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Abstract

Spectral analysis of multivariate time series has been an active field of
methodological and applied statistics for the past 50 years. Since the success
of the fast Fourier transform algorithm, the analysis of serial auto- and cross-
correlation in the frequency domain has helped us to understand the dynam-
ics in many serially correlated data without necessarily needing to develop
complex parametric models. In this work, we give a nonexhaustive review of
the mostly recent nonparametric methods of spectral analysis of multivari-
ate time series, with an emphasis on model-based approaches.We try to give
insights into a variety of complimentary approaches for standard and less
standard situations (such as nonstationary, replicated, or high-dimensional
time series), discuss estimation aspects (such as smoothing over frequency),
and include some examples stemming from life science applications (such as
brain data).
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1. INTRODUCTION

Spectral analysis of multivariate time series has been an active field of methodological and applied
statistics for the past 50 years. Since the success of the fast Fourier transform (FFT) algorithm
(Cooley & Tukey 1965), the analysis of serial auto- and cross-correlation in the frequency do-
main has helped us to understand the dynamics in many serially correlated data in a way that does
not require the development of complex parametric models. On the one hand, studying the lin-
ear dependence structure of the components of a multivariate time series over time can reveal a
first idea about aspects such as causality. Understanding the leads and lags between two compo-
nents of the observed series is often of prime interest, for, e.g., economic indices. On the other
hand, in particular for data from the life sciences (medical, geological, etc.), spectral analysis can
serve as a preparatory tool for developing models such as those for the connectivity in the human
brainmeasured viamulti-channel electroencephalogram (EEG).Another application can be found
for temperature (and even climate) observations showing pronounced temporal cycles of random
nature.

Today, these second-order analyses are well developed and understood for stationary time series
data, i.e., data with a linear dependence structure that does not change over time. However, they
are not sufficient to realistically describe many real-life phenomena that show transients, regime
changes over time, and so on. Hence, methodological research started, about 20 years ago, to
generalize spectral analysis in a way that would still allow the use of the FFT (at least) locally
over time. While these ideas had already been around in the engineering literature for quite a
while, statisticians only later started to develop models that would accompany proposed modern
methodologies (such as local FFT, spectrogram, Wigner–Ville, or wavelet transform), allowing
the derivation of their theoretical properties.

In this overview, we concentrate on discussing a few of these recent, mostly model-based ap-
proaches in nonparametric spectral analysis of uni- and multivariate time series. We restrict our-
selves to weakly dependent time series models (i.e., those with sufficiently fast decaying serial
dependencies), but in order to go beyond stationarity, we also discuss time-varying spectral analy-
sis in some detail.More specifically, we intend to address the following aspects of modern spectral
analysis:

1. How do we smooth the (usually pretty irregularly appearing) raw Fourier-based estimators
over frequency by methods that stem more generally from nonparametric curve estimation
(see, e.g., Moulin 1994 on log-periodogram smoothing with wavelets; Neumann 1996 on
classical wavelet smoothing; Rosen & Stoffer 2007 on spline smoothing; and Yuan et al.
2012, as well as Chau & von Sachs 2019, on preserving positive-definiteness of the resulting
spectral estimators)?

2. What concepts do exist to render classical spectral analysis time-varying to adapt to the
often inhomogeneous nature of the dynamics of time series (Dahlhaus 2012, Ombao et al.
2005, Neumann & von Sachs 1997, Nason et al. 2000)?

3. How can we perform spectral analysis in the presence of replicated time series in more
complex situations of, e.g., supervised brain signal experiments (Chau & von Sachs 2016,
Fiecas & Ombao 2016, Gorrostieta et al. 2019)?

4. What are the challenges of spectral analysis of high-dimensional time series (Böhm & von
Sachs 2009, Fiecas & Ombao 2011, Fiecas & von Sachs 2014)?

5. What approaches exist that go beyond the classical Fourier-based spectral analyses (Davis
et al. 2013,Dette et al. 2015), and how canwe do spectral analysis for point processes (Roueff
& von Sachs 2019)?
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Our choice of topics to cover is certainly biased and cannot be exhaustive. We opt to discuss
almost exclusively nonparametric approaches,which borrow strength from other fields of research
(curve estimation, quantile regression, regularization methods, random effects modeling, etc.). As
such, they allow for some theoretical development of the mostly asymptotic properties of the
proposed estimation schemes.We give some critical views on the differentmethods, some of which
have been developed from a more theoretical point of view of new model approaches, others of
which are likely to be more suited to concrete applications.

With this choice, we apologize that we must omit many other interesting topics, such as semi-
parametric spectral analysis, goodness of fit of spectral distributions, testing, graphical time series
models for partial correlation/coherence analysis, and many more (some additional references are
provided in Section 7).

2. SOME BACKGROUND ON SPECTRAL ANALYSIS

There are many good books (Brillinger 1981, Brockwell & Davis 1991, Shumway & Stoffer 2006,
and Koopmans 1974, to name but a few) that give a detailed introduction to spectral analysis of
multivariate time series. In this section, we provide formal background and examples that lay the
groundwork for the following review of modern nonparametric methods applicable to spectral
analysis. We start by setting up notation for the treatment of stationary time series.

2.1. Stationary Time Series

Let X(t ), t = 1, . . . ,T , be a discrete real-valued, zero-mean, weakly stationary time series of di-
mension P with an absolutely summable autocovariance function, elementwise for each entry of
the following matrix (where � denotes transposed vectors):

cX (h) = E(X(t )X(t + h)� ), h = 0,±1,±2, . . . .

Its elements ci j (h), i, j = 1, . . . ,P, measure the linear dependency between components Xi(t ) and
Xj (t + h), which is invariant of time t, due to the stationarity of the underlying time series. As it is
somewhat cumbersome to represent the whole (uni- or multivariate) autocovariance structure of
the time series as an (infinite) sequence of time lag h, an alternative representation of this linear
dependency is given in the frequency domain by the spectrum or spectral density of X(t ).

The P × P spectral density matrix f (ω) of X(t ) is defined to be the Fourier transform (Fourier
series) of cX , i.e.,

f (ω) = (2π )−1
∞∑

h=−∞
E(X(t )X(t + h)� ) exp(−iωh), 1.

for (angular) frequencies ω ∈ [−π ,π ]. The spectral density matrix is hence 2π-periodic and her-
mitian, i.e., complex conjugate symmetric about zero frequency. It is composed of the real-valued
autospectra fii(ω), i = 1, . . . ,P, on the diagonal and the (complex conjugate) cross-spectra on its
off-diagonals fi j (ω), i �= j = 1, . . . ,P.

The autospectrum fii(ω) represents the linear serial dependency in the frequency domain of
component Xi(t ). It can be seen as arising in a decomposition of both the underlying process and
its variance-covariance along sine and cosine waves with random amplitudes (and phase)

Xi(t ) ≈
∑
k

[Uik cos(ωkt ) +Vik sin(ωkt )], ωk = 2πk
T

, 2.
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whereUik,Vik are independent and identically distributed (i.i.d.) (0, σ 2
ik ) such that

Var (Xi(t )) ≈
∑
k

σ 2
ik, 3.

and

cii(h) ≈
∑
k

σ 2
ik cos(ωkh). 4.

Rigorously written, and generalized to all components ofX(t ), the last equation translates into the
autocovariance matrix cX (h) being the Fourier back transform of the spectral density,

cX (h) =
∫ π

−π
f (ω) exp(iωh) dω. 5.

Note, furthermore, that the cross-spectrum fi j (ω) measures the linear dependency at all lags
and leads between componentsXi(t ) andXj (t ). For example, if one component is an exact shift τ in
time of the other, i.e.,Xi(t ) = Xj (t + τ ), then the cross-correlation ρi j (h) (i.e., the cross-covariance
ci j , normalized by the autocovariances cii and c j j) has a pronounced peak (only) at h = τ . Then the
cross-spectrum is peaked at the frequency corresponding to this wave- or correlation length.

The following running example has been simulated using the R package pdSpecEst by Chau
(2018). It represents a bivariate vector autoregressive-moving average (VARMA) process of order
(2,2) based onGaussian white noise. Its parameters have been chosen such that the first and second
autospectra correspond to a low-frequency process such as MA(1) with a smooth peak at zero
frequency and an AR(2) process with a sharper peak at frequency π/2 shared by the cross-spectra.
Note that the plots in Figure 1 only show the frequency range from [0,π ] as all spectra are
symmetric about zero frequency. We also clearly observe the symmetry properties of real and
imaginary parts of the cross-spectra f12 and f21.

To estimate f (ω) nonparametrically, one usually first converts the data X(t ) from the time do-
main to the frequency domain using the discrete Fourier transform:

dX (ω) =
T∑
t=1

X(t ) exp(−iωt ). 6.

In practice dX (ω) is fastly calculated [of order T log(T )] via the famous FFT algorithm of
Cooley & Tukey (1965) at the collection of grid or Fourier frequencies ω = ω� = 2π�

T , � =
−T/2, . . . ,T/2.

Then, the periodogram matrix IT (ω) is

IT (ω) = (2π )−1T−1dX (ω)dX (ω)∗, 7.

where ()∗ denotes the complex conjugate transpose. It is well known that for weakly dependent
processes [essentially, with elementwise absolutely summable cX (h) over lag h] the periodogram
matrix is an asymptotically unbiased but inconsistent estimator for f (ω) (Brillinger 1981), i.e., as
T → ∞,

E(IT (ω)) → f (ω), 8.

Var(IT (ω)) → f 2(ω), ω �= 0,±π. 9.
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Figure 1

Population spectral matrix of a simulated VARMA(2,2) process. Abbreviation: VARMA, vector autoregressive-moving average.

In Figure 2, we show a periodogram for a simulated stretch of length T = 4, 096 of the same
VARMA process as before. As can be seen from the wildly erratic behavior of the periodogram,
it is necessary to smooth each element ( j, k) of IT (ω) over frequency. A popular nonparametric
method is to use a smoothing kernel K ( jk)

T (·) whose smoothing span isM ( jk)
T :

f̃ ( jk)T (ω) =
∫ π

−π
K ( jk)
T (ω − θ ) I( jk)T (θ ) dθ , 10.

where the integration (expressing a convolution of the periodogram with the kernel weight that
asymptotically concentrates on frequency ω) is replaced in practice by a summation over the
grid of Fourier frequencies. The smoothing span M ( jk)

T essentially represents the number of pe-
riodogram ordinates over which we smooth. As it tends asymptotically to infinity, however, by a
slower rate than sample size T , under certain regularity conditions on the population spectrum
f (ω), the resulting smoothed periodogram matrix f̃T (ω) becomes a consistent estimator of the
latter (Brillinger 1981). The form of its (asymptotic) variance, as a consequence of Equation 9,
presents another certain challenge,

Var
(
f̃ ( jk)T (ω)

)
∼ 1

M ( jk)
T

∫ π

−π
[K ( jk)

T (θ )]2dθ [ f ( jk)]2(ω). 11.
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Figure 2

Periodogram matrix of the simulated VARMA(2,2) process with spectrum shown in Figure 1. Abbreviation: VARMA, vector
autoregressive-moving average.

As we can observe, this variance, although asymptotically tending to zero, depends, again, on the
(unknown) squared spectrum. This poses problem for questions of optimally choosing the span
M ( jk) [e.g., via mean-squared error (MSE) minimization, for which we refer to the discussion in
Section 2.2], and also for subsequent inference (confidence intervals or tests).

Of course, many other smoothing techniques exist besides kernel smoothing of the peri-
odogram matrix. Walden (2000) gives a nice overview on consistent multivariate spectral estima-
tion, starting from the multitaper point of view. However, he adopts a unified view that includes
many other techniques and that can also address the (non-)invertibility of the periodogram, which
is a rank-1 matrix (as can be seen directly from Equation 7). Multitapers have been used, particu-
larly by the engineering community, since the seminal work by Thomson (1982): This technique
provides simultaneously for reducing spectral leakage and averaging over a series of uncorrelated
periodogram estimates due to the construction of orthogonal taper windows, which are succes-
sively applied to the time series data before Fourier transforming.

Figure 3 shows an example for smoothing the periodogrammatrix of Figure 2 over frequency.
Here, we used the more sophisticated wavelet method of Section 3.2. This method automatically
adapts to the different degree of smoothness over frequency of the different components of
the underlying population spectral matrix (displayed in Figure 1) despite using only one global
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Figure 3

Smoothed periodogram matrix of the simulated VARMA(2,2) process with spectrum shown in Figure 1. Abbreviation: VARMA, vector
autoregressive-moving average.

smoothing parameter. For information on its choice, as well as details on the actual wavelet
smoother, we refer the reader to Sections 3.1 and 3.2. Furthermore, in order to do inference,
asymptotic normality of the smoothed periodogram can be used (more information on this is
provided in Section 2.3.2).

For the analysis of the cross-spectral information, rather than looking at the real and imaginary
part of the off-diagonal elements of the estimated spectral density matrix, it is more useful to look
at the amplitude and phase of these elements (see, e.g., Brockwell & Davis 1991, section 11.6).
A more direct measure of the amount of cross-correlation of two components of X(t ) in the fre-
quency domain is the spectral coherence at a given frequency ω:

κi j (ω) = fi j (ω)/[ fii(ω) fi j (ω)]1/2.

Estimators of this quantity can be obtained by replacing the population spectra by frequency
smoothed cross- and auto-periodograms, the respective elements of Equation 7. It is more com-
mon to look at the squared coherency function |κi j (ω)|2, the analog of the squared correlation in
the frequency domain. Here, a value near one indicates a strong linear relationship at frequency
ω between dZi(ω) and dZj (ω), the increment processes of Xti and Xt j in the multivariate analog of
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the spectral decomposition (Equation 13) given below. The reader is referred to Section 2.3.2 for
an example of time-varying coherence analysis of a multivariate EEG (see Figure 5, below). As a
first illustration, we refer to a simple bivariate example taken from Brockwell & Davis (1991, their
example 11.6.1), where Xt1 = Zt , Xt2 = Zt + 0.75Zt−10, for a given white noise process {Zt} ∼
WN(0, 1). In this case, |κi j (ω)|2 = 1 for all frequencies ω, which is actually more generally the
case if {Xt1} and {Xt2} are related by any time-invariant linear filter.

For more details on spectral coherence analysis and another (econometrics) example about a
price time series led by a market indicator series by several units in time, we refer again to the
book by Brockwell & Davis (1991) and example 11.6.3 therein. A more comprehensive analysis of
a multivariate monthly mean temperature time series of dimension 14 can be found in Brillinger
(1981, e.g., figure 7.8.9). The general interest is to identify the frequencies (or frequency bands)
that drive the linear relationship between two components of the multivariate time series. For
this, proper inference on the squared coherency has to be performed. One possibility is based on,
again, asymptotic normality (with an appropriate bias correction; see Koopmans 1974) for tests or
confidence intervals, frequency by frequency (see, e.g., Brockwell & Davis 1991, figure 11.7, and
figure 11.8 for the estimated phase).

Finally, it is also common to look at partial coherence (as in Park et al. 2014) as the frequency
domain analog of partial correlation. For this concept, widely used for studying brain connectivity,
for example, we refer to Brillinger (1981, sections 8.3 and 8.4).

2.2. The Challenges in Smoothing the Periodogram Matrix

Classical textbooks on modern spectral analysis suggest using one of the standard nonparametric
curve smoothing techniques, such as the kernel, nearest neighbor, spline, or more recently, wavelet
techniques. It is not the goal of this review to furnish any details on these well-documented meth-
ods.However, we provide some preliminary comments in order to lay the groundwork for treating
the nonstandard but often very realistic situation of, possibly also time-varying, spectra showing
spatially localized features (over frequency and/or over time). This is as opposed to handling the
much easier situation of smoothing the log-periodogram of a univariate stationary time series
based on the well-known Wahba approximation (Wahba 1980):

log(IT (ω)) ≈ log( f (ω)) − γ + e(ω), 12.

with γ denoting the Euler-Mascheroni constant (= 0.57722...) and with mean centered, constant
variance i.i.d. errors e(ω). Obviously this classical relationship of noisy observations modeled as
a population target plus homoscedastic additive noise fails to hold more generally. This makes it
considerably more difficult to smooth multivariate periodograms over frequency (see the discus-
sion around Equation 11):

1. The first reason is that, as is the univariate periodogram, the elements of the IT (ω) are
known to be somewhat nonnormally distributed (i.e., Wishart in the multivariate case as a
generalization of χ2 in the univariate case), and this only approximately so, for sufficiently
large T . Hence, any (linear) smoothing technique that essentially averages periodograms
either over neighboring Fourier frequencies or, in the stationary case, over neighboring
blocks over time (Welch 1967) works under the paradigm of an asymptotically, not too
quickly growing window. Essentially, consistency can be achieved if the smoothing span
MT → ∞ but MT /T → 0 as T → ∞. Usually asymptotic normality of the spectral esti-
mators also follows under these conditions. In theory, these results are completely analo-
gous to classical curve estimation under an additive signal-plus-noise model (such as the
one in Equation 12) due to the (asymptotic) uncorrelatedness of the IT (ω� ) over the grid
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of Fourier frequencies. Nevertheless, in practice it might be interesting to work with an
intermediate approximation based on weighted sums of χ2 ordinates instead of basing in-
ference on asymptotic normality of the smoothed periodogram. This is referred to as the
Satterthwaite approximation (see, e.g., Brockwell & Davis 1991, chapter 10.5, along with
figure 10.9 therein).

2. A second, and more severe, complication for periodogram smoothing comes from the het-
eroscedasticity of the (smoothed) periodogram, as its asymptotic variance depends on the
squared value of the spectral density at frequency ω (see Equations 9 and 11). This poses
problems for choosing the smoothing parameterMT (or the bandwidth) viaMSEminimiza-
tion, whether in the case of classical kernel smoothing or even for assessing the variance of
the empirical wavelet coefficients in case of a wavelet smoother (Neumann 1996), which we
revisit in Section 3.1.

3. A final, and most challenging, obstacle comes from the nature of a spectral density matrix to
be positive definite (PD), a property that is widely used in time series analysis for exploiting
the link between autocovariance and its Fourier transform (see Equation 5). Hence, one
wishes the estimated spectrum to remain PD—which is challenging due to the fact the
periodogram is a rank-1 matrix (as can be seen directly from Equation 7).We come back to
this challenge in Section 3.2 on positive-definiteness-preserving wavelet estimation.

In the next subsection, these aspects become even more challenging when, e.g., trying to
smooth a time-varying periodogram, such as in Equation 14, not only over frequency ω but
also over time. This can be done, e.g., by a two-fold kernel smoother, as sketched out below in
Equation 15.

2.3. Time-Varying Spectral Analysis

The spectral analysis discussed above is shift invariant with respect to time; however, many time
series data sets (speed and sound, geophysical or climate data, EEG or electrocardiogram data,
etc.) show a time-varying second-order behavior, possibly even with abrupt transients. Many ap-
proaches of generalizing to time-dependent spectral analysis can be found in the literature; one of
the first in statistical time series analysis was also the most prominent (Priestley 1965). For this re-
view, we focus on two more recent and complementary representatives, which both are statistical
and somewhat model-based approaches built on the idea of a short-time Fourier transform (using
a windowed or segmented periodogram).Other important and statistically interesting approaches
do exist, such as those based on theWigner–Ville spectrum, a very localized time-frequency spec-
trum that does not require choosing an a priori segmentation. For details on this approach, which
requires more sophisticated smoothing operations over time and frequency, we refer the reader
to Martin & Flandrin (1995) and Neumann & von Sachs (1997); Dahlhaus (2000a) provides a
parametric approach that is based on the Whittle likelihood.

2.3.1. Locally stationary time series. We start from the rigorous analog of the motivating
Equation 2. The so-called Cramér spectral representation of a stationary time series X (t ) with
spectral density f (ω) reads in its univariate version as

X (t ) =
∫ π

−π
A(ω) exp(iωt ) dZ(ω). 13.

In this equation, the transfer function A is related to the spectrum f (ω) by the relation
f (ω) = |A(ω)|2, whereas dZ(ω) denotes an orthonormal increment process, i.e., a process with
variance one and uncorrelated increments: Cov(dZ(ω), dZ∗(ω′ )) = δ(ω,ω′ ). [Note that often in
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the literature we find this representation given in a form based on orthogonal increments, i.e., nor-
malized such that Var(dZ(ω)) = f (ω).] The multivariate spectral representation of X(t ) is analo-
gous (see Brockwell & Davis 1991, chapter 11.8) and is not shown here to simplify the exposition.

Dahlhaus wrote a series of seminal papers on locally stationary time series, of which we cite
only the first two related to the frequency domain: Dahlhaus (1997) for the univariate approach
and Dahlhaus (2000a) for the case of multivariate processes. An excellent overview of his and all
related historical work in the literature is given byDahlhaus (2012).Motivated by Priestley (1965),
Dahlhaus came up with the class of locally stationary processes by imposing a smooth variation in
time t on the now time-dependent transfer function At (ω), resulting in a model quantity A(u,ω)
[with A(t/T ,ω) ≈ At (ω) for large T ], which is defined to live on rescaled time u = t/T ∈ [0, 1].
With this trick, the underlying observed processes is embedded into a doubly indexed sequence of
processes {XT (t )}. Its time-changing spectral content is now characterized by the sequenceAt,T (ω).
This allows for the property that the limiting spectrum f (u,ω) := |A(u,ω)|2, for each fixed u, rep-
resents the spectral density of a truly stationary process that approximates in a controlled way
the spectral density ft,T (ω) = |At,T (ω)|2 of {XT (t )}. The advantage of this model-based approach
is that the uniquely defined evolutionary spectrum f (u,ω) can be estimated, as a function de-
fined on the (rescaled) time-frequency plane [0, 1] × [−π ,π ], from sequences of time-localized
periodograms along segments of length N (smaller than T ):

IN ,T (u,ω) = (2π )−1N−1

∣∣∣∣∣∣
N/2∑

s=−N/2+1

XT ([uT ] + s) exp(−iωs)
∣∣∣∣∣∣
2

, t = [uT ] ∈ [N/2,T −N/2]. 14.

The direct generalization of smoothing periodograms of stationary time series given by
Equation 10 amounts to simply applying ideas of (kernel-based) smoothing of two-dimensional
nonparametric regression curves. In the case of a univariate time series this results in the estimator

f̂ (u,ω) =
∑
i

Kt
b (u− ui )

∫ π

−π
K f
h (ω − θ ) IN ,T (ui, θ ) dθ , 15.

where Kt and K f denote some classical kernel weights in time and frequency, with bandwidths
b and h respectively (e.g., h = hT = M−1

T , the reciprocal of the aforementioned smoothing span
MT ) and using the common notation Kh(·) := h−1K (·/h). Subsequent theories of consistency, for
bandwidths b and h tending sufficiently fast to zero with sample size T (with rates of convergence
given by, e.g., Dahlhaus 2012, theorem 4.7), and also inference, have thus been made possible.

Concerning other concepts of local stationarity, we mention a series of papers byWu and coau-
thors. Wu & Zhou (2011) is the first paper to apply a powerful new concept based on Bernoulli
shift processes, in combination with the functional dependence measure, to describe an alternative
dependence structure for local stationarity. Furthermore, Wu & Zaffaroni (2018) establish the
asymptotic theory for spectral density estimation of general stationary multivariate time series.
Zhang &Wu (D. Zhang andW.B.Wu, manuscript in preparation) treat high-dimensional locally
stationary processes. A recent work by Dahlhaus et al. (2019) gives a generalization toward
treating nonlinear processes by combining the two aforementioned concepts of local stationarity
with the use of stationary approximations and derivative processes (as first introduced in the
context of time-varying autoregressive conditional heteroscedasticity processes by Dahlhaus &
Subba Rao 2006).

2.3.2. Smoothed local complex exponentials analysis—a particular localized periodogram
approach. A different approach, which is less motivated from nonparametric estimation theory,
is directly built on a computationally efficient modification of the time-localized periodogram
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(Left) Illustration of adaptively segmenting a nonstationary (electroencephalogram) time series signal. (Right) Smoothed local complex
exponentials (SLEX) window function (top) and a time-localized waveform of the SLEX basis (bottom).

(Equation 14). The idea of a series of papers by Ombao and coworkers (Ombao et al. 2001, 2002,
2005, as well as Huang et al. 2004 and Böhm et al. 2010) is to split the observation interval [0,T ]
in the time domain into a hierarchy of dyadic subintervals and compute particularly windowed
periodograms on those, in a fast structured way. Related to this approach are similar ideas devel-
oped by, among others, Adak (1998) and Davis et al. (2006), and in a Bayesian framework, based on
reversible jump Markov chain Monte Carlo methods, by Rosen et al. (2012), thus circumventing
the dyadic restriction, though without treating cross-spectral analysis.

In a fashion similar to the construction of ordinary periodograms,Ombao et al. project the data
on a particular local Fourier basis called SLEX (smoothed local complex exponentials). In order to
get nonredundant information in this collection of SLEX periodograms, and to allow fast compu-
tation along the dyadic blocks of the resulting SLEX library, a specific window function (the SLEX
window) is used, which acts like a taper. This smooth window not only reduces the spectral bias
that would occur with rectangular windows but also preserves orthogonality (uncorrelatedness)
between the segmented periodograms at each Fourier frequency (see Figure 4).

The key ingredient of this method is the use of an entropy-related cost function in the time-
frequency domain. Its optimum delivers the best-adapted segmentation of the underlying time
series, taking both (estimated and frequency-smoothed) auto- and cross-spectral content into ac-
count. The method, originally developed for bivariate processes (Ombao et al. 2001), allows a
truly multivariate extension based on principal component analysis (PCA) in the SLEX frequency
domain (Ombao et al. 2005). In Figure 5, we show the idea behind this method in a simplified
scenario (for exposure) to only a bivariate set of transient EEG signals of length T = 215 recorded
with sampling rate 100 Hz at two different positions on the scalp (the channels corresponding to
left parietal lobe P3 and left temporal lobe T3) during an epileptic seizure.

Note how both the spectral structure and the coherency change over time according to the
region of onset of the seizure.Moreover, starting from this moment, the two channels T3 and P3,
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Bivariate SLEX analysis of EEG T3 and P3 channels during an epileptic seizure: autospectra and coherency estimators. Grayscale
amplitudes vary from white (low) to black (high) values of the time-varying estimators. Abbreviations: EEG, electroencephalogram;
SLEX, smoothed local complex exponentials.

which had previously been in coherent states along a low-frequency band (∼10 Hz), become less
uniformly coherent, with spectral power shifting to higher frequency. We refer the reader again
to Ombao et al. (2005) for a more comprehensive analysis of the full 18-dimensional EEG signal,
using a SLEX analysis on the first few principal components of this multivariate data set in the
frequency domain.

The SLEX method obviously suffers from the restriction to only provide dyadic partitionings.
However, its direct analog to stationary spectral analysis (on each of the chosen dyadic blocks
in time) makes it appealing and intuitive for practitioners such as medical doctors in brain data
analysis.

3. MODERN NONPARAMETRIC METHODS FOR SMOOTHING
THE PERIODOGRAM

Having introduced the challenges in smoothing the periodogram matrix in Section 2.2, we
now discuss some solutions based on modern nonparametric smoothing methods (kernel, spline,
wavelet, and so on) adapted to the situation at hand. Section 3.1 aims to provide the reader with
a nonexhaustive overview of generic smoothers over frequency (not specific to the multivariate
nature of the periodogram matrix), with a certain emphasis on the author’s own favorite (wavelet)
smoothers. In Section 3.2, we illustrate a recent potential solution to the most challenging prob-
lem in periodogram smoothing, the problem of preserving positive-definiteness of the resulting
spectral estimator.

3.1. Using Wavelet Thresholding Compared with Linear Smoothers
(Kernel, Spline, and Others)

Classical nonparametric curve smoothers have been successfully used to address the problem of
smoothing the periodogrammatrix.Numerousmethods exist, such as kernels with a global or local
bandwidth, nearest-neighbor methods, smoothing splines, or local polynomials (see Fan&Gijbels
1992 for an excellent overview), in both frequentist and Bayesian versions. It is not the goal of this
review article to compare them to each other or discuss how to optimally choose their smoothing
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parameter; we simply note that one can directly borrow strength from what has been developed
in the classical additive signal-plus-noise modelYt = m(xt ) + εt (compare also Equation 12) if one
takes into account the additional challenges discussed in Section 2.2. We recall, however, that
the heteroscedasticity of the periodogram makes it potentially rather difficult to produce visually
appealing plots of smooth spectral estimates without oversmoothing local structure (e.g., in the
peaks or troughs, as in the spectra shown in Figure 1).

A solution to this problem would be to work with a local smoothing parameter (Bühlmann
1996). However, this involves a large amount of computational effort in the case of a multivariate
time series with high dimensionality P, and it alsomakes the data-driven smoothingmethod highly
nonlinear in the data.

For this reason, working with a different, nonlinear smoother based on wavelet technology for
univariate periodograms began to attract interest about 20 years ago (see, e.g., Neumann 1996,
Gao 1997, and Moulin 1994 for log-periodograms under the model in Equation 12). For details
on wavelet smoothing, readers may refer to the cited literature; here, we summarize what is neces-
sary for grasping the ideas relevant to this review.Whereas linear wavelet smoothing is essentially
equivalent to kernel smoothing with a fixed bandwidth, the full potential of wavelets arises only if
combined with thresholding the wavelet coefficients. These coefficients are, in general, obtained
by projecting the observed data, here the periodogram, onto a given wavelet basis, e.g., orthogonal
Daubechies wavelets with compact support (Nason 2008) and then suppressing those that are too
small in amplitude. Setting these to zero should get rid of the noise in the data because, under
the model assumption of a sparse signal (the true underlying curve, here the spectrum, has few
nonzero coefficients), this signal is compressed into the few large coefficients that survive thresh-
olding. Of course, the choice of an optimal threshold is crucial and has been object of quite a bit
of research. For periodogram smoothing, it represents an additional challenge due to its (finite
sample) nonnormality and also its heteroscedasticity (as discussed in Section 2.2). This essentially
calls for level- and location-dependent thresholds: Each wavelet coefficient will be thresholded
adaptively by its own rule. Unfortunately, and similarly to Equation 11, a plug-in estimator of the
square of the unknown spectrum would be necessary, as in Neumann (1996); a recent alternative
could be the method proposed by Subba Rao (2018).

Various refined wavelet threshold schemes, e.g., based on nondecimated wavelets (Nason
& Silverman 1995), tree thresholding (Freyermuth et al. 2010), or the wavelet-Fisz approach
(Fryzlewicz et al. 2008), have been proposed to better cope with this aforementioned problem.
From Figure 3, one can get an impression of the potential of this methodology to produce
smoothed versions of potentially very irregular curves by choosing, essentially, only one smooth-
ing parameter (the threshold).

3.2. Spectral Estimators Preserving Positive-Definiteness

For smoothing the multivariate periodogram, the question of how to optimally choose the
smoothing parameter gives us the additional challenge of balancing between full flexibility (each
element of the periodogram matrix, potentially at each frequency, gets its own optimal smoothing
parameter to choose) and preserving positive-definiteness. Remember that positive-definiteness,
similarly to positivity of the spectral density for univariate time series, is important for both com-
putation and interpretation (after application of a PCA, for example, the spectrum of each compo-
nent should remain positive). As we have shown that wavelet smoothers can be spatially adaptive
to local structure without requiring a local smoothing parameter, we now investigate their suit-
ability for preserving positive-definiteness. In a series of papers, Chau & von Sachs (2018, 2019)
and Chau et al. (2019) suggested embedding the problemmore generally into curve estimation on
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Riemannian manifolds—an elegant approach that intrinsically preserves, among other interesting
properties, positive-definiteness of the resulting estimators. Partly inspired by the related work of
Rahman et al. (2005), Chau and von Sachs successfully implemented their idea by constructing a
wavelet-based algorithm that operates directly on matrix-valued curve denoising (or curve-valued
matrix estimation). In other words, their constructed wavelet transform is no longer scalar (as for
univariate curve estimation problems) but matrix-valued. It nicely uses the structure of the space
of symmetric (or Hermitian) PD matrices, which is in fact a Riemannian manifold (this property
is the key to success, as discussed below). Distances in this space are no longer Euclidean, as they
are in classical wavelet-based algorithms, and hence second-generation-type wavelet algorithms
( Jansen & Oonincx 2005) need to be used: Chau and von Sachs found out that, contrary to the
approach of Rahman et al. (2005) built on midpoint interpolation, using average interpolation
algorithms mimics and transfers many of the advantageous properties of scalar to matrix-valued
wavelet thresholding. Their generic approach, which is not tailored either to the spectral estima-
tion problem or to using wavelets, allows for the use of other distances such as the log-Euclidean
or the Cholesky (see also Yuan et al. 2012). However, only the Riemannian distance shares all de-
sirable properties to provide, beyond positive-definiteness, for equivariant estimators with respect
to affine transformations of the original time series data: permutation of the components of the
multivariate series, or more general transformations of the coordinate system. This property, im-
portant in practice, has not been shared by alternative, non-wavelet-based approaches such as those
of Krafty & Collinge (2013), Rosen & Stoffer (2007), or Dai &Guo (2004) and Guo &Dai (2006)
(the latter two are based on smoothing the Cholesky square root of the periodogram matrix).

To illustrate the properties of the aforementioned method (Chau & von Sachs 2019), we revisit
the bivariate brain data set (local field potentials), which is also used in Section 4 in the context
of replicated time series analysis where we provide a detailed description of these data. Figure 6
shows both the auto- and cross-spectral elements of the noisy periodograms and of the denoising
wavelet threshold estimator, averaged over each of 3 different subsets (start,middle, and end trials)
composed of 10 trials each (as a subset of the original much longer set of trial replicates). Note
again that both periodograms and wavelet estimators are constructed on the Riemannianmanifold
of Hermitian PD matrices.

A more comprehensive study developed by Chau & von Sachs (2019) shows, in addition, how
building on the Riemann distance allows the construction of estimators that are stable (i.e., in-
variant) to permutations and change of coordinate system of the underlying time series.

An additional advantage of having implemented the general ideas of Chau and von Sachs on
positive-definiteness-preserving estimation via nonlinear wavelet methodology is the proposal of
a global smoothing parameter—a kind of universal threshold based on the information in the trace
of the spectral (and periodogram)matrix.To achieve this, the authors developed an additive signal-
plus-noise model akin to traditional scalar curve estimation (and Equation 12) that respects the
theoretical justification for successful denoising. However, more research on this recent approach
is necessary to allow for a more flexible threshold choice, in the direction of potentially smoothing
each element of the periodogram matrix by its own appropriate threshold. Interestingly, the off-
diagonal cross-spectral structure often does not show less smoothness over frequency than the
autospectra (see Figure 1), which saves us from needing to be too ambitious here. Finally, Chau
& von Sachs (2018) provide a PD time-dependent spectral analysis built on this methodology.

4. REPLICATED TIME SERIES

Spectral analysis in the presence of time series replicates has recently become an important topic
with applications in medicine, neuroscience, and beyond. Consider medical studies where subjects
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Auto- and cross-spectral periodograms and positive definite threshold wavelet estimators of three different trials of the bivariate
Hc/NAc LFP series shown in Figure 7. Abbreviations: Hc, hippocampus; LFP, local field potential; NAc, nucleus accumbens.

(animals or human patients) are exposed to supervised experiments or trials, the outcome of which
is monitored as a function of the conditions. Due to the availability of more than one time series
string, in principal, it becomes possible to estimate the characteristic quantities of more compli-
cated time series models—something virtually impossible if one deals with only one time series set.
However, assuming independent replicates is not always very realistic in practice. Hence, Chau &
von Sachs (2016) tried, in a functional mixed-effects model in the frequency domain, to take pos-
sible correlations between the replicates into account. In this section, we discuss a few approaches
to replicated time series analysis in the frequency domain that reflect the recent evolution of these
kinds of models.

The classical instance of replicated (multivariate) time series analysis starts from the idea that
one disposes of (approximately) independent copies of the same underlying data-generating pro-
cess such that one can construct ensemble averages to better estimate the spectral structure via
(smoothed) periodograms and associated coherence and phase estimators. This allows, in par-
ticular, the application of less stringent smoothing over frequency (e.g., just enough to make the
periodogrammatrix full rank) and hence a gain in frequency resolution, and also enables the treat-
ment of data with a time-varying spectral content without needing to smooth much over time. In
statistical terms, this situation would typically be described by a fixed effects model. However, as-
suming variability within the subject population (still independent) by adding random effects is
more realistic and will lead to a mixed effects model. This is widely used in the time domain, but
there have been far fewer attempts to do this directly in the frequency domain via a functional
mixed effects model (Krafty et al. 2011): Typically, for any of the S replicated time series, the sth
subject-specific log-periodogram Y s(ω) := log IT (ω), at a given frequency ω, is modeled to be a
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superposition of a population log-spectrum h(ω) (the mean or fixed effect), plus a subject-specific
random effectUs(ω) at this frequency, plus a nonsystematic (i.i.d.) error es(ω):

Y s(ω) = h(ω) +Us(ω) + es(ω), s = 1, . . . ,S.

Here, the errors es(ω) are independent between different replicates s and independent of the func-
tional random effectsUs(ω). For each s = 1, . . . , S they follow the same approximative log(χ2

2 /2)
distribution as the error in the Wahba approximation of Equation 12.

In the context of wavelet smoothing of the observed (log-)periodograms, Freyermuth et al.
(2010) and Chau & von Sachs (2016), allowing for a correlation structure within the subject pop-
ulation {Us(ω)}, made some progress on transferring the advantages of nonlinear wavelet thresh-
olding (Section 3.1) to this more refined setup. They developed some proper theory of includ-
ing the mixed-effects situation; however, rendering this promising approach fully multivariate is
still an open problem, as one would need to give up working with the particularly attractive log-
periodogram.

Some recent, more practical work on replicated time series analysis in the frequency domain
can be found, for example, in Gorrostieta et al. (2012) and Fiecas & Ombao (2016). As an alterna-
tive to treating time-varying spectral analysis as exposed in Section 2.3, in Fiecas &Ombao (2016),
the replicates are provided by cutting up the timeline of an associative learning experiment of an
animal in a brain study into a series of (time-ordered) trials. Then a model of these trial-replicated
spectral analyses is developed. The authors can clearly trace the evolution of the animal acquir-
ing learned patterns over the time-ordered trials, which shows up in the evolution of estimated
spectral structure (changing linear dependencies) of the local field potential data of the animal’s
brain. (A different, though related, analysis is provided by the estimators in Figure 6.) To give an
illustration of the nature of these data, in Figure 7 we show, on a bivariate subset, three different
trials of 2 s duration each, recorded in the hippocampus and the nucleus accumbens regions of the
animal’s brain.

For the same experiment, using a more classical approach of a sequence of piecewise station-
ary segments of these same brain data, Gorrostieta et al. (2012) previously had studied a more
complex frequency model, within a harmonizable process: It turned out that standard coher-
ence does not adequately model many biological signals with complex dependence structures—
such as cross-oscillatory interactions between a low-frequency component in one signal and a

Hc

NAc

Figure 7

A subset of three different trials of a recorded LFP bivariate brain data set. Abbreviations: Hc, hippocampus;
LFP, local field potential; NAc, nucleus accumbens.
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high-frequency component in another—which is possible using harmonizable processes (revis-
ited in Section 6.1).

5. HIGH-DIMENSIONAL TIME SERIES

As soon as the dimensionality P gets into the order of the sample size T or even larger, the well-
known problem arises that the spectral density matrix, and in particular its estimators, become
nonregular (and hence noninvertible). To face this problem, different regularization approaches
have been proposed, mostly in the context of the related problem of regularization of high-
dimensional covariance matrices. Whereas one popular method is based on banding, tapering,
or thresholding (discussed, among many other methods, in the excellent overview by Pourahmadi
2011), we focus on the complementary approach based on shrinkage. This is supposed to work
without any assumption of sparsity—which is typically rarely fulfilled for spectral density matri-
ces, as opposed to covariance matrices, for which the first type of methods seemingly work well.
Shrinkage-based methods, which essentially amount to adding a ridge (e.g., a multiple of the iden-
tity matrix) to the covariance matrix, were first developed in the seminal work of Ledoit & Wolf
(2004). In this review, we concentrate on briefly discussing the linear shrinkage approach, which,
being particularly simple, has entered into spectral analysis in a series of papers. Its nonlinear
version, developed in Ledoit & Wolf (2012), is an interesting but rather impractical generaliza-
tion related to random matrix theory (a practical improvement was recently proposed, however,
in Ledoit &Wolf 2017). This research has triggered a variety of related alternative regularization
approaches, but discussing them would be outside the scope of this review.

Linear shrinkage of covariance or spectral density matrices amounts to finding the (asymp-
totic) MSE optimal linear combination between the given empirical covariance or periodogram
matrix and a prespecified target that regularizes the former. The solution enjoys good statistical
and numerical properties as it considerably reduces the spread of the eigenvalues. It thus improves
the condition number (the ratio of the largest to the smallest eigenvalue), in particular lifting the
smallest eigenvalues away from zero. Böhm & von Sachs (2009) implemented this approach by
taking on the original idea of adding a multiple of the identity matrix to the (smoothed) peri-
odogram. This strategy is advised in absence of any a priori information. In structural shrinkage,
as in Böhm& von Sachs (2008), the point of view is slightly changed by assuming that the spectral
structure of the data is induced by underlying factors.However, in contrast to actual factor model-
ing suffering from the need to choose the number of factors, in this model-free approach, the final
estimator is the asymptotically MSE-optimal linear combination of the smoothed periodogram
and the parametric estimator based on an underfitting (and hence deliberately misspecified) fac-
tor model. Finally, Böhm et al. (2010) combined the aforementioned SLEX estimation method
for fitting piecewise-stationary models (as discussed in Section 2.3.2) with a shrinkage estimator
for the spectral density matrix used in the SLEX algorithm.

Further applications of spectral shrinkage arise, for example, in several papers by Fiecas and col-
leagues.On the one hand,Fiecas & von Sachs (2014) developed a time-frequency-toggle bootstrap
method based on Kirch & Politis (2011) to choose the optimal shrinkage parameter in the mix-
ture of a kernel-smoothed high-dimensional periodogram with any suitable regularization target.
Following the idea of Böhm& von Sachs (2008), on the other hand, Fiecas &Ombao (2011) devel-
oped a generalized shrinkage estimator for the analysis of functional connectivity of brain signals.
Here, the proposed spectral estimator is a weighted average of a parametric estimator and a non-
parametric estimator to balance good frequency resolution (of the former) and robustness against
model misspecification (of the latter). To complete the instances of shrinkage in high-dimensional
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time series, in Fiecas et al. (2017), a linearly shrunken covariance matrix estimator is used within a
multivariate hidden Markov chain for regime switching in a simple multivariate volatility model.

6. BEYOND CLASSICAL FOURIER-BASED SPECTRAL ANALYSIS

In this section, we briefly discuss a nonexhaustive series of approaches to spectral analysis that are
not based on classical Fourier analysis.

6.1. Dual-Frequency Spectral Analysis for Harmonizable Processes

Motivated by a refined analysis of EEG data recorded in a motor intention experiment,
Gorrostieta et al. (2012)—and Gorrostieta et al. (2019), for the more realistic case of time-
varying spectral structure—allow for modeling cross-oscillatory interactions between, e.g., a low-
frequency component in one signal and a high-frequency component in another. This notion of
cross-dependence between regions (single frequencies or bands) in the frequency domain has been
made possible by replacing the classical spectral representation (Equation 13) of stationary pro-
cesses by the one of harmonizable processes. For these, the increment processes are not orthogonal
over frequency; rather, they fulfill

Cov(dZ(ω1), dZ(ω2)) = f (ω1,ω2) dω1dω2, 16.

where f (ω1,ω2) is the so-called Loève spectrum (Lii & Rosenblatt 2002). In Gorrostieta et al.
(2019), this dual-frequency spectrum is rendered time varying, and an evolutionary dual-frequency
coherence, as well as time-localized estimators based on dual-frequency local periodograms of
replicated time series courses, is developed. In the applications, the proposed method uncovers
new and interesting cross-oscillatory interactions that have been overlooked by the standard ap-
proaches.We also refer readers to the discussion of the aspect of replicated time series analysis in
Section 4.

6.2. Wavelet Spectra

It seems to be an obvious idea to try to replace Fourier analysis of time series by something that is
similar in spirit but more localized in time. Having learned about the success story of wavelets in
statistics (primarily for curve estimation; see also Section 3.1), several researchers at the end of the
past century explored their use as an alternative to a (local) Fourier analysis. Nason et al. (2000)
came up with a first rigorous model of a stochastic representation of a time series as an analog to
the well-knownCramér spectral representation (Equation 13). In their approach, the Fourier basis
is replaced by a (particular) wavelet basis {ψ jk(t )}, localized at (dyadic) locations k = 0, . . . , 2 j − 1,
on successively finer scales 2− j , j ≥ 0,

X (t ) =
∑
j

∑
k

w jk ψ jk(t ) ξ jk. 17.

Here, the amplitudes w jk take the role of the localized amplitude functions At (ω) discussed in
Section 2.3.1, whereas the sequence ξ jk (uncorrelated over j and k) can be seen as a discrete version
of the increment process dZ(ω) of a time-dependent Cramér spectral representation. In this sense,
a scale j replaces (the reciprocal of a discretized) frequency ω, whereas local time t can be seen
to correspond to a localization k on scale j in the typical dyadic scale-location plane of wavelets.
The interpretation of this model is, roughly speaking, that the amplitude w jk is large if at time
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t = k there is high correlation of Xk with Xk−τ or Xk+τ for some τ that matches the wavelength of
ψ jk(t ), which itself is proportional to 2− j .

To be able to properly include stationary models into their representation (Equation 17) Nason
and von Sachs had to use, as building blocks, nondecimated wavelets (Nason & Silverman 1995).
These are variants of classical orthogonal wavelets (such as the Daubechies family of compact
support) made shift-invariant (shift invariance of the Fourier basis being the key to representing
stationarity). The authors found a way to control for the resulting redundancy in this new spectral
representation with respect to overlapping and hence no longer orthogonal basis functions. They
introduced what they called the evolutionary wavelet spectrum, in the class of locally stationary
wavelet processes. Basically, this wavelet spectrum Sj (u) at local or rescaled time u ∈ [0, 1] (see
Section 2.3.1) amounts to w2

jk at localization u = k/T . However, similarly to Dahlhaus’s theory
of evolutionary spectra (Dahlhaus 2012), they work with some doubly indexed array of processes
arising from Equation 17 to allow for uniquely defined limiting spectra, accompanied by a the-
ory of their consistent estimation. The latter is based on the wavelet periodogram Ijk, basically
the squared wavelet coefficients at scale j and location k of the time series X (t ). As in Fourier
spectral analysis, one needs to work with a smoothed version of the (wavelet) periodogram, where
smoothing is over neighboring time locations (after having applied a bias correction to reduce the
redundancy over wavelet scales). The evolutionary wavelet spectrum Sj (u), quite analogously to
the Fourier spectrum, also arises in a spectral representation of a (local) autocovariance function
of X (t ) with respect to what are called autocorrelation wavelets,� j (τ ) :=

∑
k ψ jk(0)ψ jk(τ ).

This seminal research by Nason and von Sachs, though somewhat theoretical in flavor, trig-
gered a long series of subsequent work on both modeling and practical application of the idea
of a wavelet spectral representation that could be estimated from the time series data. For this
review, we content ourselves to cite the first instances of the bi- and multivariate generalizations
of Equation 17 delivered by Sanderson et al. (2010) and Park et al. (2014): Both approaches attempt
to build up a cross-spectral analysis, including what could be called wavelet coherence. Although
this concept is interesting in itself, it remains questionable whether the benefit of working with a
truly local (compared with the nonlocal Fourier) basis is not somewhat overruled by the fact that
phase interpretation is much more difficult in the wavelet domain (in comparison with the elegant
property of Fourier functions, with linear phase, to give direct information about lead and lag of
two components of a multivariate time series).

An interesting field of application for this kind of (multivariate) wavelet spectral analysis, how-
ever, consists in (multiple) change-point detection, in particular for high-dimensional time series.
In Cho & Fryzlewicz (2015), and in Barigozzi et al. (2018) in the context of factor analysis, a
well-established method for detection of breaks in the mean structure of data, the cumulative sum
(CUSUM) method, is successfully applied, via combination with (sparsified) binary segmenta-
tion, to the series of wavelet periodograms and cross-periodograms, in order to detect changes
in the second-order structure of a possibly high-dimensional serially correlated multivariate
series.

6.3. Spectral Analysis for Locally Stationary Hawkes Processes

Locally stationary (multivariate) Hawkes processes are a class of time-inhomogeneous (self-
exciting) point processes, spectral analysis for which has been developed in Roueff et al. (2016)
and Roueff & von Sachs (2019). Their first work addresses the generalization of stationary
Hawkes processes in order to allow for a time-evolving second-order analysis. We recall that
stationary linear Hawkes processes with fertility function p can be described, on the one hand, by
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their conditional intensity function λ(t ), which is given by

λ(t ) = λc +
∫ t−

−∞
p(t − s) N (ds) = λc +

∑
ti<t

p(t − ti ),

where the integral of p with respect to the counting process N is to be understood as a sum
of Dirac masses at (random) points {ti}i. On the other hand, linear self-exciting processes can
also be viewed as clusters of point processes, which are created by the dynamics of the interplay
between immigrant arrivals and their offspring production. This self-exciting mechanism is used
for modeling phenomena in, e.g., seismological, genome, and brain data analysis but also for
high-frequency financial data. In order to develop spectral analysis for the dynamics of Hawkes
processes, we also briefly recall the analog of Equation 13, i.e., the spectral decomposition of the
variance of a point process N , allowing us to subsequently define its Bartlett spectrum f (ω) via

Var(N (g)) =
∫ ∣∣̂g(ω)∣∣2 f (ω)dω,

where ĝdenotes the Fourier transformof a test function g (e.g., a smooth indicator or window func-
tion over a given time interval), i.e., ĝ(ω) = ∫

g(t ) exp(−itω)dt. For stationary Hawkes processes
with immigrant intensity λc and fertility function p, the Bartlett spectral density is then given by

f (ω) = λc

2π (1 − ∫
p)

∣∣1 − p̂(ω)
∣∣−2
.

Motivated by the concept of locally stationary autoregressive processes as developed by Dahlhaus
(2012), inherently different techniques are applied in the work of Roueff and von Sachs to
describe the time-varying dynamics of self-exciting point processes. For this, the time-dependent
Bartlett spectrum f (t,ω) is modeled via now time-dependent intensity λc(t ) and time-varying
fertility p(t; t − s). In particular, a stationary approximation of the Laplace functional of a locally
stationary Hawkes process is derived. With this, it has been possible to rigorously define a local
mean density function and a local Bartlett spectrum. A rather complete theory and some working
algorithms for estimating these objects (including rates of convergence) were delivered in the
second work of Roueff & von Sachs (2019), which also presented an application to order book
tick-by-tick data modeled previously by homogeneous point processes.

6.4. Quantile Spectral Analysis

Obviously, classical spectral analysis, based on the Fourier analysis of the auto- and cross-
covariance function, only takes the structure of linear dependencies in a given time series into
account. A variety of approaches attempt to remedy this drawback, to allow for more general
rather than just second-order stationary processes, and to model and estimate dependencies in
the tails of the distribution of given time series: These so-called extremes are important for highly
non-Gaussian time series as they arise in climatology, and also more generally in spatial-temporal
data. Quantile spectral analysis was first described in Parzen (1985). However, only in a more
recent series of articles, starting from Dette et al. (2015), have Kley, Volgushev, Birr, and cowork-
ers developed rigorous modern statistical concepts in this field. They embed them into locally
stationary process theory (Birr et al. 2017) and cover cross-spectral analysis and copula spectral
densities as well. In a nutshell, this type of spectral analysis is based on Fourier transforms of the
following two types of generalized covariance. We give them only for the case of autocovariance
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of a univariate strictly stationary process {Xt}t , but obvious modifications for the multivariate case,
and also time-varying versions of it, do exist:

γk(x1, x2) := Cov(I{Xt ≤ x1}, I{Xt−k ≤ x2}), xi ∈ R,

called the Laplace covariance-kernel, and the copula covariance-kernel,

γUk (τ1, τ2) := Cov(I{Ut ≤ τ1}, I{Ut−k ≤ τ2}), τi ∈ (0, 1),

whereUt := F (Xt ), with F being the marginal distribution of {Xt}t , and where I{B} stands for the
indicator function of the set B.

A more specific frequency domain approach for heavy-tailed time series has been developed in
parallel by Davis, Mikosch, and various coauthors. They invented the concept of extremograms
(of uni- and multivariate time series); we refer readers to the overview in Davis et al. (2013) of
recent measures of serial extremal dependence in a strictly stationary time series as well as their
estimation. For completeness, here we recall the definition of the extremogram in the univariate
case, essentially akin an (asymptotic) correlogram for extreme events; its generalization to the
cross-extremogram can be found in the cited literature. In fact, the extremogram is defined as a
limiting sequence given by

γAB(h) = lim
T→∞

T Cov(I{a−1
T X0 ∈ A}, I{a−1

T Xh ∈ B}), h ≥ 0.

Here, (aT ) is a suitably chosen normalization sequence and A,B are two fixed sets bounded away
from zero. The events {X0 ∈ aTA} and {Xh ∈ aTB} are considered as extreme ones, and γAB(h)
measures the influence of the time zero extremal event {X0 ∈ aTA} on the extremal event {Xh ∈
aTB},h lags apart.The choice of (aT ) depends on the situation at hand, e.g., viaT P(|X | > aT ) ∼ 1,
which leads to γAB(h) = limT→∞ T P(X0 ∈ aTA,Xh ∈ aTB).Motivating examples of extremograms
are the limiting conditional probabilities limT→∞ T P(Xh ∈ aTB|X0 ∈ aTA).With creative choices
of A and B, one can investigate interesting sources of extremal dependence that may arise not only
in the upper and lower tails but also in other extreme regions of the sample space.

The practical assessment of this limiting approach is less direct, and for all of the citedmethods,
a practitioner might run into the problem of not having at his or her disposal sufficiently many
time series observations while trying to estimate the dependence structure in the very high (or
very low) quantiles of the time series distribution.

7. REMAINING ASPECTS AND CONCLUSION

With this nonexhaustive review on (multivariate) spectral analysis, we have tried to alert the reader
to the existing challenges in this area and how to (partially) address them.We have focused on the
author’s experience with various approaches to smoothing the (uni- or multivariate) periodogram
statistics, over frequency, ideally preserving the important property of a PD spectral estimator.
On a second note, we introduced the reader to some aspects of time-varying spectral estimation,
insisting on the limitations of classical spectral analysis under the restrictive assumption of station-
ary time observations. Finally, we mentioned a few approaches that go beyond Fourier analysis of
classical time series (auto- and cross-)covariances, fields that certainly need more development
to enter into the world of practitioners. Before concluding, we briefly mention a number of im-
portant issues not addressed here, for which we apologize: parametric spectral analysis based on
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VARMA modeling (still very much used in fields such as econometrics) and semiparametric ap-
proaches based on, e.g., the Whittle likelihood [see, again, Dahlhaus (2012), and also Dahlhaus
& Neumann (2001) on fitting semiparametric models to nonstationary time series and Dahlhaus
& Polonik (2006) on nonparametric quasi maximum likelihood estimation for locally stationary
time series]. Another developing field that has become important for high-dimensional data mod-
eling is that of graphical models for time series (Dahlhaus 2000b, Eichler 2012). We also have
not discussed the very active field of functional time series, for which most of the ideas of spectral
analysis can be transferred to analyzing curve-valued time series; however, the necessary develop-
ments for this are highly nontrivial (Panaretos &Tavakoli 2013,Hörmann et al. 2015, van Delft &
Eichler 2018). We have also omitted aspects of outlier-robust spectral analysis (von Sachs 1994)
and what to do with missing values—both of which are extremely important for practical time
series analysts. Another important application of spectral analysis is discrimination of time series
in the frequency domain (Kakizawa et al. 1998, Shumway 2003, Huang et al. 2004, Sakiyama &
Taniguchi 2004).

And finally, again from a more econometric point of view, we mention the use of spectral es-
timation for dynamic factor analysis, as in the series of papers by Forni et al. (starting with Forni
et al. 2000), essentially developed for dimension reduction. In this approach, a time series panel is
explained by a superposition of a few (uncorrelated) driving factors (with potentially time-varying
loadings) and an idiosyncratic structure—possibly as general as a locally stationary process (Eichler
et al. 2011). Bayesian spectral analysis (see Rosen et al. 2009, and Rosen et al. 2012, which also
provides both Matlab and R code) is an important field that we have not discussed explicitly, as is
spectral analysis of qualitative or categorical time series (Krafty et al. 2012, Stoffer 2015).

Clearly, this review emphasizes existing model approaches rather than statistical estimation
(apart from the specific aspect of periodogram smoothing) and inference. Of course, the latter
is equally important, and a more comprehensive overview about different inference methods
would be a rewarding project for a different occasion. This should include a variety of recent
mathematical-statistical work on testing problems related to spectral analysis (see, e.g., Dette &
Paparoditis 2009). Finally, researchers who are experts in resampling methods such as the boot-
strap have contributed important methodology to spectral estimation (see Franke &Härdle 1992,
Jentsch & Kreiss 2010, Kirch & Politis 2011, and the excellent overview in Kreiss & Paparoditis
2020). In this field, due to the challenging variance-covariance structure of spectral estimators
(compare Equation 11 on the variance of the kernel-smoothed periodogram), resamplingmethods
turn out to be a very promising alternative to, e.g., suboptimal plug-in methods.

Concluding this certainly imperfect review, let us ask the question, “Where do we go from
here?” With this rather impressive series of methodological contributions to the field of spectral
analysis (and related questions), it remains very important that the proposed methodologies are
converted into practical, working algorithms, with precise guidelines for how and in which situa-
tion they can safely be applied. In this review, we tried to give some examples of common but non-
standard situations that present challenges that require practical solutions.We discussed examples
including replicated and nonstationary multivariate time series data and/or high-dimensional seri-
ally correlated data, possibly with outliers and/or missing values. There is still a need to better un-
derstand the developed algorithms and their properties (such as preserving positive-definiteness,
or their regularization capacity for high-dimensional data), and for increased interaction with
practitioners.Whereas time series analysis in general found its way some time ago into the world
of application, spectral analysis still tends to appear somewhat too complicated to be more widely
used. A prominent exception is, among others, brain data modeling and analysis in neuroscience.
Here, however, a new challenge arose when researchers combined more classical spectral analysis
of EEG data, known to give high frequency resolution, with fMRI (functional magnetic resonance
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imaging) data, which are complementary as they enjoy better spatial-temporal resolution (Wang
et al. 2017). It remains a challenge to further explore this combination from the statistical side.
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