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Abstract

The p-value quantifies the discrepancy between the data and a null hypothe-
sis of interest, usually the assumption of no difference or no effect. A Bayesian
approach allows the calibration of p-values by transforming them to direct
measures of the evidence against the null hypothesis, so-called Bayes fac-
tors. We review the available literature in this area and consider two-sided
significance tests for a point null hypothesis in more detail. We distinguish
simple from local alternative hypotheses and contrast traditional Bayes fac-
tors based on the data with Bayes factors based on p-values or test statistics. A
well-known finding is that the minimum Bayes factor, the smallest possible
Bayes factor within a certain class of alternative hypotheses, provides less
evidence against the null hypothesis than the corresponding p-value might
suggest. It is less known that the relationship between p-values and mini-
mum Bayes factors also depends on the sample size and on the dimension
of the parameter of interest. We illustrate the transformation of p-values to
minimum Bayes factors with two examples from clinical research.
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p-Value: the
probability, under the
assumption of no
effect, of obtaining a
result equal to or more
extreme than what was
actually observed

One-sided p-value:
based on the
probabilities of
extreme values in one
prespecified direction
of a point null
hypothesis
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1. INTRODUCTION

The p-value is the probability, under the assumption of no association or no effect (the null
hypothesis Hy), of obtaining a result equal to or more extreme than what was actually observed
(Goodman 2005). p-Values for point null hypotheses still dominate most of the applied literature
(Greenland & Poole 2013), despite the fact that p-values are commonly misused (Wasserstein &
Lazar 2016, Matthews et al. 2017). Specifically, a quantitative interpretation of p-values beyond
the traditional dichotomization into significant and nonsignificant has caused much confusion, and
misinterpretations are commonplace. Most prominent is the widespread belief that the p-value
is the probability of a chance finding, i.e., the probability of the null hypothesis, but many other
misinterpretations can also be found (Goodman 2008, Greenland et al. 2016).

A first step toward a quantitative interpretation of p-values is a categorization into more than
two levels, making a step away from the Neyman-Pearson hypothesis test paradigm to Fisher’s
significance test. Cox & Donnelly (2011, p. 147) give the following guidelines to interpret p-values
as measures of evidence against a null hypothesis Hy: If p =~ 0.1 there is “a suggestion of evidence”
against Hy, if p ~ 0.05 there is “modest evidence” against Hy, and if p =~ 0.01 there is “strong
evidence” against Hy. Bland (2015, section 9.4) suggests a similar rough guide with five levels,
reproduced in Table 1. Similar categories have been proposed in many other applied statistics
textbooks, for example, Ramsey & Schafer (2002).

However, such categorizations always carry a level of arbitrariness. In addition, p-values are
only indirect measures of evidence: A p-value is computed under the assumption that the null
hypothesis Hj is true, so it is conditional on Hy. It does not allow for conclusions about the
probability of Hy given the data, which is usually of primary interest. More precisely, a p-value is a
quantitative measure of discrepancy between the data and the point null hypothesis Hy (Goodman
1999a). But, as Cox (2006, p. 83) puts it, “conclusions expressed in terms of probability are on the
face of it more powerful than those expressed indirectly via confidence intervals and p-values.”
Such direct conclusions can be obtained by using Bayes factors. Assuming an alternative hypothesis
H; has also been specified, the Bayes factor directly quantifies whether the data have increased
or decreased the odds of Hy. A better approach than categorizing a p-value is thus to transform a
p-value to a Bayes factor or a lower bound on a Bayes factor, a so-called minimum Bayes factor
(Goodman 1999b). But many such ways have been proposed to calibrate p-values, and there is
currently no consensus on how p-values should be transformed to Bayes factors.

First, there is an important distinction between tests for direction and tests for existence
(Marsman & Wagenmakers 2017). Tests for direction investigate whether the parameter of in-
terest is above or below a specific value, assuming that there is an effect. For example, a test for
direction can be used to assess whether a treatment effect is positive or negative. Tests for direction
are usually conducted with one-sided p-values, and there is a close correspondence to the Bayesian

Table 1  Categorization of p-values into levels of evidence against H
Strength of evidence against Hy
p-Value Bland (2015) Cox & Donnelly (2011)

>0.1 Little or no evidence

0.1 t0 0.05 Weak evidence A suggestion of evidence

0.05 t0 0.01 Evidence Modest evidence

0.01 t0 0.001 Strong evidence Strong evidence

<0.001 Very strong evidence

Cox & Donnelly (2011) specify the amount of evidence of specific p-values (p =~ 0.1, 0.05, and 0.01), which correspond to
certain cut points in the categorization by Bland (2015).
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approach based on the posterior probability that the effectis positive or negative. In fact, this poste-
rior probability is often equal or approximately equal to the one-sided p-value, if a noninformative
prior is used (Casella & Berger 1987). A simple example is given by Lee (2004, section 4.2).

In contrast, tests for existence aim to summarize the evidence against the point null hypothesis
of no effect. Tests for existence can be conducted with one-sided or two-sided p-values, but the
correspondence of the p-value to the Bayesian posterior probability of the null is now lost and
care has to be taken to transform p-values to Bayes factors.

In this article, we consider tests for existence. We review different methods being proposed
to calibrate p-values, identify problems with some of the proposed methods, and give general
recommendations for how to transform p-values to (minimum) Bayes factors. We emphasize that
this transformation depends on how the p-value has been calculated. Specifically, the sample size
and the dimension of the parameter of interest both matter. It also matters whether the p-value
came from a study with a well-defined alternative hypothesis or from a study used to generate
possible hypotheses.

1.1. Bayes Factors

Consider a significance test for existence with a point null hypothesis Hy: 6 = 6, where the
parameter of interest 0 may be a scalar or a vector. In many problems 6, = 0, for example,
when testing if there is evidence for a difference 6 between two treatment groups. The alternative
hypothesis may be simple, i.e., Hy: 6 = 0; # 6y, or composite, usually Hy: 6 # 6. In the latter case,
a Bayesian approach now requires a prior distribution (6 | H;) to be specified. Local alternatives,
represented by a unimodal symmetric prior distribution centered around the null value 6y, are the
common choice. In contrast, nonlocal alternatives (Johnson & Rossell 2010) have zero probability
mass in a neighborhood of 6y, with the simple alternative Hy: 0 = 6; # 6, being a special case.

The Bayes factor (BF) transforms the prior odds Pr(Hy)/Pr(H;) [where Pr(H,) = 1 — Pr(Hy)]
to the posterior odds Pr(H, | y)/Pr(H, | y) in the light of the data y:

Pr(Holy) Pr(H,)
Pr(H, |y) Pr(H,)’

BE(y) - 1.
The Bayes factor BF(y) thus is a direct quantitative measure of how the data y have increased
or decreased the odds of Hy, regardless of the actual value of the prior probability Pr(Hy). The
Bayes factor (or its logarithm) is therefore often referred to as the strength of evidence or weight
of evidence (Good 1950, Bernardo & Smith 2000). If necessary, we may add an index to BF(y),
where BF;(y) stands for “H, versus Hi,” so BF1o(y) = 1/BFy;(y).

In Equation 1, the Bayes factor

£ Ho) ,
[ | Hy) '
is the ratio of the likelihood f(y |Hy) = f(y |6 = 6) of the observed data y under the null
hypothesis Hy and the likelihood

For | H) = / FO10)£@ | Hy)do 3.

under the alternative hypothesis H;. For a simple alternative, Equation 3 reduces to the ordinary
likelihood f(y | Hi) = f(y |0 = 6), and the Bayes factor (Equation 2) reduces to a likelihood ratio.
In general Equation 3 represents a marginal likelihood, i.e., the average likelihood f(y |6) with
respect to the prior distribution f(6 | H;) for 6 under the alternative H; (Kass & Raftery 1995).
Note that the computation of the Bayes factor via Equation 2 does not require the specification
of the prior probability Pr(Hj).

BF(y) =
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Two-sided p-value:
based on the
probabilities of
extreme values in both
directions of a point
null hypothesis

Local alternatives:

a unimodal symmetric
prior distribution of
alternatives centered
around the null value

Bayes factor:
compares the
likelihood of the data y
under the null
hypothesis Hy to the
likelihood under the
alternative hypothesis
Hy

Marginal likelihood:
the average likelihood
with respect to a prior
distribution for

alternative hypotheses



p-Based Bayes
factor: a Bayes factor
that is based on the
sampling distributions
of the p-value
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Table 2

Categorization of Bayes factors BF < 1 into levels of evidence against H

Strength of evidence against Hy

Bayes factor Jeffreys (1961) Goodman (1999b) Held & Ott (2016)
l1to1/3 Bare mention Weak
1/3 to 1/10 Substantial Weak to moderate Moderate
1/10 to 1/30 Strong Moderate to strong Substantial
1/30 to 1/100 Very strong Strong Strong
1/100 to 1/300 Decisive Very strong Very strong
<1/300 Decisive

Jeffreys actually used the slightly different cut points (1/ V10)*, 4 = 1,2,3,4, whereas Goodman specified evidence

categories “weak,” “moderate,

” «

moderate to strong,” and “strong to very strong” for Bayes factors of 1/5, 1/10, 1/20, and

1/100, respectively, which we have modified and aligned with our cut points.

In this article we focus on the evidence against a point null hypothesis provided by small
Bayes factors BF(; < 1, such that Bayes factors lie in the same range as p-values, which facilitates
comparisons. To categorize such Bayes factors, Held & Ott (2016) provided a six-grade scale
reproduced in Table 2, which was proposed as a compromise of the grades proposed by Jeffreys
(1961, appendix B) and Goodman (1999b, tables 1 and 2) (also shown in Table 2).

Communication of Bayes factors is of central importance. The categories shown in Table 2
are helpful in this respect, but there remains a level of arbitrariness in the definition of the category
levels. Ideally, the Bayes factor itself should be reported, and comprehensive formatting of Bayes
factors is now crucial. We recommend presenting Bayes factors as ratios, for example, BFy; = 1/7,
since this underlines the symmetry of Bayes factors if numerator and denominator are exchanged—
here, BFy = 7/1. For Bayes factors smaller than 1/10, say, it is usually sufficient to report Bayes
factors in the 1/x format, where x is an integer. If the Bayes factor is larger, then we recommend
using an additional decimal place for x, e.g., BF=1/2.5 or BF= 1/1.3, to achieve better accuracy.

The Bayes factor (Equation 2) is based on the data y and is sometimes called a data-based Bayes
factor (Held et al. 2015) to distinguish it from Bayes factors based on test statistics or p-values.
Indeed, the step from a p-value p to a Bayes factor is most easily accomplished by treating p as
the data y in Equation 2 to obtain a p-based Bayes factor based on the sampling distribution of p
under Hy and H;:

J(p | Ho)

Br = flp 1 Hy)
The distribution f(p | Hp) of a two-sided p-value p under Hy can usually be assumed to be uniform,
since the corresponding Neyman-Pearson hypothesis test is constructed to maintain any type-I
error rate «, i.e., Pr(p < o |Hp) = a forall @ € (0, 1), and so f(p | Hy) = 1 for all p and therefore
BE(p) = 1/f(p | Hy). The distribution f(p | H;) will depend on the specific problem considered,;
see Hung et al. (1997) for a comprehensive study and Donahue (1999) for a specific example. A
simple option is to directly specify a distribution for p | Hj, for example, a beta distribution. p-Based
Bayes factors are particularly useful if the p-value is available but the underlying data are not.

4.

The other option is to back-transform p to the underlying test statistic #, which was used to
calculate p. If this transformation is one-to-one, then = #(p) is well defined and it is easy to see
that the Bayes factor does not change if we use ¢ rather than p:

_ f(p) | Ho) _ fy(p | Ho) _
fep) 1 H)  f,(p | H)

BE(z) BE(p), 5.
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since f;(t(p) | H;) = f,(p | H;) ‘dt(p)/dpFI for i = 0,1. A Bayes factor BF(z) based on a test
statistic 7 is a so-called test-based Bayes factor (Johnson 2005) and often constitutes the most
convenient way to transform a p-value to a Bayes factor. However, a test-based Bayes factor may
not be equal to a p-based Bayes factor if the transformation from # to p is not one-to-one. Then
the p-based Bayes factor (Equation 4) is preferred, since it is directly based on the p-value, the
quantity of interest.

1.2. Minimum Bayes Factors

The distribution f(p | Hy) in Equation 4 may depend on unknown parameters 7, say, and the
maximum likelihood estimate 7y, of n for the observed p-value p can then be used to determine
the minimum p-based Bayes factor as follows:

max, f(p|n,H)  f(p |, Hi)
If the transformation from # to p is one-to-one, then the minimum test-based Bayes factor based on
Equation 5 will also be the same as the minimum p-based Bayes factor (Equation 6) if f,(t(p) | n, H1)
can be derived from f,(p | n, H;) with a change of variables. In principle, minimum Bayes factors

can also be considered for data-based Bayes factors, but the computation may be cumbersome if
the distribution f(y | Hy) depends on many unknown parameters.

The minimum Bayes factor is the smallest possible Bayes factor that can be obtained for a
p-value p in a certain class of distributions considered under the alternative. As such, it provides an
objective lower bound on the Bayes factor, an objective Bayes procedure (Berger 2006). Note that
minimum Bayes factors have the same asymmetry as p-values, as they can be used only to assess
the (maximal) evidence against Hy, not for Hy. Examples of p-based minimum Bayes factors are
given in Section 2.3. Incidentally, the corresponding maximum Bayes factor usually does not exist,
since the marginal likelihood under the alternative does not have a strictly positive minimum for
continuous distributions. Thisis illustrated in the example described in Section 1.3.1 and Figure 1.

1.3. Examples

We now describe two clinical applications where a Bayesian calibration of p-values is of interest.
The first example describes a well-designed confirmatory study, where a single p-value is available
for the primary outcome of interest. In the second example, many exploratory p-values are available
from a logistic regression analysis with many potential predictors. Exploratory p-values are to be
understood as summary statistics of the data only and should not be used for decision making, but
they can be used for generating hypotheses. The distinction between confirmatory and exploratory
p-values is important (Tukey 1980, Berry 2016, Matthews et al. 2017) and requires different
methods for a Bayesian calibration via minimum Bayes factors. We argue that simple alternatives
are suitable for confirmatory p-values, whereas local alternatives should be used for exploratory
p-values.

1.3.1. Confirmatory p-values. Imagine a randomized controlled clinical trial designed to detect
a prespecified clinically relevant difference with 80% power (8 = 0.2) at the usual two-sided
5% significance level (@ = 0.05). A two-sided p-value p = 0.01 has been reported for the null
hypothesis Hy of no difference between the two treatments. The principal investigator (PI) of the
trial knows that the p-value is only an indirect measure of the evidence against H and has read
much of the recent literature on misinterpretations and problems with p-values. He therefore asks
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Test-based Bayes
factor: a Bayes factor
that is based on the
sampling distributions
of a test statistic
Minimum Bayes
factor: the smallest
possible Bayes factor
within a prespecified
class of prior
distributions over
alternative hypotheses
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Bayes
factor 1/3

1/10 -

1/30

1/100

Figure 1

0.67 (p=0.5)
1.64 (p=0.1)
—— 2,58 (p=0.01)

—— 329 (p=0.001)

The Bayes factor (Equation 8) as a function of the mean p for absolute test statistic t* = 0.67, 1.64, 2.58, and 3.29 (p = 0.5, 0.1, 0.01,
and 0.001). The minima at [y, = 0, 1.63, 2.58, and 3.29, the values of i that maximize f(¢* | H), are marked with colored squares and
correspond to minimum Bayes factors of 1, 1/1.9, 1/14, and 1/112. Based on the sample size calculations, we have . = 2.80 (dashed gray
line) with Bayes factors of 15, 1, 1/13, and 1/100 (black dots).
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the trial statistician to compute a Bayes factor as a direct measure of the evidence against the null.
The statistician has calculated p based on a test statistic # which follows—for sufficiently large
sample size—a standard normal distribution if Hy is true. He has also derived the distribution of
t under the assumption of the alternative H;: # ~ N(, 1) (Matthews 2006, section 3.3) with

w=o 1 —a/2)+ 071 - B), 7.

where ®(.) denotes the standard normal cumulative distribution function. However, the two-sided
p-value p = 2 [1 — ®(|¢])] is not a one-to-one function of ¢, but it is a one-to-one function of the
absolute value of 7. With a change of variables to the folded normal random variable #* = |¢| (see
Appendix A.1 for its density function), the Bayes factor (Equation 5) is then

1 Hy) _ 20(")
f@ 1 H) o +w)+ @ —pn)’

where ¢(.) denotes the standard normal probability density function (pdf) and

r=r(p)=d N1 - p/2). 9.

The trial statistician obtains 1 = 2.80 from Equation 7 with & = 0.05 and 8 = 0.2, * = 2.58

from Equation 9 with p = 0.01, and finally, BF(p = 0.01) = 1/13 (0.0744) from Equation 8.

He concludes that there is substantial evidence against Hj since the probability of no eftect has
decreased from 50% (his prior guess) to 0.0744/(1 4+ 0.0744) = 6.9%.

However, the statistician is well aware that the assumptions underlying the sample size cal-

BF(+*) =

culations may not be true. In particular, the power of the study may have been different from
the assumed 1 — B value if the true treatment effect is different from the prespecified effect. He
therefore minimizes Equation 8 numerically with respect to u (for fixed #* = 2.58) and obtains a
lower bound minBF(p) on the Bayes factor, which turns out to be minBF(p) = 1/14(0.0725) with
a corresponding lower bound of 6.8% for Pr(H, | p).
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The step from the Bayes factor (Equation 8) to the minimum Bayes factor

minBF(#*) = min {BF(¢*)} 10.

can be done for any value of #*, and hence for any p-value, as illustrated in Figure 1. Note that for
w1 = 0, we have BF(#*) = 1 for any value of #*. The other extreme is 4 — oo, where BF(#*) — oo,
again for any #*, so this Bayes factor has no maximum. Between these two extremes, there is a
minimum of BF(#*). For moderately large #*, say #* > 1.64, the minimum is near u = #* (compare
with Figure 1). If #* < 1, i.e., p > 0.32, the minimum is at © = 0 and minBF(#*) = 1 (Berger &
Sellke 1987, section 3.3).

Similar results can be obtained if the p-value p = 0.01 is one-sided for the alternative H;:
> 0. To see this, note that the Bayes factor now is

f@1H) _ o)
f@H) ot —p)’

where t = ®7!(1— p) = 2.33.'This leads to BF(¢) = 1/13 (0.0748) and minBF(¢) = 1/15 (0.0668).
So far, so good. But a colleague of the trial statistician notes that simpler procedures to compute

BF(t) = 11.

a minimum Bayes factor based on a p-value have been proposed in the literature. Specifically, he
mentions the —ep log p calibration (Sellke et al. 2001), which has been reported to provide the
lowest Bayes factor against H; under reasonable assumptions (Bayarri etal. 2016). But surprisingly,
for p = 0.01, this calibration gives a considerably larger minimum Bayes factor of 1/8 (0.125) than
the Bayes factor 1/13 the statistician has obtained. The assumptions underlying the sample size
calculations have been thoroughly prepared and have been considered realistic by the PI and the
ethics committee approving the trial protocol, so how can a lower bound on all reasonable Bayes
factors be larger than his Bayes factor?

In fact, the —ep log p calibration closely agrees with the lower bound for local alternatives but
not for simple alternatives. The colleague thus points him to another calibration advocated by
Goodman (1999b), who proposed the lower bound exp(—#?/2) for the Bayes factor, where |¢| = ¢*
as in Equation 9. This bound turns out to be 1/28 for p = 0.01, so it is half as large as the lower
bound 1/14 he has obtained. This seems overly conservative to the trial statistician, and he is now
completely confused and unsure what Bayes factor he should report to the PI. We see in Section 2.1
that the Goodman (1999b) bound, just as the minimum Bayes factor given by Equation 10, is based
on a simple alternative but incorporates additional knowledge on the direction of the effect.

1.3.2. Exploratory p-values. Many statistical procedures produce not just one p-value, but a
large number of them. For example, multiple regression is often used to develop clinical pre-
diction models and gives a p-value for each potential predictor. For illustration, we consider the
development of a clinical prediction model for 30-day survival after acute myocardial infarction in
Section 4.2.2. The set of potential predictors consists of 17 covariates. A first step to assess the
importance of each of the predictors is to report 17 exploratory p-values in a standard regression
table of the full model with all covariates. We describe in Section 4.2 how such a table can be ac-
companied with the corresponding minimum Bayes factors. This analysis is exploratory in nature
since the study was not powered for any of the potential predictors (treatment is not included), so
we have a set-up where local alternatives should be used to calculate minimum Bayes factors.

1.4. Overview of Article

In this article we provide a comprehensive overview of different methods to transform p-values
to minimum Bayes factors, with an emphasis on two-sided p-based and test-based Bayes factors.
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We make the important distinction between simple and local alternatives, the latter class implying
more restrictive assumptions, leading to larger minimum Bayes factors.

We start with a historical review in Section 2, where we describe the literature on data-based
and p-based Bayes factors, as well as the more recent framework of test-based Bayes factors. The
dependence of minimum Bayes factors on the sample size is described in Section 3. We see that the
maximal evidence of a p-value is inversely related to sample size. Test-based Bayes factors allow
investigation of the dependence of the minimum Bayes factor on the dimension of 6 (Section 4)
and that minimum Bayes factor can be used to assess the combined evidence of multiple p-values
(Section 4.3). We close with some discussion in Section 5, and some mathematical results are
presented in the Appendix. All calibrations of p-values as minimum Bayes factors discussed in this
article are implemented in the R-package pCalibrate available on the Comprehensive R Archive
Network (https://CRAN.R-project.org/package=pCalibrate).

2. HISTORICAL REVIEW

Jeffreys (1961, appendix B) already studied the relationship between p-values and (approximate)
Bayes factors for normally and binomially distributed observations (see also Berger & Sellke (1987)
for more information on the normal case). One of the first papers with a systematic comparison
of p-values and the corresponding minimum Bayes factors was published in the 1960s (Edwards
et al. 1963), and is considered as “still one of the best technical introductions to the Bayesian
philosophy” (Spiegelhalter et al. 2004, p. 115).

2.1. Simple Alternatives

Edwards et al. (1963, p. 226) “examine one situation in which classical statistics prescribes a
[...] 7 test,” but in fact consider what is usually called a z-test for large samples (Bland 2015,
section 9.7). Specifically, the authors consider the problem of testing the point null hypothesis Hy:
6 = 6, for a normally distributed observation y ~ N(9, 0?) with mean 6 and known variance o 2.
In practice the observation y is a sufficient statistic for the parameter of interest, for example, an
average or a maximum likelihood estimate. The normality assumption underlies many statistical
procedures found in medical journals (Goodman 1999b) and also in other areas of quantitative
research. Let ¢ denote the value of the test statistic 7 = (y — 6y)/o. Edwards et al. (1963) observed
that—for all possible prior densities f(6 | H;) on 6 under H;—the Bayes factor for H, against Hj,

BE(y) = f(y | Hy)/ f(y | H1), has the lower bound
minBF(y) = exp(—#%/2), 12.

the minimum Bayes factor in the class of all possible prior distributions for 6. They also noted
that the minimum is attained if “the density under the alternative hypothesis is concentrated at y,
the place most favored by the data” (Edwards et al. 1963, p. 228), i.e., for the simple alternative
H, 1+ 0= 01 =Y.

Note that the minimum Bayes factor in Equation 12 is just a function of the test statistic # and
that the corresponding test-based Bayes factor BF(t) = f(¢ | Hy)/ f (¢ | H;) basedont | Hy ~ N(0, 1)
and ¢ | H; ~ N(u, 1) leads to the very same result, i.e., min, BF(z) = minBF(y). It is often the
case that a test-based Bayes factor is equal to the corresponding data-based Bayes factor if the test
statistic and prior distributions have been chosen carefully.

However, it is not clear how a p-value p should be transformed to the test statistic 7. Edwards
et al. (1963, p. 228) restrict attention to one-sided p-values (p < 0.5) and use the corresponding
one-sided #-value # = ®~!(1 — p) in Equation 12. This approach is based on the argument that
“the alternative hypothesis has all its density on one side of the null hypothesis, [so] it is perhaps
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appropriate to compare the outcome of this procedure with the outcome of a one-tailed rather
than a two-tailed classical test.” We see in Section 4.2.2 that the Edwards bound also provides
a sharp lower bound on the Bayes factor under specific local alternatives, so-called g-priors, for
parameter vectors of any dimension.

In contrast, Goodman (1999b, p. 1007) recommended applying Equation 12 to two-sided p-
values to obtain the “smallest possible Bayes factor.” The problem with this approach is that the
teststatistic 7 in Equation 12 is nota one-to-one function of the two-sided p-value p = 2[1—®(|¢[)].
Therefore the minimum Bayes factor based on # (Equation 12) is not the same as the minimum
Bayes factor for the corresponding p-value p, since the former uses the additional information
on the direction of the treatment effect, represented by the sign of z. The Goodman approach is
therefore best seen as the Edwards bound applied to the corresponding one-sided p-value p /2, so
that the information about the direction of the effect is included.

We described in Section 1.3.1 how the absolute teststatistic #* = |¢| is a one-to-one function of p
and the Bayes factor based on #* (Equation 8) can be used to calculate the minimum Bayes factor un-
der a simple alternative (Equation 10), numerically minimizing Equation 8 with respect to . This
approach is equivalent to requiring the prior densities f(6 | H;) to be symmetric (but possibly non-
local) around 6, as described by Berger & Sellke (1987, section 3.3). For two-sided p-values smaller
than 0.1(so #* > 1.64), the minimum Bayes factor (Equation 10) can be well approximated as

2¢(t*)
Q2 1) + ¢(0)

(the exact multiplier on the right-hand side of Equation 13 is then between 1.99 and 2.0 rather
than exactly 2). Comparing Equation 13 with Equation 12 we see that, for sufficiently small

minBF(#*) ~ ~ 2 exp(—1*?/2) 13.

p-values, the Goodman (1999b) proposal is by a factor of 2 too small, and this is exactly what we
have observed in the example considered in Section 1.3.1.

2.2. Local Alternatives

Another important case considered by Edwards et al. (1963) is a local normal prior for the mean
6 of y ~ N(8,0?), centered around the null value 6p: 6 | H; ~ N(6, t?). This specification is
appropriate for exploratory p-values from observational or hypothesis-generating studies, where
no specific alternative hypothesis has been specified a priori. It is shown that in this case the
minimum Bayes factor (minimized with respect to t?, which yields 7> = o2 max{#> — 1,0}) is

. | 1tl exp(—2/2)/e  for |t| > 1
minBF(y) = 1 otherwise, 14

and here ¢ ~ 2.72 is Euler’s number. Note that this bound also depends on the data only through
the absolute value #* = |¢| of the test statistic . It is easy to show that we get the same result if
we use the test-based Bayes factor based on #*, where #* has a folded normal distribution with
mean 0 and variance 1 under Hy, and it has a folded normal distribution with mean 0 and variance
1 + t?/0? under H;. Since the prior on @ under H; is centered around the null value 6y, t* has
mean 0 under H; and itis easy to check that calculating the Bayes factor using # instead of #*, with
t|Hy ~ N(0,1) and t | H, ~ N(0, 1 + 7% /0?), also leads to the same result. This is in contrast to
the setting for the bound given by Equation 12, where the mean of #* under H; is nonzero and the
Bayes factors based on # and #*, respectively, differ. The local normal alternatives bound (Equation
14) is substantially larger than the Edwards bound (Equation 12); see Section 2.5.

We note that the more general class of all (possibly nonnormal) local alternatives has been
considered by Berger & Sellke (1987, section 3.4). The resulting minimum Bayes factors are only
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slightly smaller than the ones obtained in the class of local normal priors. Local normal priors
have the advantage that they can more easily be generalized to g-priors to investigate situations
where the parameter of interest is a vector; see Sections 3.2 and 4.2.2.

2.3. p-Based Bayes Factors

The minimum Bayes factors given by Equations 12 and 14 depend on the value of the 7-statistic
t, so they only depend indirectly on the p-value p. The commonly used —e p log p calibration,
proposed by Vovk (1993, Section 9) and Sellke et al. (2001), depends directly on the p-value p:

for p < 1/e

. 15.
otherwise.

minBF(p) = 1‘"’ plogp

A simple derivation of Equation 15 assumes that under a point null hypothesis Hy, an exact p-value
p is uniformly distributed on the unit interval. Under the alternative hypothesis, small p-values are
expected, so the class of beta prior distributions Be(&, 1) with monotonically decreasing density
functions (¢ < 1) is considered.

The minimum Bayes factor (Equation 15) can then be derived as described by Sellke et al.
(2001) and Held & Ott (2016, appendix B), using the maximum likelihood estimate (MLE)
&, = min{—1/ log(p), 1}. Sellke et al. (2001) also present an alternative derivation of Equation 15,
in which one does not have to assume the beta class for the p-value under H;. Held (2010) noted that
Equation 15 can also be derived as a test-based Bayes factor under the g-prior if 6 has dimension 2
and the sample size is large; see Section 4.2.2 for details. The calibration given by Equation 15 is
always smaller than the local normal alternatives bound (Equation 14) and approximately equal to
the lower bound in the more general class of all local alternatives (Sellke et al. 2001, section 3.2).

The beta distribution Be(§, 1) with £ < 1 has prior sample size £ + 1 < 2, so it is always quite
uninformative. Therefore, f(p | Hy, Eyn) will be relatively flat, and the minimum Bayes factor
minBF(p) = 1/f(p | Hy, &) will be relatively large. However, this is not the only class of beta
priors with monotonically decreasing density functions. An alternative, which to our knowledge
has not yet been discussed in the literature, is the class of beta distributions Be(1, k) with « > 1.
A beta distribution from this class has prior sample size 1 + « > 2, so the likelihood under
the alternative can take larger values than for the above Be(§, 1) prior. Calculus shows that in
this setting, the MLE of « is &y, = max{—1/log(1 — p), 1}, leading to the minimum Bayes
factor

e(l—p)logl—p) forp<1-—1Je 16

minBF(p) = 1 otherwise.

This is similar to the —e p log p calibration, but with p replaced by ¢ = 1 — p, so we call this the
—e ¢ log ¢ calibration. Note that for small enough p we can obtain the simple approximate formula
minBF(p) ~ ¢ p based on the approximation log(1 — p) ~ —p.

It turns out that Equation 16 is a much lower bound compared with all the other bounds
proposed. For p-values less than 0.1 it is even smaller than the Goodman approach; Section 2.5
provides a comparison. This is due to a large (and unbounded) prior sample size for small p, in
contrast to the prior sample size of the —e p log p calibration, which cannot be larger than 2.
However, we will see in Section 3.2 that Equation 16 provides a sharp lower bound on Bayes
factors based on g-priors of any dimension 4, even if the sample size is very small. For reasonably
large sample sizes, however, the —e ¢ log ¢ calibration will be too conservative.
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2.4. Test-Based Bayes Factors

A drawback of data-based Bayes factors is that their values often depend critically on prior dis-
tributions that are assigned to unknown parameters under the null hypothesis and the alternative
(Johnson 2005). Furthermore, computation of these Bayes factors may be involved as multi-
dimensional integrals may need to be evaluated. In a landmark paper, Johnson (2005) proposes
Bayes factors based on test statistics instead of the original data to facilitate the use of Bayes factors.
To obtain these Bayes factors, he considers the sampling distribution of the test statistic under
the null and the alternative hypothesis. Usually, the distribution under the null does not depend
on unknown model parameters, and the distribution under the alternative can be parameterized
in a parsimonious way—often as a noncentral version of the distribution under the null hypoth-
esis with only one additional noncentrality parameter; see Section 4.2 for an example. Thus, his
approach eliminates the need to specify prior distributions for all unknown model parameters
under each hypothesis and thus much of the subjectivity associated with Bayes factors. For several
commonly used test statistics, he obtains a simple closed-form expression for the test-based Bayes
factor assuming a computationally convenient prior for the noncentrality parameter. These results
significantly simplify computation of Bayes factors. He considers x -, F-, t- and z-test statistics in
Johnson (2005) and extends the approach to likelihood ratio test (deviance) statistics in Johnson
(2008), which allows for application of the methodology to generalized linear models (GLMs).

We describe test-based Bayes factors based on the F-statistic in Section 3 and test-based Bayes
factors based on the deviance in Section 4.2. A Bayesian model selection algorithm using test-based
Bayes factors for linear models and GLMs is proposed in Hu & Johnson (2009). Held et al. (2015)
show that Bayes factors based on the deviance statistic approximate data-based Bayes factors in
GLMs and relate minimum test-based Bayes factors to minimum Bayes factors from the literature.
There is also literature on Bayes factors based on nonparametric test statistics (Yuan & Johnson
2008). Bayes factors based on the deviance are applied to the Cox proportional hazard model in
Held et al. (2016).

2.5. A Comparison

Edwards etal. (1963) compare p-values of 0.05, 0.01, and 0.001 with a selection of minimum Bayes
factors. Table 3 provides a similar list with the minimum Bayes factors discussed so far, using the
additional p-value p = 0.005—recently proposed by Benjamin et al. (2017) as a new threshold for
statistical significance—and our preferred formatting of Bayes factors as ratios. First, note that all
the minimum Bayes factors are substantially larger than the corresponding p-values and that the
simple alternative minimum Bayes factor is always twice as large as the Goodman lower bound.

Table 3  Comparison of p-values and various minimum Bayes factors

p-value 0.05 0.01 0.005 0.001
Minimum Bayes factor Formula
Local normal alternatives Equation 14 1/2.1 1/6.5 1/11 1/41
—eplogp Equation 15 172.5 1/8 1/14 1/53
Simple alternative Equation 10 1/3.4 1/14 1/26 1/112
Edwards Equation 12, one-sided 1/3.9 1/15 1/28 1/118
Goodman Equation 12, two-sided 1/6.8 1/28 1/51 17224
—eqlogg Equation 16 1/7.5 1/37 1/74 1/368

Table inspired by table 4 in Edwards et al. (1963).
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Furthermore, the Edwards bound is close but not equal to the simple alternative minimum Bayes
factor. Also observe that the Goodman minimum Bayes factor for two-sided p = 0.01 is the same
as the Edwards minimum Bayes factor for one-sided p = 0.005. The —e p log p bound is close to
the minimum Bayes factor under local normal alternatives. The —e ¢ log ¢ bound is smaller than
all the other minimum Bayes factors, even smaller than the Goodman bound.

3. SAMPLE-SIZE ADJUSTED BAYES FACTORS

It is well known that data-based Bayes factors depend on the sample size. By using Bayes factor
methodology, several researchers have shown that the evidence of a p-value also depends on the
underlying sample size (Jeffreys 1961, Royall 1986, Spiegelhalter et al. 2004, Wagenmakers 2007).
In contrast, the p-based calibrations in Section 2.3 transform a given p-value to the same minimum
Bayes factor no matter what the underlying sample size is. The same is true for the calibrations
introduced in Sections 2.1 and 2.2 if the transformation from the p-value to the test statistic is
based on the quantiles of the (folded) normal distribution as described in those sections. However,
the (folded) normal distribution is often only the asymptotic distribution of the test statistic. For
small samples, such approximations should be avoided and the underlying sample size should be
taken into account when transforming the p-value to the test-statistic and then to the minimum
Bayes factor. Held & Ott (2016) proposed such sample-size adjusted minimum Bayes factors for
two-sided p-values from the #-test and F-test.

We now describe the dependence of the minimum Bayes factors on sample size in several
settings. In Section 3.1, we consider the 7-test and the F-test in the linear model under simple
alternatives. In Section 3.2, we study a class of local alternatives in the linear model, so-called
g-priors, as in Held & Ott (2016).

3.1. Simple Alternatives

Let us revisit the motivating example from Section 1.3.1, which was based on a normal test statistic
where a Bayes factor of BF(p = 0.01) = 1/13 (0.0744) with corresponding lower bound of 1/14
(0.0725) was obtained. A normal assumption is appropriate for large sample sizes, but suppose
now that the sample size 7 of the study was fairly small, with only 10 patients in each group, so
n = 20. Assume that the p-value p = 0.01 was obtained from the corresponding two-sample z-test
with # — 2 degrees of freedom. The Bayes factor then has the form

2 fin-2)(t*)

BF l’ik = )
) Sfro—2@* + 1) + fio—2 (@ — 1)

17.

where f)(.) denotes the pdf of a standard # distribution with d degrees of freedom, and t* = #*(p)
is now the (1 — p/2)-quantile of the standard ¢ distribution with » — 2 degrees of freedom. Note
that u is computed as in Equation 7, but with the standard # replacing the standard normal pdf at
both occurrences. As in Section 1.3.1, we can minimize Equation 17 with respect to x4 to obtain
the corresponding minimum Bayes factor

minBF(*) = min {BF(#*)} 18.
i

under a simple alternative. The resulting Bayes factor (Equation 17), with 1 = 2.96, n = 20, and
*(p = 0.01) = 2.88, is BF(#* = 2.88) = 1/18 (0.0550), so it is somewhat smaller than that for a
large sample size with a lower bound of minBF(#* = 2.88) = 1/18 (0.0548). This suggests that p-
values obtained from small studies may carry more (maximal) evidence against the null hypothesis
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than the very same p-values from larger studies, but this is only true for minimum Bayes factors,
not for Bayes factors.

Indeed, Figure 24 illustrates that the Bayes factor given by Equation 17 with fixed u = 2.96
of a small study can be larger than the Bayes factor of a larger study, for small enough p-values.
Spiegelhalter et al. (2004, section 4.4.3) also observe a similar nonmonotonic relationship of Bayes
factors and sample size # for fixed p-values assuming a random sample of size » from a normal
distribution and a local (normal) prior on the mean. In contrast, the minimum Bayes factor shown
in Figure 24 decreases monotonically with decreasing sample size for any p-value.

If the p-value p = 0.01 in the motivating example had been one-sided for the alternative H;:
w1 > 0, then a sample-size adjusted modification of the large-sample Bayes factor (Equation 11)
would be BE(#) = fi—2)(?)/ fiw—2)(t — 1), where the z-value ¢ is now the (1 — p)-quantile of the
standard ¢ distribution with » — 2 degrees of freedom. For u = 2.96, n = 20, and #(p = 0.01) =
2.55, this Bayes factor is BF(#) = 1/17 (0.0581), which is similar to the value of the Bayes factor for
the two-sided p-value (Equation 17) obtained above. The corresponding minimum Bayes factor

—(n—1)/2

. . ft(n—Z)(t) ( tz >

minBF(?) = min —————— = (1 + 19.
® 1>0 fru-y(t — 1) n—2

turns out to be minBF(z) = 1/19 (0.0532), so it is only slightly smaller than the minimum Bayes
factor for the two-sided case (Equation 18). It is true in general that for the same large-enough

p-value (the threshold depending on the sample size #), the minimum Bayes factor given by
Equation 19 is smaller than the one given by Equation 18. For smaller p-values, these two minimum
Bayes factors are very similar. Furthermore, the minimum Bayes factor given by Equation 19 also
decreases with decreasing sample size 7 for a fixed one-sided p-value from the #-test, so we observe
the same dependence on 7 as for the two-sided 7-test p-values.

In the following, we derive the Bayes factor for the F-test of overall significance in the standard
linear regression model with intercept «,

y=ol+X0 +e¢, 20.
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where the response vector y is of length 7, the regression coefficient vector € is of dimension
d < n — 2, the design matrix X has dimension # x d, and the errors in € are assumed to be
independent and normally distributed with zero mean and unknown residual variance o2. The
F-statistic is then given as

_ R*/d

f= 1-R)/(n—d -1y

where R? is the usual coefficient of determination, the proportion of the variance in the response

21.

variable y that can be explained from the explanatory variables X.

Under the null hypothesis Hy: 8 = 0, the F-statistic (Equation 21) has a central F distribution
withd and n —d — 1 degrees of freedom, which is used to calculate the associated p-value, the upper
tail probability at the observed F-value. Under the alternative H;: @ = 64, f has a noncentral F
distribution with 4 and » —d — 1 degrees of freedom and noncentrality parameter . The resulting
Bayes factor BF(f) can then be minimized with respect to the noncentrality parameter A.

3.2. Local g-Priors

We now outline the derivation of a minimum test-based Bayes factor based on the F-statistic and
local g-priors, as given by Johnson (2005). Suppose now we want to test the above null hypothesis
Hy: @ = 0 against the composite alternative Hy: 8 # 0. Itis typically easier to assign a prior to the
vector of regression coefficients @ under H; than to the noncentrality parameter %; the prior on
6 will then imply a prior on A. In the absence of substantive prior information, it is common to
assign the g-prior (Zellner 1986)

0|0% H, ~N(@,g0> X' X)) 22.

for fixed ¢ > 0 to @, which is invariant with respect to location-scale transformations of the
covariates (Bayarri et al. 2012).

Note that the g-prior is a local prior for Hy: @ = 0 with a covariance matrix proportional to
the inverse Fisher information matrix o2 (X’ X)~! of the regression coefficients 0. It reduces to
the normal prior described in Section 2.2 (for 8 = 0) if € is a scalar and o is known.

For the following, no additional prior distribution on o2 is required since the prior distribution
on A implied by the g-prior (Equation 22) does not depend on o [we have A/g ~ x*(d)]. By
integrating out A, one deduces that, under Hj, f/(1 + g) has a central F distribution with 4 and
n —d — 1 degrees of freedom. The corresponding test-based Bayes factor turns out to be

—(n—d—1)/2 f v

Interestingly, this test-based Bayes factor (Equation 23) is equal to the data-based Bayes factor
BE(y) for the linear model (Equation 20) obtained under the g-prior (Equation 22) on 8 | o>
combined with a reference prior f(e,02) o o=2 for the intercept @ and the residual variance
a?, as given by Liang et al. (2008). In particular, the data-based Bayes factor BF(y) depends on
the data only through the F-statistic (Equation 21), the sample size 7, and the dimension d of 6.
The Bayes factor given by Equation 23 can actually be derived under more general assumptions,
where the null hypothesis is a linear constraint on the parameter vector @, for example, the null
hypothesis that a single component of 6 is zero (Johnson 2005).

Note that BF(f) = 1 for g = 0 and BF(f) — oo for g — oo. The first result is obvious, as
the Bayes factor then compares two identical models. The second result is related to the Jeffreys-
Lindley paradox (Lindley 1957, Jeffreys 1961), which states that for large prior variances, the
Bayes factor always prefers the simpler model, no matter what the data are. In between, there is
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The dependence of the minimum Bayes factors under () a simple alternative (Equation 18) and (4) local alternatives (Equation 24 with
d = 1) on sample size for a fixed two-sided p-value from a z-test.

a unique minimum of Equation 23 for gy;, = max { f — 1,0}. By inserting the MLE gy, into the
Bayes factor (Equation 23), we obtain the minimum Bayes factor
|:1+(n7d—1)/d ](”71)/2 U7 forf > 1

FHe—d—1)/d

minBF(f) = min BF(f) = 24.
g

1 otherwise.

Note that this formula only depends on £, , and d, so it provides a convenient way to transform
an F-statistic (or the corresponding p-value) to a lower bound on the Bayes factor.

Held & Ott (2016) studied the relationship between a p-value from the F-test and the corre-
sponding minimum Bayes factor given by Equation 24. Their main findings were as follows:

1. For fixed p and fixed dimension 4, the minimum Bayes factor (Equation 24) decreases with
decreasing sample size 7.

2. For fixed p and fixed sample size 7, the minimum Bayes factor (Equation 24) decreases with
increasing dimension 4.

Figure 3 compares the minimum Bayes factor based on the local g-prior (Equation 24) for
d = 1 with the minimum Bayes factor based on simple alternatives (Equation 18) for fixed p-value
and varying sample size 7. We see the same pattern in both cases, with increasing minimum Bayes
factors for increasing sample size.

In Figure 4 we show the dependence of the minimum Bayes factor given by Equation 24
on the p-value for d = 3 and d = 4 and different sample sizes n; Held & Ott (2016) give the
corresponding plots for d = 1 and d = 2. We have added the —e p log p bound (Equation 15) as
a blue line, which is always larger than the sample-size adjusted minimum Bayes factors. We have
also added the —e ¢4 log ¢ bound (Equation 16) as a red line, which is always below the sample-size
adjusted minimum Bayes factors.

As a consequence of the Held & Ott (2016) results, the minimum Bayes factor given by
Equation 24 is largest for d = 1 and large 2. As we see in Section 4, the value of the minimum Bayes
factor in fact converges for n — oo to the local normal alternatives bound (Equation 14) with
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Minimum Bayes factors based on local g-priors (Equation 24) as a function of the p-value from an F-test. Shown are the bounds for
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15), and the red line is the —e ¢ log ¢ calibration (Equation 16).

t* = /f. The minimum Bayes factor (Equation 24) is smallest for large d and small . Standard
regularity conditions in the linear model require » > d +2, and we now consider the case z = d +3,
where f| Hy ~ F(d,2). The quantile function of f | Hy is then available in closed form (see Equa-
tion 34 in Section A.2.1), and there is a closed-form expression for the minimum Bayes factor
(Equation 24) as a function of the p-value p:

(1 p\2/d d/2
minBF(p) = (d +2) » (12 ») <d2;2) (1-p), 25.
as derived in the Appendix (Section A.2.1). We show in Section A.2.1 that the limit of Equation 25
for d — oo is the —e ¢ log ¢ calibration (Equation 16). Since the convergence is from above, the
—e g log ¢ calibration (Equation 16) is a universal lower bound on sample-size adjusted minimum
Bayes factors based on local g-priors, if we exclude the very extreme case n = d + 2, where the
minimum Bayes factor can be even smaller than the bound given by Equation 16.

Another interesting special case of the minimum Bayes factor based on the F-statistic
(Equation 24) can be obtained for d = 2. In this case, there is a closed-form relationship between
the p-value from the F-test and the F-statistic (Held & Ott 2016, equation 11), so Equation 24
can be rewritten as a p-based Bayes factor:

. 1T =107
minBF(p) = 3 [W] [1 _ pZ/(n—3)] p 26.
~ %W =) [1=pY" ] p 27.

for p < (2)""9/2; otherwise minBF(p) = 1. Held & Ott (2016) show that for fixed =,
Equation 26 is always smaller than the —e p log p calibration (Equation 15) and that Equation 27
converges from below to Equation 15 forn — co. However, it has been argued that the —e p log p
calibration (Equation 15) already provides a (lower) bound on the Bayes factor “under general
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assumptions” (Stephens & Balding 2009, p. 684) and constitutes “a best-case scenario for the
strength of the evidence in favor of H; that can arise from a given p-value” (Bayarri et al. 2016,
p. 91). This is not true for g-priors, as our analysis has shown. As illustrated in Figure 4, the
minimum Bayes factor (Equation 24) is always smaller than Equation 15 for any 4 > 2 and any
finite sample size. Even for d = 1, the standard #-test setting, the —e p log p calibration (Equation
15) can be larger than Equation 24 if 7 is small. For example, for p-values not smaller than 104,
the sample size must be » = 27 or larger, such that Equation 15 is a valid bound. For p-values not
smaller than 107, the sample size must be » = 37 or larger for Equation 15 to be valid.

4. LARGE-SAMPLE BAYES FACTORS

We saw in Section 3 that the (approximate) minimum Bayes factor given by Equation 27 con-
verges to the —e p log p calibration (Equation 15) for  — co. We now generalize that result by
establishing convergence of the minimum Bayes factor given by Equation 24 to a test-based Bayes
factor based on the deviance for general 4. We will also provide an alternative derivation of that
test-based Bayes factor in the GLM framework and analyze its dependence on d.

4.1. Some Convergence Results

It is easy to see that the Bayes factor given by Equation 17 converges to the Bayes factor given by
Equation 8 as the sample size 7 goes to infinity, since the absolute value #* = |¢| of the #-statistic
converges to the quantile in Equation 9 and the #-density in Equation 17 converges to the standard
normal density as the degrees of freedom go to infinity.

Next, we study the Bayes factor based on the F-statistic (Equation 23), which was derived
under the g-prior, as the sample size # goes to infinity. To do so, we assume a sequence of
alternatives of the form H?: § = O(n~'/?) in the linear model (Equation 20), so the size of the true
regression coefficients 6 gets smaller with increasing sample size 7. This is the case of practical
interest, because for larger 6 it would be trivial to differentiate between Hy: @ = 0 and Hy, and for
smaller 8 it would be too difficult (Johnson 2005, p. 691). Under such a sequence of alternatives,
the coefficient of determination R? and the F-statistic f tend to zero as the sample size goes to
infinity. In contrast, the deviance (or likelihood ratio test) statistic

_ maxy ¢ f(_)’|01,0,H1)
Z‘“‘)g[ max, F(y |a, Ho) }

has a limiting distribution in this setting (Johnson 2008), so it is of order O(1). For fixed deviance
z and fixed g > 0, we then obtain

lim BF(f) = BF(z), 28.

where
BF(z) = (g + )P exp (- —2—Z 29
g+12 '

is a test-based Bayes factor based on the deviance z; see Section A.2.2 for the proof of this con-
vergence result.

4.2. Generalized Linear Models

As mentioned in Section 2.4, test-based Bayes factors based on the deviance can be applied in
a wider context, including GLMs. To keep notation simple, we consider a GLM with linear
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predictor vector § = a1 + X6 and test Hy: # = 0 against the alternative H;: @ # 0. However, the
approach can easily be generalized to null hypotheses where only subvectors of @ are fixed (Hu &
Johnson 2009).

Under regularity conditions, we have the well-known result that under H, the deviance z has
an asymptotic chi-squared distribution x*(d) with 4 degrees of freedom, where 4 = dim(#) is the
dimension of the parameter of interest. The deviance z = z(p) is then a one-to-one function of
the corresponding p-value p = Pr(x*(d) > 2).

To obtain the limiting distribution under the alternative H;, we again consider alternatives of
the form H?: § = O(n~'/?). Under such a sequence of alternatives and some regularity conditions,
the distribution of the deviance converges to a noncentral chi-squared distribution with  degrees
of freedom and noncentrality parameter A = O(1) (Davidson & Lever 1970, Held et al. 2015).

4.2.1. Simple alternatives. The test-based Bayes factor BF(z) = f(z|H,)/f(z| H;) compares
the likelihood of z under the asymptotic central and noncentral chi-squared distribution. The
corresponding minimum Bayes factor can be obtained numerically by maximizing the noncentral
chi-squared density of z under the alternative H; with respect to A.

The minimum Bayes factors are very similar for different dimensions d; see Figure 54. For
larger p-values, we see the expected ordering of the minimum Bayes factors with larger values for
smaller d. For p < 0.1, the minimum Bayes factors are all below the —e p log p calibration, but
only slightly larger than the Edwards bound.

4.2.2. Local alternatives. Expression 29 can also be derived directly as a test-based Bayes factor
based on the deviance statistic z, as proposed by Johnson (2008). Assume the generalized g-prior
0| H, ~ N(0, gl ;), where ¢ > 0 and Iy denotes the expected Fisher information matrix for
6. This prior is only used implicitly in the derivation and corresponds to a gamma prior with
mean 4 - g and scale parameter 2g on the noncentrality parameter A = 0 'I5 ¢ 8 of the asymptotic
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noncentral chi-squared distribution for the deviance z under the sequence of alternatives H.
The implied approximate marginal distribution of z | H; is then gamma with mean d(g + 1) and
scale parameter 2(g + 1) (Johnson 2008, theorem 2), which serves as marginal likelihood f(z | Hy)
under the alternative. The marginal likelihood f(z | Hy) under the null hypothesis can be obtained
with g = 0. With these prerequisites, we can derive the test-based Bayes factor BF(z) given
by Equation 29 of Hy versus H, for fixed g. For example, for 4 = 1 and large sample size 7,
Equation 29 is equivalent to equation (7) proposed by Wakefield (2009) in the context of genome-
wide association studies (because the deviance and the squared Wald statistic are asymptotically
equivalent).

To determine the minimum Bayes factor, we maximize the marginal likelihood f(z|H;) with
respect to g and obtain the estimate

gw, = maxf{z/d —1,0}. 30.

Inserting Equation 30 into Equation 29 then gives (Johnson 2008, Held et al. 2015)!

minBE) — | () exp(=54) forz>d .
1 otherwise.

For any fixed p-value p = Pr(x*(d) > 2), this minimum Bayes factor (Equation 31) decreases
monotonically as 4 increases (see Figure 5b). In some special cases, the minimum Bayes factor
given by Equation 31 corresponds to minimum Bayes factors from the literature introduced in
Section 2, all shown in Figure 54: Ford = 1, minBF(z) is equivalent to the local normal alternatives
bound (Equation 14), and Held et al. (2015) show that for d = 2, where z = —2 log(p), minBF(z)
reduces to the —e plog p calibration (Equation 15). Furthermore, as the dimension d tends to
infinity, minBF(z) tends to the Edwards minimum Bayes factor minBF(¢) (Equation 12) with one-
sided #-value; see Section A.3.1 for the proof. The same dependence of the minimum Bayes factor
on the dimension d was reported by Sellke et al. (2001, table 4) for a slightly different class of local
priors.

We now return to the example mentioned in Section 1.3.2. We consider a publicly available
subgroup of the GUSTO-I (Global Utilisation of Streptokinase and Tissue Plasminogen Activator
for Occluded Coronary Arteries I) trial with » = 2,188 patients (Steyerberg 2009). In order
to develop a prediction model for the binary endpoint 30-day survival after acute myocardial
infarction, we focus on the assessment of the effects of 17 covariates listed in Held et al. (2015,
table 1) using a logistic regression analysis. Note that two potential predictors are categorical
variables with three and four levels, respectively. Application of Bayes factors based on the deviance
to a logistic regression results in Table 4, where we list for each covariate the corresponding
deviance z, the dimension 4 of the parameter of interest, the p-value p, and the minimum Bayes
factor (Equation 31). Note that the deviance is always calculated based on a comparison of the
full model with the model where the covariate of interest has been removed. Note also thatd = 3
for the factor variable “Killip class” with four levels, d = 2 for the factor variable “smoking” with
three levels (never/ex/current) and d = 1 for the remaining variables.

There are six variables with no evidence and another five variables with only weak evidence for
an association with the outcome. Three covariates show overwhelming evidence for an association
(minBF < 1/1000), and the remaining three covariates show moderate to substantial evidence with
minimum Bayes factors between 1/4.9 and 1/19.

'This is a correction of the formula given by Held et al. (2015) in the case z < d.
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Table 4  Output from a logistic regression model to identify important predictors of 30-day
survival in the GUSTO-I study

Deviance z | Dimensiond | p-Value Minimum Bayes factor

Gender 2.75 1 0.097 1/1.4
Age 75.72 1 <0.0001 <1/1000
Killip class 38.68 3 <0.0001 <1/1000
Diabetes 0.19 1 0.67 1
Hypotension 19.33 1 <0.0001 <1/1000
Tachycardia 9.12 1 0.003 1/19
Anterior infarct location 1.93 1 0.16 1/1.1
Previous myocardial 5.97 1 0.015 1/4.9
infarction

Height 0.63 1 0.43 1
Weight 2.28 1 0.13 1/1.3
Hypertension history 1.93 1 0.16 1/1.1
Smoking history 0.66 2 0.72 1
Hypercholesterolemia 0.51 1 0.48 1
Previous angina pectoris 0.68 1 0.41 1
Family history 0.45 1 0.50 1

ST elevation on ECG 8.72 1 0.003 1/16
Persistent chest pain 1.72 1 0.19 1/1.1

For each parameter of interest, the table shows the deviance z with dimension d, the p-value, and the associated minimum
Bayes factor (Equation 31) for local alternatives based on the g-prior. Abbreviation: GUSTO-I, Global Utilisation of
Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries I.

4.3. Combining Evidence

Suppose now that several two-sided p-values py, ..., p, are available from # independent studies,
for example, from different clinical trials to investigate the efficacy of the same treatment. How can
we combine the statistical evidence available from those studies into one minimum Bayes factor?
Deviance-based Bayes factors provide a convenient tool for doing so. One option would be to
compute the test-based minimum Bayes factor (Equation 31) based on the deviance z; = z(p;) for
each p-value p; with associated dimension 4;, and then compute the overall minimum Bayes factor
as the product

| [ minBF(;). 32.
i=1

To see why we are taking the product of the minimum Bayes factors, note that the Bayes factor for
the combined evidence equals the product of the Bayes factors BF(z;),7i = 1,...,n, for the single
studies by sequential updating of Bayes factors (see Goodman 2016 for a practical example). We
are interested in the minimum of this product Bayes factor, which has the product of the single
minimum Bayes factors minBF(z;) as a lower bound.

A sharper bound can be obtained by an application of Fisher’s method to combine p-values from
independent studies (Fisher 1958). He suggested computing z, = Y ._, z;, where z; = —2 log(p,)
is in fact the deviance test statistic with d = 2. Fisher argued that, under Hy, each z; follows a
chi-squared distribution with two degrees of freedom, so z is chi-squared with d;, = 2z degrees
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of freedom, which can be used to calculate a combined p-value p, = Pr(x*(2n) > 2.). To calculate
the associated minimum Bayes factor, we can therefore use Equation 31 (with d = 2#) based on
2. This approach gives a sharper (i.e., larger) bound than the product minBF with equality if all
p-values are identical. The approach can in fact be applied for any dimensions d;, 7 = 1,...,n.
Thend, = )", d; and the same inequality between the product minBF and the combined minBF
still holds; see Section A.3.2 for the proof.

For illustration, consider the original example from Fisher (1958, section 22.1), where three
tests of significance yield the p-values p; = 0.145, p, = 0.263, and p; = 0.087, and Fisher’s
method gives the combined p-value p, = 0.076. The product minimum Bayes factor (Equation 32)
(withd = 2)is then 1/2.4 (0.42) whereas the minimum Bayes factor based on the combined p-value
(with d = 6) is 1/2.2 (0.46), which is slightly larger in accordance with the proofin Section A.3.2.
If instead the p-values are based on dimension d = 1, then the combined p-value is p. = 0.098
and the product minimum Bayes factor (Equation 32) is 1/1.9 (0.53), whereas the minimum Bayes
factor based on the combined p-value (now with 4 = 3) is 1/1.7 (0.58).

5. DISCUSSION AND OUTLOOK

The main findings of this review are summarized as summary points below. We close now with
two extensions of the methodology described.

5.1. Sample-Size Adjusted Bayes Factors in Generalized Linear Models

For GLMs, marginal likelihoods under local priors on the vector of regression coefficients @, such
as generalized g-priors, are typically not available in closed form, so they need to be computed by
numerical techniques (numerical integration or Monte Carlo methods). Bayes factors based on
the deviance statistic are therefore especially appealing for GLMs as they significantly simplify
computations. However, these Bayes factors are not adjusted for sample size.

An alternative approach, which allows for sample size adjustments and is also computationally
efficient, is to derive approximate data-based Bayes factors in closed form by applying analytical
approximations—so-called integrated Laplace approximations (Wang & George 2007, Li & Clyde
2016). For example, by applying the Li & Clyde (2016) methodology, an approximate, sample-size
adjusted minimum Bayes factor for 2 x 2 contingency tables can be obtained in closed form (Ott
& Held 2017). By studying the relationship between this minimum Bayes factor and two-sided
p-values from Fisher’s exact test, Ott & Held (2017) conclude that the maximal evidence of these
p-values is inversely related to sample size. This is the same qualitative relationship as in the linear
model; see Section 3.2 and Figure 4.

5.2. Interval Null Hypotheses

One criticism of point null significance testing is that exact point null hypotheses rarely arise in
practice. Instead, researchers often aim to test if a parameter is close to the null value 6, which
corresponds to an interval null hypothesis of the form Hy: 6 € () — 4,0y + b) for some small 5.
However, Berger & Sellke (1987, p. 114) argue that “for a large number of problems testing a
point null hypothesis is a good approximation to the actual problem.” They state that if  is small,
the minimum Bayes factor for the interval null hypothesis Hy: 6 € (69 — b,6y + b) is essentially
equivalent to the minimum Bayes factor for the corresponding point null hypothesis Hy: 6 = 6,
if the same class of alternatives is considered. A similar argument is provided by Johnson (2016).

www.annualreviews.org  On p-Values and Bayes Factors

413



414

A. APPENDIX: SOME MATHEMATICAL RESULTS
A.1. The Folded Normal Distribution
A folded normal random variable X ~ FN(u, 0'2) has density function

1 x—p x4 . -
o= e G

If X is normal, i.e., X ~ N(u, c?), then | X | ~ FN(u, o2).

A.2. Results for Sample-Size Adjusted Bayes Factors

In this section, we establish two convergence results in the linear model: one for the minimum
Bayes factor based on the F-statistic and the other for the Bayes factor.

A.2.1. Convergence of the minimum Bayes factor based on the F-statistic to the —e glog ¢
calibration. Here we derive the minimum Bayes factor given by Equation 25 and show conver-
gence to the —e ¢ log ¢ calibration (Equation 16) for d — oo.

Proof. Letn =d +3,s0 f ~ F(d,2) under Hy. In this case Equation 24 simplifies (for
f>1Dto

) 1+2 d d+2)/2
mmBHf%=<f,F;d) £, 3.

and there is a closed-form expression for the F-statistic as a function of the p-value:

1

2 _
f=gla=pt—ap. 3
Hence, f > 1isequivalentto p < 1 — (1 4 2/d)~%/? and that threshold converges from

below to 1 —1/e asd — oo. By plugging Equation 34 into Equation 33 and simplifying
the expression, we find

1—(1—py¥ (d+2\"

minBF(f) = (d +2) (2 r) ( ;r ) (I —p),
—_—
——log(1—p) for d—o0 —e for d—oo

so we obtain
dlim minBF(f) = —e (1 — p) log(1 — p),
which is what we wanted to show. O
A.2.2. Convergence of the Bayes factor based on the F-statistic to the Bayes factor based

on the deviance. Here we show the convergence (Equation 28) of the Bayes factor based on the
F-statistic (Equation 23) to the Bayes factor based on the deviance (Equation 29) for n — oc.

Proof. By assumption, the deviance z and g > 0 are fixed. First, we express the test-
based Bayes factor BF(f) (Equation 23) as a function of the deviance z instead of the
F-statistic f by using Equation 21 and the identity R* = 1 — exp(—z/#). This yields
_ a2 _z mhr
BF(f) = (g + 1) [gex ( n)+1] .
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Rearranging the above formula gives

gexp (_%) n 1 (n—1)/2
g+1 ’

lim BF(f) = (g + D'’ lim [

By using the series expansion of the exponential exp(—z/7) and the result

lim,, oo (1 + x/2)"~! = exp(x) for x € R, we obtain the limit
n—1)/2
- [gep(-2)+1]"" ( g Z)
lim | >——"""—— =exp|——=>—=,
n—>00 g +1 g +12
which completes the proof. O

A.3. Results for Large-Sample Bayes Factors

In this section, two results related to the large-sample minimum Bayes factor based on the deviance
(Equation 31) are proven: first, a convergence result as the degrees of freedom of the deviance
tend to infinity, and then, the fact that the product minimum Bayes factor does not exceed the
combined minimum Bayes factor.

A.3.1. Convergence of the minimum Bayes factor based on the deviance. Here we
show convergence of the minimum Bayes factor given by Equation 31 to the Edwards bound
(Equation 12) for d — oo, adapting the proof from Held et al. (2015, appendix B).

Proof. The Edwards bound given by Equation 12 is minBF(z) = exp(—t?/2) with ¢t =
t(p) = ®~1(1 — p) for any p < 0.5. For large 4, it is then sufficient to consider the case
z > d, where the minimum Bayes factor (Equation 31) is

an _
minBF(z) = (;) exp (_z 5 d) ;

here, zis the (1 — p)-quantile of the chi-squared distribution with d degrees of freedom.
We will show that for d — oo and fixed p-value p < 0.5, the ratio minBF(z)/ exp(—#*/2)
is 1.

First, note that with d — oo, the standardized chi-squared distribution converges to
a standard normal, so (z — d)/+/2d ~N(0, 1) and hence z ~ d + ~/2d . Plugging this

into Equation 31, we obtain

minBF(z) [+ 21 d/ze _\/ZHZ/Z
exp(—2/2) d P\7V2

= exp [—at + a’log(1 +t/a) + 1*/2]

with # = /d/2. Now for large d, the term t/a is small, and hence we can apply a
second-order Taylor expansion of log(l + x) ~ « — x?/2 around x = 0. This yields

minBF(2) ,(t 1 t?
— 7 — - — — | = 0)=1
exp(—1?/2) op [ e a  2a? * 2 exp(0) =1,
which proves the statement. o
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A.3.2. Combining minimum Bayes factors. Here we prove the claim made in Section 4.3 that
the product minimum Bayes factor is smaller than or equal to the combined minimum Bayes factor

based on z; = )", z; and establish when equality holds.

Proof. Note that the minimum Bayes factor given by Equation 31 is obtained by min-
imizing the Bayes factor given by Equation 29 with respect to g. We thus start by
considering the product and the combined Bayes factor based on Equation 29. This
product Bayes factor is

- N _ G2 o (8 F
[Teve) = [T+ v en (- %53

i=1

=T1@+ 1" exp|-% 52 35.
[J@+D eXP( 2 o1z

i=1

and the combined Bayes factor based on z, withd, = Y""_, d; is

BF(z,) = (g + 1)/ exp (-ggﬁ %*) . 36.
For g; = g foralli = 1,...,n, the product Bayes factor (Equation 35) is equal to the
combined Bayes factor (Equation 36). To obtain the product minimum Bayes factor,
each g; in Equation 35 is optimized separately to minimize the corresponding term for
i =1,...,n. This leads to a minimum Bayes factor that does not exceed the combined
minimum Bayes factor obtained by choosing ¢ to minimize Equation 35 under the
restriction g; = g foralli = 1,...,n. It follows that the product minimum Bayes factor
cannot be larger than the combined minimum Bayes factor.

To see when equality holds, note that the estimates of g; for the product minimum
Bayes factor are §; = max{z; /d; — 1,0} and the estimate of g for the combined minimum
Bayes factor is § = max{z,/d; — 1,0}. So equality holds if all 2; (or equivalently all p;)
and all 4; are equal orif z; < d; foralli =1,...,n. O

SUMMARY POINTS

1. p-Values are indirect measures of the evidence against a point null hypothesis H. Bayes
factors provide a quantitative summary of the direct evidence against H.

2. p-Values can be transformed to minimum Bayes factors. A minimum Bayes factor quan-
tifies the maximal evidence of a p-value against a point null hypothesis within a certain
class of alternative hypotheses.

3. The maximal evidence of a p-value depends on how the p-value has been calculated. It
generally decreases with increasing sample size but increases with increasing dimension
of the parameter of interest. These features should be taken into account when p-values
are transformed to minimum Bayes factors in routine applications.

4. The maximal evidence of a p-value also depends on the underlying study design: It
matters whether the p-value comes from a confirmatory study with a well-defined simple
alternative or from an exploratory analysis used to generate hypotheses, where local
alternatives are more appropriate.
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5. The commonly used —e p log p calibration represents a lower bound on the Bayes factor
for local alternatives on scalar parameters (d = 1) in large samples, but not necessarily
for small samples or for larger dimensions of the parameter of interest.
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