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Abstract

The important role of finite mixture models in the statistical analysis of
data is underscored by the ever-increasing rate at which articles on mixture
applications appear in the statistical and general scientific literature. The
aim of this article is to provide an up-to-date account of the theory and
methodological developments underlying the applications of finite mixture
models. Because of their flexibility, mixture models are being increasingly
exploited as a convenient, semiparametric way in which to model unknown
distributional shapes. This is in addition to their obvious applications where
there is group-structure in the data or where the aim is to explore the data
for such structure, as in a cluster analysis. It has now been three decades since
the publication of the monograph by McLachlan & Basford (1988) with an
emphasis on the potential usefulness of mixture models for inference and
clustering. Since then, mixture models have attracted the interest of many
researchers and have found many new and interesting fields of application.
Thus, the literature on mixture models has expanded enormously, and as a
consequence, the bibliography here can only provide selected coverage.
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1. INTRODUCTION
1.1. Flexible Method of Modeling

The importance of finite mixture models in the statistical analysis of data is evident in the ever-
increasing rate at which articles on theoretical and practical aspects of mixture models appear in
the statistical and general scientific literature. This is because finite mixtures of distributions are
being widely used to provide computationally convenient representations for modeling complex
distributions of data on random phenomena. Fields in which mixture models have been successfully
applied include agriculture, astronomy, bioinformatics, biology, economics, engineering, genetics,
imaging, marketing, medicine, neuroscience, psychiatry, and psychology, among many other fields
in the biological, physical, and social sciences. In these applications, finite mixture models underpin
a variety of techniques in major areas of statistics, including cluster and latent class analyses,
discriminant analysis, image analysis, and survival analysis, in addition to their more direct role
in data analysis and inference of providing descriptive models for distributions where a single
component distribution is apparently inadequate.

In the statistical literature, there are the books on mixture models by Everitt & Hand
(1981), Titterington et al. (1985), McLachlan & Basford (1988), Lindsay (1995), Bohning
(1999), McLachlan & Peel (2000a), Frithwirth-Schnatter (2006), Mengersen et al. (2011), and
McNicholas (2017). In addition, mixture models are addressed in several books involving classi-
fication, machine learning, and other fields in multivariate analysis. The reader is referred to the
references in these aforementioned books on mixture models and papers cited in this article for
further coverage of the topic.

1.2. A Brief History

One of the first major analyses involving the use of mixture models was undertaken nearly 125 years
ago by the famous biometrician Karl Pearson. In his now-classic paper, the famous biometrician,
statistician, and eugenicist Pearson (1894) fitted a mixture of two normal probability density
functions with different means ; and p; and different variances o and o3 to some crab data
provided by his colleague, the evolutionary biologist Weldon (1892, 1893). The possibility of
resolving a normal mixture into its constituent components was, of course, implicit in Quetelet’s
(1846, 1852) work and was mentioned explicitly by Galton (1869); Stigler (1986, chapter 10)
provides an absorbing account of this early work on mixtures. Another early reference on mixtures
is Holmes (1892), who brought in the concept of mixtures of populations in his suggestion that
an average alone was inadequate in consideration of wealth disparity. In another paper predating
Pearson’s early attempt on mixtures, Newcomb (1886) suggested an iterative reweighting scheme
that can be viewed as an application of the EM algorithm of Dempster et al. (1977) to compute
the common mean of a mixture in known proportions of a finite number of univariate normal
distributions with known variances. The reader is referred to McLachlan & Basford (1988, section
1.2) and McLachlan & Peel (2000a, section 1.1.2) for more discussion and references on the history
of mixture models.

But apart from some contributions by Jeffreys (1932) and Rao (1948), the use of maximum
likelihood (ML) for fitting mixture models received little attention until the 1960s. Major papers
around this time on an iterative scheme for the ML approach to the fitting of mixture distributions
were produced by Day (1969) and Wolfe (1970), who also wrote a number of technical reports.
However, it was not until Dempster et al. (1977) formalized this iterative scheme in a general
context through their expectation—maximization (EM) algorithm that the convergence properties
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of the ML solution for the mixture problem were established on a theoretical basis. The EM
algorithm proved to be a timely catalyst for further research into the applications of finite mixture
models. This can be witnessed by the subsequent stream of papers on finite mixtures in the
literature, commencing with, for example, Ganesalingam & McLachlan (1978) and O’Neill (1978).

2. FORMULATION OF MIXTURE DISTRIBUTION

2.1. Basic Definition

The probability density function, or probability mass function in the discrete case of a finite
mixture distribution of a p-dimensional random vector Y, takes the form

g
fo) =7 fiy), L
i=1
where the mixing proportions 7; are nonnegative and sum to one and where the f;(y) are the
component densities. We refer to the f;(y; ;) as densities, since even if the vector Y is discrete, we
can still view the f;(y) as densities by the adoption of counting measure. Typically, the component
densities are taken to be known up to a vector @; of parameters. In this case, we can write the
mixture density as

g
fo; ®) =Y "7 fi(y,00), 2.
i=1
where W = (§', 7, ..., m,_1)" denotes the vector of unknown parameters and where &, consists of
the elements of the #; known a priori to be distinct. Here, the superscript T denotes transposition.
In many applications, the component densities f;(y; ;) are taken to belong to the same parametric
family, for example, the multivariate normal.

In some applications, the component densities are taken to be different. A particular case of
this, called a nonstandard mixture, is that for which g = 2, with one of the component distribu-
tions being degenerate, concentrated on a single value. The report of the Panel on Nonstandard
Mixtures of Distributions (1989) explores nonstandard mixtures in detail.

In the case of common component densities, f(y; @), the finite mixture model given by Equa-
tion 2 can be generalized to the more general form in which

FO) = fly H) = / F(y:0)dH ), 3.

where H(-) is a probability measure on the parameter space.

2.2. Identifiability of Mixture Distributions

A parametric family of densities f(y; W) is identifiable if distinct values of the parameter ¥ de-
termine distinct members of the family of densities { f(y; ¥) : ¥ € @}, where € is the specified
parameter space. Identifiability for mixture distributions is defined slightly differently. For exam-
ple, if all the g component densities in Equation 2 belong to the same parametric family, then
f(y; W) is invariant under the g! permutations of the component labels in W.

Let f(y; W) = Y%, 7 fi(y; 0,) and f(y; ¥*) = Y5 77 fi(y; 07) be any two members of a
parametric family of mixture densities. This class of finite mixtures is said to be identifiable for
¥ e Qif f(y; ¥) = f(y; ¥*) if and only if g = g* and we can permute the component labels so
thatm; =} and fi(y; 0;) = fi(y; 0)) (=1, ..., g). Here, = implies equality of the densities
for almost all y; relative to the underlying measure on R? for f(y;; ¥).
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The lack of identifiability of ¥ due to the interchanging of component labels is of no concern
in practice, as it can be easily overcome by the imposition of an appropriate constraint on W.
However, it can be a major problem in a Bayesian framework where posterior simulation is used
to make inferences from the mixture model. In this context, it is known as the label-switching
problem.

Another approach to the identifiability problem is to use an identifying function (Kadane 1974).
This is essentially the same as Redner’s (1981) approach of using the quotient topological space £
obtained by mapping equivalent values of W into a single point. Redner (1981) extended Wald’s
(1949) results on the consistency of the ML estimator of ¥ by using the quotient topological
space .

Titterington et al. (1985, section 3.1) gave a lucid account of the concept of identifiability for
mixtures. They pointed out that most finite mixtures of continuous densities are identifiable; an
exception is a mixture of uniform densities. Teicher (1960) showed that a finite mixture of Pois-
son distributions is identifiable, whereas mixtures of binomial distributions are not identifiable
if N < 2g —1, where N is the common number of trials in the component binomial distribu-
tions. Yakowitz & Spragins (1968) showed that finite mixtures of negative binomial component
distributions are identifiable.

3. INTERPRETATION OF MIXTURE MODELS

3.1. Conceptualization

WeletY, ..., Y, denote a random sample of size 7, where Y is a p-dimensional random vector
with probability density function given by Equation 2. The vector of the observed values y; on
the Y; is denoted by y,e = (0, ..., )"

An obvious way of generating a random vector ¥; with the g-component mixture density f(y;)
given by Equation 2 is as follows. Let Z; be a categorical random variable taking on the values
1, ..., g, with probabilities 7y, ..., 4, respectively, and suppose that the conditional density of
Y; given Z =1iis fi(y;;0)(@ =1, ..., g). Then the marginal density of ¥ is given by f(y; ¥).
In this context, the variable Z; can be thought of as the component label of the vector ;. It is
convenient to work with a g-dimensional label vector Z; in place of the single categorical variable
Z;,where the ith element of Z;, Z;; = (Z;); is defined to be one or zero, according to whether the

component of origin of ¥ in the mixture is equal toi ornot (i =1, ..., g). Thus, Z; is distributed
according to a multinomial distribution consisting of one draw on g categories with probabilities
Ty, ..., Tg; that s,
g
21 2 Z4j
priZ; = zj} =/ m,” .. Y, Zz,-jzl. 4,
i=1
We write Z; ~ Mult, (1, n), where & = (my, ..., m,)".

The posterior probability that ¥; has arisen from the /th component of the mixture given
Y; = y; can, by Bayes’ Theorem, be expressed as

Ly W) =priZ;=11Y; =y} =m fi(y;;0)/fys¥) G=1,...,g7=1,...,m). 5.

In the interpretation above of a mixture model, an obvious situation where the g-component
mixture model (Equation 1) is directly applicable is where each ¥ is drawn from a population G
which consists of g groups, G, ..., Gy, in proportions i, ..., 7,. If the density of ¥; in group G;
is given by fi(y;; 0;) fori =1, ..., g, then the density of ¥; has the g-component mixture form,
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as in Equation 1. In this situation, the g components of the mixture can be physically identified
with the g externally existing groups, Gy, ..., G,.

However, there are also many examples involving the use of mixture models in which the
components cannot be identified with externally existing groups as above. In some instances, the
components are introduced into the mixture model to allow for greater flexibility in modeling
a heterogeneous population that is apparently unable to be modeled by a single component dis-
tribution. At the extreme end of this exercise, we obtain the nonparametric kernel estimate of a
density if we fit a mixture of g = 7 components in equal proportions 1/z, where # is the size of
the observed sample.

Thus, it can be seen that mixture models occupy an interesting niche between parametric
and nonparametric approaches to statistical estimation. Mixture model-based approaches are
parametric in the sense that parametric forms fi(y;; #;) may be specified for the component
densities, but they can also be regarded as nonparametric by allowing the number of components
g to grow.

3.2. Density Estimation

The normal mixture model given by Equation 2 with normal components can be used to estimate an
unknown density function. This is because the set of all normal mixture densities is dense in the set
of all density functions under the L1 metric (see Li & Barron 1999). Roeder & Wasserman (1997)
showed that when a normal mixture model is used to estimate a density nonparametrically, the
density estimate that uses the Bayesian information criterion (BIC) of Schwarz (1978) to select the
number of components in the mixture is consistent (see also Leroux 1992). The criterion of BIC
is defined to be twice the negative of the log likelihood penalized by the addition of log# times
the number of unknown parameters.

In the case where the number of components g is known along with the component labels
specified by zy, ..., ,, this statistical learning problem would be termed supervised classification
in the machine learning literature. In the present context, we have the unsupervised classifica-
tion problem where the indicator variables 2y, ..., 2, are unknown and where the number of
components g may also be unknown.

3.3. Role of Mixture Models in Clustering of Independent and Identically
Distributed Data

The mixture model given by Equation 2 can be used to provide a model-based approach to clus-
tering of the observed data in y,;, by conceptualizing that y,, ..., y, come from a mixture in pro-
portions 7, ..., 7, of g groups Gi, ..., G, in which ¥; has density fi(y;; 01), ..., fy(y;; 0,),
respectively. This is irrespective of whether these groups do externally exist.

For clustering purposes, each component in the mixture model given by Equation 2 is usually
taken to correspond to a cluster. The posterior probability that the jth observation y; arose from
group G; is given by the fitted posterior probability,

Ty W= 0)/f(s W) G=1,...,gj=1,...,n), 6.

where W denotes an estimate of W.

A probabilistic clustering of the data y,, ..., y, into g clusters can be obtained in terms of the
fitted posterior probabilities of component membership 7;(y;; Wi=1..,g).
An outright partitioning of the observations into g nonoverlapping clusters C1, ..., Cq is ef-

fected by assigning each y; to the group G; to which it has the highest estimated posterior
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probability of belonging. That is, the ith cluster C; contains those observations y; with 2; =
(%j)l = 1, where

2; =1, ifi = argmbaxf;](yj; ),
=0, otherwise. 7.

As the notation implies, %; can be viewed as an estimate of z; which, under the assumption that the
observations come from a mixture of g groups Gy, ..., Gg, is defined to be one or zero according
to whether y; did or did not arise from G; (i = 1, ..., ).

The above rule for assigning the unclassified data points y; to the g groups corresponds to
the Bayes rule of allocation in the supervised classified case with known parameter vector ¥
(McLachlan 1992, section 1.3).

4. ESTIMATION OF MIXTURE DISTRIBUTIONS
4.1. Method of Moments

As noted in Section 1.2, one of the first major analyses involving mixture models was undertaken
by Pearson (1894), who used the method of moments to fit a mixture of two normal distributions
with different means and different variances. It required the solving of a nonic polynomial. In
spite of this, the method of moments remained popular until the advent of the EM algorithm
that facilitated the computation of ML estimates. However, work by Lindsay and Furman revived
interest in moment estimates in certain contexts, particularly in the case of mixtures of normal
densities with equal variances (see Furman & Lindsay 1994a,b, and the references therein).

4.2. Maximum Likelihood Estimation

As remarked above, since the advent of the EM algorithm, ML has been by far the most commonly
used approach to the fitting of mixture distributions. The application of the EM algorithm for the
computation of the ML estimates for parametric mixture models is considered in the next section.

Increasing attention is being given to the use of the minorization-maximization (MM) algo-
rithm (Hunter & Lange 2004, Lange 2013) for the computation of ML estimates for mixtures in
situations where the E-step is not straightforward, as in Nguyen & McLachlan (2016a,b).

The so-called nonparametric ML estimation of the mixing distribution H in Equation 3 has
also attracted attention, as reviewed in McLachlan (2016) (see also Hall & Zhou 2003, Chen 2017).
In spite of the potential generality of the mixing distribution H, there is a likelihood-maximizing
measure that is concentrated on a support of cardinality that is at most that of the set of distinct
data points. In other words, a finite mixture maximizes the likelihood (see Lindsay 1995 and the
references therein).

5. APPLICATION OF EXPECTATION-MAXIMIZATION ALGORITHM
TO FINITE MIXTURES

Here, we describe the implementation of the EM algorithm for ML estimation of mixture dis-
tributions. As remarked earlier, the EM algorithm greatly stimulated interest in the use of finite
mixture distributions to model heterogeneous data. This is because the fitting of mixture models
by ML is a classic example of a problem that is simplified considerably by the EM’s conceptual
unification of ML estimation from data that can be viewed as being incomplete. Indeed, almost
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all the post-1977 applications of mixture modeling reported in the books on mixtures use the EM
algorithm.
The ML estimate of W, W is given by an appropriate root of the likelihood equation,

9log L(¥)/dW = 0, 8.

where L(¥) denotes the likelihood function for ¥ formed from the observed data y,,,

n g
log L(¥) = Zlog {Zﬂiﬁ(yj; 0:‘)} . 9.
j=1 i=1

Solutions of Equation 8 corresponding to local maximizers of log L(¥) can be obtained via the
EM algorithm of Dempster et al. (1977) (see also McLachlan & Krishnan 2008).

5.1. Specification of Expectation-Maximization Framework

It is straightforward, at least in principle, to find solutions of Equation 8 using the EM algo-
rithm. It is easy to program and proceeds iteratively in two steps, E (for expectation) and M (for
maximization).

In the EM framework for this mixture problem, the observed data y,, ..., y, are regarded
as being incomplete. Each y; is conceptualized to have arisen from one of the component dis-
tributions of the mixture model to be fitted with z; = (z;); equal to one or zero according to
whether y; has arisen or not from the ith component distribution. This is irrespective of how the
observed data y,,, were generated. The distribution of the random vector Z; corresponding to z;
is specified by Equation 4.

The complete-data y.y,, vector is taken to be

_ T TN\T
ycomp - (yobs7 z ) ’ 10.

where z = (2], ..., z1)". For independent data, it is appropriate to assume that the random
indicator-vectors Zi, ..., Z, corresponding to 21, ..., %,, are distributed according to the multi-
nomial distribution
Zi, ..., Z, "% Mule(1, 7). 11.
For the specification of the complete-data vector given by Equation 10, the complete-data log
likelihood for W, log L.(¥), is given by
g

log L.(¥) = Z Zz,-j{logm +log fi(y;; 0:)}- 12.

i=1 j=I

5.2. E-step

The addition of the unobservable data of the indicator variables in 2z to the problem is handled by
the E-step, which takes the conditional expectation of the complete-data log likelihood, log L.(¥),
given the observed data y.,, = (], ..., ¥])7, using the current fit for ¥. Let ¥© be the value
specified initially for W. Then, on the first iteration of the EM algorithm, the E-step requires the
computation of the conditional expectation of log L.(¥) given y,;, using ¥ for ¥, which can
be written as

Q(¥; W) = E 0 {log Le(¥) | Yops)- 13.

The expectation operator E has the subscript ¥ to explicitly convey that this expectation is being
effected using W for W.
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Tt follows that on the (k 4+ 1)th iteration, the E-step requires the calculation of Q(¥; ¥®), where
W® is the value of W after the kth EM iteration. As the complete-data log likelihood, log L.(¥),
is linear in the unobservable data z;, the E-step [on the (k + 1)th iteration] simply requires the
calculation of the current conditional expectation of Z; given the observation y;, where Z; is the
random variable corresponding to z;. Now

Eyo(Zi | y;) = prywlZy = 1] y;} = 1(y;; ¥), 14.

where, corresponding to Equation 6,
u(y;; ¥O) =7 fi(y;; 00/ F (3,5 w®) 15.
fori=1,...,g; j=1,...,n Using Equation 14, we have, after taking the conditional expec-

tation with W = W® of Equation 12 given y,, that

g n
QY W) =3 > ni(y;; ¥)logm; + log fi(y; 0:))- 16.
i=1 j=1
By using soft allocation through the use of the fractional values of the posterior probabilities
5(y; W®) one avoids the biases that are incurred with a hard allocation where the observations
y, are assigned outright to the components on each iteration. This latter procedure corresponds

j
to the so-called classification ML approach (see, for example, McLachlan 1975, 1982).

5.3. M-step

The M-step on the (k + 1)th iteration requires the global maximization of Q(¥; W®y with respect
to W over the parameter space @ to give the updated estimate W*). For the finite mixture

model, the updated estimates 7“*" of the mixing proportions 7; are calculated independently of

the updated estimate £**?

of the parameter vector £ containing the unknown parameters in the
component densities.

If the z;; were observable, then the complete-data ML estimate of 7r; would be given simply by
A=Y z/n  (=1,...,9. 17.

As the E-step simply involves replacing each z; with its current conditional expectation 7;(y;; L))
in the complete-data log likelihood, the updated estimate of 7; is given by replacing each z; in
Equation 6 by 7;(y; ¥®) to give

J'ri(kﬂ) = Zfi()’j; w®)/p i=1,...,9. 18.
j=1
Thus, in forming the estimate of 7; on the (k + 1)th iteration, there is a contribution from each
observation y; equal to its (currently assessed) posterior probability of membership of the ith
component of the mixture model.
Concerning the updating of & on the M-step of the (¢ + 1)th iteration, it can be seen from
Equation 16 that £*™" is obtained as an appropriate root of
g 7
DY nly; ¥Walog £i(y;; 0,)/0 = 0. 19.
i=1 j=1
One nice feature of the EM algorithm is that the solution of Equation 19 often exists in closed
form as with the normal mixture model.
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The E- and M-steps are alternated repeatedly until the difference log L(¥**V) — log L(¥®)
changes by an arbitrarily small amount in the case of convergence of the sequence of likelihood
values {L(¥®)}. Dempster et al. (1977) showed that the likelihood function L(¥) is not decreased
after an EM iteration; that is,

LOw*Dy > Lw®) 20.

for k = 0,1,2, .... Hence, convergence must be obtained with a sequence of likelihood values
{L(¥®)} that are bounded above. In almost all cases, the limiting value L* is a local maximum. A
detailed account of the convergence properties of the EM algorithm in a general setting has been
given by Wu (1983), who addressed, in particular, the problem that the convergence of L(¥®) to
L* does not automatically imply the convergence of ¥® to a point ¥*; McLachlan & Krishnan
(2008) provide further details.

Let W be the chosen solution of the likelihood equation. For an observed sample, W is usually
taken to be the root of Equation 8 corresponding to the local maximizer at which the likelihood is
largest. That is, in those cases where L(W¥) has a global maximum in the interior of the parameter
space, W is the global maximizer, assuming that the global maximum has been located.

The EM algorithm needs to be started from a variety of initial values for the parameter vector
W or for a variety of initial partitions of the data into g groups. The latter can be obtained by
randomly dividing the data into g groups corresponding to the g components of the mixture model
and estimating the component parameters as if these g groups provide a perfect segmentation of
the data with respect to the g components. With random starts performed in this manner, the effect
of the central limit theorem tends to have these initial estimates of the component parameters
being similar, at least in large samples. Nonrandom partitions of the data can be obtained via some
clustering procedure such as k-means. Also, Coleman et al. (1999) proposed some procedures for
obtaining nonrandom starting partitions.

6. BAYESIAN ANALYSIS

We consider here the case of a proper prior density p(¥) for the parameter vector W. In the
following, we shall use p(-) as a generic notation for a density function. We can write the posterior
density of W as

p(¥ | y)=C' L)) =C" Y L(¥)p(z| ¥)p(¥), 21.

where p(z | ¥) denotes the conditional density of Z given W. The normalizing constant C in
Equation 21 is given by

C= / D L(¥)p(z| W)p(¥) dW. 22.

If a conjugate prior is specified, then the posterior density of ¥ can be written in closed form.

In Equation 22, the sum is over all possible values of z defining the component membership of
¥; G =1, ..., n) with respect to the g components. Thus, its direct use is only feasible with small
sample sizes. We can approximate posterior quantities of interest through the use of Markov chain
Monte Carlo (MCMC) methods. Such methods allow the construction of an ergodic Markov chain
with stationary distribution equal to the posterior distribution of the parameter of interest, here
W, containing the parameters in the mixture model. Gibbs sampling achieves this by simulating
directly from the conditional distribution of a subvector of ¥ given all the other parameters in ¥

(and NZ obs)'
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The unobservable indicator-vector zis introduced, and ¥ is augmented by z during the Gibbs
sampling. Thus, samples for the missing-data vector zand the parameter vector ¥ are alternately
generated, producing a missing-data chain and a parameter chain. Among other sampling methods,
there is the Metropolis—Hastings algorithm, which, in contrast to the Gibbs sampler, simulates
from a convenient proposal distribution and then accepts the proposed value with some defined
probability. Diebolt & Robert (1994) took an approach based on the data augmentation ideas of
Tanner & Wong (1987) (see also Lavine & West 1992, Escobar & West 1995). A key feature
of Lavine & West (1992) is the use of the Dirichlet hyperpriors on the prior of @ in contexts
where the number of components is not specified. The number of components eventually chosen
is dictated by the values of the hyperparameters. Robert (1996) provides a useful survey of the
Bayesian approach to mixtures; see also Mengersen et al. (2011).

7. NORMAL MIXTURES

7.1. Invariance of Component Distributions

Frequently, in practice, the clusters in the case of Euclidean data are essentially elliptical, so
that it is reasonable to consider fitting mixtures of elliptically symmetric component densities.
Within this class of component densities, the multivariate normal density is a convenient choice
given its computational tractability. With the application of the EM algorithm, the updates of the
component means and covariance matrices exist in closed form on each M-step.

One attractive feature of adopting mixture models with elliptically symmetric components such
as the normal is that the implied clustering is invariant under affine transformations of the data,
that is, invariant under transformations of the vector y of the form, y — Cy + a4, where C is a
nonsingular matrix. If the clustering of a procedure is invariant under only diagonal C, then it is
invariant under change of measuring units but not rotations. But, as commented upon by Hartigan
(1975), this form of invariance is more compelling than affine invariance.

7.2. Restrictions on Covariance Matrices

In practice, consideration has to be given to the problem of relatively large local maxima that occur
as a consequence of a fitted component having a very small (but nonzero) estimate of the variance
for univariate data, or estimated generalized variance (that is, the determinant of the estimated
covariance matrix) for multivariate data. Such a component corresponds to a cluster containing
a few data points either relatively close together or, in the case of multivariate data, almost lying
in a lower-dimensional subspace. There is thus a need to monitor the relative size of the fitted
mixing proportions and of the component generalized variances to identify these spurious local
maximizers and to avoid the EM sequence not converging at all if the likelihood is unbounded, as
in the case of unrestricted component-covariance matrices. Another approach is to constrain the
generalized variances of the component-covariance matrices, or equivalently their eigenvalues, as
reviewed by Garcia-Escudero et al. (2018).

Under the homoscedasticity assumption of equal X;, the likelihood function L(¥) will be
bounded. A further simplification is to take the common component-covariance matrix X to be
spherical; that is, ¥ = o I, where I denotes the p x p identity matrix. In this case, the normal
mixture model is no longer invariant under change of scale. The latter constraint means that the
clusters produced tend to be spherical in shape. If we also take the mixing proportions to be in
equal proportions 1/g, then it is equivalent to a soft version of #-means clustering.
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7.3. Mixtures of Factor Analyzers

The normal mixture model with unrestricted component-covariance matrices in its nor-
mal component distributions is a highly parameterized one, with 1p(p+1) parameters for
each component-covariance matrix X; (/ = 1, ..., g). As an alternative to taking the component-
covariance matrices to be the same or diagonal, one might wish to adopt some model for the
component-covariance matrices that is intermediate between homoscedasticity and the unre-
stricted model. To this end, Banfield & Raftery (1993) introduced a parameterization of the
component-covariance matrices X; based on a variant of the standard spectral decomposition of
X, (i =1,...,g) (see also Fraley & Raftery 2002). However, if p is large relative to the sample
size n, it may not be possible to use this decomposition to infer an appropriate model for the
component-covariance matrices. Even if it is possible, the results may not be reliable due to po-
tential problems with near-singular estimates of the component-covariance matrices when p is
large relative to 7.

A common approach to reducing the number of dimensions is to perform a principal component
analysis (PCA). But, as is well known, projections of the data y; onto the first few principal
axes are not always useful in portraying the group structure. Another approach for reducing
the number of unknown parameters in the forms for the component-covariance matrices is to
adopt the mixture of factor analyzers model, as considered in McLachlan & Peel (2000b). This
model was originally proposed by Ghahramani & Hinton (1997) and Hinton et al. (1997). With
the mixture of factor analyzers model, the ith component-covariance matrix X; has the form
Y, =B+ D (i=1,...,g),where B;isa p x ¢ matrix of factor loadings and D; is a diagonal
matrix. It assumes that the component correlations between the observations can be explained by
the conditional linear dependence of the latter on ¢ latent or unobservable variables specific to the
given component. Unlike the PCA model, the factor analysis model enjoys a powerful invariance
property: Changes in the scales of the variables in y appear only as scale changes in the appropriate
rows of the matrix B; of factor loadings. If the number of factors ¢ is chosen to be sufficiently
smaller than p, the factor-analytic representation of the component-covariance matrices reduces
the number of free parameters to be estimated. The mixtures of factor analyzers model can be
fitted using the alternating expectation—conditional maximization (Meng & van Dyk 1997).

In practice, consideration has to be given to the number of factors ¢ in the mixture of factor
analyzers model. One obvious approach is to use BIC. An alternative approach is to use the
likelihood-ratio test statistic (LRTS). For tests on g, it is well known that regularity conditions do
not hold for the usual chi-squared approximation to the asymptotic null distribution of the LRTS
to be valid. This is also the case for tests on ¢ at a given level of g (see Drton & Plummer 2017).

Back et al. (2010) considered how this factor-analytic approach can be modified to provide a
greater reduction in the number of parameters. They termed their approach mixtures of com-
mon factor analyzers because the matrix of factor loadings is common to the components before
the component-specific rotation of the component factors to make them white noise (see also
Montanari & Viroli 2010, Viroli 2010).

Garcia-Escudero et al. (2016) considered the joint role of trimming and constraints in robust
estimation for mixtures of normal factor analyzers. More recently, Viroli & McLachlan (2017)
considered deep normal mixture models by introducing layers of factors into the model.

7.4. High-Dimensional Data

In situations where the sample size  is small relative to the dimension p, it might not be practical
to fit mixtures of factor analyzers, as it would involve a considerable amount of computation time.
Thus, initially, some of the variables in the observation vector may have to be removed. Indeed,
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the simultaneous use of too many variables in the cluster analysis may serve only to create noise
that masks the effect of a smaller number of variables. Also, the intent of the cluster analysis may
not be to produce a clustering of the observations on the basis of all the available variables, but
rather to discover and study different clusterings of the observations corresponding to different
subsets of the variables.

Therefore, McLachlan etal. (2002) developed the so-called EMMIX-GENE procedure, which
has two optional steps before the final step of clustering the observations. The first step considers
the selection of a subset of relevant variables from the available set of variables by screening the
variables on an individual basis to eliminate those thatare oflittle use in clustering the observations.
Even after this step has been completed, too many variables may still remain. Thus, there is a second
step in EMMIX-GENE, in which the retained variables are clustered (after standardization) into
a number of groups on the basis of Euclidean distance so that variables with similar profiles are
put into the same group.

Another way to proceed with the fitting of mixture models to high-dimensional data is to use a
penalized approach, as adopted by Pan & Shen (2007) and Zhou & Pan (2009). Recently, Witten
& Tibshirani (2010) provided a framework for variable selection in a clustering context; readers
are also directed to the references therein, including Raftery & Dean (2006) and Maugis et al.
(2009), who considered the variable selection problem in terms of model selection. Xie etal. (2010)
considered a penalized version of mixtures of factor analyzers.

8. EXTENSIONS OF NORMAL MIXTURE MODELS

8.1. t-Mixtures

McLachlan & Peel (1998) first suggested the use of mixtures of 7-distributions to provide a robust
extension to mixtures of normals (see also Peel & McLachlan 2000). The z-distribution adopted
for the ith component density of ¥; can be characterized as being distributed N(u;, X;/u;), given
the realization #; of the latent random variable U; having a two-parameter gamma distribution
with equal parameters v;/2 (i = 1, ..., g). The value #; is declared to be missing, as well as the
component-indicator variables z; in the EM framework. McLachlan & Peel (1998) implemented
the E- and M-steps of the EM algorithm and its variant, the ECM (expectation—conditional max-
imization) algorithm for the ML estimation of multivariate #-components. The ECM algorithm
proposed by Meng & Rubin (1993) replaces the M-step of the EM algorithm by a number of
computationally simpler conditional maximization steps. As v; tends to infinity, the #-distribution
approaches the normal distribution. Hence, this parameter v; may be viewed as a robustness
tuning parameter. It can be fixed in advance, or it can be inferred from the data for each compo-
nent. McLachlan et al. (2007) and Baek & McLachlan (2011) considered mixtures of z-factor and
t-common factor analyzers, respectively.

8.2. Some Other Robust Mixture Models

Coretto & Hennig (2017) proposed the optimally tuned robust improper ML estimator
(OTRIMLE) for robust clustering based on the multivariate normal model for clusters. It is in-
spired by the addition of a uniform noise component to a normal mixture (Banfield & Raftery 1993).
The OTRIMLE uses an improper constant density for modeling outliers and noise. This is chosen
optimally so that the nonnoise part of the data looks as close to a Gaussian mixture as possible.

Garcia-Escudero et al. (2008) proposed a general robust approach to robust cluster analysis via
trimming, which they considered further in the context of mixture models in a series of papers as
referenced in Garcia-Escudero et al. (2018).
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8.3. Skew Normal/t-Mixture Models

The discussions so far have been focusing on normal component densities. However, in many
applications, for example, finance and cytometry, the clusters within the data are asymmetric
and exhibit other nonnormal features. In recent years, substantial progress has been made in the
literature to explore the use of nonnormal distributions for mixture models. In particular, the asym-
metric or skew distributions have received considerable attention, from the classical skew normal
distribution by Azzalini & Dalla Valle (1996) to various different characterizations and general-
izations (Arellano-Valle & Azzalini 2006). These distributions have an additional vector/matrix
of parameters compared with their symmetric counterparts for regulating the skewness of their
densities. For example, the classical skew normal distribution has a p-dimensional skewness vector
8. Its density, after reparametrization, can be expressed as

f(_y:’l'vza(s):2¢p(_y:”’7ﬂ)(bl (STgil(y_lL):O))‘): 23.

where @ = £4+88" and A = 138" Q'§. A skew 7 analog of the skew normal density (Equation 23)
was adopted in the mixture models considered by Pyne et al. (2009) and Cabral et al. (2012),
which is equivalent to the classical skew #-distribution by Azzalini & Capitanio (2003) (see Lee &
McLachlan 2013, 2014). The skew normal distribution (Equation 23) and its skew -analog, along
with other instances of the (restricted) skew elliptical class, are suitable for modeling data where
skewness is concentrated along a single direction in the sample space (McLachlan & Lee 2016).

A more general class of skew distribution is the canonical fundamental skew distributions
(Arellano-Valle & Genton 2005), which include the canonical fundamental skew ¢ (CFUST)
distribution recently adopted by Lee & McLachlan (2016) for their mixture model. This latter
distribution has a p x ¢ matrix of skewness parameters A, allowing it to model skewness along
multiple directions simultaneously. Its density can be expressed as

_ [ v+p
f(,)’;ﬂ,E,A,V)Zthp(.)’;ﬂ,ﬂ,v)Tq (ATSZ 1()/_”') U-i—d(y);o’A’v—’—p), 24

where @ =X + AAT, d()) =(y — )" ' (y—p),and A =1, - ATQ'A.

8.4. Examples

To illustrate the fits provided by the aforementioned variants of the normal mixture model, we
consider the well-known Iris data set collected by Anderson (1935) and first analyzed by Fisher
(1936). The data set consists of measurements of the length and width of the sepals and petals of 150
Iris plants (comprising 50 samples from each of the three species setosa, versicolor, and virginica).
The data can be clustered by fitting a three-component normal mixture model (Figure 1a),
achieving a misclassification rate (MCR) of 0.033 (corresponding to the misclassification of five
versicolor observations). Adopting the more flexible skew normal or skew #-component densities
(see Figure 15 and c, respectively) provides improved clustering results, with the latter model
achieving a MCR of 0.0067 (corresponding to one misclassified versicolor observation).

In cytometric data analysis, mixture distributions have been (implicitly or explicitly) used by
many computational algorithms to model different cell populations within the data. An example
analyzed by Lee et al. (2018) is given in Figure 2, which shows a direct application of a normal
mixture model and a skew 7-mixture model to segment a hematopoietic stem cell transplant sample
of approximately 6,000 cells into four clusters. As is typical for cytometric data, the clusters often
exhibit nonnormal characteristics. In this case, the skew 7-mixture model provides a clustering in
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Normal components Skew normal components Skew t-components

Petal length

Sepal length

Figure 1

Clustering the Iris data set with mixture models; bivariate plots of the variables sepal length and petal length are shown. Dots are
colored and shaped according to the cluster labels given by the mixture model, with misclassified observations shown as black crosses.
Contours of the fitted three-component mixture models with (#) normal components, () skew normal components, and (¢) skew
t-components are overlaid on the scatter plots.

closer agreement with the manual analysis, achieving a MCR of 0.00277 versus 0.0041 for the
normal mixture model.

8.5. Some Other Nonnormal Components

Apart from the above-mentioned mixture components of skew normal and skew #-distributions,
particular instances of the family of generalized hyperbolic distributions of Barndorff-Nielsen
(1977) have been considered as component distributions, including the normal inverse Gaussian
distribution (Karlis & Santourian 2009), the asymmetric Laplace distribution (Franczak et al.

Scatter plot 3D normal mixture 3D skew t-mixture
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Figure 2

Automated segmentation of cell populations from a hematopoietic stem cell transplant sample using mixture models, showing

(a) scatter plot of the four cell populations identified by manual gating, () 3D contours of the fitted four-component normal mixture
model, and (¢) 3D contours of the fitted four-component skew z-mixture model.
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2014), and a particular generalized hyperbolic distribution (Browne & McNicholas 2015). Fur-
thermore, Wraith & Forbes (2015) studied a multiple-scaled version of some of these distributions
and Spurek (2017) considered a general split Gaussian distribution. Other approaches for dealing
with skewness in the component distributions have been considered, including data transforma-
tion such as the Box-Cox transformation (Lo & Gottardo 2012) and the Manly transformation
(Zhu & Melnykov 2018).

More recently, some factor-analytic analogs of some of the above-mentioned asymmetric dis-
tributions have been considered. These include, for example, mixtures of skew normal factor
analyzers (Lin et al. 2016), mixtures of skew 7-factor analyzers (Murray et al. 2014, Lin et al.
2015), and mixtures of generalized hyperbolic factor analyzers (Tortora et al. 2016).

9. CLUSTERING OF DEPENDENT DATA

9.1. Hidden Markov Models

The hidden Markov model (HMM) is increasingly being adopted in applications because it pro-
vides a convenient way of formulating an extension of a mixture model to allow for dependent
data. To see this, it follows from Equation 12 that we can write the complete-data likelihood
function for ¥ in the case of independent data Y7, ..., Y, with marginal density Equation 2 as

n g n
L(¥) = {Hl_[ﬁ(yj; ‘I')Z‘f; x H]‘[f(z,-)} : 25.
j=1

j=1i=1

where f(z;) = [T, 7"

Still assuming that the vectors Yy, ..., Y, are conditionally independent given z, ..., 2,
dependence between them is introduced by taking their component-indicator variables Z; to
be dependent. Usually, a stationary Markovian model is formulated for the distribution of the
hidden vectors Zi, ..., Z,. In one dimension, this Markovian model is a Markov chain and, in
two and higher dimensions, it is a Markov random field (see Besag 1986). With the relaxation
of the independence assumption for the Z;, the marginal density of ¥; will not have its simple
representation (Equation 2) of a mixture density as in the independence case.

The application of the EM algorithm to the hidden Markov chain model is known in the HMM
literature as the Baum—Welch algorithm. Baum and his collaborators formulated this algorithm
before the appearance of the EM algorithm and established the convergence properties for this
algorithm (see Baum & Petrie 1966 and the references in McLachlan & Peel 2000a, chapter 13).

9.2. Mixtures of Time Series

Another application of mixture models where the observed data are not assumed to be independent
concerns time series. Recent applications include those by Nguyen et al. (2016, 2017, 2018)
on spatial clustering of time series via mixtures of autoregressive models and Markov random
fields, maximum pseudolikelihood estimation for a model-based clustering of time-series data,
and whole-volume clustering of time series data from zebrafish brain calcium images via mixture
model-based functional data analysis, respectively.

9.3. Mixtures of Linear Mixed Models

Ng et al. (2006) have developed the procedure called EMMIX-WIRE (EM-based mixture analy-
sis with random effects) to handle the clustering of correlated data that may be replicated. They
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adopted conditionally a mixture of linear mixed models to specify the correlation structure be-
tween the variables and to allow for correlations among the observations. It also enables covariate
information to be incorporated into the clustering process. In the analysis of gene expressions
of thousands of genes from microarray experiments, Ng et al. (2015) applied this procedure to
cluster the gene profiles into a small number of clusters from which contrasts were formed for the
detection of genes that were differentially expressed between two types of disease.

9.4. Mixtures of Experts

Mixtures of experts models (Jacobs et al. 1991) and their hierarchical extensions are being used
widely to improve the flexibility of the regression model with Gaussian errors for modeling non-
linear regression data. In recent work, Nguyen & McLachlan (2016a) demonstrated the robustness
of the Laplace mixture of linear experts (MoLE) model over the Gaussian MoLLE model, and an
application of the Laplace MoLE model to the analysis of a climate science data set is described.

10. NUMBER OF COMPONENTS
10.1. Order of a Mixture Model

Arguably the most obdurate methodological problem associated with mixture distributions is that
of identifying the number of components involved in the distribution underlying a set of data. In
a cluster analysis, the choice of the number of components arises with the question of how many
clusters there are in the data. Additional references may be found in the review by McLachlan &
Rathnayake (2014).

The order g, of a g-component mixture model, as in Equation 2, is defined to be the smallest
value of g such that the model is compatible with the data, with the model having all components
different and all the associated mixing proportions 7; nonzero. The estimation of the order of
a mixture model has been considered mainly by consideration of the likelihood, using two main
ways. One way is based on a penalized form of the log likelihood. As the likelihood increases with
the addition of a component to the mixture model, the likelihood (usually, the log likelihood) is
penalized by the subtraction of a term that penalizes the model for the number of parameters in
it. This leads to a penalized log likelihood, yielding what are called information criteria for the
choice of g.

The other main way for deciding on the order of a mixture model is to carry out a hypothesis
test, using a likelihood ratio test (LRT). Unfortunately, the standard regularity conditions do not
hold for the null distribution of the LRT'S to have its usual chi-squared distribution with degrees of
freedom equal to the difference between the number of parameters under the null and alternative
hypotheses.

In practice, the null distribution of the LRTS is often estimated by a resampling approach
in order to produce a p-value. Thus penalized likelihood criteria, like AIC (Akaike information
criterion) and BIC, are less demanding than the LRT. However, they produce no number that
quantifies the confidence in the result, such as a p-value.

In an attempt to overcome the shortcomings of the LRT for the number of components
in a mixture model in a frequentist framework, Bayesian approaches have been suggested. For
example, Aitkin & Rubin (1985) adopted an approach that places a prior distribution on the vector
of mixing proportions 7. An advantage of this proposal is that any null hypothesis about the
number of components is specified in the interior of the parameter space. However, Quinn et al.
(1987) showed that the asymptotic null distribution of —2 log A will not necessarily be chi-squared,
as regularity conditions still do not hold.
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Several of the information-based criteria have been derived within a Bayesian framework for
model selection but can be applied also in a non-Bayesian framework. Hence, they can be applied
to choose the number of components in mixture models considered from either a Bayesian or
frequentist perspective. There are also approaches that apply only within a Bayesian framework,
such as the procedure of Richardson & Green (1997), who used reversible jump Markov chain
Monte Carlo methods to handle the case where the parameter space is of varying dimension. The
effect of the prior structure, especially with respect to the mixing proportions and to g itself, is
an important aspect of a Bayesian analysis of mixtures. The reader is referred to Richardson &
Green (1997), and the contributions of the many discussants of their paper, on this issue.

10.2. Bayesian Information Criterion and Related Methods

The main Bayesian-based information criteria use an approximation to the integrated likelihood,
as in the original proposal by Schwarz (1978), which led to his BIC. Available general theoretical
justifications of this approximation rely on the same regularity conditions that break down for
inference on the number of components in a frequentist framework (see McLachlan & Peel
2000a). Under certain conditions, Keribin (2000) has shown that BIC performs consistently in
choosing the true number of components in a mixture model.

In practice, it is often observed that BIC tends to favor models with enough components
in order to provide a good estimate of the mixture density. Hence, it tends to overestimate the
number of clusters (Biernacki et al. 2000). This led Biernacki et al. (2000) to develop the integrated
classification (ICL) criterion. An approximation to this criterion is given by

—2log L(¥) 4+ dlogn + EN(%),

where EN(2) = — 3%, >7_ i(y;)log #i(y;) is the entropy of the fuzzy classification matrix

(@ (y))- Here £(y;) = n(y;3 W)and £ = (%], ..., %))7, where
%] = (fl(y])) ey fg(y]))T

is the vector of the estimated posterior probabilities of component membership of y; (j =
1, ..., n). That is, the ICL criterion uses the entropy term EN(%) to penalize the model for
its complexity (too many components and hence clusters).

Another approach to refining the number of clusters was given by Baudry et al. (2010) and
Hennig (2010), who suggested ways in which the components can be recombined.

10.3. Resampling Approach

A formal test of the null hypothesis Hy : g = g versus the alternative H; : ¢ = gy (g1 > go) can be
undertaken using a resampling method, as described in McLachlan (1987). With this approach,
bootstrap samples are generated from the mixture model fitted under the null hypothesis of
go components. That is, the bootstrap samples are generated from the go-component mixture
model with the vector ¥ of unknown parameters replaced by its ML estimate W,, computed
by consideration of the log likelihood formed from the original data under Hy. The value of
—2log 2, where A is the likelihood ratio statistic, is computed for each bootstrap sample after
fitting mixture models for g = gy and g; to it in turn. The process is repeated independently B
times, and the replicated values of —2 log A formed from the successive bootstrap samples provide
an assessment of the bootstrap, and hence of the true, null distribution of —2 log A. An account of
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other resampling approaches including the gap statistic of Tibshirani et al. (2001) may be found
in McLachlan & Khan (2004) and McLachlan & Rathnayake (2011).

10.4. Some Distributional Results for the Likelihood Ratio Test Statistic

Opver the years, a number of theoretical and simulation-based results have been published on
the null distribution of the LRTS, —2log2, for inference on the number of components in a
finite mixture model. We very briefly consider here some of the theoretical results that have been
derived; a fuller account may be found in McLachlan & Peel (2000a, chapter 6).

Ghosh & Sen (1985) provided a comprehensive account of the breakdown in regularity con-
ditions for the classical asymptotic theory to hold for the LRTS, —2log A. For a mixture of two
known but general univariate densities in unknown proportions, Titterington (1981) and Titter-
ington et al. (1985) considered the LRT of Hy : g = 1 (my = 1) versus H; : g = 2 (m; < 1).
They showed asymptotically under Hy that —2log 1 is zero with probability 0.5 and, with the
same probability, is distributed as chi-squared with one degree of freedom. Another way of ex-
pressing this is that the asymptotic null distribution of —2 log A is the same as the distribution of
{max(0, W)}?, where W is a standard normal random variable. A further way of expressing this
is to say that —2log A ~ 1xZ + 1x7 under Hy, where x¢ denotes the degenerate distribution that
puts mass 1 at zero. In his monograph, Lindsay (1995, section 4.2) referred to this distribution as
a chi-bar squared, that is, a mixture of chi-squared distributions.

Hartigan (1985a,b) obtained the same result for the asymptotic null distribution of —2 log A in
the case of the two-component normal mixture with unspecified 7y but known common variance
and known means p; and u, where, as in the previous example, the null hypothesis Hy : g =1
was specified by 7r; = 1. This example was also considered by Ghosh & Sen (1985) in the course
of their development of asymptotic theory for the distribution of the LRT'S for mixture models.
They were able to derive the limiting null distribution of —2 log A for unknown but identifiable
w1 and py, where p; lies in a compact set. They showed, in the limit, that —2 log 2 is distributed

2
|:max {0, sup W(uz)}:| ,

where W (:) is a Gaussian process with zero mean and covariance kernel depending on the true

as a certain functional,

value of 411 under Hy, and the variance of W (i) is unity for all u,.

Hartigan (1985a,b) showed that if y1, is unknown with no restrictions on it, then —2log 2 is
asymptotically unbounded above in probability at a very slow rate [ log(log#)] when Hy is true.
Also, Bickel & Chernoff (1993) investigated the null behavior of the LRTS for this model.

Ghosh & Sen (1985) established a similar result for component densities from a general para-
metric family under certain conditions. For the case where the vector of parameters ¥, was not
assumed to be identifiable, they imposed a separation condition on the values of ¥, under H,
and H;. The removal of the separation condition imposed in Ghosh & Sen (1985) presented a
major challenge to researchers; see, for example, Dacunha-Castelle & Gassiat (1997), Chen &
Chen (2001), and Liu & Shao (2004). Garel (1995) subsequently showed it was possible to remove
the separation condition with assumptions that involve only the second derivatives of the mixture
density.

Chen et al. (2001, 2004) modified the LRTS and derived its limiting distribution. Li et al.
(2009) and Chen & Li (2009) proposed an EM test in the case of go = 1 (that is, a single normal
distribution under the null hypothesis), while it was further developed by Li & Chen (2010) and
Chen et al. (2012), including an extension to the case of gy > 1.

MecLachlan o Lee o Rathnayake



11. SOFTWARE

A range of software for fitting mixture models is available for many commonly used mathematical
and statistics platforms such as MATLAB, R, C, C++, Java, and Python. An account of some
earlier implementations can be found in the Appendix in McLachlan & Peel (2000a). There are
also modules in software such as Stata, SAS, Latent GOLD, and Mplus for fitting latent class and
mixture models.

For the R platform (R Development Team 2012) there is the well-known mclust package
by Scrucca et al. (2016) and the EMMIX suite of packages (McLachlan et al. 1999). The mclust
package and some others such as pgmm (McNicholas & Murphy 2008) and Rmixmod (Lebret
et al. 2015) provide functions to fit normal mixture models with various covariance structures
(such as those discussed in Section 7). Apart from normal mixture models, the mixtools package
(Benaglia et al. 2009) can fit nonparametric models and mixtures of regressions. The latter is also
considered by the flexmix package, which implements a general framework for fitting mixtures
of regression models (Griin & Leisch 2008). For more resources on relevant R packages, see the
CRAN (Comprehensive R Archive Network) Task View webpage on Cluster Analysis & Finite
Mixtrue models (http://cran.r-project.org/web/views/Cluster.html).

Developed initially by McLachlan et al. (1999) for fitting normal mixture models, the suite
of EMMIX packages has since expanded to include mixture models with nonnormal distributions
(including #, skew normal, and skew 7-distributions), mixture of factor analyzers, and linear
mixed models. They are available, with further details, from https://people.smp.uq.edu.au/
GeoffMcLachlan/mix_soft/index.html.

Concerning mixtures of factor analyzers, there are several R packages available freely, such as
the specialized versions of the EMMIX software EMMIXmfa and EMMIXmcfa, that are developed
for (normal) mixtures of factor analyzers and mixtures of common factor analyzers, respectively.
For mixtures of #-factor analyzers, there is the R package mmtfa.

For asymmetric mixture modeling (Section 8.3), there are specialized versions of the EMMIX
program for fitting mixtures of skew normal and skew #-distributions, including EMMIXskew and
EMMIXcskew (Lee & McLachlan 2018), both available on CRAN, for fitting mixtures of (restricted)
skew normal distributions (Equation 23) and its skew z-analog, and mixtures of CFUST distribu-
tions (Equation 24). The R package mixsmsn (Prates et al. 2013) provides functions to fit several
instances of the mixtures of (restricted) skew elliptical distributions.
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