles, a variety of models have
been proposed in the literature. We describe these models in detail in Section 2 and also discuss
other points, such as the important issue of identifiability and the verification of this model.

We now briefly describe the second class of cure models, the promotion time cure model,
which has a much shorter history than the mixture cure model and has therefore not been studied
as much (yet) in the literature. It was proposed by Yakovlev et al. (1996) as an adaptation of the
Cox (1972) PH model to allow for a cure fraction, and it supposes that the survival function

www.annualreviews.org • Cure Models in Survival Analysis 313



ST05CH14_Van_Keilegom ARI 27 January 2018 11:55

Spop(t|x) = P (T > t|X = x) can be written as

Spop(t|x) = exp [−θ (x)F (t)] , 2.

where X now represents the complete vector of covariates, F (·) is a proper baseline distribution
function and θ (x) captures the effect of the covariates x on the survival function Spop(t|x). Unlike
the mixture cure model, this formulation has a PH structure. The cure proportion is now equal to
P (B = 0|X = x) = exp[−θ (x)]. One often chooses θ (x) = exp(xT β), where the first component
of the covariate x is supposed to be 1, in order to include an intercept in the model. Note that
the Cox model without cure fraction does not include an intercept since it supposes that F (t)
tends to infinity when t tends to infinity, and an intercept would therefore not be identifiable.
This formulation for the promotion time cure model is the most encountered in the literature.
However, covariates may also be introduced in F (t). In Section 3 we discuss several aspects related
to this model (both when F depends on X and when it does not), such as the identifiability, the
estimation, and the case where measurement errors are present.

There also exists a literature on models that unify the mixture cure model and the promotion
time cure model into one single overarching model, hence avoiding the delicate task of choosing
between these two models. These unifying models are described in Section 4.

Many other topics have been investigated in the framework of cure models—for example, the
introduction of frailties, competing risks, quantile regression, and different types of censoring such
as interval-censoring. However, we focus on a detailed description of the two main classes of cure
models in a classical setting in this review to give the reader a better understanding of the basis of
cure models.

In order to go further inside cure models, we illustrate the added value of cure models over
classical survival models in the presence of a cure fraction by considering simulated data from
a mixture cure model given in Expression 1. We assume the logistic regression model p(x) =
[exp(γ T x)]/[1 + exp(γ T x)] for the probability of being uncured, where the vector of covariates
is X = (1, X 1, X2)T and γ = (γ0, γ1, γ2)T is a vector of regression coefficients associated with
X. X1 and X2 are independent and follow uniform distributions on [−1, 1] and γ = (1, 2, 0.5)T

in order to achieve a cured proportion of 32%. For the survival times, cured observations are
associated with infinite survival times. We set their survival times equal to a very large value (for
example, 10,000), and for uncured observations, we draw survival times from the exponential model
Su(t|z) = exp[− exp(β0) exp(βT z)t], where β = (β1,β2)T is a vector of parameters associated with
Z, with Z = (X1, X2)T . For all observations, censoring times follow an exponential distribution
with density f (t) = (1/μc ) exp[−(t/μc )]. We assume that β0 = 0.5, β = (0.5, d )T and μc = 10 in
order to achieve a proportion of censoring of 34%, close to the cure proportion. A total of 24.5%
of the observations (corresponding to 72% of the censored observations) are in the plateau, all of
them being cured as desired for survival data with a cure fraction. We consider samples of size
n = 300 and a total of 250 datasets.

For each dataset, we estimate a Cox PH model with survival function S(t|z) = S0(t)exp(βT z),
where S0(t) is the survival function for Z = 0 called the baseline survival function, which is totally
unspecified, and a mixture cure model assuming a Cox PH model for Su(t|z). Baseline survival
functions and parameter estimates for both models are shown in Figure 2. As we can see, if
we do not take into account the presence of the cure fraction, the baseline survival function is
overestimated under the Cox model (Figure 2a), whereas the mixture cure model performs very
well and is estimated with a lower variability. Likewise, the parameter estimates from the classical
Cox PH model are largely biased, upward for β̂1 (Figure 2b) and downward for β̂2 (Figure 2c).
In contrast, the bias is very small for both parameter estimates for the cure model. Based on this
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Figure 2
(a) True baseline survival function (blue curve) and estimated baseline survival function over 250 datasets from the classical Cox
proportional hazards model ( gray curves) and the mixture cure model ( yellow curves). (b) Boxplots of β̂1 (where the red line is β1).
(c) Boxplots of β̂2 (where the red line is β2).

simulated example, it is clear that not taking into account the presence of a cure fraction in survival
data has important consequences that may lead to wrong conclusions.

Throughout the article, we illustrate models and methods that have been proposed in the
literature on cure models with a dataset on breast cancer from Wang et al. (2005). The dataset
consists of time to distant metastasis, expressed in days, for 286 patients who experienced a lymph-
node-negative breast cancer between 1980 and 1995. Four covariates are considered: the age of
the patient (ranging from 26 to 83 with a median of 52 years old), the estrogen receptor (ER)
status [0 or 1, where 0 signifies ER−, defined as less than 10 fmol/mg protein (77 patients), and 1
signifies ER+, defined as at least 10 fmol/mg protein (209 patients)], the size of the tumor (ranging
from 1 to 4 with a median of 1), and the menopausal status [where 0 signifies premenopausal
(129 patients) and 1 signifies postmenopausal (157 patients)].

Figure 3 shows a graphical representation of the Kaplan-Meier estimator of the survival func-
tion. As can be seen, the curve levels off at a value greater than 0, approximately 60%, and there
is a large plateau of approximately 2,770 days, a strong sign of the presence of a cure fraction.
Moreover, among the 286 patients, 179 are censored, of which 88.3% are censored after the last
observed event time. Hence, many of the censoring times are located in the plateau, indicating
that a cure model can be considered. Finally, there is strong medical evidence for the presence of
cured patients in breast cancer relapse. It turns out that this dataset is a perfect example of survival
data with a cure fraction.

We end this section by briefly mentioning some other works on cure models. The textbook
by Maller & Zhou (1996), which is completely devoted to the topic of cure models, gives a nice
introduction to many of the specific aspects of cure models. Recently, Peng & Taylor (2014) wrote
a review article on cure models in which they give a detailed overview of the existing cure models.

2. MIXTURE CURE MODELS

We start, in Section 2.1, with the most fundamental issue related to the definition of a model: its
identifiability. Although this is often neglected in the statistical literature, it should be the first
task when studying a new model. In Section 2.2, we examine several models for the components
of the mixture cure model, and we see how they can be estimated, how the estimators can be
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Figure 3
Kaplan & Meier (1958) estimator of the survival function for the breast cancer dataset of Wang et al. (2005)
( plus signs are censored observations).

computed in practice, and how they behave asymptotically. Section 2.3 describes different issues
related to the verification of the model, such as goodness-of-fit tests, variable selection, and model
diagnostics. Finally, in Section 2.4, we apply the most common mixture cure model to the breast
cancer data introduced in Section 1.

2.1. Identifiability

We have already mentioned the issue of identifiability of the model in a very informal way in the
Introduction. Indeed, we said that in order to identify (in an informal way) the cure proportion, the
plateau in the plot of the survival function for the whole population should only consist of cured
subjects. When the plateau stays constant for a long time without decreasing even incrementally,
we can be relatively confident that all uncured subjects had their event of interest before the start
of the plateau, and hence the cure fraction corresponds to the height of the plateau. This informal
analysis can be made more rigorous by saying that

τFu < τG 3.

(we omit covariates here for simplicity), where Fu = 1 − Su , G is the censoring distribution, and
τF = inf{t : F (t) = 1} for any distribution F . This assumption is crucial in most semi- and
nonparametric papers on modeling of mixture cure models.

When we talk about the identifiability of a model, we should distinguish two common but
different definitions of identifiability. The first definition (the weaker of the two) states that the
mixture cure model given in Expression 1 is identifiable within families P and S of functions
corresponding to the incidence and the latency respectively, if the equality

1 − p1(x) + p1(x)Su1(t|z) = 1 − p2(x) + p2(x)Su2(t|z) for all t, x, z, 4.

for some functions p1, p2 ∈ P and Su1, Su2 ∈ S, implies that p1(x) = p2(x) for all x, and that
Su1(t|z) = Su2(t|z) for all t and z. This was studied in full detail and in a rigorous way by Hanin &
Huang (2014), who considered several choices of the classes P and S under which the mixture cure
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model given in Expression 1 is or is not identifiable. The paper by Hanin & Huang (2014) is an
important improvement over earlier attempts to study the identifiability of the mixture cure model,
in the sense that earlier papers contained mistakes in the proofs or did not study the problem in full
generality. Note that this first issue of identifiability does not depend on the censoring mechanism,
and hence the condition shown in Expression 3 does not play any role here.

A second type of identifiability is related to the uniqueness of the parameters of the model
in another sense—namely, in the sense that there is a unique set of parameters for which the
expected log-likelihood is maximal. So, instead of equating two models, which are unrelated to
the type of data at hand, we look at the likelihood, which is based on the density of the observed
variables (that are subject to random right censoring in our case) under the given model. The
conditions under which there exists a unique p ∈ P that maximizes the expected log likelihood
when P is a parametric class of probability functions coming, for example, from a logistic model,
were rigorously studied by Patilea & Van Keilegom (2017) (see proposition 3.1), while Xu &
Peng (2014) studied the case where P is nonparametric. In both papers, the assumption shown in
Expression 3 turns out to be a crucial assumption to ensure identifiability of the model [although
condition 7 of Xu & Peng (2014) could be relaxed to τFu (z) < τG(z) for all z].

We are now ready to study different models for the incidence p(·) and the latency Su(·|·), and
their corresponding estimation procedures.

2.2. Modeling Approaches and Inference

The literature on mixture cure models offers a wide variety of modeling approaches ranging from
fully parametric to completely nonparametric models. In what follows, we assume that we have
independent and identically distributed (i.i.d.) data (Yi ,�i , Xi , Zi ), i = 1, . . . , n, having the same
distribution as (Y,�, X, Z), where Y = min(T , C), � = I (T ≤ C), dim(X) = p , with a first
component equal to 1, dim(Z) = q , and for given values of X and Z, the event time T follows
the mixture cure model given in Expression 1. Let Y(1) ≤ · · · ≤ Y(n) be the order statistics of the
observations Y1, . . . , Yn, and let Y ∗

(1) < · · · < Y ∗
(r) be the distinct ordered uncensored observations,

assuming there are r ≤ n in total.

2.2.1. Fully parametric models. The pioneer works on the mixture cure models are fully para-
metric approaches due to Boag (1949) and Berkson & Gage (1952). In both cases, the incidence
is modeled as a constant, and the survival function for uncured observations takes the form of a
log-normal model and an exponential model, respectively, not depending on covariates. Farewell
(1977) introduced covariates in the incidence by assuming a logistic regression model for the
probability of being uncured, that is, p(x) = [exp(γ T x)]/[1 + exp(γ T x)], and modeled the latency
according to an exponential distribution, that is, Su(t) = exp(−λt). The introduction of covari-
ates in the latency was proposed by Farewell (1982), who considered a Weibull model for the
conditional survival function of the form Su(t|z) = exp(−λ exp(βT z) tρ ), where λ > 0 is a shape
parameter and ρ > 0 is a scale parameter. Ghitany et al. (1994) proposed a logistic/exponential
mixture cure model where the latency depends on covariates.

For these models, a maximum likelihood estimation method is proposed based on the likelihood
function

n∏
i=1

[p(Xi ) fu(Yi |Zi )]�i ×
n∏

i=1

[1 − p(Xi ) + p(Xi )Su(Yi |Zi )]1−�i , 5.

where fu(t|z) = −(d/dt)Su(t|z). Derived as for classical survival models, the likelihood function
for the mixture cure model is defined as the product of two different types of contributions—those
from uncensored and censored observations. Uncensored observations contribute through the
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density function, which is equal to f (t|x, z) = p(x) fu(t|z), and censored observations contribute
through the survival function given by the mixture cure model given in Expression 1. Note that
no distinction is made between cured and uncured censored observations since the cure status is
unknown. To estimate the logistic/Weibull mixture cure model, Farewell (1982) maximized this
likelihood function numerically using the Newton-Raphson technique.

Other parametric mixture cure models include the accelerated failure time (AFT) model for the
latency. Yamaguchi (1992) considered the extended family of generalized gamma models (Prentice
1974) for log(T ∗) = β0 + βT Z + σε, where T ∗ is the survival time for uncured observations,
σ > 0 is a scale parameter, and ε is an error term with density function

fε(t) =
⎧⎨
⎩

|λε |
�(λ−2

ε )
(λ−2
ε )λε−2 exp(λεt − eλε t) if λε �= 0

1
(2π )1/2 exp(−t2/2) if λε = 0,

where �(z) = ∫∞
0 xz−1e−xdx is the gamma function, and λε is a shape parameter. Peng et al. (1998)

proposed considering a generalized F distribution for T ∗ by assuming that W = [log(T ∗)−μ]/σ ,
where μ is a location parameter and σ > 0 is a scale parameter, has density function

fW (w) =
(

s1ew

s2

)s1
(

1 + s1ew

s2

)−(s1+s2)

B(s1, s2)−1,

where s1 and s2 are shape parameters and B(·, ·) is the beta function. In both cases, the choice
of the distribution is motivated by its flexibility and because it embeds the exponential, Weibull
(when s1 → 1 and s2 → ∞, we obtain the model proposed by Farewell 1982), log-normal, and
gamma distributions as special cases, among others. For the incidence, both models assume a
logistic regression model, as did Farewell (1982). Note that Yamaguchi (1992) also considered the
case where the cure proportion is constant.

Yamaguchi (1992) and Peng et al. (1998) developed a maximum likelihood approach based on
the likelihood given in Expression 5 for the two proposals in order to estimate these two models.
First, the Newton-Raphson algorithm is used to maximize the likelihood function with respect
to (γ ,β0,β, σ )T. In a second step, a search for the value of the shape parameter(s) that maximize
the likelihood is made (λε for the extended family of generalized gamma models, s1 and s2 for the
generalized F model).

2.2.2. Logistic/Cox proportional hazards mixture cure models. Semiparametric mixture cure
models are a second class of mixture cure models that have been extensively studied in the literature.
The main motivation is that they avoid the restrictions imposed by parametric conditional survival
functions. Most of them focus on the latency while they keep the logistic regression form for the
incidence. A first group of models is composed of mixture cure models assuming a Cox PH model
for the conditional survival function, that is, Su(t|z) = S0(t)exp(βT z), where the baseline survival
function S0(t) = P (T > t|Z = 0, B = 1) is totally unspecified. Introduced by Kuk & Chen (1992),
this mixture cure model does not satisfy the PH assumption, contrary to the classical Cox PH
model. As a consequence, the partial likelihood approach (Cox 1972) developed to estimate the
Cox PH model cannot be applied for this model. Indeed, it is not possible to isolate the baseline
survival function in the likelihood. Likewise, because the latency is defined conditionally on the
uncured status, if one considers the baseline conditional survival function as a nuisance parameter,
information about the cure status will be lost. The literature contains several proposals to estimate
the model that take into account this situation. The approach of Kuk & Chen (1992), adapts a
marginal likelihood approach developed by Kalbfleisch & Prentice (1973) for the classical Cox
PH model. The marginal likelihood consists of integrating the likelihood function (Expression 5)
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over Y ∗
( j ), j = 1, . . . , r . Estimators are obtained by maximizing the marginal likelihood function

with respect to the parameters. In practice, it is not possible to compute this marginal likelihood
function, and it is therefore approximated by Monte Carlo methods.

A second group of estimation approaches, proposed by Peng & Dear (2000) and Sy & Taylor
(2000), is based on the expectation-maximization (EM) algorithm (Dempster et al. 1977). The
choice for this methodology is justified by the fact that the model depends on a latent variable, the
cure status. Another interesting argument lies in the fact that the principle of the EM algorithm is
to approximately maximize Expression 5 from a complete-data likelihood, which takes the form

Lc (γ ,β, S0) =
n∏

i=1

[p(Xi )λu(Yi |Zi )Su(Yi |Zi )]�i Bi ×
n∏

i=1

[p(Xi )Su(Yi |Zi )](1−�i )Bi

×
n∏

i=1

[1 − p(Xi )](1−�i )(1−Bi ), 6.

where λu(t|z) = fu(t|z)/Su(t|z) is the hazard function of the uncured observations. An interesting
feature of Expression 6 is that it can be rewritten as the product of two elements,

L1(γ ) =
n∏

i=1

p(Xi )Bi [1 − p(Xi )]1−Bi and 7.

L2(β, S0) =
n∏

i=1

{
[λu(Yi |Zi )Su(Yi |Zi )]�i Bi Su(Yi |Zi )(1−�i )Bi

}
, 8.

each of them only containing the parameters of one of the two parts of the model. It is then
possible to estimate separately the incidence and the latency. In such a case, it becomes possible
to extend methods developed for the classical Cox PH model.

The implementation of the EM algorithm for the mixture cure model is as follows. The
first step, the expectation step, consists of computing, at the mth iteration of the algorithm,
the expectation of the complete-data likelihood given in Expression 6 given the current values
of the parameters θ (m−1) = (γ ,β, S0)(m−1) and the observed data Vi = (Yi ,�i , Xi , Zi ), with respect
to the latent variable Bi . For the mixture cure model, it is the same as computing

E(Bi |Vi , θ (m−1)) = �i + (1 −�i )
p(Xi )Su(Yi |Zi )

1 − p(Xi ) + p(Xi )Su(Yi |Zi )
= W (m)

i .

The expected complete-data likelihood is obtained by replacing Bi by its expectation W (m)
i in

Expression 6.
The second step, the maximization step (M-step), consists of maximizing the expected

complete-data likelihood with respect to the parameters of the model. For the incidence, Expres-
sion 7 is the same likelihood function as for a classical logistic regression model. The Newton-
Raphson technique is applied to estimate the parameters. For the latency, three methods can be
distinguished, all of them based on Expression 8:

� Sy & Taylor (2000) proposed a first approach based on the work of Breslow (1974). This
two-step approach estimates nonparametrically the baseline conditional cumulative hazard
function, 0(t) = − log[S0(t)], by

̂0(t) =
∑

j :Y ∗
( j )≤t

D( j )∑
k∈R j

W (m)
k exp(ZT

k β)
,

where D( j ) represents the number of observations experiencing the event of interest at time
Y ∗

( j ), and Rj is the set of observations that are still at risk just before the event time Y ∗
( j ). This
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estimator is then substituted in Expression 8, and the following partial likelihood is obtained
(assuming no ties):

L̃2(β|W (m)) =
n∏

i=1

[
exp(ZT

i β)∑
k∈Ri

W (m)
k exp(ZT

k β)

]�i

, 9.

where W(m) = {W (m)
1 , . . . , W (m)

n }. Note that when W (m)
i = 1 for all i = 1, . . . , n, Expression 9

is equal to the partial likelihood for the classical Cox PH model. The latency part is then
estimated by maximizing Expression 9 with respect toβ using the Newton-Raphson method.

� A second proposal from Sy & Taylor (2000) is a product-limit-type method in which the
baseline conditional survival function is first estimated nonparametrically by a step function
that takes a product-limit form:

S0(t) =
∏

j :Y ∗
( j )≤t

α j ,

whereα j = S0(Y ∗
( j ))/S0(Y ∗

( j−1)). In the absence of ties, the likelihood function given in Expres-
sion 8 is reparametrized in terms of α j and the EM algorithm is applied in order to estimate
α given β. In a second step, the estimator of α is substituted in the expected complete-data
likelihood and a profile likelihood for β is obtained. We refer to Sy & Taylor (2000) for
more details regarding the case with ties.

� A third approach is that of Peng & Dear (2000), who considered a marginal likelihood. As in
Kuk & Chen (1992), the marginal likelihood function is obtained by integrating Expression 8
over Y ∗

( j ), j = 1, . . . , r . In the absence of ties, the following marginal likelihood is obtained:

L̆2(β|W (m)) ≈
n∏

i=1

[
exp(ZT

i β)∑
k∈Ri

W (m)
k exp(ZT

k β)

]�i

.

Note that this marginal likelihood is approximately equivalent to the partial likelihood
(Expression 9) obtained by Sy & Taylor (2000). For the case with ties, we refer the reader
to Peng & Dear (2000).

Lu (2008) proposed another type of estimation method to estimate the logistic/Cox PH mixture
cure model. Based on a nonparametric maximum likelihood function, the main idea is to consider
a nonparametric estimator for 0(t), that is, a step function with jumps at all the event times, and
to replace the baseline conditional hazard in Expression 5 by the size of the jump made by the
cumulative baseline hazard at each event time. The likelihood function is then given by

L =
n∏

i=1

{
p(Xi )[0(Yi ) −0(Yi−)] exp(βT Zi ) exp[−0(Yi ) exp(βT Zi )]

}�i

×
n∏

i=1

{
1 − p(Xi ) + p(Xi ) exp[−0(Yi ) exp(βT Zi )]

}1−�i
.

The major contribution of this mainly theoretical article is to show that the estimators of γ , β,
and 0 converge weakly to a zero-mean Gaussian process. Lu (2008) also provides an estimator
of the asymptotic covariance function.

Finally, Corbière et al. (2009) proposed a penalized likelihood approach that has the advantage
of producing a smooth estimator of the conditional hazard function. The method consists of
considering the penalized likelihood

log[L(γ ,β, λ0)] − κ

∫
λ′′

0(ν)2dν, 10.
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where

L(γ ,β, λ0) =
n∏

i=1

{
p(Xi )λ0(Yi ) exp(βT Zi ) exp[−0(Yi ) exp(βT Zi )]

}�i

×
n∏

i=1

{
1 − p(Xi ) + p(Xi ) exp[−0(Yi ) exp(βT Zi )]

}1−�i ,

κ
∫
λ′′

0(ν)2dν is the penalization term, and κ > 0 is a positive smoothing parameter balancing be-
tween the fit of the data and the smoothness of the function. The model is estimated by maximizing
the likelihood function given in Expression 10 with respect to γ , β and λ0. Since there is no explicit
formula for the baseline conditional hazard that maximizes the likelihood, it is approximated by
a linear combination of cubic normalized B-splines. They also provide a method to compute the
variance of the parameter estimates based on the inverse of the matrix of the second derivatives
of the penalized likelihood.

2.2.3. Logistic/semiparametric accelerated failure time models. In addition to the popular
logistic/Cox PH mixture model, other papers, beginning with Li & Taylor (2002), focused on a
semiparametric AFT model for the latency. They all consider that log(T ∗) = β0 + βT Z + ε and
assume unspecified density and survival functions f and S, respectively, for the error term ε. As for
the logistic/Cox PH mixture model, a logistic regression model is assumed for the incidence. Three
different estimation approaches have been proposed, all based on the EM algorithm. Starting from
the complete-data likelihood given in Expression 6, these methodologies are the same as for the
logistic/Cox mixture cure model until the M-step for the latency estimation. For this latter part,
they extend methods that were proposed for the classical semiparametric AFT models. Starting
from the expected complete-data likelihood associated with the latency given by

n∏
i=1

{
fε
[

log(Yi ) − β0 − βT Zi

]�i W (m)
i

Sε
[

log(Yi ) − β0 − βT Zi

](1−�i )W (m)
i
}

, 11.

� Li & Taylor (2002) proposed extending the work of Ritov (1990) based on M-estimators.
Starting from the score equation for β given by

n∑
i=1

Zi

{
−W (m)

i �i
f ′
ε [log(Yi ) − β0 − βT Zi ]

fε[log(Yi ) − βT Zi ]
+ W (m)

i (1 −�i )
fε[log(Yi ) − β0 − βT Zi ]

Sε[log(Yi ) − βT Zi ]

}
= 0,

the principle consists of replacing − f ′
ε / fε in the score equation by an M-estimator and

replacing the unknown survival function Sε by its Kaplan-Meier estimator given β. Because
the obtained score equation is not necessarily monotone and continuous, they propose
estimating the parameters by using a grid search over the range of values of β.

� Zhang & Peng (2007) proposed rewriting Expression 11 as the likelihood function for a
classical semiparametric AFT model. Using the fact that �i = 1 and W (m)

i = 1 if the
ith observation is uncensored, it turns out that �i W

(m)
i ≡ �i , and �i log W (m)

i ≡ 0. The
likelihood function can be rewritten as

n∏
i=1

{
W (m)

i λε[log(Yi ) − β0 − βT Zi ]
}�i ×

n∏
i=1

{
Sε[log(Yi ) − β0 − βT Zi ]

}W (m)
i

,

where λε = fε/Sε , which corresponds to the likelihood function of an AFT model with
log(T∗

i ) = β0 + βT Zi + ε∗
i , where the hazard function of ε∗

i is W (m)
i λε(ε∗

i ), and W (m)
i is a

constant. A rank estimation method proposed by Wei (1992) for classical semiparametric
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AFT models is then used to estimate the latency. We refer readers to Zhang & Peng (2007)
for more details.

� Lu (2010) proposed a profile likelihood approach. First, the hazard function given in Ex-
pression 11 is replaced by a piecewise constant hazard:

λ(t) =
Jn∑
j=1

λ j I
[
t ∈ [x j−1, x j )

]
, 0 ≤ t < M,

where the support [0, M ] of exp[log(Yi ) − βT Zi ] is partitioned in Jn intervals of equal
length and I (·) denotes the indicator function. The likelihood function is first maximized
with respect to λ j , j = 1, . . . , Jn, given β. Then, the estimators of the λ j s are substituted in
Expression 11. A profile likelihood is obtained. However, this profile likelihood is not smooth
and presents local maxima. As a solution, a kernel-smoothed approximation is proposed, and
the latency is estimated from this latter function.

2.2.4. Flexible semiparametric models. All the preceding models consider a logistic regres-
sion for the incidence. However, as mentioned by Peng (2003b) and proposed by Lam et al.
(2005), other types of link functions can be considered. If the logit link is the canonical link
function for binary response variables in the generalized linear model framework, one can also
consider a probit or a complementary log-log link function, among others. These link func-
tions only ask for a slight modification of the likelihood function. The EM algorithm can
then be easily implemented to estimate these models. One possible limitation, however, is
the lack of flexibility of parametric models. Even if parametric incidences offer some appeal-
ing characteristics, such as easy estimation and interpretation, one can question the quality of
their fit. In order to widen the flexibility of the incidence of the mixture cure model, some
semiparametric modeling approaches have been proposed. Wang et al. (2012) considered a
smoothing splines analysis of variance (SS ANOVA) model for both the incidence and the la-
tency. It consists of expressing the two parts of the model as log{p(x)/[1 − p(x)]} = ζ (x) and
λ(t|x) = exp[η(x)], where ζ (x) = ζ0 + ∑p

j=1 ζ j (x j ) +
∑p

j ,k=1 ζ j k(x j , xk) + · · · + ζ1...p (x1, . . . , xp )
and η(z) = η0 + ∑q

l=1 ηl (zl ) +∑q
l ,m=1 ηlm(zl , zm) + · · · + η1...q (z1, . . . , zq ), and where all functions

appearing in the formula of ζ (x) and η(z) are unspecified. The SS ANOVA model is then estimated
based on a penalized EM algorithm.

Another modeling approach was proposed by Amico et al. (M. Amico, C. Legrand, I. Van
Keilegom, manuscript in preparation), who considered a single-index structure for the probability
of being uncured, of the form p(x) = g(γ T

∗ x∗), where g(·) is a totally unspecified and not necessarily
monotone link function, and the asterisk indicates that there is no intercept in the model. They
considered a Cox PH model for the latency. They proposed an estimation method based on the
EM algorithm, close to the proposal of Sy & Taylor (2000), but with an additional substep in
the M-step added to estimate the unknown link function in the single-index. They considered a
kernel estimator and proved the identifiability of the model.

In the above papers, the authors tried to relax the common logistic/Cox PH mixture cure model
by replacing the logistic model with a more flexible model. Another way to make the latter model
more flexible is by replacing the Cox PH model by a nonparametric model. This was proposed by
Taylor (1995), who considered a fully nonparametric model for the latency that does not depend
on any of the covariates, and a logistic regression model for the incidence. He developed an
estimation method based on the EM algorithm where the latency is estimated from Expression 8
by a Kaplan-Meier-type estimator.
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Another paper that considers a nonparametric model for the latency is Patilea & Van
Keilegom (2017), but contrary to Taylor (1995), they allow the latency to depend on covariates,
and they assume a parametric model for the incidence. So, no assumptions are made on the
conditional survival function Su(·|z) of the uncured subjects, except for smoothness and identi-
fiability assumptions. They use a two-step procedure to estimate their model: In the first step,
they fix the parameter vector coming from the incidence, and they estimate the survival function
Su(·|z) by means of a kernel approach. In the second step, they plug in this estimated function in
the likelihood, which they maximize with respect to the parameters of the incidence. Patilea &
Van Keilegom (2017) showed the weak consistency and the asymptotic normality of their model
parameters, and they compared their estimated model with the logistic/Cox PH mixture cure
model through finite sample simulations, which allowed them to study the sensitivity of the latter
model with respect to the validity of the PH assumption.

Another approach is that of Lu & Ying (2004), who assume a semiparametric linear transfor-
mation model for the latency of the form H(T ∗) = −βT Z+ε, where H is an unknown monotone
increasing function. Depending on the distribution of ε, different models are obtained, and two
particular cases are mentioned. When an extreme value distribution is assumed, a PH model is
obtained. In contrast, if ε follows a standard logistic distribution, the latency follows a proportional
odds model. Lu & Ying (2004) proposed an estimation method based on counting processes and
martingale theory. They derived estimating equations in order to estimate H, β, and γ , and they
presented an iterative approach to solve them. The main objective of the paper is to derive the
asymptotic normality of the proposed estimator and to obtain consistent variance estimates.

2.2.5. Nonparametric models. At least one part of each of the preceding models is modeled
parametrically or semiparametrically. A last possibility is to assume a fully nonparametric mixture
cure model. The main contribution on this topic comes from López-Cheda et al. (2017), who
considered a nonparametric model for both the incidence and the latency, including covariates.
They proposed estimating the two parts of the model based on the Beran (1981) estimator and pro-
ceeded as follows. For the incidence, they considered the cure rate estimator developed by Xu &
Peng (2014):

1 − p̂h(x) =
n∏

j=1

[
1 − �( j ) Bh( j )(x)∑n

k= j Bh(k)(x)

]
,

where Bh( j )(x) = K [(x−X( j ))/h]/
∑n

l=1 K [(x−X(l))/h] are Nadaraya-Watson weights, h is a band-
width, K is a kernel function, and X( j ) and�( j ) are the values of the covariate and of the censoring
indicator corresponding to the j th order statistic Y( j ) (assuming no ties). The intuition behind
this estimator is that the cure proportion corresponds to the value at which the survival function
levels off, or equivalently, to the value of the survival function for the last uncensored event time.

For the latency, the idea is to rewrite the model given in Expression 1 assuming that X = Z,
which gives Su(t|x) = {Spop(t|x) − [1 − p(x)]}/p(x), and to use the following estimator:

Ŝu,b (t|x) = Ŝpop,b (t|x) − (1 − p̂b (x))
p̂b (x)

,

where Ŝpop,b (t|x) is the Beran (1981) estimator of the survival function Spop(t|x) given by∏
j :Y( j )≤t{1 − [�( j ) Bb( j )(x)/

∑n
l= j Bb(l)(x)]}, and Bb( j )(x) are Nadaraya-Watson weights, with b a

bandwidth not necessarily equal to h. They developed the asymptotic theory, as well as a band-
width selection method based on bootstrap.
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2.2.6. The zero-tail constraint and baseline conditional survival function tail estimation.
Before ending this section on models and estimation methods for the mixture cure model, one
issue still needs to be discussed. When a non- or semiparametric model is assumed for the latency,
one issue arises from the conditional survival function estimation. Indeed, even if we suppose that
Su(t) = 0 when t → ∞, the lack of information in the right tail of the survival function (with
possibly a large number of censored observations after the last uncensored observation) may lead
to a situation where Ŝu(Y ∗

(r)) �= 0, inducing identifiability problems. In order to compensate for the
lack of information in the right tail, Taylor (1995) proposed assuming that observations censored
after Y ∗

(r) are cured. In practice, he proposed imposing in the expectation step of the EM algorithm
that the weight Wi equals 0 if Yi > Y ∗

(r). Known as the zero-tail constraint, this constraint has also
been applied by Sy & Taylor (2000), Peng & Dear (2000), and Li & Taylor (2002), among others.
However, this constraint may overestimate the number of cured observations. This motivated
Peng (2003a) to propose another approach, which consists of parametrically estimating the tail
of the conditional baseline survival function in a logistic/Cox PH mixture cure model, similar to
what Moeschberger & Klein (1985) did for the classical Kaplan-Meier estimator. He proposed
considering an exponential or a Weibull model for the baseline survival function S0(t) when
t > Y ∗

(r). Using simulations, he showed that the proposed method reduced bias well compared
with the zero-tail constraint.

2.3. Assessment of the Model

The literature on mixture cure models is quite extensive regarding not only model definition
and inference but also the verification of the model where many different aspects have been
investigated. In this section, we detail these aspects, ranging from testing for crucial hypotheses
such as the presence of a sufficient follow-up or the presence of a cure fraction, to variable selection.

2.3.1. Testing for sufficient follow-up. As mentioned previously, a sufficient follow-up is an
important element in order to consider a cure model. Heuristically, it consists of looking at the
plateau of the Kaplan-Meier estimator and ensuring that it is long enough. To evaluate this
formally, Maller & Zhou (1996) developed a test that consists of testing the null hypothesis
H0 : τFu ≥ τG against the alternative hypothesis H1 : τFu < τG. Note that H1 is exactly the identi-
fication condition given in Expression 3 that we argued is a crucial assumption in most semi- and
nonparametric cure models. Intuitively, the main idea of the test is as follows: First, note that
one can test H0 by looking at the difference between the largest observation Y(n) and the largest
uncensored observation Y ∗

(r). Indeed, if Y(n) − Y ∗
(r) is large, the largest censoring time occurs well

after the largest uncensored survival time, which is an indication that the follow-up is sufficiently
long or that τFu < τG. In contrast, if τFu ≥ τG, then Y(n) − Y ∗

(r) will be close to zero. Based on a
heuristic and informal reasoning, Maller & Zhou (1996) then used this information to propose
the following test statistic:

qn = Nn

n
,

where Nn represents the number of uncensored observations in the interval [2Y ∗
(r) −Y(n), Y ∗

(r)]. The
decision rule is then as follows: H0 is rejected if qn exceeds a certain critical value, and the follow-up
will be considered sufficiently long in that case. Since the distribution of qn is not known, Maller
& Zhou (1996) simulate the critical values when T follows an exponential distribution with mean
1 and C follows a uniform distribution on [0, b], and they tabulated the critical values for several
values of n, b and the cure rate 1 − p . Although it is unlikely that H0 can be tested in a general
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setting, the proposed solution to find the critical value is very restrictive since it only holds for
very specific parametric distributions.

2.3.2. Testing for the presence of a cure fraction. Having a sufficient follow-up is a necessary
condition to consider a cure model. However, it does not necessarily imply the presence of a cure
fraction. To evaluate whether a cure fraction exists or not, some authors have developed statistical
tests. Zhao et al. (2009) proposed a score test in the setting of a logistic/Cox PH mixture cure
model for the hypothesis H0 : p = 1, or equivalently, H0 : ϕ = 0 against H1 : ϕ > 0, where ϕ =
(1 − p)/p and 0 ≤ ϕ < ∞. They assumed that p does not depend on any of the covariates. The
test statistic is given by

Sn(β̂) = U T (β̂)�̂−1U (β̂),

where U (β̂) is the score vector of the logistic/Cox PH mixture cure model evaluated at (β,ϕ) =
(β̂, 0), with β̂ the estimator of the regression coefficients, and �̂ the Fisher information matrix
evaluated at β̂ and ϕ = 0. Note that under H0, the model reduces to a classical Cox PH model,
and hence it is not necessary to estimate a mixture cure model to perform the test. Asymptotically,
Sn(β̂) converges under H0 to a mixture of a χ2

0 and a χ2
1 distribution with equal probability. It is

important to mention that the test is based on a parametric model for the conditional baseline
hazard function in the latency.

Hsu et al. (2016) also developed a test for the presence of a cure fraction, but they allowed
the cure fraction to depend on the covariates. Based on the model p(x) = [exp(α) exp(γ T x)]/[1 +
exp(α) exp(γ T x)], or equivalently p(x) = [1 + exp(−α) exp(−γ T x)]−1, where α is an intercept
and γ is a vector of slopes, the test looks for infinite values of the intercept by testing whether
H0 : ψ∗ = 0 for all γ versus H1 : ψ∗ > 0 for some γ , where ψ = exp(−α), and ψ∗ is the true value
of ψ . Note that this is equivalent to testing H0 : p(x) = 1 for all x versus H1 : p(x) < 1 for some
x. They derive a sup-score test statistic given by

Tn = sup
γ∈B

Sn(γ ),

where B is the support of γ and Sn(γ ) is a certain score test statistic obtained under H0. Hsu
et al. (2016) showed that under the null hypothesis and for fixed γ , the score Sn(γ ) converges in
distribution to the mixture (χ2

0 + χ2
1 )/2. However, the asymptotic distribution of supγ∈B Sn(γ )

is more complicated to obtain, and they proposed a simple resampling technique to approximate
this distribution under the null hypothesis. Note that if the support of B equals 0, the test reduces
to a test for a constant cure fraction. The test is derived assuming a logistic regression model for
the incidence. However, the methodology can be implemented for any increasing, differentiable,
and invertible link function. There are two main limitations: It assumes continuous covariates,
and it considers a parametric form for the baseline conditional hazard (a Weibull or a log-logistic
model).

2.3.3. Model diagnostics. Besides testing for sufficient follow-up and for the presence of a cure
fraction, the literature on the mixture cure model also deals with model diagnostics. This topic
was first investigated by Wileyto et al. (2013), who proposed deriving Schoenfeld residuals for
parametric mixture cure models. Schoenfeld residuals are used to evaluate the departure from the
PH assumption in a classical survival analysis context, and they are used here to evaluate the fit of
the model. Indeed, Wileyto et al. (2013) proposed replacing the weight exp(βT z) in the expected
values of covariates by the hazard function of the entire population λpop(t|x, z). Since λpop(t|x, z)
does not verify the PH assumption, these Schoenfeld residuals cannot be used to check for this
property.
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In order to complete the toolbox, other diagnosis tools were considered by Peng & Taylor
(2017), who developed a series of residual-based model diagnostic tools for the overall mixture
cure model and for the latency, including three types of model checking:

� To check for the functional form of covariates and to diagnose the presence of outliers, they
developed martingale residuals for the overall model and modified martingale residuals for
the latency.

� To evaluate the fit of the model, they developed Cox-Snell and modified Cox-Snell resid-
uals for the overall model and for the latency, respectively. The Cox-Snell residuals for
the mixture cure model are sampled from a mixture-type distribution, whereas a unit ex-
ponential distribution is used in the classical case. As explained by Peng & Taylor (2017),
a unit exponential distribution can still be used in practice, and this has no impact on the
analysis. Regarding the modified Cox-Snell residuals, they propose a Cramér–von Mises cri-
terion to measure the distance between the estimated distribution and the unit exponential
distribution.

� To evaluate the departure from the PH assumption for the latency, they proposed a score
process from which they developed a Kolmogorov-type supremum test.

All these diagnostic tools can be used for mixture cure models with parametric and semipara-
metric latency, but some drawbacks have to be mentioned. First, the martingale residuals for the
overall model are bounded from below, contrary to what happens in classical survival analysis,
which may limit their application. They are also insensitive to the covariate effects in the inci-
dence. Second, the Cox-Snell residuals have some difficulty detecting a misspecification in the
incidence modeling, whereas they perform well for the latency. Finally, for detection of outliers,
Peng & Taylor (2017) also mentioned that the modified martingale residuals are preferred to the
martingale residuals because they are not bounded from below. However, they are not efficient
at detecting outliers that are too large. As an alternative, they proposed considering deviance
residuals.

2.3.4. Testing for the form of the incidence. The Cox-Snell and the martingale residuals
proposed by Peng & Taylor (2017) have some difficulties evaluating the fit of the incidence.
However, Müller & Van Keilegom (U.U. Müller & I. Van Keilegom, manuscript in preparation)
developed a test for the parametric form of the incidence. Their test includes the special cases of a
logistic model and the case where the cure rate does not depend on any covariates. The test statistic
is a weighted L2-distance between a nonparametric kernel estimator of the cure rate (obtained from
Xu & Peng 2014) and a parametric estimator obtained under the null hypothesis. Although they
proved the limiting distribution of their test statistic, they used a bootstrap procedure to calibrate
the test, since the limiting distribution is only a reasonable approximation of the distribution of
the test statistic for very large samples. The test can be used as a preliminary step before deciding
on, for example, for a single-index model (M. Amico, C. Legrand & I. Van Keilegom, manuscript
in preparation) or a completely nonparametric model (see Xu & Peng 2014) for the incidence.

2.3.5. Variable selection. Finally, some papers focused on the selection of relevant covariates.
Liu et al. (2012) first developed a variable selection methodology for both parts of the logistic/Cox
mixture cure model based on a penalized likelihood approach. Because of the interesting feature
of the complete-data likelihood for such model, they proposed a penalized EM algorithm where
two penalty terms are considered, one for γ and one for β, which is equivalent to maximizing a
penalized logistic model and a penalized Cox PH model separately. They proposed using smoothly
clipped absolute deviate (SCAD) penalties developed by Fan & Li (2001). This approach is only
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possible because a logistic/Cox PH mixture cure model is assumed and because the EM algorithm
is considered to estimate the model. However, when a parametric form is assumed for the latency,
the Liu et al. (2012) approach is not natural because the complete-data likelihood is not used. For
mixture cure models with a parametric latency, Scolas et al. (2016) proposed a method based on a
penalized likelihood in the context of interval-censored cure data. Adaptive LASSO penalties are
assumed, one for each part of the model, and the penalized likelihood is derived from Expression 5.

Dirick et al. (2015) developed an Akaike information criterion (AIC) to select the covariates
in the incidence and the latency. They proposed constructing the criterion for a logistic/Cox
PH mixture cure model from the complete-data likelihood used in the EM algorithm, and they
considered two different approaches to compute the expectation of the complete-data likelihood.

Finally, a third approach to do variable selection in a logistic/Cox PH mixture cure model
was proposed (G. Claeskens & I. Van Keilegom, manuscript in preparation). They considered a
procedure based on the focused information criterion. This criterion selects the variables in the
model in such a way that the resulting estimated model is the best possible model with respect to
the estimation of a certain focus parameter. Here, “best possible model” should be understood in
the sense that the mean squared error of the estimated focus parameter is the smallest among all
candidate models. The focus parameter can be any parameter, depending on the latency and/or
the incidence, for example, the cure rate, the regression parameters, or the conditional or uncon-
ditional survival or hazard function. Claeskens & Van Keilegom developed asymptotic theory for
their proposed procedure, and they showed via simulations how the method works in practice.

2.4. Data Analysis

To illustrate the practical use of the mixture cure model, we estimate a logistic/Cox PH mixture
cure model based on the Wang et al. (2005) dataset, assuming a Breslow (1974)-type estimator
for the conditional survival function, and including all covariates in both parts of the model. The
model is fitted with the R package smcure from Cai et al. (2012).

As can be seen from Table 1, two different groups of estimates are obtained, one for each
part of the model. The table also shows the p-values for the parameters computed by bootstrap.
If we first focus on the incidence, age and the menopausal status have a significant impact on the

Table 1 Parameter estimates from the mixture cure model together with their corresponding
standard errors and p-values

Incidence Estimate Standard error Z value P(> |Z|)
Intercept 1.1110 0.8850 1.2555 0.2093

Age −0.0382 0.0173 −2.2112 0.0270

ER+ versus ER− 0.1824 0.2704 0.6746 0.4999

Tumor size −0.0784 0.2054 −0.3814 0.7029

Menopausal (post- versus pre-) 0.7721 0.4445 1.7371 0.0824
Latency Estimate Standard error Z value P(> |Z|)

Age −0.0127 0.0179 −0.7059 0.4802

ER+ versus ER− −1.0365 0.2317 −4.4739 <0.0001

Tumor size 0.5203 0.2184 2.3820 0.0172

Menopausal (post- versus pre-) 0.0778 0.3970 0.1960 0.8446

Abbreviation: ER, estrogen receptor.
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probability of being uncured at a 0.05 and 0.10 level of significance respectively. To interpret
these effects, we proceed as for a classical logistic regression model: exp(−0.0382) = 0.9625, and
1/0.9625 = 1.0390, meaning that an additional year of age (at diagnosis) increases the odds of being
cured by 4%. Regarding the menopausal status, the odds of being uncured for a postmenopausal
woman are exp(0.7721) = 2.1643 times higher than for a premenopausal woman. For the latency,
the ER status and the tumor size have significant effects on the conditional survival at a 0.05 level
of significance. A Cox PH model is assumed for this part. The interpretation of the effect of the
ER status, for example, is as follows: Among patients who experience metastasis, the hazard for
ER+ patients is 1/ exp(−1.0365) = 2.82 times smaller than the hazard for ER− patients. For the
tumor size, the table shows that patients with a bigger tumor have a larger instantaneous risk than
patients with a smaller tumor. As can be seen, covariates have different effects in the two parts of
the model. This situation is representative of an interesting feature of mixture cure models. It is
possible to distinguish long-term and short-term effects of covariates, a feature that is not present
in classical survival analysis. Indeed, the incidence models the long-term effect of covariates on
the cure status, which is something permanent, whereas the latency focuses on the short-term,
time-dependent effect that only concerns uncured observations. More details about this point can
be found in Sy & Taylor (2000).

3. PROMOTION TIME CURE MODELS

The promotion time cure model is the second main class of cure models. In this section, we
first give some details about the definition of the model and its interpretation in Section 3.1. In
Section 3.2, we detail the different modeling approaches that have been proposed and present the
corresponding estimation methods in both frequentist and Bayesian settings. Measurement error
is an important issue in medical studies and so also in the context of cure data. In Section 3.3,
we present some work that has been done on this topic. We end this section with an application
of the promotion time cure model to the breast cancer data used previously for the mixture cure
model.

3.1. Model Justification and Its Interpretation

Proposed by Yakovlev et al. (1996), the promotion time cure model offers a different approach to
model survival data with a cure fraction. Its mathematical definition comes from the assessment
that, given that the survival function for the whole population is such that limt→∞ Spop(t) > 0
when a cure fraction is present, one can define equivalently the cumulative hazard function as
pop(t) = θF (t), where F (·) is a proper distribution function and θ > 0. In such a situation,
the cumulative hazard is bounded, that is, limt→∞pop(t) = θ < ∞, taking into account a cure
fraction. The (improper) survival function is then given by Spop(t) = exp[−θF (t)]. When θ is a
function of covariates, we obtain Expression 2.

An interesting feature of the promotion time cure model is its biological interpretation. Indeed,
in the particular context of cancer, the mathematical form described below can also be obtained
by assuming that the survival time is the result of a latent process generating cancerous tumors.
Originally proposed by Yakovlev et al. (1993) for modeling tumor latency, it was introduced for
the promotion time cure model by Chen et al. (1999). The main idea is to assume that after a first
cancer, a number N ≥ 0 of carcinogenic cells can stay active in the organism of an individual, and
that it will take a certain (latent) time T̃k for each cell k = 1, . . . , N to become an active tumor. For
individuals for whom N ≥ 1, that is, for uncured observations, the survival time T is defined as
min{T̃k, k = 1, . . . , N }. For cured individuals, no carcinogenic cells are still active, that is, N = 0,
inducing that T = ∞. By assuming that N follows a Poisson distribution with parameter θ > 0,
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that the T̃k are i.i.d. with distribution function F (·), and that they are independent of N, we can
derive the survival function for T in the following way:

P (T > t) = P (N = 0) + P (T̃1 > t, . . . , T̃N > t, N ≥ 1)

= P (N = 0) +
∞∑

k=1

P (T̃1 > t, . . . , T̃k > t)P (N = k)

= exp(−θ ) +
∞∑

k=1

S(t)k exp(−θ )
θ k

k!

= exp[−θF (t)], 12.

where S(t) = 1 − F (t). The survival function given in Equation 12 corresponds to the survival
function from the promotion time cure model.

The parameter θ represents the mean number of carcinogenic cells. In the presence of covari-
ates, which are mainly introduced through θ , this parameter has a double interpretation. First,
when θ is large, the mean number of carcinogenic cells is large and the probability of being cured
is small. Second, a larger value for θ is also representative of a lower survival probability because
a larger number of carcinogenic cells induces a smaller activation time. As can be seen, θ con-
tains two types of effects, on the cure probability and on the survival, which cannot be separate.
Such an interpretation can also be drawn from a mathematical point of view. As proposed by
Chen et al. (1999), quantities for each type of observation can be derived from the model in the
manner of the mixture cure model. For cured observations, the associated quantity is given by
limt→∞ Spop(t) = exp(−θ ). For uncured observations, Chen et al. (1999) considered the biologi-
cal development of the model, and they proposed considering the survival function for uncured
observations, which corresponds to observations with at least one carcinogenic cell, that is,

P (T > t|N ≥ 1) = exp[−θF (t)] − exp[−θ ]
1 − exp[−θ ]

. 13.

Note that there also exists a vast literature on tumor latency modeling from which the biological
interpretation of the promotion time cure model is derived. Some references can be found in
Tsodikov et al. (2003).

3.2. Modeling Approaches and Inference

3.2.1. Modeling approaches. The literature on the promotion time cure model contains two
main types of modeling approaches, depending on how the covariates are introduced. The first
group of models consists of introducing covariates only through θ , as defined in the Introduction.
Proposed by Tsodikov (1998a), the survival function is given by Expression 2, where θ (x) =
exp(γ T x). Regarding F (t), Tsodikov (1998a) and Tsodikov (2001) proposed letting the distribution
function be totally unspecified. Some other forms have been proposed, such as a Weibull or a
gamma distribution (Chen et al. 1999) or a semiparametric version F (·|η) for some parameter η
(introduced by Ibrahim et al. 2001). An important characteristic of the model in Expression 2 is its
PH property. Indeed, by assuming that X contains an intercept and that θ (x) = γ T x, Expression 2
can be rewritten as Spop(t|x) = exp[− exp(γ T

∗ x∗)∗
0(t)], where x∗ is the vector of covariates x

without an intercept, γ∗ is the vector of parameters associated with x∗, and ∗
0(t) = exp(γ0)F (t) is

the baseline cumulative hazard function.
As in the case of the mixture cure model, the identifiability of the promotion time cure model

is an important first issue that needs attention before we can talk about the estimation of the
model. Zeng et al. (2006) showed the strong identifiability of the model given in Expression 2
when θ (x) = η(γ T x) for a strictly increasing function η, for example, the exponential function,
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and when F (·) is left unspecified. By strong identifiability, we mean that there are a unique vector
γ and a unique function F (·) that maximize the expected log-likelihood under the model. Portier
et al. (2017) improved the result of Zeng et al. (2006) by allowing the censoring time to be finite
and by allowing the covariates to have noncompact support.

Tsodikov (2002) proposed a second modeling approach where covariates are introduced both
in θ and F (·). The survival function is given by

Spop(t|x, z) = exp[−θ (x)F (t|z)], 14.

and the form θ (x) = exp(γ T x) is usually assumed. Regarding F (t|z), Tsodikov (2002) and
Bremhorst & Lambert (2016) proposed the form F (t|z) = 1 − S0(t)exp(βT z), where Z does not
contain an intercept. This model corresponds to a Cox PH model. Another form was proposed by
Tsodikov (2002), F (t|z) = [exp(βT z)F0(t)]/[1 − exp(βT z)F0(t)], which corresponds to a propor-
tional odds model. Contrary to the model given in Expression 2, this model does not respect the
PH assumption because of the presence of covariates in F (·). In such a case, the hazard function
is given by hpop(t|x, z) = θ (x) f (t|z), where f (t|z) = (d/dt)F (t|z).

The weak identifiability of this model was proved by Bremhorst & Lambert (2016) when θ (x) =
exp(γ T x) and F (t|z) = 1−S0(t)exp(βT z). By weak identifiability, we mean that if exp{− exp(γ T

1 x)[1−
S01(t)exp(βT

1 z)]} = exp{− exp(γ T
2 x)[1− S02(t)exp(βT

2 z)]} for all t ∈ [0, ∞] and all x and z in the support
of X and Z, then necessarily, γ1 = γ2, β1 = β2 and S01 ≡ S02.

3.2.2. Frequentist estimation methods. Estimation methods for the promotion time cure
model were first developed in a frequentist setting by Tsodikov (1998a, 2002). They consider
the likelihood function given by

L =
n∏

i=1

[{θ (Xi ) f (Yi ) exp[−θ (Xi )F (Yi )]}�i × {exp[−θ (Xi )F (Yi )]}1−�i ] 15.

where F (·) may or may not depend on covariates, depending on the model we consider, and with
θ (x) = exp(γ T x).

Tsodikov (1998a) proposed a profile likelihood approach in order to estimate the semipara-
metric version of the model given in Expression 2, where F (·) is totally unspecified. In a first
step, the distribution function F (·) is estimated by a nonparametric maximum likelihood esti-
mator (NPMLE). It consists of maximizing the likelihood function given in Expression 15 with
respect to F (·), where F (·) is replaced by a step function taking values at the failure times. In
order to identify the model, he proposed performing this maximization under the constraint
that Fr = 1, where Fr = ∑r

j=1 �Fj and �Fj represents the jump size of F (·) at time Y ∗
( j ).

This constraint maximization is similar to imposing the zero-tail constraint (Taylor 1995) in
the mixture cure model. He derived score equations for the step sizes �Fj , j = 1, . . . , r , and
he developed his own maximization algorithm to avoid instability problems encountered with
the Newton-Raphson technique when the number of parameters is very large. A profile likeli-
hood for γ is obtained by substituting the NPMLE for F (·) in the likelihood function. Along-
side the estimation method, Tsodikov (1998b) demonstrated the asymptotic relative efficiency
of the semiparametric estimator of θ (x) in comparison with a parametric one. Rigorous asymp-
totic theory and efficiency results for the parametric component θ (x) and for the nonparamet-
ric component F (·) were developed by Portier et al. (2017). They also developed a weighted
bootstrap procedure that allows for a consistent approximation of the asymptotic law of the
estimators.

A frequentist approach was proposed for the model given in Expression 14 for F (t|z) =
1 − S0(t)exp(βT z), where S0(t) = 1 − F0(t), and for F (t|z) = [exp(βT z)F0(t)]/[1 − exp(βT z)F0(t)]
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by Tsodikov (2002). He considered a profile likelihood method as for the model given in
Expression 2, where the likelihood function (Expression 15), with F0 replaced by a step func-
tion, is first maximized with respect to F0 under the constraint that F0r = 1. A NPMLE F̂0 for F0

is obtained, and by substituting F̂0 in Expression 15, a profile likelihood is obtained depending of
the vectors γ and β. Tsodikov (2002) proposed two methods to solve the score equations for F0: an
alternative approach to Newton-Raphson algorithm and a quasi-EM algorithm approach. Note
that the quasi-EM algorithm requires untied data. When tied data are present, the first proposal
is preferred.

3.2.3. Bayesian estimation methods. Bayesian inference was introduced by Chen et al. (1999).
Let us denote by F (·|η) the distribution function F depending on some vector of parameters η.
Chen et al. (1999) focused on the parametric version of the model given in Expression 2 where
a Weibull distribution is considered for F (·|η), with η = (ρ, λ)T . They proposed classes of both
noninformative and genuine priors (based on historical data) for (γ , η), and they discussed some
of their theoretical properties. The posterior distribution is given by

p(γ , η|Dobs) ∝ L(γ , η)π (γ , η),

where π (·) represents the joint prior distribution, Dobs = (Y,�, X) are the observed data, and
L(γ , η) is given by Expression 15. When historical data (obtained from a previous study) are
available, genuine priors are defined as the joint posterior distribution from historical data:

π (γ , η,α0|D0,obs) ∝ [L(γ , η|D0)]α0 π0(γ , η)π0(α0),

where D0,obs = (Y0,�, X0) is the vector of the observed historical data, L(γ , η|D0,obs) is the likeli-
hood function given in Expression 15 from these historical data, π0(γ , η) represents the joint prior
distribution considered for (γ , η) from historical data, and α0 is a parameter taking values between
0 and 1 that controls the influence of the historical data on the current data.

Ibrahim et al. (2001) considered the semiparametric version of the model given in Expression 2
and proposed a piecewise constant hazard model for F (·|λ), where λ = (λ1, . . . , λJ)T represents the
vector of constant hazards associated with the J partitions of the time axis. When a semiparametric
model is considered for F , nothing guarantees that F̂ (Y ∗

(r)) = 1, as already explained for the mixture
cure model. To overcome this difficulty, Ibrahim et al. (2001) proposed introducing a smoothing
parameter in the prior distribution of λ j , j = 1, . . . , J, to control the degree of parametricity of
the right tail of the survival function. In terms of inference, as in Chen et al. (1999), Ibrahim et al.
(2001) discussed noninformative and informative priors as well as some of their properties. The
posterior distributions were constructed assuming the same procedure as above. An extension
of this method was proposed by Kim et al. (2007). Besides the consideration of the degree of
parametricity for the right tail, they also proposed taking into account the correlation between
log(λ j−1) and log(λ j ). As they explained, this latter proposal improves the right tail estimation
because information in that part of the survival function can be borrowed from neighboring
log(λ j )s. They proposed introducing a smoothing parameter and a correlation parameter in the
prior distribution of log(λ j ) by considering a martingale-type process prior. Additionally, they
allowed J to be random. Prior distributions were discussed as well as some of the properties of these
priors. Because the dimensions of the posterior distribution can vary with random J, a reversible
jump Metropolis-Hasting algorithm was proposed to sample from the posterior distribution (we
refer the reader to the article for more details about this).

For the model given in Expression 14, Bremhorst & Lambert (2016) proposed a flexible semi-
parametric approach when F (t|z) = 1 − S0(t)exp(βT z), where the logarithm of the baseline hazard
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function λ0(t) = −(d/dt) log[1 − F0(t)] is written as a linear combination of cubic B-splines.
Bayesian inference was considered, where P-splines are assumed to estimate log[λ0(t)]. P-splines
consist of taking a large number of B-splines and adding a penalty term, as proposed by Eilers &
Marx (1996). In a Bayesian setting, the penalty term is taken into account through the specifica-
tion of the prior distributions, as detailed by Lang & Brezger (2004). Following their proposal,
Bremhorst & Lambert (2016) proposed prior distributions for the parameters, and they gave a
Markov chain Monte Carlo (MCMC) algorithm to sample from the joint posterior distribution.
For identifiability reasons, they also proposed setting the last spline parameter to a large value in
order to guarantee that the baseline survival function is proper.

3.2.4. Some extensions. Under the biological perspective of the model, we assume that the latent
times {T̃1, . . . , T̃N } are i.i.d. random variables. However, this assumption could be unrealistic in
certain situations, since they concern the same individual. Zeng et al. (2006) introduced a subject-
specific frailty term ξi in order to relax this assumption, and they obtained a more general class of
cure models given by

Spop(t|Xi ) = Eξi {exp[−θ (Xi )F (t)ξi ]}, i = 1, . . . , n. 16.

Depending on the distribution for ξi , different models are obtained. They proposed considering a
gamma distribution with mean 1 and obtained the model Spop(t|x) = Gη[θ (x)F (t)], where Gη(u) =
(1 + ηu)1/η when the transformation parameter η is positive, and Gη(u) = exp(−u) when η equals
zero. They also mentioned that other distributions and transformations can be assumed. In terms of
modeling, Zeng et al. (2006) assumed that θ (x) = exp(γ T x), and they let F (·) be totally unspecified.
They proposed a profile likelihood approach to estimate the model. As in Tsodikov (1998a),
they proposed a NPMLE for F (·) obtained by maximizing the likelihood function under the
constraint that Fr = 1. Score equations are obtained by making use of the Lagrange multiplier. The
parameter γ is estimated from the profile likelihood obtained by substituting F̂ (·) in the likelihood
function.

A second extension was proposed by Portier et al. (F. Portier, A. El Ghouch & I. Van Keilegom,
manuscript in preparation), who considered a promotion time cure model of the form

S(t|x) = exp[−g(γ , x) θ F (t)], 17.

where g is a given function (not necessarily monotone) depending on a parameter vector γ ,
θ > 0, and F (·) is an unspecified proper distribution function. When g(γ , x) = exp(γ T

∗ x∗),
where the asterisk indicates that there is no intercept in the model, then Expression 17 re-
duces to the promotion time cure model given in Expression 2. For all other g functions,
the two models are different. Portier et al. showed the identifiability of their model, devel-
oped the NPMLE of the model parameters, showed the asymptotics for their estimators with
closed-form formulas of the variance of the limiting Gaussian distributions, and they consid-
ered a likelihood-based methodology to select an appropriate g function among a family of
proposals.

Other extensions based on the biological interpretation of the promotion time cure model have
been proposed in the literature. However, because they also embed the mixture cure model as a
special case, they are detailed in Section 4.

3.3. Measurement Errors

In medical studies, it often happens that some variables in the model are measured with noise. For
instance, the error can be caused by imprecise medical instruments, such as those for measuring
blood pressure, weight, or cholesterol level. In economic studies, variables such as welfare or
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income often cannot be measured in a precise way, in which case one has to work with approximate
measures that might contain some error. Ignoring this measurement error can lead to wrong
conclusions since the presence of measurement error leads to biased estimators (see, e.g., Carroll
et al. 2006).

In the context of the promotion time cure model, several authors have considered the problem
of estimating the model when one or several covariates in the model are measured with error. The
model that is considered is the classical additive measurement error model of the form

W = X + U, 18.

where W is the vector of observed covariates and U is the vector of measurement errors. We further
assume that U ∼ Np (0, V ), where V is known, and U is independent of X. If some covariates are
not subject to measurement error, then the corresponding elements of V are set to 0. It is also
assumed that (T , C) and W are independent given X.

Mizoi et al. (2007) first estimated the promotion time cure model given in Expression 2 in
the presence of measurement error. The authors considered the case where only one covariate
is measured with error (say X1), and they assumed that the model is fully parametric, with F (·)
equal to the distribution of a Weibull random variable. They used a corrected score approach to
take the measurement error into account, which consists of replacing in the log-likelihood the
unobserved covariate X1 by a surrogate that depends on W1 and the (known) variance of U1. The
form of the surrogate depends on the assumed normality of U1, and hence the method cannot be
extended in an obvious way to the case where other error distributions are assumed.

Ma & Yin (2008) extended the above paper to the case where the distribution F is unknown and
possibly more than one covariate is subject to measurement error. They also used a corrected score
approach and proved the asymptotic unbiasedness and the asymptotic normality of their estimators.

A third contribution comes from Bertrand et al. (2017a), who assumed the same model as Ma
& Yin (2008), but they used a different approach to estimate the model parameters. Their method
is based on the so-called SIMEX (simulation-extrapolation) approach that was proposed by Cook
& Stefanski (1994). The SIMEX method consists of two steps. In the first step, increasing levels
of measurement error variance are considered, and at each level a large number of datasets is
generated. The idea is then to estimate at each level the vector of regression coefficients, ignoring
the measurement error. In the second step, these estimators corresponding to the different levels
of error are extrapolated to the situation where the covariates are observed without error. An
important advantage of this approach is that the distribution of the error term U can be anything,
as long as the covariates observed with error are continuous, so it does not restrict attention to the
normal case. Bertrand et al. (2017a) established the asymptotic unbiasedness and the asymptotic
normality of their estimators, under the assumption that the extrapolation function is correct, and
they compared the finite sample performance of their method with that of the corrected score
approach of Ma & Yin (2008) through a small simulation study.

Finally, Bertrand et al. (2017b) justified the need to take the measurement error into account
via a theoretical study of the bias of the naive estimator that ignores the measurement error. They
also performed an extensive simulation study investigating the robustness of both the corrected
score and the SIMEX approach with respect to the model assumptions.

3.4. Data Analysis

To illustrate the implementation of the promotion time cure model, we fit the model on the Wang
et al. (2005) data. We consider the semiparametric model proposed by Tsodikov (1998a) where
covariates are introduced only through θ , assuming the form θ (x) = exp(γ T x). We fit the model
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Table 2 Parameter estimates from the promotion time cure model together with their
corresponding standard errors and p-values

Estimate Standard error Z value P(> |Z|) exp(estimate)

Intercept 0.6218 0.6926 0.8977 0.3693 1.8622

Age −0.0326 0.0143 −2.2813 0.0225 0.9679

ER+ versus ER− 0.0285 0.2260 0.1260 0.8997 1.0289

Tumor size 0.0056 0.1659 0.0337 0.9731 1.0056

Menopausal (post-
versus pre-)

0.6382 0.3503 1.8220 0.0684 1.8931

Abbreviation: ER, estrogen receptor.

using the estimation method proposed by Tsodikov (1998a). Parameter estimates are given in
Table 2, together with their standard errors and their p-values.

In contrast to the mixture cure model, we only have one set of parameters, which influences
both the cure probability and the survival as explained in Section 3.1. The interpretation of the
parameter estimates is as follows. The quantity exp(γ̂ T x) represents the estimated mean number of
carcinogenic cells for a patient with covariates x. It then encompasses two levels of interpretation:

� First, a larger value for exp(γ̂ T x) is representative of a higher probability of not being cured.
Indeed, the more carcinogenic cells are present, the more the observation has a chance to
experience the event.

� Second, a larger value for exp(γ̂ T x) is also associated with an earlier event because more
carcinogenic cells means more chance of having a small activation time.

As can be seen, menopausal status has an impact on the survival probability at a 0.10 level of
significance, and age has a significant impact at a 0.05 level of significance. This means that
postmenopausal women have a higher risk of being uncured, and they experience the event earlier
in comparison with premenopausal women. For age, the effect is reversed: Older women have a
higher probability of being cured and they have a lower instantaneous risk of experiencing a relapse
than younger women. Those results are different from what we obtained with the mixture cure
model, where age and menopausal status have a significant impact only on the incidence, and tumor
size and ER status significantly influence the latency. In the case of the promotion time cure model,
it is not possible to distinguish and quantify the covariate effects related to the cure probability
and those related to the survival of the uncured observations. We only have one global effect.

4. UNIFYING MODELS

The mixture cure model and the promotion time cure model represent two different modeling
approaches for survival data with a cure fraction. Several differences have been underlined in the
literature, but the two models are also related. Indeed, there exists a mathematical link between
them, and they are equivalent in some situations. Moreover, shortly after the introduction of the
promotion time cure model, the literature on cure models was broadened by unifying approaches
embedding both the mixture cure model and the promotion time cure model. In this section,
we first detail in Section 4.1 the differences between the mixture cure model and the promotion
time cure model but also present their mathematical relationship. In Section 4.2, we review the
unifying models that have been proposed in the literature and their estimation methods. We close
by discussing model selection in Section 4.3.
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4.1. Dissimilarities and Relationship Between the Mixture Cure Model
and the Promotion Time Cure Model

Chen et al. (1999) distinguished three main differences between the mixture cure model and the
promotion time cure model. First, in the presence of covariates, the mixture cure model does not
respect the PH property. In contrast when we assume that only θ is a function of covariates, the
promotion time cure model does respect this property, as already mentioned before. Second, Chen
et al. (1999) argued that the promotion time cure model can be interpreted biologically in the
context of cancer studies, which is not the case for the mixture cure model. However, this point of
view was disputed by Peng & Xu (2012), who explained that by assuming a Bernoulli distribution
for N with parameter p , a mixture cure model is obtained if the biological development described
in Section 3 is followed. Note, however, that this biological interpretation is an oversimplification
of tumor kinetics. Third, Bayesian techniques have been developed to estimate the promotion
time cure model but not for the mixture cure model. As explained by Chen et al. (1999), the lack
of such methods for the latter model is due to the necessity of taking proper priors for γ , both for
the informative and for the noninformative case, in order to obtain proper posterior distributions,
in contrast with the promotion time cure model.

All these elements favor the promotion time cure model. But an important difference in favor
of the mixture cure model that was not mentioned by Chen et al. (1999) is in the interpretation of
covariate effects. The mixture cure model distinguishes the effect of covariates on the probability
of being uncured from the effect of covariates on the survival function of the uncured observations.
It is then possible to consider different covariates in the two parts of the model and to evaluate the
effect of the same covariate(s) on the two parts. For the promotion time cure model, the question
is more delicate because, as detailed in Section 3.2, θ influences both the cure probability exp(−θ )
and the conditional survival function given in Expression 13. Even by introducing covariates in
F (·), it is still not possible to separate the long-term (on the cure probability) and short-term (on
the conditional survival function) effect of covariates.

Besides these differences, the two models are mathematically related, as explained by Chen et al.
(1999). Given that the cure proportion exp(−θ ) in the promotion time cure model is equivalent
to 1 − p in the mixture cure model, and considering the conditional survival function given by
Expression 13, the promotion time cure model can be rewritten (we omit covariates for simplicity)
as

Spop(t) = exp(−θ ) + [1 − exp(−θ )]
exp[−θF (t)] − exp(−θ )

1 − exp(−θ )
,

that is, as a mixture cure model. Furthermore, as discussed by Peng & Xu (2012), the two models
are equivalent in some situations. First, when no covariates are considered at all and Su(·) and F (·)
are unspecified, the two models are obviously equivalent. Then, when p and θ are not a function of
covariates, and when F (·|z) and Su(|z) are unspecified, they are also equivalent. They represent the
same model in a different form. In contrast, when p and θ are a function of covariates the two models
are different. In a first case, when F (·) does not depend on covariates, they will represent different
models for different data structures (a model with the PH property for the promotion time cure
model versus a mixture cure model that does not verify the property). In a second case, when F (·)
is a function of covariates, they will be both flexible models for survival data with a cure fraction.

4.2. Unifying Models: Specification and Estimation

Two different streams have driven the development of unifying models. On one side, we have
models that have a pure mathematical motivation. On the other side, some articles tried to extend
the biological motivation of the promotion time cure model, and new classes of models appeared.
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4.2.1. Mathematical perspective. Unifying models developed in a mathematical perspective are
all based on Box-Cox transformations. Yin & Ibrahim (2005) proposed applying this transforma-
tion to the survival function Spop(t|x, z), such that{

Spop(t|x,z)α−1
α

= −θ (α, x)F (t|z), if 0 < α ≤ 1
log[Spop(t|x, z)] = −θ (0, x)F (t|z), if α = 0,

19.

where α is a transformation parameter. The survival function is then given by

Spop(t|x, z) =
{

[1 − αθ (α, x)F (t|z)]1/α , if 0 < α ≤ 1
exp[−θ (0, x)F (t|z)], if α = 0,

and the associated cure probability is limt→∞ Spop(t|x, z) = [1 − αθ (α, x)]1/α for 0 < α ≤ 1, and
exp[−θ (0, x)] for α = 0. They proposed modeling θ (α, x) as θ (α, x) = [exp(γ T x)]/[1+α exp(γ T x)],
and they assumed that F (t|z) = 1 − S0(t)exp(βT z). The mixture cure model and the promotion time
cure model are two special cases of this model when α = 1 and when α = 0, respectively.
When 0 < α < 1, an intermediate model is obtained. Both Bayesian and frequentist estimation
methods have been proposed. Yin & Ibrahim (2005) considered a Bayesian approach and assumed
a piecewise exponential distribution for S0(·). They considered α as random, and they proposed a
uniform discrete prior for this parameter in order to guarantee stability of the model. Note that
they mentioned that there is no advantage of a random α in comparison with a fixed one except
that it facilitates Bayesian inference. Parameters are considered independent a priori, and they
proposed noninformative prior distributions. Peng & Xu (2012) proposed a frequentist estimation
method for the model given in Expression 19 based on a maximum likelihood approach. They
considered a piecewise constant hazard model for S0(·) defined as S0(t|λ) = exp[− ∫ t

0 λ0(s |λ)ds ],
where λ0(t|λ) = exp(λ j ), and λ = (λ1, . . . , λJ) is the vector of constant hazards corresponding
to each of the J time intervals. Parameter estimates were obtained from the following likelihood
function:

L(α, γ ,β, λ) =
n∏

i=1

{
[θ (α, Xi ) f (Yi |Zi )]�i × [1 − αθ (α, Xi )F (Yi |Zi )]1/α−�i

}
.

Alternatively, Taylor & Liu (2007) proposed applying a Box-Cox transformation to both sides
of the equation in order to obtain the unifying model{

Spop(t|x,z)α−1
α

= q (x)α−1
α

F (t|z), if 0 < α ≤ 1
log[Spop(t|x, z)] = log[q (x)]F (t|z), if α = 0,

where α is a transformation parameter and q (x) = 1 − p(x). In that case, the survival function is
given by

Spop(t|x, z) =
{

{1 + [qα(x) − 1]F (t|z)}1/α , if 0 < α ≤ 1
exp{log[q (x)]F (t|z)}, if α = 0,

with a cure probability equal to q (x). As for the proposal of Yin & Ibrahim (2005), when α = 0
the model reduces to the promotion time cure model. When α = 1, it becomes the mixture cure
model. In term of modeling, they proposed as an example a complementary log-log model for the
cure probability q (x) depending on a parameter vector γ , and they considered a Weibull model
for 1 − F (t|z) = exp[−λtρ exp(βT z)]. No formal estimation was proposed. However, Taylor &
Liu (2007) defined the likelihood function for the model:

L(α, γ ,β, λ, ρ) =
n∏

i=1

{q (Xi )α − 1] f (Yi |Zi )}�iα−�i Spop(Yi |Xi , Zi )1−α�i .
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Note that by assuming that q (x) = [1+α exp(γ T x)]−1/α , the two unifying models are equivalent,
as explained by Peng & Xu (2012).

4.2.2. Biological perspective. The biological development of the promotion time cure model
assumes that the survival time T is generated by the latent survival times T̃k such that T =
min{T̃k, k = 1, . . . , N }. Cooner et al. (2007) proposed widening this relationship and considered
that a number r out of the N carcinogenic cells need to be activated in order to produce a failure
time. The survival time is then defined as T = T̃(r), for 1 ≤ r ≤ N, where T̃(r), r = 1, . . . , N
represent the ordered latent activation times. For the promotion time cure model, they assumed
that T̃k are i.i.d. random variables with distribution function F (·). The associated survival function
for the whole population is given by

Spop(t) = E(N,r)[S(t|N, r)], 20.

where EN,r is the expectation with respect to the joint distribution of (N, r), and S(t|N, r) = P (T >

t|N, r) is given by

P (T > t|N, r) = I (N = 0) +
r−1∑
j=0

(
N
j

)
F (t) j S(t)N − j I (N ≥ r ≥ 1),

with I (·) the indicator function, and S(t) = 1 − F (t). The cure probability for this model is given
by limt→∞ Spop(t) = P (N = 0). The variable r is considered as a threshold variable determining
the survival time T . It can be considered as a constant, as a function of N, or as a random variable.
Moreover, depending on its value, different activation schemes are possible.

When r is considered as random, a conditional distribution is specified for r|N. In order to
model the survival time, Cooner et al. (2007) proposed decomposing the joint distribution of r and
N in Expression 20 as the product of the conditional distribution of r given N and the marginal
distribution of N. In such a case, a so-called hierarchical-activation scheme is obtained. They
considered two types of conditional distributions for r|N : a mixture distribution where a positive
mass on {1, N} is attributed to r|N with probability π and 1 − π respectively, and a binomial
distribution for r − 1|N with parameter N − 1 and π . For the marginal distribution of N, four
main distributions were considered: Poisson, Bernoulli, binomial, and geometric.

In the particular case where r = 1, that is, when only one of the N tumor cells needs to be
activated in order to produce a tumor, the survival time will be equal to the first latent activation
time associated with the first cell that gives a tumor, that is, T = min{T̃k, k = 1, . . . , N}. In such
a case the survival function reduces to

Spop(t) = EN [S(t|N, 1)]

= EN [I (N = 0) + S(t)N I (N ≥ 1)]

= EN [S(t)N ]. 21.

A so-called first-activation scheme is obtained. When it is assumed that N ∼ Poisson(θ ), θ > 0,
the model becomes the promotion time cure model. When a Bernoulli distribution with parameter
0 ≤ θ ≤ 1 is assumed for N, the model reduces to the mixture cure model. Other distributions, such
as a binomial or a geometric one, were considered by Cooner et al. (2007), and these distributions
give other types of cure models. Another interesting distribution for N that has been proposed in
the literature is the negative binomial. Tournoud & Ecochard (2008), Rodrigues et al. (2009), and
de Castro et al. (2009) considered this distribution. The survival function for the whole population
in such a case is given by

Spop(t) = [1 + ρθF (t)]−1/ρ , ρ ≥ −1, θ > 0,

www.annualreviews.org • Cure Models in Survival Analysis 337



ST05CH14_Van_Keilegom ARI 27 January 2018 11:55

where θ = E(N ), ρ = −1/N, and V (N ) = θ+ρθ2. Interestingly, this model embeds the mixture
(when ρ = −1) and the promotion time cure models (when ρ → 0). Moreover, it is equivalent to
the model given in Expression 19 proposed by Yin & Ibrahim (2005) when ρ = −α for ρ in [−1, 0].

At the other extreme, Cooner et al. (2007) considered the case where r = N, that is, all
tumor cells N need to be activated in order to produce a tumor. In such a case, the survival time
will be defined as the largest latent activation time associated with the last activated cell, that is,
T = max{T̃k, k = 1, . . . , N}. This class of models is referred to as the last-activation scheme. The
survival function is given by

Spop(t) = P (N = 0) + 1 − EN
[
F (t)N ] .

As for the first-activation scheme, they considered different distributions for N: Bernoulli, bino-
mial, Poisson, and geometric. They obtained different types of cure models different from the
mixture and the promotion time cure models. In summary, the proposal of Cooner et al. (2007)
represents a general class of cure models that allows more flexibility to model survival data with a
cure fraction than the mixture or the promotion time cure model.

In terms of modeling, Cooner et al. (2007) proposed a Weibull distribution for S(·) that depends
on covariates. For the parameter θ , they considered the case where it is a function of covariates
assuming the form θ (x) = exp(γ T x) and also the case where it does not depend on covariates. In
an attempt to make the model more flexible, Cooner et al. (2009) proposed later a piecewise expo-
nential distribution for the latent time T̃k. For the first-activation scheme, Tournoud & Ecochard
(2008) assumed that θ (x) = exp(γ T x) when N follows a negative binomial distribution, whereas de
Castro et al. (2009) considered that θ (x) = [q (x)−α−1]/α, where q (x) = [exp(γ T x)]/[1 +exp(γ T x)]
when α �= 0 and that θ (x) = − log[q (x)] when α = 0. Furthermore, de Castro et al. (2009) as-
sumed that F (·) has a parametric distribution (they proposed a Weibull or a piecewise exponential
distribution) and did not consider covariates.

Regarding estimation approaches, Cooner et al. (2007) and de Castro et al. (2009) proposed
performing Bayesian inference. Cooner et al. (2007) considered a marginalized likelihood function
because the survival function given in Expression 20 depends on N and r , which are latent, and
discussed the choice of the prior distributions with an emphasis on the parameter θ in order to
guarantee the identifiability of the model. They proposed using a MCMC algorithm to sample
from the posterior distribution. de Castro et al. (2009) considered an observed-data likelihood and
as Yin & Ibrahim (2005), they assumed that the parameters are independent a priori and chose
a discrete uniform prior for α. A MCMC algorithm is also used to sample from the posterior
distribution.

Besides the Cooner et al. (2007) proposal, an even more general model was proposed by
Kim et al. (2011). Based on the same biological approach, they considered that an individual
experiences a failure if a certain number of the N carcinogenic cells greater than or equal to a
threshold variable R is activated, where R may or may not be independent of N. In such a way,
they relax the dependence assumption on N formulated for r by Cooner et al. (2007). The survival
time is then defined as T = T̃(R), and the survival function is given by

Spop(t) = P (N < R) + E(N,R)

⎡
⎣ r−1∑

j=0

(
N
j

)
F (t) j S(t)N − j I (N ≥ R)

⎤
⎦ ,

where the cured proportion is P (N < R). R, which can be fixed or random, may be considered as
the antibody level of the immune system, for example. If R is assumed dependent on N, the joint
distribution of (N, R) can be specified as the product of the conditional distribution of R given N,
and of the marginal distribution of N. In such a case, the model becomes the hierarchical-activation
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scheme from Cooner et al. (2007). If R = 1, the model reduces to the first-activation scheme
because only one cell needs to be activated in order to produce a tumor. If, additionally, N follows
a Poisson distribution with parameter θ , the model is the promotion time cure model. Equivalently,
if R is considered as random with a geometric distribution, and if N follows a Poisson distribution,
the model reduces to the promotion time cure model. Kim et al. (2011) only considered a Poisson
distribution for N. However if we assume that R = 1 and that N ∼ Bernoulli(p), the model
becomes the mixture cure model. As previously, Kim et al. (2011) assumed that θ (x) = exp(γ T x)
and considered a piecewise exponential distribution for the latent time T̃k. A Bayesian approach
was proposed to estimate the model, where they assumed that the distribution of R is known and
that R and N are independent.

4.3. Model Selection

Unifying models offer a flexible way to model survival data with a cure fraction. As explained in
the previous section, there exist several possible models for each proposal. A question of interest
is how to choose the most adequate model. Two directions have been investigated. For models
proposed by Yin & Ibrahim (2005) and Taylor & Liu (2007), the transformation parameter α is
usually considered as random, and it is estimated alongside the other parameters. The best model
is directly determined by the estimation process. However, this approach supposes that one can
estimate the parameter α with precision, which seems to be difficult because there is usually not
enough information about the parameter in the data, as explained by Yin & Ibrahim (2005). This
point is corroborated by Diao & Yin (2012), who proposed a model similar to Yin & Ibrahim
(2005) with a frailty, and who mentioned the fact that when the sample size is small, the likelihood
function is quite flat for α. Taylor & Liu (2007) performed a simulation study where they evaluated
a fixed versus random α, and they drew the same conclusion: When the sample size is small, it is
complicated to obtain a precise estimate for α. An alternative is to consider a grid of values for α
and to perform model comparison as proposed by Diao & Yin (2012).

For biologically specified models, because there is no transformation parameter, model selec-
tion is also performed based on model comparison. The main idea is to define different distri-
butions for random quantities, such as for N or R, and to select the best fit according to some
criteria. Cooner et al. (2007) proposed fitting several models to the data with different activation
schemes and different distributions for N and comparing them based on the posterior predictive L-
measure proposed by Laud & Ibrahim (1995) and Gelfand & Ghosh (1998), a measure that rewards
goodness-of-fit, assessed via posteriori predictive comparison, and at the same time penalizes for
complexity. de Castro et al. (2009) proposed a similar approach and used the deviance information
criterion (DIC) and the conditional predictive ordinate statistic to compare the models. Kim et al.
(2011) fit different models with different distributions for R to the data and compared them based
on the DIC and the logarithm of the pseudomarginal likelihood. Others, such as Tournoud &
Ecochard (2008) proposed simply choosing the most appropriate model based on the scientific
knowledge of the disease, the hazard structure (proportional or not, depending on the distribution
assumed for N), and the variance structure from the distribution of N.

Even if these proposals are targeted to compare flexible cure rate models, one can implement
them to compare the mixture cure model and the promotion time cure model. Peng & Xu (2012)
went in this direction and proposed performing likelihood ratio and score tests from the model
given in Expression 19 in order to evaluate the adequacy of the mixture cure model (H0 : α = 1
versus H1 : α �= 1) and of the promotion time cure model (H0 : α = 0 versus H1 : α > 0). The
proposed tests perform well with large sample sizes, but they are sensitive to a misspecification of
the baseline distribution function F.
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