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Abstract

Learning representations of data is an important problem in statistics and
machine learning. While the origin of learning representations can be
traced back to factor analysis and multidimensional scaling in statistics, it
has become a central theme in deep learning with important applications in
computer vision and computational neuroscience. In this article, we review
recent advances in learning representations from a statistical perspective.
In particular, we review the following two themes: (a) unsupervised learn-
ing of vector representations and (b) learning of both vector and matrix
representations.
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1. INTRODUCTION

Statistics is about understanding data. If the input data are complex, it is desirable to find represen-
tations for the data so that they become easier to understand and process. In this article, we review
learning representations of data with various models, including models with linear structures and
models that are based on deep neural networks.

1.1. Prototypes of Learning Representations in Statistics

Although representation learning is a central theme in deep learning, its essence can be traced
back to familiar examples in statistics.

1.1.1. Factor analysis—generative representation. One prototypical example of learning rep-
resentation in statistics is factor analysis (Rubin & Thayer 1982). Here, multivariate observations
(e.g., test scores on different subjects) are explained by latent factors (e.g., verbal and analytical
intelligence). Let h be a d-dimensional hidden vector that consists of d latent factors. Let x be
the observed D-dimensional vector. Usually, d < D. Then, the model is of the form x =Wh+ ε,
whereW is theD× d loading matrix that transforms h to x. It is assumed that h ∼ N(0, Id ), where
Id denotes the d-dimensional identity matrix, and ε ∼ N(0, σ 2ID ), which is independent of h. This
model can be learned by maximum likelihood via the expectation-maximization (EM) algorithm
(Dempster et al. 1977), where the E step is based on the posterior distribution of h given x.

h is said to be a vector representation, also called a code, of x. The mapping from h to x is
called a decoder, while the mapping from x to h is called an encoder, and both can be formally
written as conditional distributions. While the decoder p(x|h) and the prior p(h) define a top-
down generative model, the encoder p(h|x) defines an inference model.

Factor analysis is related to principal component analysis, where W is obtained by the first
d eigenvectors of the covariance matrix Cov(x). The factor analysis model can be generalized to
independent component analysis (Hyvärinen et al. 2004), sparse coding (Olshausen & Field 1997),
nonnegative matrix factorization (Lee & Seung 2001), recommender systems (Koren et al. 2009),
restricted Boltzmann machines (Hinton 2012), and so on, by modifying the prior distribution or
prior assumption on h. If we generalize the linear mapping from h to x to a nonlinear mapping
parameterized by a deep network (LeCun et al. 1998, Krizhevsky et al. 2012), then the resulting
model is commonly called generator network (Goodfellow et al. 2014, Kingma & Welling 2014).
Factor analysis is an example of generative representation, where the hidden vector h generates
the observed vector x.

1.1.2. Multidimensional scaling—relative representation. The other prototypical example
of learning representation in statistics is multidimensional scaling (Kruskal 1964). Let (xi, i =
1, . . . , n) be a set of D-dimensional observations. We want to represent them by a correspond-
ing set of d-dimensional hidden vectors (hi, i = 1, . . . , n), so that (hi) preserve the relations such as
distances between (xi). For instance, we may find (hi) by minimizing

∑
i �= j (‖hi − hj‖ − ‖xi − x j‖)2,

which enforces global isometry.
Again, h is said to be a vector representation of x, which is also called an embedding of x.Unlike

in factor analysis, there is no explicit mapping (encoding or decoding) between h and x.
Various modifications of multidimensional scaling focus on preserving local adjacency or

neighborhood relations between xi, such as spectral embedding (Bengio et al. 2004), t-distributed
stochastic neighbor embedding (t-SNE) (van der Maaten & Hinton 2008), and local linear
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embedding (Roweis & Saul 2000). Multidimensional scaling is an example of relative representa-
tion, where the hidden vectors {hi} are to preserve the relations between the observed vectors {xi}.

1.1.3. Sliced inverse regression—predictive representation. The third prototypical example
of learning representation in statistics is sliced inverse regression (Li 1991). It learns a nonlinear
regression model from the training examples {(xi, yi )}, where xi is a D-dimensional continuous
predictor vector, and yi is a one-dimensional continuous outcome. The sliced inverse regression
model assumes a d-dimensional hidden vector hi =Wxi, whereW is d ×D, so that yi = f (hi, εi )
where εi are independent and identically distributed (i.i.d.) noise.

Assume (xi, yi ) ∼ p(x, y), E(x) = 0, and Cov(x) = ID under p(x, y) (which can be achieved by
standardizing x). Then, under mild conditions,W can be obtained by the top d eigenvectors of
Cov[E(x|y)], where E(x|y) can be obtained by dividing the range of y into slices, and E(x|y) is the
inverse regression.W can be obtained without knowledge of the nonlinear link function f . We
may refer to h =Wx as encoding and y = f (h, ε) as decoding.

Sliced inverse regression is an example of predictive representation, where the hidden vector
hi contains all the information of xi for predicting yi, i.e., hi is a sufficient summary of xi as far as
predicting yi is concerned.

1.2. Unsupervised, Supervised, and Reinforcement Learning

Sliced inverse regression is a supervised learning problem where, for each input xi, an output
yi is given as supervision. Factor analysis and multidimensional scaling are unsupervised learn-
ing problems where only xi are observed without yi. Learning representations is of fundamental
importance for both supervised and unsupervised learning. In this article, we shall focus on unsu-
pervised learning.

Another learning problem that lies in between supervised and unsupervised learning is rein-
forcement learning (Sutton & Barto 1998), where the input x is the state and the output y is the
action. In training, the optimal y is not directly given, but a reward for an action is provided. For
this problem, learning a good representation of state x is important for learning value and policy
functions that are defined on the state.

1.3. Plan for the Remainder of the Article

Section 2 presents vector representations based on linear models. We first describe a general-
ization of the factor analysis model in which the hidden vector is assumed to be sparse (or have
independent components) in the generative representation scheme. We then explain continuous
vector representations of discrete data in predictive and relative representation schemes. Section 3
presents the learning of both vector andmatrix representations in a relative representation scheme.
Section 4 is about the learning of nonlinear vector representation based on the generator model,
which generalizes linear mapping in the factor analysis model to nonlinear mapping parameter-
ized by deep neural networks. Section 5 reviews the joint learning of generator model and various
complementary models. Section 6 reviews the learning of the conditional generator model.

2. LEARNING VECTOR REPRESENTATIONS

In this section, we review learning vector representations of data using models that generalize the
factor analysis model.
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Figure 1

Visual area of brain. Primary visual cortex, or V1, is the first step in representing retina image data. Cells in
V1 respond to bars of different locations, orientations, and sizes.

2.1. Sparse Vector Representation

David Hubel and Torsten Wiesel earned the Nobel Prize for Physiology or Medicine in 1981 for
their discovery of simple and complex cells in the primary visual cortex, or V1 (Hubel & Wiesel
1959). They discovered that cells in V1 of the cat brain responded to bars of different locations,
orientations, and sizes, and each cell responded to the bar at a particular location, orientation,
and scale (Figure 1 gives an illustration). Some V1 cells are called simple cells, which behave like
linear wavelets. A mathematical model of a simple cell is the Gabor wavelet, which is a sine or
cosine plane wave multiplied by an elongate Gaussian function.

Olshausen & Field (1997) proposed a sparse coding model for the V1 simple cells by general-
izing the factor analysis model. Recall that in factor analysis,

x =Wh+ ε =
d∑

k=1

Wkhk + ε, 1.

whereWk is the kth column ofW and is of the same dimensionality as x, and hk is the kth element
of h.The abovemodel expresses x as a linear superposition of the basis vectorsWk, with coefficients
hk.

Unlike in factor analysis, in the sparse coding model, the dimensionality d of h is assumed to
be larger than the dimensionalityD of x (i.e., d > D). However, h is assumed to be a sparse vector,
i.e., for each x, only a small number d0 (d0 < D < d) of hk are nonzero or significantly different
from zero. For different x, the nonzero elements of h can be different. Thus, unlike principal
component analysis, sparse coding leads to adaptive dimension reduction.W = (Wk, k = 1, . . . , d )
is sometimes called a dictionary, from which a small number of words are chosen to describe x. h
is called a sparse code of x.

The training data are in the form of image patches sampled from natural images, {xi, i =
1, . . . , n}, where each xi is a training example image patch. Each xi is represented by an
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Figure 2

Olshausen-Field sparse coding model. The plot displays the 144 learned basis vectors, each displayed as an
image patch (ordering of the patches carries no meaning). These basis vectors represent local image
structures such as edges and bars. The training data were obtained by extracting 12 × 12 image patches at
random from ten 512 × 512 images of natural scenes (trees, rocks, mountains, etc.).

hi = (hik, k = 1, . . . , d ), but all the examples share the sameW , where eachWk has the same dimen-
sionality as xi, so that xi =Whi + εi = ∑d

k=1Wkhik + εi. The learning ofW can be accomplished
by minimizing the following objective function:

L(W , {hi}) = 1
n

n∑
i=1

[
‖xi −Whi‖2 +

d∑
k=1

ρ(hik )

]
, 2.

where ρ(hik ) is a sparsity-inducing term, e.g., ρ(rik ) = |rik|, which leads to the lasso estimator
(Tibshirani 1996) of hi. The minimization can be accomplished by alternating gradient descent
over W and {hi}. Figure 2 displays the learned (Wk ), where each Wk is displayed as an image
patch of the same size as xi. The basis vectors (Wk ) represent local image structures such as bars
and edges.

GivenW , the inference of hi from each xi can be accomplished by lasso, where the (Wk ) serve
as variables or regressors. Compared with lasso, the sparse coding has an added layer of depth in
thatW (i.e., the regressors) is to be learned from the training data. The sparse coding model has
had a profound impact on computational neuroscience and applied harmonic analysis, in addition
to machine learning.

A related model is independent component analysis (Bell & Sejnowski 1997, Hyvärinen et al.
2004), which assumes that D = d, ε = 0, and hk are independent. It assumes an invertible trans-
formation x =Wh, and h =W −1x, so that the distribution of x can be obtained in closed form
from the prior distribution of h: p(x) = p0(W −1x)|W |−1, where p0(h) is the prior distribution of
h, and |W | is the absolute value of the determinant ofW .

Other related models include nonnegative matrix factorization (Lee & Seung 2001), which
assumes hk ≥ 0, and restricted Boltzmann machines (Hinton 2012), which assume a binary h and
a joint distribution p(x, h) ∝ exp(−x�Wh) (where we omit bias terms for simplicity), which is an
energy-based model on (x, h) with pairwise potentials defined on (x, h). For this model, both the
decoder p(x|h) and the encoder p(h|x) are in closed form. But the prior distribution p(h) is not in
closed form.
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2.2. Continuous Vector Representation of Discrete or Symbolic Input

The vector representation h of the original input x can be considered a dimension reduction of x,
or a visualization of x if h is 2D (d = 2). The input x is usually continuous.

The input x can also be discrete, like a word in the dictionary. In that case, x can be expressed
as a one-hot vector. Let D be the number of words in the dictionary. If x is the jth word in the
dictionary, then x is a D-dimensional vector so that the jth element of x is 1 and all the other ele-
ments are zeroes.We represent x with a d-dimensional continuous hidden vector h. We can write
h =Wx, whereW is a d ×D dimensional encoding matrix, so that the jth word is represented by
the jth column of the encodingmatrixW . h is called a semantic embedding, or word2vec (Mikolov
et al. 2013, Pennington et al. 2014). In Mikolov et al. (2013), h is learned to predict nearby words,
i.e., it is a predictive representation. Specifically, for a particular word y, again expressed as a one-
hot vector, in the context of word x in a random sentence, we predict this word y based on the
decoded vector W̃ �h, where W̃ is the d ×D decoding matrix of the same dimensionality as the
encoding matrixW , so that p(y) ∝ exp(y�W̃ �h). More specifically, let Qi j be the probability that
word j is within the context of word i, then Qi j = exp(〈Wi,W̃j〉)/

∑
j exp(〈Wi,W̃j〉), the so-called

soft-max classifier, whereWi is the ith column ofW , i.e., the vector representation of word i in
the encoding pass, and W̃j is the jth column of W̃ , i.e., the vector representation of word j in the
decoding pass. In Pennington et al. (2014), h =Wx is learned as a relative representation so that
for two words i and j, logQi j = 〈Wi,W̃j〉 + bi + b̃ j , where bi and b̃ j are bias terms.

The above form is similar to matrix factorization in recommender systems (Koren et al. 2009).
Let Xi j be the rating of user i on item j, and then the model is Xi j = 〈Wi,W̃j〉 + bi + b̃ j , where
Wi is the vector representation of user i, W̃j is the vector representation of item j, and bi and b̃ j
are the bias terms. The elements of the d-dimensional vectorWi can be interpreted as the desires
of user i in various aspects, and the elements of the d-dimensional W̃j can be interpreted as the
desirabilities of item j in the corresponding aspects. In terms of matrix, let X be the n×Dmatrix
of ratings where n is the number of users and D is the number of items. Then X =W �W̃ , where
W is the d × n matrix whose ith column is Wi, and W̃ is the d ×D matrix whose jth column
is W̃j .

For a discrete x such as a word, the vector representation h is continuous, dense, and distributed,
where each component of h captures a partial semantic meaning of x. Such dense vector represen-
tations have revolutionized natural language processing in recent years, and they are at the foun-
dation of recent natural language models (Vaswani et al. 2017, Radford et al. 2018, Devlin et al.
2019).

Vector representations have also been applied to encode the nodes in graphs (Hamilton et al.
2017), which can be conveniently used for subsequent analysis (Kipf & Welling 2016).

In Gómez-Bombarelli et al. (2018), each molecular compound, which is a graph structure, is
represented by a continuous vector, which can be used to learn to predict the chemical activity of
the compound.One can also optimize the activity by maximizing over the continuous vector using
a gradient-based method, and the optimized vector can then generate the corresponding com-
pound. Such continuous representation is much more convenient to operate on than the original
discrete input.

3. LEARNING BOTH VECTOR AND MATRIX REPRESENTATIONS

This section reviews recent work on learning models based on vector and matrix representations.
The representations are of a relative nature, similar to multidimensional scaling. The matrices
represent the relations between the vectors and can be part of a relative representation. An early
example is that of Paccanaro & Hinton (2001).
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In computational neuroscience, the vector representations can be interpreted as neuron activ-
ities, and the matrix representations can be stored in the synaptic connections. The vector rep-
resentations are like nouns, while the matrix representations are like verbs that transform the
nouns.

Matrix representations of groups underlie much of modern mathematics (Dornhoff 1972) and
hold the key to modern physics (Zee 2016).

3.1. Learning Grid Cells

Youmay imagine moving in your living room at night in the dark. Based purely on the movements
or self-motion, you know your current position by summing up the displacements. The grid cells
in our brain accomplish this computation, albeit in a very sophisticated manner.

3.1.1. Hexagon patterns. Figure 3a depicts Dr. May-Britt Moser who, together with Dr.
Edvard Moser, won the 2014 Nobel Prize for Physiology or Medicine for the discovery of grid
cells (Hafting et al. 2005).Their thesis advisor,Dr. JohnO’Keefe, shared the prize for his discovery
of place cells (O’Keefe 1979). Both place and grid cells are used for navigation. The discoveries
of these cells were made by recording the activities of the neurons of a rat when it moves within
a square region (Figure 3b). Some neurons in the hippocampus area are place cells. Each place
cell fires when the rat moves to a particular location, and different place cells fire at different lo-
cations; the whole collection of place cells covers the whole square region. The discovery of grid
cells, found in the entorhinal cortex, was much more surprising and unexpected. Each grid cell
fires at multiple locations, and these locations form a regular hexagonal grid (Figure 3c). The
grid cells have been identified across many mammalian species, including human (Figure 3d).

3.1.2. A simple addition problem. There are two problems in navigation. One is the path
integral. Imagine you walk in your living room at night. If you know the position of your starting
point, then by summing over your displacements over time, you can calculate where you are at
any time. The other problem is path planning. Suppose you want to go to a target position such as
the light switch, which is a position that you know, so you plan a sequence of displacements that
will lead you from the starting point to the target.

More specifically, consider an agent (e.g., a rat or a human) navigating within a domain
D = [0, 1] × [0, 1]. We can discretize D into an N ×N lattice. Let x = (x(1), x(2) ) ∈ D be the self-
position of the agent. Let �x = (�x(1),�x(2) ) be the displacement or self-motion of the agent
at a certain time. The path integral problem is such that, given the starting point x0 and the se-
quence of self-displacements (�xt , t = 1, . . . ,T ), we want to calculate the positions over time with
xt = xt−1 + �xt for t = 1, . . . ,T . The path planning problem is, given the starting position x and
the target position y, to plan a sequence of displacements (�xt , t = 1, . . . ,T ) such that x0 = x and
xT = y.

Both problems appear to be quite simple, especially path integral, which is merely an addition
problem—but the brain uses a system of grid cells to solve this problem. What is the purpose of
this system, and how does the system work? Why the hexagon patterns?

3.1.3. A representational scheme. Recently, Gao et al. (2018b) proposed an explanation of
grid cells as a representational system. The basic idea is that the grid cells form a d-dimensional
vector representation of the 2D position. Specifically, we represent any 2D position x ∈ D by a
d-dimensional vector h(x). Suppose at a position x, the self-motion or displacement is �x, so that
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a

dc

Figure 3

Place cells and grid cells. (a) The rat is moving within a square region. (b) The activity of a neuron is recorded. (c) When the rat moves
around (the curve is the trajectory), each place cell fires at a particular location, but each grid cell fires at multiple locations that form a
hexagon grid. (d) The place cells and grid cells exist in the brains of both rat and human.

the agent moves to x+ �x after one step. We assume the following motion model:

h(x+ �x) = M(�x)h(x), 3.

where M(�x) is a d × d matrix that depends on �x. While h(x) is the vector representation of
the self-position x,M(�x) is the matrix representation of the self-motion �x. As we show below,
‖h(x)‖ = 1 for all x, thusM(�x) is a rotation matrix, and the self-motion in 2D is represented by
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+Δx
xt

M(Δx) ×
h(xt)

xt +1

h(xt +1)

Figure 4

An illustration of the representational model for grid cells. Learning grid cells as vector representation of
self-position coupled with matrix representation of self-motion. In this model, the 2D self-position x of the
agent is represented by a high-dimensional vector h(x), and the 2D self-motion �x of the agent is
represented by a matrix that transforms the vectorM(�x). The vector of the next position, xt+1, is obtained
by multiplying the matrix of the motionM(�x) of the current position xt , i.e., h(xt+1) = M(�x)h(xt ).

a rotation in the d-dimensional sphere. We can illustrate the motion model using the diagram in
Figure 4. Both h(x) andM(�x) are to be learned.

Gao et al. (2018b) proposed that the brain uses the above representational scheme to carry out
the simple addition calculation (illustrated in Figure 5a; see also Paccanaro & Hinton 2001 for
an earlier treatment of the addition problem).

3.1.4. Error correction. In data visualization such as t-SNE (van der Maaten & Hinton 2008),
we represent high-dimensional data by 2D points. In grid cells, we do the opposite, repre-
senting 2D coordinates by high-dimensional vectors. Why does the brain bother with a high-
dimensional representation of 2D coordinates? The answer lies in error correction. The neurons
are intrinsically noisy. For a noisy observation of h(x), by projecting it onto the submanifold of
(h(x), x ∈ [0, 1]2), we can eliminate most of the noise.

In order to reduce the noise, we can use a high-dimensional h to record multiple noisy copes
of x; then, a simple averaging will reduce the variance of noise. Apparently, the brain goes much
further than that. It represents 2D x by a high-dimensional h, so that the angle between h(x) and
h(x+ �x) is ω|�x| for ω � 1. This makes the system even more robust to noise, because h(x) and
h(x+ �x) are very far apart when ω � 1.

More specifically, we assume a magnified local isometry model:

〈h(x), h(x+ �x)〉 = 1 − α|�x|2, 4.

which is a second-order Taylor expansion of a function of |�x| whose maximum is 1 at |�x| = 0.
For �x = 0, we have ‖h(x)‖2 = 1 for all x. Let �θ be the angle between h(x) and h(x+ �x), and
then, 〈h(x), h(x+ �x)〉 = cos(�θ ) ≈ 1 − �θ2/2 for small �θ . Thus, �θ is proportional to |�x|,
i.e., �θ = ω|�x|, where ω = √

2α � 1 (see Figure 5b).

h(x)

h(x + Δx)

× M(Δx)

Vector-matrix multiplication

h(x)

h(x + Δx)

ω|(Δx)|

Magnified local isometry

a b

Figure 5

Grid cells form a high-dimensional vector representation of 2D self-position. Two submodels: (a) Local
motion is modeled by vector-matrix multiplication. (b) Angle between two nearby vectors magnifies the
Euclidean distance. x is a 2D position, �x is a 2D self-motion, h(x) is a high-dimensional vector
representation of x, andM(�x) is a matrix representation of �x. ω is a magnifying factor.
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Gao et al. (2018b) showed that even if they randomly shut down (i.e., set to zero) 70% of
the neurons in each step, their learned system can still perform a path integral accurately. Such
dropout error could occur due to internal noises and asynchrony of neuron activities, as well as
aging and diseases like Alzheimer’s.

3.1.5. Emergence of hexagon patterns. For a fixed α, we can learn (h(x),∀x) and M(�x) by
minimizing the least-squares loss:

Ex,�x[‖h(x+ �x) −M(�x)h(x)‖2] + λEx,�x[(〈h(x), h(x+ �x)〉 − (1 − α|�x|2))2]. 5.

The above loss function can be minimized by stochastic gradient descent, where for stochastic
approximation of the expectations, we randomly sample (x,�x) uniformly where x ∈ [0, 1]2 and
�x is within a limited range.

The experiments of Gao et al. (2018b) show that as long as the dimension of h(x) is d ≥ 6, then
the learning algorithm always learns the hexagon grid pattern for each element of h(x). Even if
d = 100, the algorithm still learns regular hexagon patterns. In Figure 6a, each row displays the
learned h(x) for a given value of α, where d = 6. Figure 6b shows the learned h(x) for α = 72,
where d = 100. If d < 6, the algorithm tends to learn square grid patterns.

Thus, if we move from x to x+ �x, the corresponding hwill be rotated by a matrixM(�x), and
h will rotate at a much faster speed ω|�x|. As a result, it will quickly rotate back to itself, causing
the periodic grid patterns, which in turn causes the global ambiguities in position, because the
same h may correspond to multiple positions. One could say that the grid patterns are almost an
unwanted consequence of error correction. To resolve the ambiguities, Gao et al. (2018b) com-
bined multiple blocks of grid cells to determine the position uniquely, and for each block, the
magnifying parameter α can be learned automatically.

α = 18

a

α = 36

α = 72

α = 108

α = 144

α = 180

Learned h(x) with d = 6 b Learned h(x) with d = 100, α = 72

Figure 6

Learned grid cells. (a) Each row shows a component or a unit of h(x) with a certain metric parameter α, where the number of units d is
6. (b) Learned units where the number of units d is 100 and α = 72.
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3.2. Vector Representation of State and Matrix Representation
of Motion or Action

We may generalize the model in the previous subsection into a more general model for dynamic
systems, where we represent the state by a vector and the change of the state caused by motion or
action by a matrix. For example, Gao et al. (2019) recently proposed a model of V1 simple cells
that is different from the sparse coding model (Olshausen & Field 1997) and the independent
component analysis model (Bell & Sejnowski 1997) reviewed in Section 2.1. Gao et al. (2019)
propose that a direct purpose of V1 cells is to perceive the displacements of pixels over time,
where the displacements of pixels are caused by the relative motion between the agent (a rat or a
human) and the surrounding 3D environment. Specifically, Gao et al. (2019) represent the local
image contents by vectors and the local displacements of pixels by matrices, so that when the pixels
undergo displacements, the vectors are rotated by the matrices representing the displacements.
After learning this representational system, the agent will be able to sense the displacements of
pixels based on the rotations of the vectors.

More generally, for a video sequence, we can represent the image frames by vectors and the
motions or actions of the agent or the objects in the image by matrices. This will enable the agent
to perceive the objects and their motions and actions while the agent is moving or taking actions.

In terms of neuroscience, the vectors correspond to the activities of neurons, and the matrices
correspond to the synaptic connections. Interestingly, such a representational scheme appears to
occur in nature. In quantum theory, the states are represented by vectors in aHilbert space, and the
changes of the states are represented by matrices or operators (Zee 2016). Similar to the creation
and annihilation operators in quantum field theory, the matrix representations in vision may also
account for discrete events such as the appearance and disappearance of objects. Perhaps the brain
speaks the same mathematical language as nature.

4. LEARNING NONLINEAR VECTOR REPRESENTATION
BY GENERATOR NETWORK

This section reviews the generator network that is a generalization of factor analysis, where the
mapping from the latent factors to the signal is parameterized by a deep network.We also discuss
the maximum likelihood learning algorithm that learns various generator models.

4.1. Deep Neural Networks

The models reviewed so far are based on linear structures. They can be generalized to nonlinear
transformations, such as deep neural networks (LeCun et al. 1998, Krizhevsky et al. 2012), which
are compositions of multiple layers of linear transformations and coordinate-wise nonlinear link
functions.

Specifically, consider a nonlinear transformation f (x) that can be decomposed recursively as
sl =Wlhl−1 + bl , and hl = rl (sl ), for l = 1, . . . ,L, with f (x) = hL and h0 = x.Wl is a weight matrix
at layer l , and bl is the bias vector at layer l . Both sl and hl are vectors of the same dimensional-
ity, and rl is a one-dimensional nonlinear link function, the rectification function, that is applied
coordinate-wise. f (x) is a recursive composition of generalized linear model (GLM) structures.

Modern deep networks usually use rl (s) = max(0, s), the rectified linear unit, or ReLU.For such
nonlinear link functions, f (x) is a multivariate linear spline where the linear pieces are recursively
partitioned. This is similar to but more general than the recursive partitions in classification and
regression trees (CART) (Breiman 2017) and multivariate adaptive regression splines (MARS)
(Friedman 1991).

www.annualreviews.org • Representation Learning 313



ST07CH13_Wu ARjats.cls February 11, 2020 12:57

In computational neuroscience, each element or unit in hl can be interpreted as a neuron or
a cell, whose value can be related to the firing rate. Sometimes hl is colloquially called a thought
vector.

There are two special classes of neural networks.One consists of convolutional neural networks
(LeCun et al. 1998,Krizhevsky et al. 2012),which are commonly applied to images,where the same
linear transformations are applied around each pixel locally. The other class consists of recurrent
neural networks (Hochreiter & Schmidhuber 1997), which are commonly applied to sequence
data such as speech and natural language.

Neural networks are commonly used in supervised learning and reinforcement learning, where
hl at multiple layers can be considered predictive representations. They are also useful for unsu-
pervised learning of generative models, as we review in the next subsection, where hl at multiple
layers can be considered generative representations.

4.1.1. Nonlinear generalization of logistic regression. For the deep network reviewed in the
previous subsection, let α = (Wl , bl , l = 1, . . . ,L) collect all the weight and bias parameters, and
let fα (x) be the resulting nonlinear transformation.

We can generalize the logistic regression model to

P(y = 1|x) = D(x) = 1
1 + exp(− fα (x))

. 6.

The model is also called a discriminator network, and hl at different layers can be considered
predictive representations of x.

4.1.2. Nonlinear generalization of the exponential family model. We can also generalize
the exponential family model to

πα (x) = 1
Z(α)

exp( fα (x))ρ(x), 7.

where ρ(x) is a reference measure such as the uniform distribution and Z(α) is the normalizing
constant. This model is also called the energy-based model or Gibbs distribution.

The connection between the two models is as follows. Suppose ρ(x) is the distribution of
negative examples, i.e., P(x|y = 0) = ρ(x), and πα (x) is the distribution of positive examples, i.e.,
P(x|y = 1) = πα (x). Suppose there are equal numbers of positive and negative examples; then,
according to Bayes’ law, P(y = 1|x) is given by Equation 6.

Later in the article, we make use of the above two models as the complementary models to the
generator model, which we review next.

4.2. Nonlinear Generalization of Factor Analysis and Maximum
Likelihood Learning

While sparse coding and independent component analysis generalize the prior assumption on the
hidden vector h in factor analysis, the generator model generalizes the mapping from the hidden
vector h to the input x, i.e.,

h ∼ N(0, Id ), x = gθ (h) + ε, 8.
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where g is parameterized by a deep network, similar to f in the previous subsection, i.e., sl =
Wlhl+1 + bl , and hl = rl (sl ), for l = L− 1, . . . , 0, with hL = h, and x = h0.Wl is a weight matrix at
layer l , and bl is the bias vector at layer l . θ collects all the weight and bias parameters at all the
layers, and ε ∼ N(0, σ 2ID ) is the residual noise image that is independent of h.

While f in the previous subsection is a bottom-up network in the sense that it defines h0 =
x → h1 → . . . → hL, g in this subsection is a top-down network in the sense that it defines hL =
h → hL−1 → . . . → h0 = x.

As in factor analysis, the model can be learned by maximum likelihood.We can write the prior
distribution as h ∼ p(h), where p(h) is the density of N(0, Id ). The conditional distribution of x
given h is pθ (x|h), which is the density of N(gθ (h), σ 2ID ). The joint distribution, or the complete-
data model, is pθ (h, x) = p(h)pθ (x|h). The marginal distribution, or the observed-data model, is
pθ (x) = ∫

pθ (h, x)dh. The posterior distribution of h given x is pθ (h|x) = pθ (h, x)/pθ (x). Unlike in
factor analysis, the marginal pθ (x) and the conditional pθ (h|x) are not in closed form.

Let qdata be the distribution that generates the observed examples xi, i = 1, . . . , n. For large n,
the maximum likelihood estimation of θ is to minimize the Kullback-Leibler (KL) divergence
KL(qdata‖pθ ) over θ , where the KL divergence is defined as KL(q|p) = Eq[log(q(x)/p(x))]. In prac-
tice, the expectation with respect to qdata is approximated by the average over the observed exam-
ples. The gradient of the log-likelihood can be computed based on

− ∂

∂θ
KL(qdata(x)‖pθ (x)) = Eqdata (x)pθ (h|x)

[
∂

∂θ
log pθ (h, x)

]
. 9.

The expectation with respect to the posterior distribution pθ (h|x) can be approximated viaMarkov
chain Monte Carlo (MCMC) sampling of pθ (h|x), such as Langevin dynamics or Hamiltonian
Monte Carlo (HMC) (Neal 2011). It can be efficiently implemented by gradient computation via
back-propagation.

Han et al. (2017) learned the generator model by maximum likelihood. More recently, Xing
et al. (2019) generalized the model to a deformable generator model with two hidden vectors
(h1, h2), where h1 is the geometric hidden vector that generates the displacements of the pixels, or
the displacement field, and h2 is the appearance hidden vector that generates the appearance image
before deformation. The observed image is assumed to be generated by deforming or warping the
appearance image by the displacement field. Such a model can be learned by maximum likelihood,
and the learned model disentangles variations in shape and appearance.

Xing et al. (2019) trained the deformable generator on the 10,000 face images from the CelebA
data set (Liu et al. 2015). Figure 7 illustrates the change of the image if we vary the components
of h1, while keeping h2 fixed at a certain value; different dimensions of h1 capture different aspects
of shape change. Figure 8 displays an example of transferring and recombining the vectors. For
two images, we can exchange their geometric vectors, so that each image changes its shape but
retains its appearance.

Xie et al. (2019a) generalized the generator model to a dynamic generator model for a video
sequence (xt , t = 1, . . . ,T ), where xt is an image frame at time t, by assuming a model of the form

ht = fα (ht−1, zt ), 10.

xt = gβ (ht ) + εt , 11.

where t = 1, . . . ,T . Equation 10 is the transition model, and Equation 11 is the emission model.
ht is the d-dimensional hidden state vector, and zt ∼ N(0, I ) is the noise vector of a certain
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Facial shape: fat → thin

Facing direction: left → right

Facial vertical tilt: downward → upward

Facial width: cramped → stretched

Figure 7

Each dimension of the geometric latent vector h1 encodes geometric information such as shape and viewing angle. In each row, a
characteristic of the face changes from left to right. In the first row, the shape of the face changes from wide to thin, and in the second
row, the pose of the face changes from facing left to right. In the third row, the vertical tilt of the face varies from downward to upward,
and in the fourth row, the face width changes from cramped to stretched. The deformable generator model is trained on the 10,000 face
images randomly selected from the CelebA data set (Liu et al. 2015). The training images are cropped to 64 × 64 pixels, and the faces
have different colors, illuminations, identities, viewing angles, shapes, and expressions.

dimensionality. The Gaussian noise vectors (zt , t = 1, . . . ,T ) are independent of each other. The
sequence of (ht , t = 1, . . . ,T ) follows a nonlinear auto-regressive model, where the noise vector zt
encodes the randomness in the transition from ht−1 to ht in the d-dimensional state space. fα is a
feed-forward neural network or multi-layer perceptron, where α denotes the weight and bias pa-
rameters of the network. xt is the D-dimensional image, which is generated by the d-dimensional
hidden state vector ht . gβ is a top-down network, where β denotes the weight and bias parameters
of this network, and εt ∼ N(0, σ 2ID ) is the residual error. The model is a state-space model or
hidden Markov model. Xie et al. (2019a) learned the dynamic generator model by maximum like-
lihood.Figures 9 and 10 show examples of learning the model from video data.Once the model is
learned, we can synthesize dynamic textures from the learned model by first randomly initializing

CelebA faces

2 4 5 6 71

Geometric vectors h1 for – with2 7

appearance vector  h2 for 1

Appearance vectors h2 for – with2 7

geometric vector  h1 for 1

3

Figure 8

Transferring and recombining geometric and appearance vectors. The first row shows seven faces from the CelebA data set. The
second row shows the faces generated by transferring and recombining the second through seventh faces’ geometric vectors h1 with the
first face’s appearance vector h2 in the first row. The third row shows the faces generated by transferring and recombining the second
through seventh faces’ appearance vectors h2 with the first face’s geometric vector h1 in the first row. The deformable generator model
is trained on the 10,000 face images from the CelebA data set, which are cropped to 64 × 64 pixels, and the faces in the training data
have a wide and diverse variety of colors, illuminations, identities, viewing angles, shapes, and expressions.
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Observed

Synthesized
sequence 1

Synthesized
sequence 2

Figure 9

Generating dynamic textures. The dynamic generator model is learned by maximum likelihood from a single training video exhibiting
a burning flame, sized 64 pixels × 64 pixels × 60 frames. A longer-length dynamic texture can be generated from a relatively short
training sequence by just drawing longer independent and identically distributed samples from a Gaussian distribution. The first row
displays 6 frames of the 60-frame observed sequence, and the second and third rows show 6 frames of two synthesized sequences of 120
frames, which are generated by the learned model.

the initial hidden state h0, and then following Equations 10 and 11 to generate a sequence of
images with a sequence of innovation vectors zt sampled from Gaussian noise distribution.

4.3. Flow-Based Models

A flow-based model is of the form x = gθ (h), but h is of the same dimensionality as x, and gθ is
a composition of a sequence of simple invertible transformations, so that the probability density
of x can be obtained in closed form, pθ (x) = p0(g−1

θ (x))|∂gθ (x)/∂x|−1, where p0 is the density of h,

Observed

Synthesized
sequence 1

Synthesized
sequence 2

Figure 10

Generating action patterns. The dynamic generator model is trained on an animal action data set, including 20 videos of 10 animals
performing running and walking. Each observed video is scaled to 64 pixels × 64 pixels × 30 frames. The first row displays 6 frames of
the observed sequence, and the second and third rows show the corresponding frames of two synthesized sequences generated by the
learned model.
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and |∂gθ (x)/∂x| is the absolute value of the determinant of the Jacobian of gθ . Such a model can
be considered a special generator model with invertible mapping between the hidden vector and
the signal.

Flow-based models (Dinh et al. 2014, Rezende & Mohamed 2015, Dinh et al. 2017, Kingma
& Dhariwal 2018, Grathwohl et al. 2019) can be traced back to independent component anal-
ysis reviewed in Section 2.1 by, for example, Dinh et al. (2014). They also arise from efforts to
strengthen the inference model in variational auto-encoders (VAEs) (e.g., Rezende & Mohamed
2015), which are reviewed in the next section. The advantage of such models is that the normal-
ized probability density of x can be obtained in closed form, so maximum likelihood learning is
simple. A disadvantage is that the mapping gθ may be of a rather contrived form in order to ensure
that the mapping is invertible and the Jacobian can be efficiently computed.

5. LEARNING THE GENERATOR MODEL JOINTLY
WITH COMPLEMENTARY MODELS

In modern deep learning literature, the generator model is usually learned jointly with a comple-
mentary model, and the learning is not based on maximum likelihood. Such learning methods are
unconventional in statistics, but they can be quite powerful and can be interesting to statisticians.

5.1. Issues with Maximum Likelihood

Themaximum likelihood learning of the generator network in the previous section has two issues.
First, the learning algorithm requires MCMC sampling of the posterior distribution pθ (h|x) as an
inner loop, which can be expensive. Second, the maximum likelihood estimator, which minimizes
KL(pdata‖pθ ) over θ , seeks to cover all the local modes of pdata, and as a result, the learned pθ tends
to be smoother than pdata, and images generated by the learned pθ tends to be less sharp than the
observed images.

To address the first issue, the VAE (Kingma & Welling 2014, Rezende et al. 2014, Mnih &
Gregor 2014) learns an inference model to approximate the posterior distribution. To address the
second issue, the generator model can be learned jointly with a discriminator, as in generative
adversarial networks (GAN) (Goodfellow et al. 2014, Radford et al. 2015), or an energy-based
model that specifies the distribution of x explicitly up to a normalizing constant.

While the generator model is parameterized by a top-down network as shown in the left panel
of Figure 11, the complementary model is parameterized by a separate bottom-up network as
shown in the right panel of Figure 11.

Top-down mapping:
hidden vector h

Generator model

Signal x ≈ gθ(h)

Bottom-up mapping:
hidden vector qϕ(h| x) or energy fα(x)

Complementary model

Signal x

Figure 11

A generator model coupled with a complementary model. The generator model is parameterized by a
top-down network, gθ , which maps the hidden vector h to signal x, while the complementary model is
parameterized by a bottom-up network qφ that maps signal x to hidden vector h or fα that maps signal x to
energy.
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5.2. Variational Auto-Encoder: Joint Learning with Inference Model

In order to avoidMCMC sampling from the posterior pθ (h|x), the VAE (Kingma&Welling 2014,
Rezende et al. 2014, Mnih & Gregor 2014) approximates pθ (h|x) by a tractable qφ (h|x), such as

qφ (h|x) ∼ N(μφ (x), diag(vφ (x))), 12.

where bothμφ and vφ are bottom-up networks that map x to d-dimensional vectors,with φ collect-
ing all the weight and bias parameters of the bottom-up networks. For h ∼ qφ (h|x), we can write
h = μφ (x) + diag(vφ (x))1/2z, where z ∼ N(0, Id ).Thus, expectation with respect to h ∼ qφ (h|x) can
be written as expectation with respect to z. This reparameterization trick (Kingma & Welling
2014) helps reduce the variance in Monte Carlo integration. We may consider qφ (h|x) as an ap-
proximation to the iterative MCMC sampling of pθ (h|x). In other words, qφ (h|x) is the learned
inferential computation that approximately samples from pθ (h|x).

The VAE objective is a modification of the maximum likelihood estimation (MLE) objective:

KL(qdata(x)qφ (h|x)‖pθ (h, x)) = KL(qdata(x)‖pθ (x)) + KL(qφ (h|x)‖pθ (h|x)). 13.

We define the conditional KL divergence as KL(q(x|y)‖p(x|y)) = Eq(x,y)[log(q(x|y)/p(x|y))], where
the expectation is with respect to the joint distribution q(x, y). We estimate θ and φ jointly by

min
θ

min
φ

KL(qdata(x)qφ (h|x)‖pθ (h, x)), 14.

which can be accomplished by gradient descent.
Define Q(h, x) = qdata(x)qφ (h|x). Define P(h, x) = p(h)pθ (x|h).Q is the distribution of the com-

plete data (h, x), where qφ (h|x) can be interpreted as an imputer that imputes the missing data h.
P is the distribution of the complete-data model. The VAE is minθ minφ KL(Q‖P).

We may interpret the VAE as an alternating projection between Q and P (Figure 12 provides
an illustration). The wake-sleep algorithm (Hinton et al. 1995) is similar to the VAE, except that it
updates φ by minφ KL(P‖Q), where the order is flipped. Xing et al. (2019) implemented the VAE
learning of the deformable generator model, and the results are similar to maximum likelihood
learning.

qd(x)qϕ(h| x)

ϕ2

θ2 θ1 θ0

ϕ1

Q

Q

p(h)pθ(x| h)
P

P

Figure 12

Variational auto-encoder as joint minimization by alternating projection. P = p(h)pθ (x|h) is the distribution
of the complete-data model, where p(h) is the prior distribution of hidden vector h and pθ (x|h) is the
conditional distribution of x given h.Q = qd (x)qφ (h|x) is the distribution of the complete data (h, x), where
qd (x) is the data distribution and qφ (h|x) is the learned inferential computation that approximately samples
from the posterior distribution pθ (x|h). (Left) Interaction between the models. (Right) Alternating projection.
The two models run toward each other.
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5.2.1. Maximum likelihood estimation algorithm from the variational auto-encoder per-
spective. Recall that the MLE objective is to minimize KL(qdata‖pθ ). Suppose θt is the current
estimate in the MLE algorithm.We can write

KL(qdata(x)pθt (h|x)‖p(h)pθ (x|h)) = KL(qdata(x)‖pθ (x)) + KL(pθt (h|x)‖pθ (h|x)), 15.

where we replace qφ (h|x) in the VAE by pθt (h|x).
The above identity underlies the EM algorithm (Dempster et al. 1977), where we find

θt+1 by maximizing the left-hand side over θ . Because KL(pθt (h|x)‖pθ (h|x)), as a function of
θ , is minimized at θ = θt , with minimum value 0, KL(qdata(x)pθt (h|x)‖p(h)pθ (x|h)) majorizes
KL(qdata(x)‖pθ (x)) as functions of θ , and both functions touch at θ . Thus minimizing the left-hand
side will decrease KL(qdata‖pθ ), which leads to the monotonicity of the EM algorithm.Moreover,
the derivative of KL(pθt (h|x)‖pθ (h|x)), as a function of θ , is zero at θt . Thus, the gradient of the
KL divergence on the left-hand side at θt agrees with the gradient of the first KL divergence on
the right-hand side at θt . This leads to the identity in Equation 9.

5.2.2. Comparison with traditional variational inference. In the VAE, the model qφ (h|x) and
the parameter φ are shared by all the training examples x, so that μφ (x) and vφ (x) in Equation 12
can be computed directly for each x given φ. This is different from traditional variational inference
( Jordan et al. 1999, Blei et al. 2017), where, for each x, a model qμ,v (h) is learned by minimizing
KL(qμ,v (h)‖pθ (h|x)) with x fixed, so that (μ, v) is computed by an iterative algorithm for each x,
which is an inner loop of the learning algorithm. This is similar to maximum likelihood learning,
except that in maximum likelihood learning, the inner loop is an iterative algorithm that samples
pθ (h|x) instead of minimizing over (μ, v). The learned networks μφ (x) and vφ (d ) in the VAE are
to approximate the iterative minimization algorithm by direct mappings.

5.3. Generative Adversarial Net: Joint Learning with Discriminator

The generator model learned by MLE or the VAE usually cannot generate very realistic images.
Both MLE and the VAE target KL(qdata‖pθ ), though the VAE only minimizes an upper bound
of KL(qdata‖pθ ). Consider minimizing KL(q‖p) over p within a certain model class. If q is multi-
modal, then p is obliged to fit all the major modes of q because KL(q‖p) is an expectation with
respect to q. Thus, p tends to interpolate the major modes of q if p cannot fit the modes of q closely.
As a result, pθ learned by MLE or the VAE tends to generate images that are not as sharp as the
observed images.

The behavior of minimizing KL(q‖p) over p is different from minimizing KL(q‖p) over q. If
p is multi-modal, q tends to capture some major modes of p while ignoring the other modes of
p, because KL(q‖p) is an expectation with respect to q. In other words, minqKL(q‖p) encourages
mode chasing, whereas minpKL(q‖p) encourages mode covering.

Sharp synthesis can be achieved by GAN (Goodfellow et al. 2014, Radford et al. 2015), which
pairs a generator model G with a discriminator model D. For an image x, D(x) is the probability
that x is an observed (real) image instead of a generated (faked) image. It can be parameterized
by a bottom-up network fα (x), so that D(x) = 1/(1 + exp(− fα (x)), i.e., logistic regression (see
Section 4.1.1). We can train the pair of (G,D) by an adversarial, zero-sum game. Specifically, let
G(h) = gθ (h) be a generator. Let

V (D,G) = Eqdata [logD(X )] + Eh∼p(h)[log(1 −D(G(h)))], 16.
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where Eqdata can be approximated by averaging over the observed examples, and Eh can be approx-
imated by Monte Carlo average over the faked examples generated by the generator model. We
learnD andG by minGmaxDV (D,G).V (D,G) is the log-likelihood forD, i.e., the log-probability
of the real and faked examples. However, V (D,G) is not a very convincing objective for G. In
practice, the training of G is usually modified into maximizing Eh∼p(h)[logD(G(h))] to avoid the
vanishing gradient problem.

For a given θ , let pθ be the distribution of gθ (h) with h ∼ p(h). Assume a perfect discriminator.
Then, according to Bayes’ theorem,D(x) = qdata(x)/(qdata(x) + pθ (x)) (assuming equal numbers of
real and faked examples). Then, θ minimizes the Jensen-Shannon ( JS) divergence

JS(qdata‖pθ ) = KL(pθ‖pmix ) + KL(qdata‖pmix ), 17.

where pmix = (qdata + pθ )/2.
In JS divergence, the model pθ also appears on the left-hand side of KL divergence. This en-

courages pθ to fit some major modes of qdata while ignoring others. As a result, GAN learning
suffers from the mode collapsing problem, i.e., the learned pθ may miss some modes of qdata. How-
ever, the pθ learned by GAN tends to generate sharper images than the pθ learned by MLE or the
VAE.

5.4. Energy-Based Model

Similar to GAN, we can pair the generator model with an energy-based model (Ngiam et al.
2011; Dai et al. 2014; Lu et al. 2016; Xie et al. 2016, 2017, 2018b; Gao et al. 2018a) instead of a
discriminatormodel. Similar to the discriminatormodel, the energy-basedmodel is also defined by
a bottom-up network. Also similar to the discriminator model, which seeks to tell apart the images
generated by the generator model and the real images, the energy-based model plays the role of
an evaluator, evaluating the images generated by the generator model against the real images.We
may intuitively consider the generator model as an actor or a student and the energy-based model
as a critic or a teacher.

5.4.1. Generalizing the exponential family model. The energy function in the energy-based
model, − fα (x), defines the energy of x, and a low energy x is assigned a high probability. Specifi-
cally, we have the following probability model:

πα (x) = 1
Z(α)

exp
[
fα (x)

]
, 18.

where fα (x) is parameterized by a bottom-up deep network with parameters α, and Z(α) is the
normalizing constant. It is the nonlinear generalization of the exponential family model (see
Section 4.1.2), and it is also a Gibbs distribution and a random field model. Here, we drop the
reference measure ρ(x), or we assume it is uniform measure. In contrast to the discriminator
model D(x), we may intuitively call πα the evaluator model, where fα assigns the value to x, and
πα evaluates x by a normalized probability distribution (see the right panel of Figure 11).

In terms of learning representations, the generator model represents the observed x by a vector
h, and the energy-based model learns multiple layers of features in the network fα (x). The energy-
based model learned by maximum likelihood tends to have stronger synthesis ability than the
generator model learned by maximum likelihood because the former directly approximates qdata
by fα , while the latter approximates qdata by pθ , which is obtained by integrating out h.
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Observed

Synthesized
sequence

a Goose b Tiger

Figure 13

Learning the energy-based model by maximum likelihood: (a) goose, (b) tiger. For each category, the first row displays four of the
training images, and the second row displays four of the images generated by the learning algorithm. fα (x) is parameterized by a
four-layer bottom-up deep network, where the first layer has 100 7 × 7 filters with subsampling size 2, the second layer has 64 5 × 5
filters with subsampling size 1, the third layer has 20 3 × 3 filters with subsampling size 1, and the fourth layer is a fully connected layer
with a single filter that covers the whole image. The number of parallel chains for Langevin sampling is 16, and the number of
Langevin iterations between every two consecutive updates of parameters is 10. The training images are 224 × 224 pixels.

5.4.2. Maximum likelihood. To learn the energy-based model πα , the maximum likelihood
estimator minimizes KL(qdata‖πα ) over α. We can update α by a gradient descent:

− ∂

∂α
KL(qdata(x)‖πα (x)) = Eqdata

[
∂

∂α
fα (x)

]
− Eπα

[
∂

∂α
fα (x)

]
. 19.

The above identity follows from the fact that the derivative of the cumulant or log partition func-
tion logZ(α) is the expectation of the derivative of fα (x).

To implement the above update,we need to compute the expectationwith respect to the current
model πα . It can be approximated by MCMC, such as Langevin dynamics or HMC, that samples
from πα . Again, it can be efficiently implemented by gradient computation via back-propagation.
Lu et al. (2016) and Xie et al. (2016) learned the energy-based model using such a learning method
(see Figure 13 for an illustration).

More recently, Nijkamp et al. (2019) studied a very simple implementation of the learning
algorithm where, within each learning iteration, we run K-step MCMC starting from a uniform
noise distribution. After convergence, theK-stepMCMC is capable of generating realistic images.

The energy-based model is related to the discriminator model via Bayes’ law (see Section 4.1.2
and also Dai et al. 2014, Wu et al. 2019). The model can be learned discriminatively by fitting a
logistic regression model (see Tu 2007, Jin et al. 2017, Lazarow et al. 2017, Lee et al. 2018).

5.4.3. Adversarial contrastive divergence: joint learning of generator and energy-based
model. To avoid MCMC sampling of πα , we may approximate it by a generator model pθ , which
can generate synthesized examples directly, i.e., sampling h from p(h), and transforming h to x by
x = gθ (h).We may consider pθ an approximation to the iterative MCMC sampling of πα . In other
words, pθ is the learned computation that approximately samples from πα—it is an approximate
direct sampler of πα .

We can learn both πα and pθ using the following objective function (Kim & Bengio 2016, Dai
et al. 2017):

min
α

max
θ

[KL(qdata‖πα ) − KL(pθ‖πα )], 20.
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p(h)pθ(x| h)
P P

πα(x)qϕ(h| x)
∏
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qd(x)qϕ(h| x)
Q

Q

Figure 14

Adversarial contrastive divergence where the energy-based model favors real data against the generator.
(Left) Interaction between the models. Red arrow indicates a chasing game, where the red arrow pointing to
� indicates that � seeks to move away from P. The blue arrow pointing from P to � indicates that P seeks
to move close to �. (Right) Contrastive divergence.

or equivalently,

max
α

min
θ

[KL(pθ‖πα ) − KL(qdata‖πα )]. 21.

The gradient for updating α becomes

∂

∂α
[Eqdata ( fα (x)) − Epθ ( fα (x))], 22.

where the intractable logZ(α) term is canceled.
Because of the negative sign in front of the second KL divergence in Equation 20, we need

maxθ in Equation 20 or minθ in Equation 21, so that the learning becomes adversarial (illustrated
in Figure 14). Inspired by the work of Hinton (2002), Han et al. (2019) called Equation 20 the
adversarial contrastive divergence (ACD). It underlies the work of Kim & Bengio (2016) and Dai
et al. (2017).

The adversarial form (Equation 20 or 21) defines a chasing game with the following dynamics:
The generator pθ chases the energy-based model πα in minθ KL(pθ‖πα ), while the energy-based
model πα seeks to get closer to qdata and away from pθ . The red arrows in Figure 14 illustrate this
chasing game. The result is that πα lures pθ toward qdata. In the idealized case, pθ always catches
up with πα , and then πα will converge to the maximum likelihood estimate minα KL(qdata‖πα ),
and pθ converges to πα . This chasing game is different from the VAE minθ minφ KL(Q‖P), which
defines a cooperative game where qφ and pθ run toward each other.

Even though the above chasing game is adversarial, both models are running toward the data
distribution. While the generator model runs after the energy-based model, the energy-based
model runs toward the data distribution. As a consequence, the energy-based model guides or
leads the generator model toward the data distribution. It is different from GAN (Goodfellow
et al. 2014), in which the discriminator eventually becomes confused because the generated data
become similar to the real data. In the above chasing game, the energy-based model becomes close
to the data distribution.

The updating of α by Equation 22 is similar to Wasserstein GAN (WGAN) (Arjovsky et al.
2017), but unlike WGAN, fα defines a probability distribution πα , and the learning of θ is based
on minθ KL(pθ‖πα ), which is a variational approximation to πα . This variational approximation
only requires knowing fα (x), without knowing Z(α). However, unlike qφ (h|x), pθ (x) is still in-
tractable; in particular, its entropy does not have a closed form. Thus, we can again use variational

www.annualreviews.org • Representation Learning 323



ST07CH13_Wu ARjats.cls February 11, 2020 12:57

approximation, by changing the problem minθ KL(pθ‖πα ) to

min
θ

min
φ

KL(p(h)pθ (x|h)‖πα (x)qφ (h|x)). 23.

Define �(h, x) = πα (x)qφ (h|x), and then the problem is minθ minφ KL(P‖�), which is analytically
tractable and underlies the work of Dai et al. (2017). In fact,

KL(P‖�) = KL(pθ (x)‖πα (x)) + KL(pθ (h|x)‖qφ (h|x)). 24.

Thus, we can modify Equation 21 into maxα minθ minφ[KL(P‖�) − KL(Q‖�)], because
KL(Q‖�) = KL(qdata‖πα ).

Note that in the VAE (Equation 13), the objective function is in the form of KL +KL,whereas
in ACD (Equation 20), it is in the form of KL − KL. In both Equations 20 and 13, the first KL
is about maximum likelihood. The KL + KL form of the VAE makes the computation tractable
by changing the marginal distribution of x to the joint distribution of (h, x). The KL − KL form
of ACD makes the computation tractable by cancelling the intractable logZ(α) term. Because of
the negative sign in Equation 20, the ACD objective function becomes an adversarial one or a
minimax game.

Also note that in the VAE, pθ appears on the right-hand side of KL,whereas in ACD, pθ appears
on the left-hand side of KL. Thus, in ACD, pθ may exhibit mode chasing behavior, i.e., fitting the
major modes of πα , while ignoring other modes.

5.4.4. Maximum likelihood estimation algorithm from the adversarial contrastive diver-
gence perspective. Recall that the maximum likelihood is to minimize KL(qdata‖πα ). Suppose
αt is the current estimate of the MLE algorithm.We can consider the contrastive divergence

KL(qdata‖πα ) − KL(παt ‖πα ), 25.

where we replace pθ in ACD by παt . Again, KL(παt ‖πα ) as a function of α is minimized at αt ,
where the gradient is zero. Thus the gradient of the above contrastive divergence at αt agrees
with the gradient of the first KL divergence KL(qdata‖πα ) for MLE, which leads to the identity in
Equation 19. For the K-step MCMC of Nijkamp et al. (2019), we can replace παt above by the
marginal distribution obtained by K-step MCMC toward παt , initialized at the uniform distribu-
tion. Nijkamp et al. (2019) also studied the learned K-step MCMC as a model in itself.

5.5. Divergence Triangle: Variational Auto-Encoder Plus Adversarial
Contrastive Divergence, Joint Learning of Three Models

We can combine the VAE and ACD into a divergence triangle, which involves the following three
joint distributions on (h, x) defined above:

1. Q distribution: Q(h, x) = qdata(x)qφ (h|x)
2. P distribution: P(h, x) = p(h)pθ (x|h)
3. � distribution: �(h, x) = πα (x)qφ (h|x)
Han et al. (2019) proposed to learn the threemodels, pθ ,πα , and qφ , by the following divergence

triangle loss functional D (see Figure 15 for an illustration):
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p(h)pθ(x| h)
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πα(x)qϕ(h| x)
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Q

Figure 15

Divergence triangle based on the Kullback-Leibler divergences between three joint distributions,Q, P, and
�, of (h, x). The blue arrows indicate the “running toward” behavior and the red arrow indicates the
“running away” behavior.

max
α

min
θ

min
φ

D(α, θ ,φ),

D = KL(Q‖P) + KL(P‖�) − KL(Q‖�). 26.

The divergence triangle is based on the three KL divergences between the three joint distributions
on (h, x). It has a symmetric and antisymmetric form,where the antisymmetry is due to the negative
sign in front of the last KL divergence and the maximization over α. Compared to the VAE and
ACD objective functions in the previous subsections, KL(Q‖P) is the VAE part, and KL(P‖�) −
KL(Q‖�) is the ACD part.

The divergence triangle leads to the following dynamics between the three models: (a) Q and
P seek to get close to each other. (b) P seeks to get close to �. (c) π seeks to get close to qdata, but
it seeks to get away from P, as indicated by the red arrow. Note that KL(Q‖�) = KL(qdata‖πα ),
because qφ (h|x) is canceled out. The effect of (b) and (c) is that π gets close to qdata while inducing
P to get close to qdata as well, or in other words, P chases πα toward qdata.

Han et al. (2019) also employed the layer-wise training scheme of Karras et al. (2017) to learn
models by divergence triangle from the CelebA-HQ data set (Karras et al. 2017), including 30,000
celebrity face images with resolutions of up to 1,024 × 1,024 pixels. The learning algorithm con-
verges stably, without extra tricks, to obtain realistic results, as shown in Figure 16.

Figure 16a displays a few 1,024 × 1,024 images generated by the learned generator model
with a 512-dimensional latent vector. Figure 16b shows an example of interpolation. The two
images at the two ends are generated by two different latent vectors. The images in between are
generated by the vectors that are linear interpolations of the two vectors at the two ends. Even
though the interpolation is linear in the latent vector space, the nonlinear mapping leads to a
highly nonlinear interpolation in the image space. We first do linear interpolation between the
latent vectors at the two ends, i.e., (1 − α) × h0 + α × h1, where h0 and h1 are two latent vectors
at two ends, respectively, and α is in the closed unit interval [0, 1]. The images in between are
generated by mapping those interpolated vectors to image space via the learned generator. The
interpolation experiment shows that the algorithm can learn a smooth generator model that traces
the manifold of the data distribution.

5.6. Cooperative Learning via Markov Chain Monte Carlo Teaching

In ACD, the generator model pθ is used to approximate the energy-based model πα , and we treat
the examples generated by pθ as if they are generated from πα for the sake of updating α. The
gap between pθ and πα can cause bias in learning. In the work of Xie et al. (2018a, 2019b), we
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Generated face imagesa

Linear interpolationsb

Figure 16

Learning generator model by divergence triangle from the CelebA-HQ data (Karras et al. 2017) set that includes 30,000
high-resolution celebrity face images. (a) Generated face images with 1,024 × 1,024 resolution sampled from the learned generator
model with a 512-dimensional latent vector. (b) Linear interpolation of the vector representations. The images at the two ends are
generated from latent vectors randomly sampled from a Gaussian distribution. Each image in the middle is obtained by first
interpolating the two vectors of the two end images, and then generating the image using the generator.

proposed to bring back MCMC to bridge the gap. Instead of running MCMC from scratch, we
run a finite-stepMCMC towardπα , initialized from the examples generated by pθ .We then use the
examples produced by the finite-step MCMC as the synthesized examples from πα for updating
α. Meanwhile, we update pθ based on how the finite-step MCMC revises the initial examples
generated by pθ ; in other words, the energy-based model (as a teacher) πα distills the MCMC into
the generator (as a student) pθ . We call this scheme cooperative learning.

Specifically, we first generate ĥi ∼ N(0, Id ), and then generate x̂i = gθ (ĥi ) + εi, for i = 1, . . . , ñ.
Starting from {x̂i, i = 1, . . . , ñ}, we run MCMC such as Langevin dynamics for a finite number of
steps toward πα to get {x̃i, i = 1, . . . , ñ}, which are revised versions of {x̂i}. {x̃i} are used as the syn-
thesized examples from the energy-based model.We can then update α according to Equation 19.

The energy-based model can teach the generator via MCMC.The key is that in the generated
examples, the latent h is known. In order to update θ of the generator model, we treat {x̃i, i =
1, . . . , ñ} as the training data for the generator. Since these {x̃i} are obtained by the Langevin
dynamics initialized from {x̂i}, which are generated by the generator model with known latent
factors {ĥi}, we can update θ by learning from the complete data {(ĥi, x̃i ); i = 1, . . . , ñ}, which is
a supervised learning problem, or more specifically, a nonlinear regression of x̃i on ĥi. At θ (t ), the
latent factors ĥi generates and thus reconstructs the initial example x̂i. After updating θ , we want ĥi
to reconstruct the revised example x̃i. That is, we revise θ to absorb the MCMC transition from x̂i
to x̃i. The left panel of Figure 17 illustrates the basic idea.The right panels shows a more rigorous
method, where we initialize the MCMC for inferring {h̃i} from the known {ĥi} and then update θ

based on {(h̃i, x̃i ), i = 1, . . . , ñ}.
The theoretical understanding of the cooperative learning scheme is given below:

1. Modified contrastive divergence for the energy-based model: In the traditional contrastive
divergence (Hinton 2002), x̂i is taken to be the observed xi. In cooperative learning, x̂i
is generated by pθ (t ) . Let Mα be the Markov transition kernel of finite steps of Langevin
dynamics that samples πα . Let (Mα pθ )(x) = ∫

Mα (x′, x)pθ (x′ )dx′ be the marginal distri-
bution by running Mα initialized from pθ . Then, similar to the traditional contrastive
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Figure 17

Diagrams of cooperative learning via MCMC teaching. The double-line arrows represent generation and
reconstruction by the generator model, while the dashed-line arrows represent MCMC sampling and
inference in the energy-based model and the generator model. θ is the parameters of the generator model,
and α is the parameters of the energy-based model. ĥ and x̂ are a hidden vector and signal generated by the
generator model, respectively. x̃ is the MCMC sample of the energy-based model, which is achieved by
Langevin dynamic initialized from x̂. h̃ is the MCMC inference of the generator model, which is achieved by
Langevin dynamic initialized from ĥ. Abbreviation: MCMC,Markov chain Monte Carlo.

divergence, the learning gradient of the evaluator model α at iteration t is the gradient
of KL(qdata ‖ πα ) − KL(Mα(t ) pθ (t ) ‖ πα ) with respect to α. In the traditional contrastive di-
vergence, qdata takes the place of pθ (t ) in the second KL divergence.

2. MCMC teaching of the generator model: The learning gradient of the generator θ in
the right panel of Figure 17 is the gradient of KL(Mα(t ) pθ (t ) ‖ pθ ) with respect to θ . Here
π (t+1) = Mα(t ) pθ (t ) takes the place of qdata as the data to train the generator model. It is much
easier to minimize KL(Mα(t ) pθ (t ) ‖ pθ ) than to minimize KL(qdata ‖ pθ ) because the latent
variables are essentially known in the former, so the learning is supervised. The MCMC
teaching alternates betweenMarkov transition from pθ (t ) toπ (t+1), and projection fromπ (t+1)

to pθ (t+1) , as illustrated by Figure 18.

Figure 19 displays two examples of image synthesis by cooperative learning algorithm on data
sets, LSUN bedrooms (Yu et al. 2015) and CelebA human faces (Liu et al. 2015).

6. LEARNING CONDITIONAL GENERATOR MODEL

The models and methods in the previous section can be easily generalized to conditional versions,
which can be more useful in various applications.

pθ (t+1)

pθ (t)

M

πα (t+1)

π (t+1)

G Markov
transition
Markov
transition

ProjectionProjection

Figure 18

The MCMC teaching of the generator alternates between Markov transition and projection. The family of
generator models G is illustrated by the black curve, and each distribution is illustrated by a point. pθ is a
generator model, and πα is an energy-based model.
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Figure 19

Image synthesis by cooperative learning. (a) Generating bedroom images (256 × 256 pixels). The synthesized images are generated by
the cooperative learning algorithm that learns from the LSUN data set (Yu et al. 2015) with 3,033,000 training images. (b) Generating
human face images (128 × 128 pixels). The synthesized images are generated by the cooperative learning algorithm that learns from the
CelebA data set (Liu et al. 2015) with 200,000 training images. For each category, the top panel shows examples of the training images,
and the bottom panel shows examples of the synthesized images generated by the learned models.

6.1. Conditional Generators, Conditional Variational Auto-Encoders,
and Conditional Generative Adversarial Networks

The unconditioned generatormodel can be extended to a conditionalmodel.Let x be the observed
signal and c be the observed condition. For instance, x may be an image, and c may be a class
label (e.g., cat or bird) or some text description (e.g., a bird is flying). The goal is to learn the
conditional distribution pθ (x|c) of the signal x given the condition c from the training data set
of the pairs {(xi, ci ), i = 1, . . . , n} that follow the data distribution qdata(x, c). This is a supervised
learning problem, except that x is a high-dimensional signal, and c may also be high dimensional.

The conditional generator model is of the following form:

h ∼ N(0, Id ), x = gθ (h, c) + ε, 27.

where gθ (h, c) is a top-down convolutional network (ConvNet) defined by the parameters θ . The
ConvNet g maps the latent noise vector h together with the observed condition c to the signal
x directly. Again, ε ∼ N(0, σ 2ID ) is the residual noise signal that is independent of h. If c is the
class label, it takes the form as a one-hot vector of label and is concatenated with h and fed into
the decoder g. If the c is of high dimensionality, e.g., an image or text, we can parameterize g
by an encoder-decoder structure: We first encode c into a latent vector z, and then we map the
concatenation of h and z, i.e., (h, z), to x by a decoder. Given c, we can generate x from the condi-
tional generator model by direct sampling—first, sampling h from its prior distribution, and then,
mapping (h, c) into x directly.

The conditional generator model can be trained by maximum likelihood or, equivalently, min-
imizing the KL divergence KL(qdata(x|c)‖pθ (x|c)) over θ . The gradient of the conditional log-
likelihood is computed by

− ∂

∂θ
KL(qdata(x|c)‖pθ (x|c)) = Eqdata (x,c)pθ (h|x,c)

[
∂

∂θ
log pθ (h, x|c)

]
, 28.
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where the expectation with respect to the conditional posterior distribution pθ (h|x, c) can be ap-
proximated via MCMC sampling of pθ (h|x, c).

Conditional VAEs (Sohn et al. 2015) train the conditional generator model by learning a
tractable conditional inference model qφ (h|x, c) to approximate the true conditional posterior dis-
tribution pθ (h|x, c) for the sake of getting around theMCMC sampling from pθ (h|x, c). Its objective
function is given by

KL(qdata(x|c)qφ (h|x, c)‖pθ (h, x|c)) = KL(qdata(x|c)‖pθ (x|c)) + KL(qφ (h|x, c)‖pθ (h|x, c)). 29.

The adversarial learning framework can also be used to train the conditional generator model,
where both the generator and discriminator are conditioned on the same condition. The resulting
model is called conditional GAN (Mirza & Osindero 2014), whose objective function of a two-
player minimax game is

V (D,G) = Eqdata [logD(x|c)] + Eh∼p(h)[log(1 −D(G(h|c)))]. 30.

The conditional generator models have a wide variety of application scenarios in computer
vision and graphics, such as synthesizing images from text description (Reed et al. 2016), image-
to-image translation (Isola et al. 2018) including synthesizing photo images from label maps or
edgemaps, and video-to-video translation (Wang et al. 2018) including converting an input source
video, e.g., a sequence of semantic segmentation masks, to a target realistic video.

6.2. Conditional Learning via Fast Thinking Initializer and Slow Thinking Solver

Recently, Xie et al. (2019c) extended the cooperative learning scheme to the conditional learning
problem by jointly learning a conditional energy–based model and a conditional generator model.
The conditional energy–based model is of the following form:

πα (x|c) = 1
Z(c,α)

exp[ fα (x, c)], 31.

where x is the input signal and c is the condition. Z(c,α) is the normalizing constant conditioned
on c. fα (x, c) can be defined by a bottom-up ConvNet where α collects all the weight and bias
parameters. Fixing the condition c, fα (x, c) defines the value of x for the condition c, and − fα (x, c)
defines the conditional energy function.πα (x|c) is also a deep generalization of conditional random
fields (Lafferty et al. 2001). Both the conditional generator model and the conditional energy–
based model can be learned jointly by the cooperative learning scheme in Section 5.6.

Figure 20 shows some examples of learning the conditional distribution of an image given
a class label. The two models are jointly learned on 30,000 handwritten digit images from the
MNIST database (LeCun et al. 1998) conditioned on their class labels, which are encoded as one-
hot vectors. For each class, 10 randomly sampled images are displayed.Each column is conditioned
on one label and each row is a different generated sample.

Figure 21 shows some examples of pattern completion on the CMP (Center for Machine Per-
ception) Facade data set (Tyleček & Šára 2013) by learning a mapping from an occluded image
(256 × 256 pixels), where a mask of the size of 128 × 128 pixels is centrally placed onto the orig-
inal version, to the original image. In this case, c is the observed part of the signal, and x is the
unobserved part of the signal.
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Figure 20

Generated handwritten digits conditioned on class labels. Each column is conditioned on one class label, and
each row represents a different generated handwritten digit image. The synthesized images are generated by
the jointly trained initializer and solver from 30,000 handwritten digit images along with their class labels
from the MNIST database. The image size is 64 × 64 pixels. Abbreviation: MNIST, Modified National
Institute of Standards and Technology.

The cooperative learning of the conditional generator model and conditional energy–based
model can be interpreted as follows. The conditional energy function defines the objective func-
tion or value function, i.e., it defines what solutions are desirable given the condition or the prob-
lem. The solutions can then be obtained by an iterative optimization or sampling algorithm such

Input Ground truth Initializer Solver Conditional GAN

Figure 21

Pattern completion by conditional learning. Each row displays one example. The first image is the testing
image (256 × 256 pixels) with a hole of 128 × 128 that needs to be recovered, the second image shows the
ground truth, the third image shows the result recovered by the initializer (i.e., the conditional generator
model), the fourth image shows the result recovered by the solver (i.e., the Markov chain Monte Carlo
sampler of the conditional energy–based model, initialized from the result of the initializer), and the last
image shows the result recovered by the conditional GAN as a comparison. Abbreviation: GAN, generative
adversarial networks.
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as MCMC. In other words, the conditional energy–based model leads to a solver in the form of
an iterative algorithm, and this iterative algorithm is a slow thinking process. In contrast, the con-
ditional generator model defines a direct mapping from condition or problem to solutions, and it
is a fast thinking process. We can use the fast thinking generator as an initializer to generate the
initial solution, and then use the slow thinking solver to refine the fast thinking initialization by
the iterative algorithm. The cooperative learning scheme enables us to learn both the fast think-
ing initializer and slow thinking solver.Unlike conditional GAN, the cooperative learning scheme
has a slow thinking refining process, which can be important if the fast thinking initializer is not
optimal.

In terms of inverse reinforcement learning (Abbeel & Ng 2004, Ziebart et al. 2008), the con-
ditional energy–based model defines the reward or value function, and the iterative solver defines
an optimal control or planning algorithm. The conditional generator model defines a policy. The
fast thinking policy is about habitual, reflexive, or impulsive behaviors, while the slow thinking
solver is about deliberation and planning. Compared with the policy, the value is usually simpler
and more generalizable, because it is in general easier to specify what one wants than to specify
how to produce what one wants.

7. CONCLUSIONS

This article reviews recent work on learning representations from a statistical perspective. We
focus on unsupervised learning from unlabeled data.The representations can be either generative,
like factor analysis, or relative, like multidimensional scaling.

A generative representation is a latent variable model. In this article, we focus on learning
the model with a hidden vector at the top layer, and the hidden vector generates the signal via a
linear or nonlinear transformation. Such a model can and should be extended to multiple layers
of hidden vectors, or a hierarchical or graphical model (Lee et al. 2009, Salakhutdinov & Hinton
2009).While statisticians tend to learn such models by maximum likelihood or Bayesian methods,
with the help of MCMC, researchers in deep learning prefer to learn such models by variational
approximations or adversarial training. It is our hope that this article explains the latter methods
and connects them to more traditional statistical methods.

A relative representation seeks to preserve important relations in the original observations.
Such representations can be useful for exploratory data analysis or visualization. In relative repre-
sentations, matrix representations can be used to represent the relations. For modeling dynamic
systems, we can use vectors to represent the states and matrices to represent the changes of states
caused by motions and actions.

Comparing vector representations and matrix representations, the latter are much less studied
than the former, but the brain appears to need both for representing sensory data—vector repre-
sentations are nouns and matrix representations are verbs. From a philosophical point of view, the
brain only has access to the sensory data (including external and internal sensory data), and our
notions of the outside world are the vector and matrix representations that the brain invents to
explain the sensory data. In a sense, only data are real, and the outside world as we see it is more
imaginary than real.
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