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Abstract

State-space models can be used to incorporate subject knowledge on the
underlying dynamics of a time series by the introduction of a latent Markov
state process. A user can specify the dynamics of this process together with
how the state relates to partial and noisy observations that have been made.
Inference and prediction then involve solving a challenging inverse prob-
lem: calculating the conditional distribution of quantities of interest given
the observations. This article reviews Monte Carlo algorithms for solving
this inverse problem, covering methods based on the particle filter and the
ensemble Kalman filter. We discuss the challenges posed by models with
high-dimensional states, joint estimation of parameters and the state, and
inference for the history of the state process. We also point out some po-
tential new developments that will be important for tackling cutting-edge
filtering applications.
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1. INTRODUCTION

This article gives an overview of Monte Carlo methods for estimating parameters and latent
variables and for making predictions in state-space models. In some fields state-space models are
known by the name of hidden Markov models, but we use the term state-space model throughout.

1.1. What Is a State-Space Model?

In order to predict a time series of observations, it is essential to take subject knowledge of the
dynamics of the series into account. However, in many applications subject knowledge involves
adding to the observed variables other variables that are hard or impossible to measure. A state-
space model specifies the joint distribution of all the variables that are required for a dynamical
model based on subject knowledge, and the variables that have been observed. The former are
called the state variables and are denoted by (Xt ; t ≥ 0). The evolution of the state variables is
assumed to be given either by a Markov process or deterministically by a system of ordinary or
partial differential equations. The state variables are latent; we only have access to observations
(Yi ; i ∈ N) that are partial and noisy functions of the state Xti at observation times ti .

In some applications, the state variables are not obtained by a detailed subject-based modeling,
but rather represent dynamic random effects or unknown time-varying parameters that have simple
dynamics, often a linear Gaussian autoregression. Combined with a generalized linear model for
the observations given the states, this leads to what Cox (1981) calls parameter-driven models.

1.1.1. Example 1: tracking. The particle filter methods we review in this article were first moti-
vated by tracking applications (e.g., Gordon et al. 1993, Stone et al. 2014). For these applications
the state is the position and velocity of the target or targets being tracked. Observations are made
of their location but can be partial (e.g., only measurement of the bearing), can be noisy, and can
include clutter (spurious measurements that do not relate to any target). For these applications the
key inference questions relate to estimating the current positions of targets and predicting their
future movement. This requires online algorithms, such as particle filters, that can quickly update
beliefs of the state as each new measurement is observed.

1.1.2. Example 2: numerical weather prediction. Advances in numerical weather prediction
during the past 50 or 100 years have been termed a “quiet revolution” by Bauer et al. (2015,
p. 47) in a “computational problem comparable to the simulation of the human brain and of the
evolution of the early Universe.” These advances have been made possible by not only increased
computing power, better measurements, and improved physical understanding, but also ensemble
forecasts, which quantify uncertainty, and data assimilation methods, which sequentially integrate
measurements into the forecasting process.

1.1.3. Example 3: ecology. A model for the evolution of a population usually needs information
about the abundance in different age classes. The dynamics of the model relate abundances at
the next time-point to current abundances while accounting for rates of fertility, mortality, catch-
ment, and migration. The models thus have states that record population sizes within each age
range, and those rates that are considered time varying. Observations, for example from capture-
recapture experiments, will relate indirectly to these population sizes. Interest is often about future
predictions about the population, which requires estimates of both the current state and the pa-
rameters. For more details, the reader is directed to Aeberhard et al. (2017) or Nielsen & Berg
(2014).
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1.2. What Are Filtering and Data Assimilation?

In order to apply state-space models, we need to be able to estimate unobserved states, future
observations, and unknown parameters of the model from available data. For this, the key task
is to compute the conditional distribution of the state Xti at time ti based on observations up
to time ti , the so-called filtering distribution. Once we know this filtering distribution, we can
obtain predictive distributions of future states by letting the state process evolve with the filtering
distribution as initial distribution at time ti . From the predictive distribution of future states, the
predictive distribution of observations follows immediately. All the relevant information about
future states and observations is thus contained in the filtering distribution.

Computing the filtering distribution is, however, a difficult task. Some simplification occurs by
exploiting a recursive scheme. Using the filtering distribution at time ti−1, we first compute the
predictive distribution of Xti based on observations up to time ti−1, using the dynamics of the state.
The filtering distribution at time ti then follows from Bayes’ formula applied with the predictive
distribution as the prior and using the likelihood of xti given yi . Hence recursive filtering proceeds
by an alternation of prediction or propagation steps based on the dynamics of the state, and update
steps based on the most recent observation.

Filtering is engineering terminology. In geophysics, the term data assimilation is used instead.
The predictive distribution of Xti given observations up to time ti−1 is usually called the background
distribution, and the filter distribution is usually called the analysis distribution. The exchange
of ideas and methods for filtering between statistics on the one hand and geophysics and applied
mathematics on the other has only recently become more common, and one aim of this review is
to bring the two communities closer together.

In geophysics, the state evolution is often deterministic but chaotic, that is, sensitive to initial
conditions. In fact, the phenomenon of chaos was discovered in a toy atmospheric physics model
by Lorenz (1963). Because of this sensitivity to initial conditions, new observations have to be
assimilated frequently for good predictions.

Except in special cases, the propagation and the update steps cannot be computed analyti-
cally. As the steps involve integration over the often high-dimensional state space, Monte Carlo
approximations are currently preferred. This review is limited to these approximations.

1.3. Outline of the Review

After giving some background on state-space models and a brief treatment of the basic recursions
for the true filtering and predictive distributions in Section 2, in Section 3 we describe Monte
Carlo methods to approximate these recursions, namely the particle filter, the ensemble Kalman
filter, and their extensions. Section 4 briefly summarizes theoretical properties of the particle filter,
and Section 5 discusses the challenges that arise when applying these filter methods to models
with high-dimensional states.

We then focus on methods for smoothing and parameter estimation. Smoothing involves
calculating the conditional distribution of historic values of the state given all observations to date.
We show how particle filter ideas can be extended and applied to approximate these smoothing
distributions in Section 6. Then, in Section 7, we look at particle filter methods for estimating
parameters, with particular emphasis on recent particle MCMC methods. The review ends with
a summary and outlook.

We do not make an attempt to give a complete overview of all aspects of filtering or to provide
a comprehensive list of references. Recent other reviews are those of Doucet & Johansen (2011),
Künsch (2013), and Kantas et al. (2015), while part III of Douc et al. (2014b) contains a detailed
introduction with many examples and proofs. Majda & Harlim (2012) and Reich & Cotter (2015)
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present the field from applied mathematics and geophysics perspectives. One area we view as
important, but do not cover, is the increasing need to design filtering algorithms that can take ad-
vantage of modern computer architecture. This is an area we flag later as an important future issue,
but readers are directed to Lee & Whiteley (2016) and Vergé et al. (2015) for some recent work.

Software in R for implementing some of the examples we consider in this article is avail-
able as online supplemental material. This is provided primarily to give the reader the oppor-
tunity to run the algorithms under different settings to build up a stronger intuition as to when
and why any of these methods work well. Software for implementing some of the methods we
describe in this review for generic applications is also available. We are aware of the follow-
ing: SMCTC ( Johansen 2016), LiBi (Murray 2015), the package nimble (Michaud et al. 2017)
in R, the Robotics System Toolbox of MATLAB, and PDAF (Nerger & Hiller 2013) and DART

(http://www.image.ucar.edu/DAReS/DART/) for geophysical applications.

2. STATE-SPACE MODELS AND FILTER RECURSIONS

2.1. State-Space Models

In order to simplify the notation, we assume that the observation times are equally spaced with
ti = i and that the model is time-homogeneous. All results and methods can be easily extended
to unequally spaced observations and time-inhomogeneous models. We also repeatedly use the
notation that the subscript s :t refers to the set of values at all times from time s to time t, so, for
example, X0:n = (X0, . . . , Xn).

The state process (Xt) is assumed to be Markovian, and the ith observation, Yi , depends only
on the state at time i , Xi , and is conditionally independent of all other observations. This means
that

Xt | (x0:t−1, y1:t−1) ∼ P (dxt | xt−1), X0 ∼ π0(dx0) 1.

Yt | (x0:t , y1:t−1) ∼ g(yt | xt)dν(yt). 2.

If the state evolution is given by a time-homogeneous (autonomous) differential equation, P
becomes a point mass at the solution at time t with initial condition xt−1 at time t − 1. Similarly,
other common models, such as state-space formulations of autoregressive models of higher order
than 1, can mean that components of Xt are deterministic functions of Xt−1. We therefore do
not want to assume that the state transitions have densities, but the conditional distribution of
the observations should have densities so that we can use Bayes’ formula (though extensions of
filters to exact observation of part of the state is possible; see Section 3.2). The measure ν is usually
either Lebesgue or counting measure. In practice either or both of the distributions that determine
the state evolution or the measurement process can depend on parameters. Many particle filter
methods assume such parameters are known. We will suppress the dependence of P (dxt | xt−1)
and g(yt | xt) in Equations 1 and 2 on such parameters in our notation except when we consider
estimating the parameters in Section 7.

State-space models are directed graphical models (Lauritzen 1996) with the following graph

. . . → Xt−1 → Xt → Xt+1 → . . .

↓ ↓ ↓
. . . Yt−1 Yt Yt+1 . . .

Various conditional independence properties follow from this graph. For instance, Xt is condi-
tionally independent of (Yt+1, Xt+2, Yt+2, . . .) given Xt+1. Such properties are used in Section 6.
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2.1.1. Two examples. To make these ideas concrete, we give two simple examples of state-space
models. These examples are used for illustration in the Supplemental Appendix.

2.1.1.1. Example: stochastic volatility. To help demonstrate the different algorithms clearly
in the figures and animations of the Supplemental Appendix, we will use an example with a
1-dimensional state:

Xt | xt−1 ∼ N (
φxt−1, σ 2) , Yt | xt ∼ N (

0,β2 exp{xt}
)

,

where N (0, σ 2) denotes the normal distribution with mean 0 and variance σ 2. This is a simple
stochastic volatility model (see e.g., Kim et al. 1998), with the state, Xt , being proportional to
the log-volatility of the observation series. The model has three parameters, φ, σ , and β, which
respectively govern the dependence and noise in the state process and the baseline variance of the
observation process.

2.1.1.2. Example: Lorenz 96. This is a toy model of a one-dimensional atmosphere, popular as
a test bed for data assimilation in atmospheric physics (Lorenz & Emanuel 1998). We use it to
illustrate the ensemble Kalman filter. The state is 40-dimensional, with dynamics given by the
differential equation

dXt,k

dt
= (Xt,k+1 − Xt,k−2)Xt,k−1 − Xt,k + 8, k = 1, . . . , 40, Xt,k ≡ Xt,k+40.

At times t = i�, every mth component of Xt is observed with independent additive Gaussian
noise. This can be written as Yt | xt ∼ N (Hxt , σ 2I) where H is the appropriate matrix to select
the observed components and I is the identity matrix.

2.2. Prediction, Filter, and Smoothing Distributions

We collect here the basic formulae of conditional distributions and likelihoods that are needed
for prediction, filtering, smoothing, and parameter estimation.

For 0 ≤ s ≤ u and t ≥ 1, the conditional distribution of Xs :u given Y1:t = y1:t is denoted by
πs :u|t , and we use πs |t instead of πs :s |t . Hence, πt|t−1 is the predictive distribution at time t based on
observations up to time t − 1, for short, the prediction distribution at time t. Finally, we denote
the filtering distribution at time t by πt instead of πt|t .

With a slight abuse of notation, all other (conditional) densities are denoted by p : The argu-
ments of p indicate which random variables are involved.

The assumptions of Equations 1 and 2 imply the following joint distributions:

(X0:s , Y1:t) ∼ π0(dx0)
s∏

i=1

P (dxi | xi−1)
t∏

j=1

g(y j | x j )ν(dy j ), s ≥ t. 3.

Integrating out the path of the state process, we obtain that Y1:t ∼ p(y1:t)
∏

j ν(dy j ), where

p(y1:t) =
∫
π0(dx0)

s∏
i=1

P (dxi | xi−1)
t∏

j=1

g(y j | x j ).

If the model contains unknown parameters θ , p(y1:t) becomes the likelihood of θ . By Bayes’
formula, π0:s |t is the right-hand side of Equation 3 divided by p(y1:t). From this it is easy to see
that the following recursion holds:

π0:t|t−1(dx0:t | y1:t−1) = π0:t−1|t−1(dx0:t−1 | y1:t−1)P (dxt | xt−1), 4.

π0:t|t(dx0:t | y1:t) = π0:t|t−1(dx0:t | y1:t−1)
g(yt | xt)

p(yt | y1:t−1)
, 5.
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where

p(yt | y1:t−1) = p(y1:t)
p(y1:t−1)

=
∫
πt|t−1(dxt | y1:t−1)g(yt | xt). 6.

Integrating out the states x0:t−1 in Equations 4 and 5 leads to the recursion discussed in the
Introduction:

πt|t−1(dxt | y1:t−1) =
∫
πt−1(dxt−1 | y1:t−1)P (dxt | xt−1), 7.

πt(dxt | y1:t) = πt|t−1(dxt | y1:t−1)
g(yt | xt)

pt(yt | y1:t−1)
. 8.

Both recursions consist of a propagation step, Equation 4 or 7, and an update or correction step,
Equation 5 or 8. Making predictions more than one time-step ahead is simple, as we can apply
the propagation update (Equation 7) without the correction step:

πt+s |t(dxt+s | y1:t) =
∫
πt+s −1|t(dxt+s −1 | y1:t)P (dxt+s | xt+s −1), for s = 1, . . . .

Because the observations, yt , are fixed, we often drop them from the notation, for example, writing
πt(dxt) rather than πt(dxt | y1:t).

3. MONTE CARLO FILTER ALGORITHMS

Monte Carlo filter algorithms approximate the filter distributions, πt , by weighted samples
(xi

t ,w
i
t ) = (xi

t ,w
i
t )

N
i=1 of size N:

πt(dxt) ≈ π̂N
t (dxt) =

N∑
i=1

wi
tδxi

t
(dxt). 9.

Here δx denotes the point mass at x. When we simultaneously consider approximations of πt by
weighted and evenly weighted samples, we denote the latter by (x̃i

t ). The sample members are called
particles because in the algorithm they move in space and have offspring or die. In geophysics,
samples are usually called ensembles.

3.1. The Bootstrap Filter

If we insert the weighted sample approximation (Equation 9) at time t − 1 into the propagation
(Equation 7), we obtain

πt|t−1(dxt) ≈
N∑

i=1

wi
t−1 P (dxt | xi

t−1).

Therefore, if xi
t ∼ P (dxt | xi

t−1) independently for i = 1, . . . , N, the weighted sample (xi
t ,w

i
t−1)

approximates the prediction distribution πt|t−1:

πt|t−1(dxt) ≈ π̂N
t|t−1(dxt) =

N∑
i=1

wi
t−1δxi

t
(dxt).

Applying the Bayes’ update (Equation 8) to this approximation gives

πt(dxt) ≈ π̂N
t (dxt) =

N∑
i=1

wi
tδxi

t
(dxt), wi

t ∝ W i
t = wi

t−1g(yt | xi
t ). 10.

This closes the recursion of the sequential importance sampling algorithm. At time t = 0, we
initialize it by drawing xi

0 from π0(dx0) and set wi
0 = 1/N. As a by-product, the normalizing
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ST05CH18_Kunsch ARI 27 January 2018 12:45

−2.0

−1.0

0

1.0 Initiate

Xt

Propagate

0 1 2 3 4 5
−2.0

−1.0

0

1.0 Reweight

0 1 2 3 4 5

Resample

Time

Figure 1
Plots of the bootstrap filter for the stochastic volatility model. We show the output after each of the three stages: propagate, reweight,
and resample. For the reweight plot, the red line shows the likelihood function g(xt ) (the distance of the red line from the red dashed line
being proportional to the likelihood for the corresponding value of xt ), and we have rescaled the particles according to the weight they
are given. For the resample plot, we have jittered the time component of the particles purely so that one can see when multiple copies of
a particle are resampled. An animated version of the figure is available in the Supplemental Appendix.

constant for the weights wi
t provides an approximation of p(yt | y1:t−1) because

E

(
N∑

i=1

W i
t | (x j

t−1)N
j=1

)
=

N∑
i=1

wi
t−1

∫
g(yt | xt)P (dxt | xi

t−1) ≈
∫

g(yt | xt)πt|t−1(dxt).

The sequential importance sampling algorithm has the drawback that after a few iterations,
the weights are essentially concentrated on a few particles, and most or all particles are in regions
where the true filter distribution has little mass. To avoid this, the basic bootstrap filter makes
weights equal by resampling before propagating. It consists of the following steps:

1. Resample: Set x̃i
t−1 = xA(i )

t−1 where P(A(i ) = j ) = w
j
t−1 for i = 1, . . . , N.

2. Propagate: Draw xi
t from P (dxt | x̃i

t−1), independently for i = 1, . . . , N.
3. Reweight: Set wi

t ∝ W i
t = g(yt | xi

t )/N.
4. Likelihood estimation: Calculate p̂(yt | y1:t−1) = ∑N

i=1 W i
t , and set

p̂(y1:t) = p̂(y1:t−1) p̂(yt | y1:t−1).

Figure 1 shows an example of the output of this recursion.
The computational complexity of one iteration of the bootstrap filter is O(N ). The observation

likelihood, g, is required in closed form, whereas we need only to be able to simulate from the
propagation distribution, P . Particles interact through the normalization in the reweighting step.

As a by-product of running the bootstrap filter, we get an approximation of the prediction
distribution by the evenly weighted sample (xi

t ) in step 2. Step 4 is optional but gives an estimate of
the parameter likelihood. The estimate p̂(y1:t) is unbiased [see theorem 7.4.2 in Del Moral (2004) or
Pitt et al. (2012)], a property that is used in Section 7.2. However, p̂(yt | y1:t−1) is biased in general.
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We call xA(i )
t−1 the “ancestor” of particle xi

t and denote the number of offspring of particle xi
t

at time t by Ni
t . Resampling replaces the weights wi

t by random weights Ni
t /N and thus always

increases the Monte Carlo error of the approximation to the current filtering distribution. How-
ever, resampling is beneficial when we propagate particles to future time-steps. It stochastically
removes particles with low weight and produces multiple copies of particles with high weight.
Multiple copies of a current particle are then able to independently explore the future of the
state.

The benefit of resampling depends crucially on the level of stochasticity in the propagation
distribution, P . If this is high relative to the filter variance, then even if the current particles lack
diversity, this diversity is quickly regained as we propagate forward in time. If the state dynamics
is deterministic, we will not regain diversity as we propagate the particles forward. To overcome
this, it is possible to add random noise to the current particles prior to propagation, which can be
justified as sampling from a kernel density approximation to the filter density (Hürzeler & Künsch
1998, Liu & West 2001). The issue of deterministic dynamics arises not only in many geophysical
applications but also when we have unknown, fixed parameters in the model. We discuss this issue
in more detail in Section 7.

The ancestors A(i ) do not have to be drawn independently for different i ; it is only required
that E(Ni

t ) = Nwi
t . Balanced sampling (also called stratified or systematic sampling; Kitagawa

1996, Carpenter et al. 1999) makes the resampling error as small as possible. The simplest method
partitions the interval [0, N ] into subintervals of length Nwi

t and counts how many points of the
sequence U, U + 1, . . . , U + N − 1 where U ∼ U (0, 1) fall in each subinterval. Crisan (2001)
presents a different balanced sampling method.

If the weights, that is, the values of the observation likelihood, are very unbalanced, resampling
risks losing too much diversity that cannot be restored correctly in the propagation step, even
with stochastic dynamics. This problem, and ways to alleviate or overcome it, are considered in
the rest of this section and in Section 5.

3.2. Auxiliary Particle Filters

The bootstrap filter considers the target proportional to
∑

i P (dxt | x̃i
t−1)·g(yt | xt) and uses impor-

tance sampling with the proposal N−1 ∑
i P (dxt | x̃i

t−1). If the observation likelihood is informative,
the target and the proposal are not close enough and the weights become unbalanced. In this case,
we can try to find a better proposal, such as

∑
w̃

(i )
t−1 P̃ (dxt | x̃i

t−1), where the weights, w̃(i )
t−1, give

preference to current particles most consistent with the next observation, yt , and where the tran-
sition, P̃ , moves particles to places that are compatible with yt . If the transitions P (dxt | xt−1) have
densities with respect to P̃ (dxt | xt−1), the importance weights are well defined, but the algorithm
has complexity O(N 2) because each unnormalized weight involves a summation over N terms.

The auxiliary particle filter of Pitt & Shephard (1999) avoids this increase in complexity by
considering the target distribution on the product space of the state at times t − 1 and t, which is
proportional to

N∑
i=1

wi
t−1δxi

t−1
(dxt−1)P (dxt | xt−1)g(yt | xt).

This is an approximation of πt−1:t|t . If we use a proposal of the form

N∑
i=1

w̃i
t−1δxi

t−1
(dxt−1)P̃ (dxt | xt−1),
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the proposed pairs are obtained by first resampling the particles (xi
t−1) with probabilities (w̃i

t−1) and
then propagating the resampled particles with the transition P̃ . If we draw the sample (xA(i )

t−1 , xi
t )

from this proposal, then its importance weight is

wi
t ∝ W i

t = w
A(i )
t−1

w̃
A(i )
t−1

P (dxi
t | xA(i )

t−1 )g(yt | xi
t )

P̃ (dxi
t | xA(i )

t−1 )
. 11.

In contrast to the bootstrap filter, the weights depend on the particles at both times t and t − 1.
The average of the unnormalized weights again provides an approximation of p(yt | y1:t−1) and
can be used to obtain an unbiased estimate of the likelihood.

The second ratio in the equation for W i
t has to be understood as a Radon–Nikodym derivative.

If densities exist, it is simply the ratio of these densities. The auxiliary particle filter can be applied
also to models where the observation distribution does not have a density, because we observe
part of the state without error. The formula for the weights W i

t still makes sense, provided we use
a proposal density P̃ (dxt | xt−1) that simulates states consistent with the new observation yt .

If w̃i
t = wi

t−1 and P̃ = P , we recover the bootstrap filter, but both the weights and the transition
in the proposal can depend on the new observation yt . The optimal proposal in the sense of making
the weights from Equation 11 constant is (Doucet et al. 2000)

w̃i
t−1 ∝ wi

t−1 p(yt | xi
t−1), P̃ (dxt | xt−1) = P (dxt | xt−1, yt).

These quantities are usually not tractable, but often one can obtain good approximations with
reasonable computing complexity.

Even when the weights wi
t are constant, resampling will occur at the beginning of the next

iteration. The weights are then proportional to p(yt+1 | xi
t ), whereas the bootstrap filter has weights

proportional to g(yt | xi
t ) = p(yt | xi

t ). Since the former likelihood is flatter, the auxiliary particle
filter has more equal weights, but the difference is substantial only if the dependence in the state
dynamics is weak compared with the information from the observations.

3.3. Quasi–Monte Carlo Filters

Quasi–Monte Carlo methods achieve faster convergence rates than standard Monte Carlo by
replacing random draws by more regular samples. They start with low discrepancy points (ui ) in
the unit cube [0, 1)d and transform these into low discrepancy points from a general distribution of
interest. The advantage of quasi–Monte Carlo is that the error decays at a rate close to 1/N, rather
than the 1/

√
N of standard Monte Carlo (Niederreiter 1978). Randomized versions of quasi–

Monte Carlo can even achieve rates close to N−3/2 (Owen 1998), though for high-dimensional
applications, we need large N to see any benefit from these quicker convergence rates (Caflisch
et al. 1997).

The first use of quasi–Monte Carlo for particle filters was by Fearnhead (2005), though the
computational cost was O(N 2). More recently, Gerber & Chopin (2015) have shown how quasi–
Monte Carlo can be applied within a particle filter while still retaining the O(N ) computational
complexity. Their idea is to transform the state so that it is in the d-dimensional unit cube and
write the state transition as

Xt = 	t(Xt−1, Ut) Ut ∼ U ([0, 1)d ),

where 	t is an appropriate smooth function. Assuming that (xi
t−1) is a quasi–Monte Carlo sample,

one wants to modify the bootstrap filter so that (xi
t ) is still a quasi–Monte Carlo sample. For this,

particles should not be resampled or propagated independently: If xi
t−1 and x j

t−1 are close, then
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the number of times they are resampled, Ni
t + N j

t , should be as close as possible to N (wi
t + w

j
t ),

and they should be spread out in the propagation step.
In the one-dimensional case, d = 1, this is easy to achieve: We can assume that the xi

t−1 are
in increasing order and that the innovations ui

t are numbered such that the first k points u1:k
t have

low discrepancy for any k ≤ N. Then the propagated particles

xi
t = 	t(xi

t−1, ui
t) (1 ≤ i ≤ N )

have the desired features. Similarly, for the balanced resampling method discussed above, we
arrange the subintervals in the same order as the particles.

The difficulty in extending these ideas to higher dimensions is how to define a suitable total
order of points in the unit cube. Gerber & Chopin (2015) use the Hilbert curve, which is a
space-filling fractal curve H : [0, 1) �→ [0, 1)d that preserves locality and low discrepancy.

3.4. Sequential Monte Carlo

Particle filters have many applications outside of time series analysis. They are then usually called
sequential Monte Carlo algorithms and produce samples from a complicated target distribution
π by recursive sampling from a sequence of n intermediate distributions π0,π1, . . . ,πn = π . Here
π0 is a distribution from which one can sample easily, and we choose the sequence of distributions
so that any two consecutive distributions πt−1 and πt are close in some appropriate sense. A prime
example is tempering, where

π (dx) ∝ φ(x)π0(dx), πt(dx) ∝ φ(x)t/nπ0(dx).

As in Monte Carlo filtering, sequential Monte Carlo produces a sequence of particles by resam-
pling, propagation with transitions Pt , and reweighting with weight functions gt . If (xi

t−1,wi
t−1) is

a weighted sample from πt−1, then the propagated particles (xi
t ,w

i
t−1) are a weighted sample from

πt|t−1(dx) =
∫

Pt−1(dx | x′)πt−1(dx′).

Therefore, the correct weight function gt is the density of πt with respect to πt|t−1. In situations
other than filtering, this gt is intractable unless Pt leaves πt invariant. Sequential Monte Carlo
methods overcome this intractability by working on the joint space of (xt , xt−1). They construct
a joint distribution whose marginal for Xt is πt(xt), and for which it is then possible to calculate
appropriate importance sampling weights. Del Moral et al. (2006) provide more details.

3.5. Ensemble Kalman Filter

The ensemble Kalman filter has been developed in geophysics (Evensen 1994, 2007) and is used
frequently in atmospheric physics, oceanography, and reservoir modeling. The propagation step
is the same as in the bootstrap filter. For the update, the observations are assumed to be linear
combinations of the state with additive Gaussian noise: Yt | xt ∼ N (Hxt , R). If the prediction
distribution is normal, πt|t−1 = N (mt|t−1, Pt|t−1), then the filter distribution is also normal, πt =
N (mt , Pt), with

mt = mt|t−1 + Kt(yt − Hmt|t−1), Pt = (I − KtH)Pt|t−1,

where

Kt = K(Pt|t−1, R) = Pt|t−1HT (HPt|t−1HT + R)−1
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is the Kalman gain. In the ensemble Kalman filter, both πt|t−1 and πt are approximated by evenly
weighted samples that we denote by (xi

t ) and (x̃i
t ). The update step in the ensemble Kalman filter

estimates mt|t−1 and Pt|t−1 from the prediction sample and then constructs the filter sample by
transforming the prediction sample such that it has the mean and covariance given above. This
can be done in different ways.

The stochastic ensemble Kalman filter updates each particle in the same way as the mean, but
after adding an artificial noise to the observation:

x̃i
t = xi

t + K̂t(yt − Hxi
t + εi

t), εi
t ∼ N (0, R), 12.

where K̂t is the Kalman gain for the estimated prediction covariance. Square root filters use a
deterministic affine transformation of the sample (xi

t ). To define it, we introduce the matrix �xt ,
whose columns contain the centered particles xi

t − m̂t|t−1, and similarly, we introduce �x̃t . Then
the mean is updated by

m̂t = m̂t|t−1 + K̂t(yt − Hm̂t|t−1)

and the centered particles are updated by either pre- or postmultiplication:

�x̃t = At ·�xt , or �x̃t = �xt · Wt .

The matrices At and Wt are obtained by requiring that the sample (x̃i
t|t) has the desired covariance

�x̃t(�x̃t)T = (N − 1)P̂t = (N − 1)(I − K̂tH)P̂t|t−1.

This results in quadratic equations for At and Wt that can be solved (see Tippett et al. 2003).
Postmultiplication is preferred for computational reasons if the sample size N is smaller than the
dimension of the state.

Figure 2 shows an update step by the ensemble Kalman filter in an example from numerical
weather prediction.

For stability of the ensemble Kalman filter, the estimation of the prediction covariance Pt|t−1 is
crucial. We come back to this point briefly in Section 5.2. There are various methods to compute
the update efficiently, depending on which version is used and how Pt|t−1 is estimated (see, e.g.,
Evensen 2003, Tippett et al. 2003). If the state is high-dimensional, P̂t|t−1 need not be computed or
stored, and the ensemble Kalman filter has computational advantages over the population Kalman
filter (see Butala et al. 2009).

The ensemble Kalman filter updates the particles by moving them in space instead of weight-
ing and resampling. It therefore does not suffer from sample depletion like particle filters. It is,
however, biased in general, and can be viewed as reducing the variance by allowing a bias.

3.6. Particle Filter Updates Using Sequential Monte Carlo

If the observations are informative about the state, the two distributions πt|t−1 and πt are not close
enough to make importance sampling efficient. Using sequential Monte Carlo to go from πt|t−1

to πt in a sequence of intermediate steps is therefore an attractive idea. Intermediate steps can be
defined either by tempering the likelihood, πt,γ ∝ πt|t−1(dxt)g(yt | xt)γ , or—if the dimension d of
yt is large and the components of Yt are independent given xt—by the posterior given the first
k < d components of yt . However, in order to obtain an algorithm that differs from a bootstrap
filter, the sequential Monte Carlo algorithm must include some propagation, and the choice of
the transition kernels used in propagating the particles is difficult, in particular when the dynamics
of the state is not tractable and there is no analytic expression for πt|t−1.
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Figure 2
Update of relative humidity as a function of pressure by the ensemble Kalman filter using measurements
from one radiosonde launched on June 14, 2015, in Kümmersbruck, Bavaria. The values of the state are
averaged over different pressure levels and a region near Kümmersbruck. The update moves the prediction
particles closer to the observations and reduces the spread. As other observations are also used in this update,
the filter mean does not match the observed relative humidity at some pressure levels. Adapted with
permission from Robert (2017).

The simplest implementation of this idea is presented in Frei & Künsch (2013), where there is
just one intermediate tempering of the likelihood and the ensemble Kalman filter is used for the
first step while the particle filter is used for the second. Both steps can be done analytically, and
sampling is only required for the next propagation step. Bunch & Godsill (2016) and Beskos et al.
(2017) present alternative approaches.

3.7. Other Monte Carlo Filtering Algorithms

Here we briefly discuss a few other filtering algorithms. Most of them try to reduce the sample
depletion problem of the particle filter and simultaneously improve on the ability of the ensemble
Kalman filter in non-Gaussian situations.

3.7.1. Transport filters. Reich (2013) proposes a linear deterministic update that replaces re-
sampling by averaging: Instead of x̃i

t = xA(i )
t , he uses

x̃i
t =

N∑
j=1

P(A(i ) = j )x j
t

for some chosen resampling scheme that specifies the probabilities P(A(i ) = j ) for all i and j .
This approximation preserves the mean but can be shown to have a reduced spread by a simple
application of Jensen’s inequality.

The approximation error depends on the chosen resampling scheme. The stochastic matrix
(pi j ) = (P(A(i ) = j )) must satisfy

∑
i pi j = Nw j

t but is otherwise arbitrary. Reich (2013) chooses
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(pi j ) such that on average the resampled particles are as close as possible to the original particles.
For a given distance matrix di j = d (xi

t , x j
t ) between prediction particles, this means we minimize∑

i , j di j pi j subject to pi j ≥ 0,
∑

j pi j = 1, and
∑

i pi j = Nw j
t|t . This is a famous linear pro-

gramming problem (see, e.g., Reich & Cotter 2015, section 7.4). If (pi j ) is the solution of this
minimization problem, the approximate update is then consistent as the sample size N tends to
infinity. Heuristically this is true because most pi j = 0 in the optimal solution.

3.7.2. Hybrid filters. Hybrid filters combine particle and ensemble Kalman filters with the goal
of exploiting the advantages of both methods. Chustagulprom et al. (2016) follow the idea of Frei
& Künsch (2013), described above, with a two-step update. They use the deterministic transport
filter of Reich (2013) in the first step and the ensemble Kalman filter in the second.

Van Leeuwen (2010) proposes a method to obtain equal weights by an ensemble Kalman
filter–type proposal density.

3.7.3. Robust filters. Calvet et al. (2015) propose a robust filter to address the issue of observation
outliers. They modify the likelihood g(yt | xt) in order to reduce the impact of an observation yt

that comes from a distribution other than the nominal g(yt | xt)dν(yt). This has the additional
benefit of reducing sample depletion in the particle filter.

3.7.4. Rao–Blackwellization. For some models we can partition the state, Xt = (X(1)
t , X(2)

t ), such
that p(x(1)

1:t | x(2)
1:t , y1:t) is tractable. This most often happens if, conditional on x(2)

1:t , the model is
linear-Gaussian. In this case p(x(1)

1:t | x(2)
1:t , y1:t) is Gaussian, with a mean and covariance that will

depend on x(2)
1:t but that can be calculated using the Kalman filter. In such cases we can “Rao–

Blackwellize” out the X(1)
t component of the state and implement a particle filter that targets

p(x(2)
1:t | y1:t). By reducing the dimension of the state space, this latter particle filter can be much

more efficient. Doucet et al. (2000) and Chen & Liu (2000) present examples and further details.

4. BASIC CONVERGENCE RESULTS

There is now a substantial literature describing whether and how fast the particle filter approxi-
mation converges to the filtering distribution as the number of particles increases. Comprehensive
results can be found in Crisan & Doucet (2002), Del Moral (2004), or Cappé et al. (2005). Chopin
(2004) and Künsch (2005) use a less general but more direct approach. For brevity, we limit
ourselves here to an intuitive discussion of some key ideas behind these convergence results.

Let ψ(x) be a suitable test function, and let Xi
t be the evenly weighted particles of our particle

filter at time t. Then the goal is to prove an Lp -bound or a central limit theorem for the filter
error at time t,

1
N

N∑
i=1

ψ(Xi
t) −

∫
ψ(xt)πt(dxt),

as the number of particles, N, goes to infinity and the observations y1:t are fixed.
For fixed time t, such results hold under weak conditions on the evolution and observation

models, and typically one has the standard 1/
√

N error of a Monte Carlo procedure. But for
applications, one would like to know whether the bounds or the convergence are uniform in t. If
the number of particles required for a given accuracy of the estimated filter mean needs to increase
with the number of time steps, particle filters will be of limited use.

In addition to a sampling error at time t, the filter error has a second component that oc-
curs because the particles Xi

t are not sampled from the exact filter distribution πt , but from the
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distribution proportional to
∑

i P (dxt | xi
t−1)g(yt | xt). The second component of the filter error is

thus the difference of the expectation ofψ(xt) with respect to these two distributions. Both distribu-
tions are obtained through a propagation step (Equation 7) and an update step (Equation 8), applied
toπt−1 and π̂N

t−1, respectively. Therefore, the second component of the filter error is due to the error
present at time t−1. Uniform-in-time bounds require a control of error accumulation as t increases
or, equivalently, that the filtering distribution πt forgets the initial distribution π0 as t → ∞.

Intuitively, if the state process mixes well, then the error at time t − 1 will be reduced when we
go forward one time step using a propagation and an update step. However, the update step can
make this intuition invalid, and there are examples of state-space models with ergodic dynamics
for which the filter does not forget the initial distribution. Forgetting of the initial distribution
at a sufficiently fast rate does hold under an unrealistically strong condition of uniform mixing of
the state process. This assumption has been used in most uniform-in-time convergence results for
particle filters. Recently however, Douc et al. (2014a) have been able to prove such results under
substantially weaker conditions. Atar (2011) gives a review of results about forgetting of the initial
distribution by the filter.

By contrast, if there is strong dependence in the model, particle filters can have poor Monte
Carlo properties. This is most clearly seen when some components do not change at all in the state
evolution, something that occurs when we perform smoothing or when there are unknown fixed
parameters—these are discussed in Sections 6 and 7, respectively. In these cases, the particle filter
variance will increase with t, and thus we need an increasing Monte Carlo sample size as we analyze
longer time series. Often the Monte Carlo sample size may need to increase exponentially with t.

5. FILTER COLLAPSE

5.1. Importance Weights in High Dimensions

In many examples, one observes that the maximal weight in the bootstrap filter is very close to
one, leading to the collapse of the filter. Bengtsson et al. (2008) provide theoretical insight into
why this occurs by analyzing cases where the dimension d of the observation yt and the number
of particles N both go to infinity. Conditionally on yt , the log likelihood values log g(yt | xi

t ) then
typically behave like a sample from N (μd , σ 2

d ), where σd = O(
√

d ). If this holds, the ratio of the
largest and the second-largest weights can be approximated in distribution by

exp(σd (Z(N ) − Z(N −1))),

where Z(N −1) and Z(N ) are the two largest values of N independent N (0, 1)-variables. By standard
results from extreme value theory (e.g., Embrechts et al. 1997, theorem 4.2.8), the difference
Z(N ) − Z(N −1) is of the order OP (1/

√
2 log N ). Therefore, the maximal weight converges to one in

probability unless N grows exponentially with d . For the two largest weights to be asymptotically
equal, one needs the even stronger condition log(N )/d → ∞.

For related results on the required Monte Carlo sample size for importance sampling, readers
are directed to Chatterjee & Diaconis (2017), Agapiou et al. (2017) and Sanz-Alonso (2016).

5.2. Stability of the Ensemble Kalman Filter

Le Gland et al. (2011) and Frei (2013) have studied the asymptotics of ensemble Kalman filters
in the standard setting where we fix the dimension of the states and observations and increase the
number of particles, N → ∞. For practical applications, the more relevant question is whether
the filter does not lose track of the state when N is smaller than the dimension of the state.
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Some modifications of the method are necessary to achieve this stability, and we still lack a full
understanding of the problem.

One reason for instability is sampling errors in the estimated prediction covariance P̂t|t−1.
Particularly harmful are underestimation of the diagonal elements, leading to overconfidence in the
prediction sample, and spurious nonzero off-diagonal elements in cases with sparse observations.
This is because the ensemble Kalman filter works by first updating the observed components and
then regressing unobserved components on these updates. Regularization of estimated covariances
is used to mitigate these problems, either by inflation of the diagonal elements or by tapering, that
is, elementwise multiplication of P̂t|t−1 with a band-limited correlation matrix. The animations in
the Supplemental Appendix illustrate covariance tapering in the Lorenz 96 model.

Regularization techniques are effective, but the choice of the tuning constants is difficult. A
method that is similar, but not equivalent, to covariance tapering is localization. Since localization
is used also for particle filters, we discuss it separately in the next subsection.

Kelly et al. (2015) present a rigorous analysis of how the unmodified ensemble Kalman filter
can diverge to infinity even when the dynamics of the state is deterministic with a stable fixed point.
Tong et al. (2016) propose an adaptive inflation of the diagonal of P̂t|t−1 such that the Markov
process consisting of the state Xt and the filter ensemble (Xi

t) is geometrically ergodic provided
the state dynamics has a Lyapunov function. Hence the ensemble cannot diverge to infinity, but
there is no information about how close the state Xt and the filter mean are.

5.3. Preventing Collapse by Localization

In many applications with high-dimensional states or observations, the components of Xt and Yt

are associated with positions in space. Usually in such cases the observation distribution is local,

g(yt | xt) =
∏
v

g(yt,v | xt,N (v)),

where v is used to indicate components of yt and N (v) is a set of components of xt whose positions
are close to v. If dependence in the predictive distribution πt|t−1 is small between regions that are
far apart, then intuitively it seems reasonable to use local updates where any given component of xt

is only affected by nearby components of yt . However, the exact update is typically not local, as can
be seen in the example where underπt|t−1, the state is a circular Gaussian moving average of order 1,
and Yt | xt ∼ N (xt , I). Still, a local update should be close to optimal and more stable because
it combines updates in much lower dimensions. In addition, local updates can take advantage of
modern, highly parallel computer architectures.

For the ensemble Kalman filter update, localization was introduced early on (see, e.g., Evensen
2003, Ott et al. 2004) and is now a well-established technique. It can be achieved by imposing
sparsity on the estimated Kalman gain, K̂t . Instead of simply setting most entries of the gain equal
to zero, updates with better smoothness properties can be obtained by artificially increasing the
observation error variance to infinity as the distance to the position to be updated increases. Hunt
et al. (2007) provide details and further discussion.

For particle filters or hybrid methods, localization is much more difficult because any kind of
resampling that does not occur globally for all components introduces artificial discontinuities in
the particles. Such discontinuities can have drastic consequences in the next propagation step if
the transition depends on differences between neighboring components, which is typical in many
applications. Robert & Künsch (2017) propose a method that introduces a smooth transition
between regions with different resampling by making partial Gaussian assumptions for πt . It
is similar but not identical to the idea presented by Bengtsson et al. (2003). Rebeschini & van
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Handel (2015) analyze theoretical properties of a particle that partitions the set of positions into
blocks and applies independent resampling for state variables in each block. Their error bounds are
independent of dimension and small at positions away from boundaries between blocks. It would be
interesting to extend these results to methods that also reduce the discontinuities between blocks.

6. PARTICLE SMOOTHING

We now turn to the related problem of smoothing. This involves calculating, or approximating,
the distribution of past values of the state. We consider three related smoothing problems. The
first is full smoothing, calculating the conditional distribution of the complete trajectory of the
state, π0:t|t(dx0:t). The others are fixed-lag smoothing, where our interest is only in the trajectory
of the state at the most recent L + 1 time-points, πt−L:t|t(dxt−L:t), and marginal smoothing, where
our interest concerns the state at a fixed time-point πs |t(dxs ) for some s < t. If we can solve the full
smoothing problem well, then this immediately gives us a solution to the fixed-lag and marginal
smoothing problems. However, as we will see, there are approaches that can work well for the
latter two problems but not the former.

The auxiliary particle filter of Section 3.2 gives a solution to the fixed-lag smoothing problem
for a lag of L = 1. When calculating the filtering distribution at time t, it generates weighted
particles that consist of states at both times t and t − 1. These weighted particles approximate
the joint density πt−1:t|t(dxt−1:t). This idea has been extended by Doucet et al. (2006), though for
larger L this approach suffers from the need to define an efficient proposal distribution for xt−L+1:t ,
which can be difficult.

Kitagawa (1996) noted that we can trivially adapt a particle filter to solve the full smoothing
problem by just storing the trajectory associated with each particle. Thus, at time t − 1, a particle
will consist of a realization of the full state trajectory x0:t−1. When we perform the propagation
step of the particle filter at time t, the new particle will be the concatenation of its ancestor particle
at time t −1 and the simulated value for the state at time t. The resulting algorithm can be viewed
as a particle filter approximation to the recursions in Equations 4 and 5 rather than those in
Equations 7 and 8. It incurs an additional storage cost over the basic particle filter, but otherwise
shares the same computational properties.

However, the algorithm is impracticable in most applications. When we redefine our particle
filter so that its particles are the full trajectory of the state, the value of x0:s of any particle at time
t > s will necessarily be equal to one of the particles from time s . Furthermore, the number of
distinct paths for x0:s will decrease monotonically as t increases. If t − s is sufficiently large, all
particles will share the same value of x0:s ; Jacob et al. (2015) show that this will almost surely
happen for a time t such that t − s = O(N log N ).

Thus, we observe particle degeneracy in earlier parts of the particle trajectories. This can be
seen, for the stochastic volatility model, in the left column of plots in Figure 3. In each case
the particle approximation for the smoothing distribution of Xs given y1:t degenerates to a single
distinct value for s � t.

While this simple algorithm of Kitagawa (1996) is in practice not suitable for the full smoothing
problem, in some situations it can give good results for fixed-lag smoothing. There is some
indication of this from the bottom-left plot of Figure 3, with the smoothed coverage intervals for
Xs demonstrating reasonable particle diversity for the most recent time-points.

Furthermore, the simple smoother can be used to approximately solve the marginal smoothing
problem if we are willing to assume that observations sufficiently far in the future have little
information about the current state. This motivates an approximation whereby, when estimating
the state at time s , we ignore any observations after a time s + L for some suitably chosen lag L.
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Figure 3
(Left column) Results from the simple smoother of Kitagawa (1996) for the stochastic volatility model. (Right column) Results from the
forward-backward smoother. Top plots show the paths stored after each iteration of the Kitagawa (1996) smoother ( gray) and the final
sample of paths ( purple). For the simple smoother, the latter coincide with all particles at the final time-point, but their diversity is
reduced as we go back toward the start. The forward-backward smoother is able to sample new paths during the backward simulation
step, and thus maintains sample diversity throughout. The bottom plots show estimated mean and 95% coverage intervals for the state
given data up to time 1,000. For each plot the mean is in blue, coverage intervals are in gray, and the true state is in red. The gray
dashed vertical line shows the point at which all particles at time 1,000 have converged to single value for the state. We used 20 and
200 particles for the top and bottom plots, respectively. In the Supplemental Appendix, the top left plot is available as an animation.

Mathematically, this equates to assuming πs |n(dxs ) ≈ πs |s +L(dxs ) for n > s + L and large enough
L (see, e.g., Polson et al. 2008). The algorithm of Kitagawa (1996) can be used to approximate
πs |s +L(dxs ) for a suitable value L, and then this approximation is used as an approximation to
πs |n(dxs ) for subsequent times n > s + L. While the assumption underlying this approach is often
reasonable, choosing an appropriate L can be difficult in practice.

6.1. Forward-Backward Particle Smoother

Improvements on the simple smoother of Kitagawa (1996) are possible. One approach involves
an additional backwards smoothing recursion to postprocess the output of the particle filter. For
this method we require that the state-transition distribution has a density, denoted by p(xs +1 | xs ),
and that this density is analytically tractable. If state-transition densities exist, then all prediction
and filter distributions also have densities, denoted by πs (xs ) and πs |s −1(xs ).
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The forward-backward particle smoother is based on the same ideas that are used in the
forward-backward algorithm for discrete-state hidden Markov models and linear Gaussian state-
space models (Baum et al. 1970, Durbin & Koopman 2001). It applies to all smoothing problems,
and we begin by describing how it is used to simulate from an approximation to the full smoothing
distribution (Godsill et al. 2004).

By the conditional independence of (xs +2:t , ys +1:t) and (xs , y1:s ) given xs +1 and Bayes’ formula,

p(xs | xs +1:t , y1:t) = p(xs | xs +1, y1:s ) = p(xs +1 | xs )πs (xs )
πs +1|s (xs +1)

. 13.

This shows that under the smoothing distribution, the state is still a Markov process with back-
ward transitions that are proportional to the product of the marginal forward transitions and the
filter densities. Thus, given a particle approximation to πs , (xi

s ,w
i
s ), we can construct a particle

approximation to p(xs | xs +1, y1:s ). This will have the same particles as the filter approximation,
but with modified weights that are proportional wi

s p(xs +1 | xi
s ). If we have run the particle filter

forward in time and stored the particle approximations to all filtering distributions, we then have
a backward simulation step:

1. Simulate xt|t from the particle approximation to πt(dxt).
2. For s = t − 1, . . . , 0, simulate xs |t conditional on xs +1|t from the discrete distribution that

assigns probability proportional to wi
s p(xs +1|t | xi

s ) to value xi
s .

The cost of simulating one realization of the trajectory is O(tN ), and the cost of simulating a
sample of N trajectories is O(tN 2).

To obtain a weighted approximation of the marginal smoothing density, we integrate out the
state at time s + 1:

πs |t(xs ) = πs (xs )
∫

p(xs +1 | xs )
πs +1|s (xs +1)

πs +1|t(xs +1)dxs +1. 14.

Thus, given a particle approximation to πs , (xi
s ,w

i
s ), and one to πs +1|t , (xi

s +1|t ,w
i
s +1|t), we can

construct a particle approximation to πs |t (Hürzeler & Künsch 1998, Godsill et al. 2004). As in
the above algorithm, it has the same particles as the filter approximation, but with new weights

wi
s |t = wi

s

N∑
j=1

w
j
s +1|t

(
p(x j

s +1|t | xi
s )∑N

k=1 w
k
s p(x j

s +1|t | xk
s )

)
for i = 1, . . . , N.

The calculation of smoothing weights at time s involves considering all pairs of particles at times s
and s + 1, and hence has an O(N 2) cost. If we wish to calculate the smoothing distribution at time
t − L, then the cost of the smoothing iterations will be O(LN 2). We get for free all smoothing
distributions from time t to time t − L.

We can see the improvement that the forward-backward smoother gives by comparing the
plots from the right column of Figure 3 to those in the left column. In particular these show how
the forward-backward smoother is able to maintain particle diversity, and thus give a reasonable
approximation to the smoothing distribution, at all time-points.

A closely related particle smoothing algorithm is the two-filter smoother (Kitagawa 1996).
This involves running two independent particle filters, one forward in time and one backward in
time. The output of these filters at any time-point s can then be combined to obtain a particle
approximation to the smoothing distribution. Readers are directed to Briers et al. (2010) for more
detail and to Hürzeler & Künsch (1998), Fearnhead et al. (2010), and Douc et al. (2011) for
importance sampling and rejection sampling approaches to reduce the complexity of either the
forward-backward smoother or the two-filter smoother to linear, rather than quadratic, in the
number of particles.
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6.2. Ensemble Kalman Smoothing

The trivial adaptation of the particle filter that uses the trajectory x0:t instead of the value xt at
time t also works for the ensemble Kalman filter (see Evensen 2003, appendix D). The stochastic
version uses, in addition to Equation 12, the following update for the particles xi

s |t at times s < t:

xi
s |t = xi

s |t−1 + K̂s ,t(yt − Hxi
t + εi

t),

where the cross-gain K̂s ,t is based on an estimate of the cross-covariance between (xi
s |t) and (xi

t ),
and εi

t is the same artificial noise that occurs in Equation 12. The weak point of this method is the
estimation of the large number of cross-covariances.

There is also an analogue of the forward-backward marginal particle smoother (see Stroud
et al. 2010). In a linear Gaussian model, the recursion (Equation 14) allows us to express the first
and second moments of πs |t in terms of the first and second moments of πs +1|t and πs . Using this,
one can derive an approximate sample (x j

s |t) by a transformation of the samples (x j
s ) and (x j

s +1|t).
In numerical weather prediction, so-called four-dimensional variational data assimilation is

used frequently. It computes the posterior mode of πt−L:t numerically, but it lacks uncertainty
quantification. Hybrid methods that combine variational data assimilation with ensemble Kalman
filters have also been developed (see Bannister 2017).

7. PARAMETER ESTIMATION

So far we have ignored the issue of parameter estimation in the filtering and smoothing problems.
The algorithms we have presented have been suitable for inference conditional on knowing the
parameter values of the underlying model. We now turn to problems in which the parameters are
unknown. We denote the vector of parameters by θ , and we write Pθ and gθ for the transition
distribution of the state model and the likelihood function, respectively. We can still apply the
filtering recursions, for example, Equations 7 and 8, but these will be conditional on a parameter
value. As such we write, for example, πt(dxt | θ ) as the filtering distribution conditional on a given
parameter value θ .

We consider two different situations where we wish to estimate parameters. The first is on-
line parameter estimation and the second is batch estimation. For the latter we only consider a
relatively recent class of algorithms, particle Markov chain Monte Carlo (MCMC), which em-
beds a particle filter within an MCMC algorithm. Our overview of online parameter estimation
methods is deliberately brief, and the reader is referred to Kantas et al. (2015) for a recent article
length review of both online approaches and related approaches to batch estimation. Kantas et al.
(2015) discuss particle MCMC methods only briefly, hence our stronger focus on those methods
here.

7.1. Online Parameter Estimation

Issues and methods for online parameter estimation within a particle filter are closely linked to
those for particle smoothing. This stems from the fact that many quantities, such as the likeli-
hood or score function, or even the posterior distribution for the parameters, can be written as
expectations with respect to the smoothing distribution. The first link between the two problems
is that, just as for smoothing, there is a trivial extension to a particle filter that can deal directly
with estimating the parameters, but that is rarely useful in practice.

This extension applies when we have a prior distribution for the parameter. In this case we
can extend the state of our model to incorporate the parameter vector. So we have a new state,
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x′
t = (xt , θ ), say. We can trivially write down the state evolution and observation model for x′

t

and apply a particle filter to approximate the filtering distribution πt(dx′
t). However, the dynam-

ics of this particle filter will leave the parameter component unchanged at each iteration. As a
consequence of this deterministic update, the number of distinct parameter values of the particles
can only decrease at each iteration, and often the filter’s approximation to the posterior for θ

reduces very quickly to having a handful, or even just one, distinct particle value. There have been
three main approaches to overcome the particle degeneracy that necessarily occurs in this simple
method.

The simplest way to avoid this degeneracy is to break the ties by adding small random noise
to the parameter component of the particles after resampling. This effectively means that we use
a kernel density approximation of the filter distribution instead of a mixture of point masses. The
most effective version of this idea is that of Liu & West (2001), which shrinks the filter particles
toward their mean before adding the noise. This ensures that the kernel density approximation has
both the same mean and variance as the original particle approximation. Without this shrinkage
the approximation of the kernel density estimation leads to an increase in the variance of our
approximation of the posterior at each iteration. These can accumulate and lead to substantial
overestimation of the parameter uncertainty. The algorithm of Liu & West (2001) has been
shown to perform well in some applications, but it lacks any theoretical guarantees and has tuning
parameters, such as the kernel bandwidth, that can be hard to choose.

An alternative approach is to use MCMC moves within the particle filter to sample new pa-
rameter values for each particle using an MCMC kernel that has the current posterior distribution
as its invariant distribution. The most common choice of MCMC kernel is a Gibbs kernel that
samples a new θ for a particle from the parameter’s conditional distribution given the particle’s
stored trajectory. In many situations this distribution depends on the trajectory through some
low-dimensional summary statistics, and we need only store and update these summaries, as op-
posed to storing the full trajectory. The initial idea of using MCMC with a particle filter comes
from Fearnhead (1998), though the original use of such MCMC moves to update parameters was
in Gilks & Berzuini (2001), and the use of summary statistics was suggested by Storvik (2002) and
Fearnhead (2002). Recently the general idea of using MCMC to update parameter values for mod-
els where sufficient statistics exist has been termed particle learning (Carvalho et al. 2010). While
using MCMC steps within the filter does reduce the problem of degeneracy within the particle
filter, it does not remove it, because the updates for the parameters depend on summaries of the
trajectory of the state. As mentioned above, the particle filter’s approximation to the smoothing
distribution of the trajectory also degenerates (see section 7.2 of Kantas et al. 2015 for a thorough,
empirical evaluation of this method).

The third approach is to use some form of stochastic approximation method. The idea is to
have a current estimate of the parameter at each iteration. The particle filter update at iteration
t is performed conditional on the current parameter estimate, θ̂ t . Simultaneously, the particle
filter is used to estimate the score function, that is, the gradient of the log-likelihood, at θ̂ t , and
this gradient information is used to update the estimate of the parameter. Poyiadjis et al. (2011),
Nemeth et al. (2016a) and Olsson & Westerborn (2017) provide further details.

7.2. Particle MCMC

We now consider batch estimation of parameters. That is, we assume we have been given a fixed
data set y1:n, from which we wish to estimate parameters of our model. We are no longer con-
strained to methods that are sequential or online, though methods for online parameter estimation,
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together with simple extensions of them, can still be applied (see Poyiadjis et al. 2011, Kantas et al.
2015).

We focus on one specific class of methods, particle MCMC (Andrieu et al. 2010). These are
MCMC methods that target the joint posterior of the parameter and the state and that use particle
filter methods to develop novel, and hopefully efficient, proposal distributions. The most basic
particle MCMC algorithm is a form of pseudomarginal MCMC algorithm (Andrieu & Roberts
2009) that leverages the fact that a particle filter gives an unbiased estimate of the likelihood (see
Section 3.1). However, a particle filter approximation to a Gibbs sampler has also been developed.
We describe these two approaches in turn. While particle MCMC was initially derived based on
using particle filters to improve MCMC algorithms, it is also possible to embed particle MCMC
methods within particle filters (Chopin et al. 2013, Fulop & Li 2013).

7.2.1. Particle Metropolis–Hastings. Assume we have a prior density p(θ ) for our parameter
vector. The posterior density p(θ | y1:n) is then proportional to p(θ )L(θ ), where L(θ ) = p(y1:n | θ )
is the likelihood. If we run a particle filter conditional on parameter θ , we can obtain an unbiased
estimate L̂(θ ) of L(θ ). The particle marginal Metropolis–Hastings algorithm simulates a Markov
chain with state, (θ , L̂(θ )), which consists of the parameter vector and an estimate of the likelihood.
Given a proposal distribution for the parameter, with density q (θ ′ | θ ), the algorithm iterates the
following steps:

0. Assume the current state at iteration i is (θ i , L̂i ), where L̂i is an unbiased estimate of L(θ i ).
1. Propose a new parameter vector θ ′ ∼ q (θ ′ | θ i ).
2. Run a particle filter, conditional on parameter vector θ ′, to get L̂′, an unbiased estimate of

L(θ ′).
3. With probability

min

{
1,

p(θ ′)q (θ i | θ ′)L̂′

p(θ i )q (θ ′ | θ i )L̂i

}
,

set (θ i+1, L̂i+1) = (θ ′, L̂′), otherwise (θ i+1, L̂i+1) = (θ i , L̂i ).

The acceptance probability in step 3 is just the standard Metropolis–Hastings acceptance probabil-
ity, except the true likelihood values are replaced by their unbiased estimates. Perhaps surprisingly,
the resulting algorithm still has the posterior for θ as the θ-marginal of its stationary distribu-
tion. To see this, denote by U the set of random variables used within the particle filter, and
let L(U, θ ) be the estimator of the likelihood we get from the particle filter run using random
variables, U, with parameter θ . Then the particle marginal Metropolis–Hastings algorithm is a
standard Metropolis–Hasting algorithm with target density proportional to p(θ )P(du)L(u, θ ) and
with proposal density q (θ ′ | θ )P(du), but that stores (θ , L(u, θ )) rather than (θ , u). The marginal
density of this target is the posterior density for θ as∫

p(θ )P(du)L(u, θ ) = p(θ )E (L(U, θ )) = p(θ )L(θ )

by the unbiasedness of the estimator of the likelihood from the particle filter.
The quality of the approximation to the likelihood affects how well the resulting algorithm

mixes (Andrieu & Vihola 2015, 2016). The benefit of particle MCMC is that, for well-mixing
models, there is evidence that as the number of observations increases, we only need the number
of particles used to increase linearly to maintain a similar level of mixing of the MCMC algorithm.
This results in a computational complexity that is quadratic in the number of observations.

It is straightforward to extend the above particle marginal Metropolis–Hastings algorithm so
as to obtain samples from the joint posterior for the parameter and the state, x0:n. In step 2, we
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run a particle filter that stores the state trajectory for each particle and outputs both our unbiased
likelihood estimate, L̂′, and a sample trajectory. We then accept or reject the new parameter value,
the unbiased estimate and the trajectory in step 3. Andrieu et al. (2010) provide further details.

There is flexibility in the above particle MCMC algorithm in terms of the choice of proposal
distribution for the parameter, the number of particles to use in the particle filter algorithm, and
the version of particle filter used. As we get better estimates of the likelihood, we may expect
the particle MCMC algorithm to behave increasingly like an MCMC algorithm using the true
likelihood values, so our choice for proposal distribution can be informed by experience from
implementing standard MCMC algorithms. Better proposal distributions for the underlying exact
MCMC algorithm should lead to better mixing of the particle MCMC algorithm. In particular,
this has led to particle versions of Langevin algorithms that leverage the particle filter’s ability
to estimate gradient information so as to improve the proposal distribution (Dahlin et al. 2015,
Nemeth et al. 2016b).

Theory also shows that the better the estimate of the likelihood, the more efficient the particle
MCMC algorithm will be. This suggests using the most efficient particle filter algorithm available
for a given problem. It also shows that increasing the number of particles will improve mixing.
However, this comes with an increased computational cost of running the filter. There have now
been a number of theoretical studies linked to choosing the optimal number of particles to trade
off better mixing with increased computational cost. The first results for this were from Pitt et al.
(2012), and these have been extended by Sherlock et al. (2015), Doucet et al. (2015), and Nemeth
et al. (2016b). The main conclusion is that we should tune the number of particles so that the
variance of our estimate of the log-likelihood is between 1 and 3 (this choice differs substan-
tially from the optimal choice for general pseudomarginal MCMC algorithms; see Sherlock et al.
2017).

Recent theoretical work has shown that introducing correlation into the estimates of the like-
lihood across successive iterations can substantially improve mixing (Deligiannidis et al. 2015,
Murray & Graham 2017). For particle MCMC the idea would then be to couple the randomness
in the resampling and propagation steps of the particle filter, so that two successive runs of the filter,
with similar parameter values, would generate similar particles and trajectories and hence similar
estimates of the likelihood. This would reduce the variance in the ratio of likelihood estimates
that appear in the acceptance probability, and hence improve the acceptance rate. Simulating such
coupled particle filters is challenging, but Sen et al. (2017) and Jacob et al. (2016) present recent
approaches.

7.2.2. Particle Gibbs. An alternative particle MCMC algorithm is based around using a particle
filter to approximate a Gibbs update. Our target distribution is the joint posterior for the parameter,
θ , and the trajectory of the state, x0:n. A Gibbs sampler would iterate between updating θ from its
full conditional given x0:n and then simulating x0:n given θ . For many models the former update is
relatively simple to perform, whereas the latter is intractable. A Gibbs algorithm that updates only
one component xt at a time by Metropolis–Hastings steps would be feasible, but convergence is
usually slow. For some models, data augmentation has been used successfully (see, e.g., Frühwirth-
Schnatter et al. 2013), but it is often restricted to models with specific structure. The idea of particle
Gibbs is to use a particle filter as a generic way of updating the whole path, x0:n. While the particle
filter only samples from an approximation to the true conditional distribution of the path given θ

and y1:n, the particle Gibbs algorithm is designed such that the resulting MCMC algorithm still
has the true posterior as its stationary distribution.

The particle Gibbs sampler updates x0:n by drawing from a distribution that depends not only
on the current value θ but also on the current value of the state sequence, denoted xcur

0:n . Viewed as

442 Fearnhead · Künsch
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such, the term particle Gibbs is, in fact, a slight misnomer—though it can be viewed as a Gibbs
sampler on an extended state space. Drawing x0:n given θ and xcur

0:n is based on running a conditional
particle filter algorithm such that one of the final particles has a trajectory that is identical to xcur

0:n . In
particular this means that we only ever simulate N −1 particles at each iteration of the conditional
particle filter, as the remaining particle is set to the corresponding entry of xcur

0:n .
The conditional particle filter algorithm is as follows:
0. Condition on the current state trajectory xcur

0:n , and parameter value, θ . Set x1
0 = xcur

0 and
independently simulate xi

0 from π0(dx0 | θ ) for i = 2, . . . , N. Set t = 1.
1. Resample: If t > 1, set x̃i

t−1 = xA(i )
t−1 where A(1) = 1 and P(A(i ) = j ) = w

j
t−1 for i = 2, . . . , N.

2. Propagate: Set x1
t = xcur

t and draw xi
t from Pθ (dxt | x̃i

t−1) for i = 2, . . . , N.
3. Reweight: Set wi

t ∝ gθ (yt | xi
t ) for i = 1, . . . , N . If t < n, set t = t + 1 and go to step 1.

4. Sample and output a particle and its associated trajectory at time n, with the probability of
sampling particle i being wi

n for i = 1 . . . , N.
Steps 0–3 are similar to the bootstrap filter of Section 3.1, except that at each iteration we fix
the first particle to be the corresponding part of the trajectory we are conditioning on. Thus, at
time n the trajectory of the first particle will be xcur

0:n , and there is a nonzero probability that the
current trajectory does not change in the update. The dynamics of the filter depends only on the
parameter value, and this is made explicit within the notation for steps 2 and 3. Andrieu et al.
(2010) provide a proof that updating the state trajectory using a conditional particle filter update
leaves p(θ , x0:n | y1:n) invariant. Example output from the conditional particle filter is given in
Figure 4.

As with particle Metropolis–Hastings algorithms, empirical and theoretical results suggest that
as the number of observations, n, increases, we would need to increase the number of particles,
N, linearly to maintain a fixed level of mixing of the resulting MCMC algorithm. The conditional
particle filter update is more efficient at updating later values of the state than earlier ones, a
property that is linked to the sample impoverishment of the simple smoothing algorithm where
we store the trajectory of the particles in the filter (see the discussion in Section 7), and that can be
seen in the top row of Figure 4. However, there are very strong results on the mixing of particle
Gibbs if sufficiently many particles are used (Chopin & Singh 2015, Lindsten et al. 2015, Del
Moral et al. 2016, Andrieu et al. 2018).

There have been a number of extensions to the particle Gibbs sampler. First, most improve-
ments on the bootstrap filter can be applied to the conditional particle filter sampler. For example,
balanced resampling can be used instead of multinomial resampling, and this improves mixing
(Chopin & Singh 2015). However, care is needed, as resampling in step 1 above needs to be from
the conditional distribution of the balanced resampling scheme, given that particle 1 must have
at least one offspring (see Andrieu et al. 2010, appendix A for more details). It is also possible to
extend the conditional particle filter update so as to use better proposal distributions, as in the
auxiliary particle filter.

Second, it is possible to employ ideas from the forward-backward smoother to increase the
mixing of the trajectory at early time-points (Whiteley 2010). The idea here is that, in step 4,
rather than simulating a trajectory associated with one of the N particles at time n, we can use
backward simulation to obtain a new trajectory given all the particles that have been stored at time
0 to n. As we simulate a single trajectory, the cost of the backward simulation is linear in N . A
particular implementation of this idea has been termed ancestor sampling (Lindsten et al. 2014).
After each iteration of the conditional particle filter algorithm, they sample a new ancestor for the
first particle, that is, the particle from the conditioned path. This means that while there is still
degeneracy of the paths in the conditional particle filter, this degenerate path is different from the
conditioned path, and hence we get better mixing in the actual MCMC algorithm (see Figure 4
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Figure 4
Output from the conditional particle filter for the stochastic volatility model. For each figure the conditioned path is in red, the paths of
particles from intermediate steps of the filter are in gray, and the paths associated with the particles at the final time-step are in blue.
The main issue with the conditional particle filter is that it can struggle to change the start of the state trajectory unless sufficient
particles are used—compare the top right and bottom left plots. A rule of thumb is that we need to increase N linearly with any
increase in n, hence the similar behavior we obtain for the two left plots. The use of ancestor sampling can overcome this problem—
compare the two right plots. In particular, the sample path of the particles in the bottom right plot is different from that of the path we
conditioned on because of the ancestor sampling.

for an example; for theoretical support for such algorithms, see Chopin & Singh 2015). It is also
possible to use a conditional particle filter to update blocks of the trajectory, rather than the whole
trajectory, and this can lead to an algorithm whose computational cost scales linearly, rather than
quadratically, with the number of observations (Singh et al. 2017).

Third, even if the conditional particle filter update mixes well, the resulting particle Gibbs
algorithm can be poor if there is strong dependence between the parameter and the trajectory. It
is possible to overcome this by performing partial updates of the parameters within the conditional
particle filter update (see Fearnhead & Meligkotsidou 2016).

8. SUMMARY AND OUTLOOK

State-space models provide a flexible framework for inference and prediction of complex, partially
observed systems. We have given only a few examples in this review, and there are many more
that could have been mentioned. In order to apply state-space models, one has to be able to solve
challenging computational problems. We have reviewed the currently available Monte Carlo
methods to solve these problems, including methods that originated in geophysical applications.
The following points contain the main messages of this review.
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SUMMARY POINTS

1. Filtering and data assimilation combine partial observation with a dynamical model to
estimate latent states of a system.

2. Particle filters are completely general, but often suffer from sample depletion. Ensemble
Kalman filters are more robust but rely on Gaussian assumptions.

3. Combinations of particle and MCMC methods are promising new developments for
joint estimation of parameters and states.

FUTURE ISSUES

1. How do we best exploit the different strengths of particle and ensemble Kalman filters to
improve filtering of high-dimensional system with nonlinear and non-Gaussian features?
Are there versions of particle filters that can move particles, like the ensemble Kalman
filter does, instead of reweighting them?

2. There is a need to develop theory for better understanding of localized ensemble Kalman
filters in realistic settings where the number of particles is much smaller than the dimen-
sion of the state.

3. How do we design particle filter and related algorithms to best take advantage of modern
computer architectures?
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