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Abstract

Q-learning, originally an incremental algorithm for estimating an optimal
decision strategy in an infinite-horizon decision problem, now refers to a
general class of reinforcement learning methods widely used in statistics
and artificial intelligence. In the context of personalized medicine, finite-
horizon Q-learning is the workhorse for estimating optimal treatment
strategies, known as treatment regimes. Infinite-horizon Q-learning is also
increasingly relevant in the growing field of mobile health. In computer
science, Q-learning methods have achieved remarkable performance in
domains such as game-playing and robotics. In this article, we (a) review the
history of Q-learning in computer science and statistics, (b) formalize finite-
horizon Q-learning within the potential outcomes framework and discuss
the inferential difficulties for which it is infamous, and (c) review variants
of infinite-horizon Q-learning and the exploration-exploitation problem,
which arises in decision problems with a long time horizon. We close by
discussing issues arising with the use of Q-learning in practice, including
arguments for combining Q-learning with direct-search methods; sample
size considerations for sequential, multiple assignment randomized trials;
and possibilities for combining Q-learning with model-based methods.
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1. INTRODUCTION

Optimal sequential decision-making has recently seen a wave of interest across a number of dis-
ciplines. In the statistical literature, the problem of making optimal sequences of decisions arises
in the context of personalized medicine, and in particular the estimation of dynamic treatment
regimes from multistage experimental or observational data (Robins 1986, Murphy 2003), as well
as the booming field of mobile health (mHealth), in which high-intensity patient longitudinal data
collected through a mobile device are providing new opportunities for designing patient-specific
treatment regimes over long time horizons (Tewari & Murphy 2017, Ertefaie & Strawderman
2018, Luckett et al. 2019). Optimal sequential decision-making has long been studied in control
theory and computer science (Bellman 1957, Bertsekas & Tsitsiklis 1996, Sutton & Barto 2018)
but has seen an explosion of interest with the advent of deep learning and subsequent high-profile
successes of reinforcement learning in complex games like chess, go, and poker (Bowling et al.
2015, Mnih et al. 2015, Silver et al. 2017).

The goal of sequential decision-making is to take actions so as to maximize some measure of
expected cumulative utility. Utility may correspond to a composite measure of patient well-being
in medical contexts, the number of infections in the context of controlling the spread of an infec-
tious disease (Laber et al. 2018), or the points earned in a game (Mnih et al. 2015). One approach
to identifying an optimal decision strategy in a sequential decision setting is to estimate the
optimal Q-function, which measures the expected cumulative utility of each currently available
decision, given that the decision maker will follow the optimal decision strategy in the future.
We focus on the class of methods for optimal sequential decision-making that follow this
approach. We generically refer to this class of methods as Q-learning.

We begin by formally introducing sequential decision problems and giving a history of
Q-learning in Section 2. In Section 3, we discuss the theory of finite-horizon Q-learning,
including the issues of bias and nonregularity, the implementation of Q-learning with flexible
models, and connections between Q-learning and another class of methods for sequential
decision-making called direct search. In Section 4, we discuss approaches to estimating optimal
policies in infinite-horizon settings using Q-functions. In Section 5, we explore issues arising in
the practical application of Q-learning methods, including a discussion of our preferred approach
to the estimation of optimal policies via combining Q-learning and direct search methods.
We also present a brief review of recent advances in sample size calculations aimed at sizing
sequential, multiple assignment randomized trials (SMARTs) (Murphy 2005b) for the estimation
of high-quality treatment regimes via Q-learning, and some remarks on prospects for combining
Q-learning with model-based reinforcement learning methods.

2. HISTORY OF Q-LEARNING IN STATISTICS

2.1. Setup and Background

In this section we trace two threads running through the history of reinforcement learning up
to contemporary uses of Q-learning in statistics. The first is dynamic programming, which was
introduced by Bellman (1957) and later adapted to complex environments with unknown transi-
tion dynamics via approximate dynamic programming with function approximators (Bertsekas &
Tsitsiklis 1996, Ernst et al. 2005, Powell 2007). The second is the original Q-learning algorithm
introduced by Watkins & Dayan (1992), which is an incremental (stochastic approximation)
method for estimating the Q-function (defined below) in a Markov decision process (MDP)
(Puterman 2009). The work of Murphy (2005a) provides a bridge from these methods, previously
confined to the computer science and control theory literatures, to the application of Q-learning
to the estimation of treatment regimes in statistics.
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Informally, a sequential decision problem is characterized by a (generally stochastic) envi-
ronment whose context evolves according to transition dynamics that depend on the history
of the system as well as the actions (decisions) taken by an autonomous decision maker. Contexts
are associated with different utilities.Thus, the decisionmaker’s task is to choose actions that make
sequences of high-utility contexts likely; in particular, the decision maker wants to maximize some
measure of cumulative expected utility. In medical settings, for instance, the context corresponds
to the values of medically relevant patient characteristics, the available decisions are treatments
that may be given or recommended to the patient, and the transition dynamics correspond
to the biological processes governing how a patient in a given medical state responds to the
treatment.

Formally, let T ∈ N ∪ {∞} be the time horizon (i.e., the number of decision points) in the
decision problem, and let t = 1, . . . ,T index these decision points. The domain of the decision
problem is defined by:

� Xt : the space of possible decision contexts at time t
� At : the space of possible actions (decisions) at time t
� ut : Xt → R: a utility function that measures the immediate value of each context at time t

Define, for each t, the observed utility Yt � ut (Xt ) and the history Ht � {X1,A1, . . . ,Xt}, which
belongs to the space of possible histories Ht � X1 ×A1 × · · · ×At−1 × Xt . Further defining the
decision problem are

� �t : Ht → 2At : feasible sets that map histories to sets of allowable actions (van der Laan et al.
2005)

� Pt : Xt+1 ×Ht ×At → [0, 1]: transition functions giving the probability distribution over
possible states, i.e.,P(·, ht , at ) is a distribution over next statesXt+1 ∈ Xt+1 given historyHt =
ht and action At = at

� γ ∈ (0, 1]: a discount factor that is required to be less than 1 in infinite-horizon settings to
ensure the convergence of the cumulative reward (see Equation 1 below)

For concreteness, consider a two-stage trial (T = 2) in which one of two treatments are given
at each stage (A1 = A2 = {0, 1}). Patient covariates in spaces X1,X2 are measured at baseline and
after stage 1, respectively, and an outcomeY ≡ Y3 is measured at the end of the trial. The patients’
covariates X2 and outcomes Y3 given their treatments and histories at times 1 and 2, respectively,
are governed by (probably unknown) transition distributions P1,P2.

Define a decision strategy, commonly known as a policy in the computer science literature,
to be a sequence of decision rules π ≡ {πt}Tt=1, with πt : Ht → �(At ), where �(At ) is the set of
probability measures on the action space At . Much of the biomedical literature focuses on deter-
ministic decision rules, but stochastic rules are critical in online settings as they both provide a
mechanism for exploration (more on this topic in Section 4.2) and allow for the use of gradient-
based optimization methods. Define the value of starting in context x under decision strategy π

to be

V π (x) � E
π

(
T∑
t=1

γ t−1 Yt | X1 = x

)
, 1.

where Eπ denotes the expectation over trajectories in which π is followed at each time step (and
we require γ < 1 ifT = ∞).We callV π the V-function under π (it is also known as the state-value
function; Sutton & Barto 2018, chapter 3). Then, letting X1 ∼ ν for some initial state distribution
ν (which may simply be a point mass ν ≡ δx1 for a known initial state x1), define the value of
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decision strategy π to be V (π ) �
∫
V π (x)dν(x). We call V the value function. Finally, define the

optimal decision strategy in a class � as

πopt � arg max
π∈�

V (π ); 2.

we assume for simplicity that there is a unique optimal decision strategy in the class �.
Dynamic programming, in the context of reinforcement learning, refers to a class of algorithms

for estimating the optimal policy by taking advantage of the recursive structure of sequential
decision problems. In finite-horizon decision problems, the canonical dynamic programming
algorithm is backward induction. Backward induction may be defined in terms of the optimal
Q-functions, which measure the expected cumulative reward given a particular context-decision
pair. For T <∞, define the optimal Q-functions recursively, as follows:

Qopt
T (hT , aT ) � E(YT | HT = hT ,AT = aT );

Qopt
t (ht , at ) � E

[
Yt + γ max

a∈�(Ht+1 )
Qt+1(Xt+1, a) | Ht = ht ,At = at

]
.

3.

It follows that for t = 1, . . . ,T , π
opt
t (ht ) � arg maxa∈�(ht )Qt (ht , a). Backward induction is the

basis of finite-horizon Q-learning in statistics, which we present below and discuss further in
Section 3.

In the infinite-horizon setting, estimation of an optimal strategy requires either solving a
finite-horizon approximation by backward induction or imposing additional structure that allows
for the computation of the optimal infinite-horizon policy. A common framework for infinite-
horizon problems is the (time-homogeneous) MDP, which imposes the following additional
assumptions:

� The context spaces, decision spaces, and utility functions are constant, withXt ≡ X ,At ≡ A,
and ut ≡ u for t = 1, . . . ,T ;

� the transition dynamics are Markovian and time-homogenous, i.e., Pt ≡ P for all t, with
P(· | Ht ,At ) = P(· | Xt ,At ); and

� for simplicity, we will also assume that �t ≡ A for each t, though this is not essential.

The time-homogenous Markovian structure allows us to define time-homogeneous optimal V-
and Q-functions, as opposed to a sequence at functions, one per time step. These are:

V opt(x) � E
πopt

( ∞∑
t=1

γ t−1Yt | X1 = x

)

Qopt(x, a) � E
πopt

( ∞∑
t=1

γ t−1Yt | X1 = x,A1 = a

)
.

4.

We now state several well-known properties of the optimal Q-function in the MDP framework,
which will later allow us to construct estimators of the optimal policy. We first introduce the
Bellman optimality operator B, which acts on functions f as

(B f )(x, a) � E

[
Yt + γ max

a′∈A
f (Xt+1, a′ ) | Xt = x,At = a

]
. 5.
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From Equation 4 we can see that the optimal Q-function satisfies

Qopt(x, a) = E
πopt

( ∞∑
t=1

γ t−1Yt | X1 = x,A1 = a

)

= E

[
Y0 + γ max

a′
E

πopt

(∑
t=1

γ t−1Yt | X1,A1 = a′
)
| X1 = x,A1 = a

]
= E

πopt
[
Y1 + γ max

a′
Qopt(X1, a′ ) | X1 = x1,A1 = a1

]
= (BQopt )(x, a).

6.

The property Qopt = BQopt is called the Bellman optimality equation. A consequence is that Qopt

is the unique fixed point of the so-called value iteration algorithm:

Algorithm 1 (Value iteration for computing Qopt).
Initialize Q0

for k=0, 1, … until convergence do
Qk+1 ← BQk

The Bellman equation and value iteration are used to construct estimators of the optimal infinite-
horizon Q-function in Section 4.

As a final remark on the prehistory of Q-learning in computer science, the name Q-learning
originates with the incremental online algorithm of Watkins & Dayan (1992) for estimating
the Q-function. Assuming finite context and decision spaces, for each newly encountered tuple
of observations (Xt ,At ,Yt ,Xt+1), the algorithm executes the following updates: Qk+1(Xt ,At )←
Qk(Xt ,At )+ α{Yt + γ maxa′∈AQk(Xt+1, a′ )−Qk(Xt ,At )} (for a step-size α). Variants of Watkins’s
Q-learning for the case of large context spaces where Q must be estimated using function ap-
proximation have since been proposed and refined (Baird 1995, Precup et al. 2001, Maei et al.
2010).

2.1.1. A partial taxonomy of reinforcement learning methods. Given that the transition
distributions Pt are unknown in most applications, the optimal policy must usually be estimated
by either estimating the value function V and optimizing this estimator over a class of decision
strategies, or estimating {Qopt

t }Tt=1 and taking the argmax of the resulting estimators as the esti-
mated optimal policy. These estimators may be obtained in either a model-free or model-based
manner, where “model” here refers to a model of the transition dynamics {Pt}Tt=1. Model-free
methods directly construct an estimator of V or {Qopt

t }Tt=1, bypassing the estimation of the transi-
tion dynamics, while model-based methods first estimate Pt and subsequently obtain an estimator
of the optimal policy (Sutton & Barto 2018, chapter 8).Table 1 displays examples of algorithms
in each of these categories, including those discussed throughout this article. This is far from an
exhaustive taxonomy—methods also differ as to whether they are online versus offline, batch ver-
sus incremental, on-policy versus off-policy, and so on, and moreover may be hybrids of these
categories (see Sections 3.4, 5.1, and 5.3).

Note that Q-learning usually refers to the model-free estimation of the optimal
Q-functions, although as model-based dynamic programming may involve the estimation of the
optimal Q-functions, one can also speak of model-based Q-learning, as in Table 1. But in this
article we will focus on Q-learning as it is generally understood, i.e., in the model-free sense.
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Table 1 Examples of reinforcement learning algorithms classified according to model-free versus model-based and
Q-learning versus policy search, emphasizing methods from the statistical literature

Type Q-learning Policy search
Model-free � Watkins’s Q-learning (Watkins & Dayan 1992;

Section 2.1)
� Finite-horizon Q-learning (Murphy 2005a;

Sections 2.2 and 3)
� Batch infinite-horizon Q-learning (Ertefaie &

Strawderman 2018; Section 4.1)
� Fitted Q-iteration (Ernst et al. 2005; Section 4.1)
� Deep Q-networks (Mnih et al. 2015; Section 4.4)

� Robust policy search for DTR (Zhang et al. 2013;
Section 3.4)

� Doubly robust off-policy evaluation ( Jiang & Li
2015; Section 4.3)

� V-learning (Luckett et al. 2019; Section 4.3)
� Proximal policy optimization (Schulman et al. 2017;

Section 4.4)

Model-based Model-based dynamic programming (Bellman 1957,
Bertsekas & Tsitsiklis 1996)

Spatial policy search (Laber et al. 2018)

Abbreviation: DTR, dynamic treatment regime.

2.2. Q-Learning in Statistics

The first methods for the estimation of the value of a policy in a general finite-horizon sequential
decision problem were developed in the landmark papers of Robins (1986, 1987, 1989, 1993),
Murphy et al. (2001), and Murphy (2003). Consider the problem of estimating the expected
potential outcome of a terminal scalar utility Y (measured after T time points) under a policy
π , denoted EY ∗(π ). Define, for a sequence of variables Zt , the history Zt � {Zv}tv=1. Under
sequential versions of standard causal inference assumptions (Section 3.1; call these CA) EY ∗(π )
may be identified with V (π ) via the g-formula (assuming for simplicity that covariates at each
time point are discrete):

EY ∗(π ) CA= V (π )

=∑
xt

{
E{Y | AT = [πt (ht )]Tt=1,X

t = (xt )Tt=1
}

T∏
t=1

P
{
Xt = xt | At−1 = [π (hv )]t−1v=1,X t−1 = xt−1}

}
.

7.

The seminal work of Murphy (2003, 2005a) married dynamic programming for optimal pol-
icy estimation with the potential outcomes framework (Rubin 1978, Robins 1986) and standard
regression methods in what is now known as Q-learning in the statistical literature. Working
within this framework, Murphy (2003) showed how the optimal regime may be estimated via
the recursive estimation of the regret functions,μt (h, a) = maxa′ Q

opt
t (ht , a′ )−Qopt

t (ht , at ), thereby
bypassing the estimation of the distributions Pt . Murphy (2005a) then introduced what she
terms batch Q-learning (from now on, just Q-learning), defined as follows. Suppose we have
data from trajectories i = 1, . . . , n of length T ∈ N, the ith trajectory consisting of observations
{X i

1,A
i
1,Y

i
1 , . . . ,X

i
T ,A

i
T ,Y

i
T }. Given a sequence of model classes {Qt}Tt=1 for estimating the optimal

Q-functions, Q-learning mimics the backward induction procedure of Equation 3 like so:

Q̂T = arg min
QT ∈QT

Pn[QT (HT ,AT )−YT ]2;

Q̂t = arg min
Qt∈Qt

Pn

{
Qt (Ht ,At )−

[
Yt + max

at+1∈�t+1(Ht+1 )
Q̂t+1(Ht+1, at+1)

]}2

.
8.
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Robins (2004) introduced a related semiparametric estimator of the optimal policy, but thismethod
has not been used as widely as Q-learning (Vansteelandt & Joffe 2014), perhaps because of its
relative complexity. Moodie et al. (2007) provide a discussion of the connections between the
methods of Robins (2004) and Murphy (2003).

The max operator in Equation 8 causes difficulties for statistical inference that have been the
focus of much research on Q-learning since its introduction to statistics (Chakraborty et al. 2010,
2013;Moodie et al. 2010; Laber et al. 2014b; Song et al. 2015). In addition to problems of statistical
inference, developments for finite Q-learning in statistics have included extensions to nonlinear
model classes (Zhao et al. 2009, Laber et al. 2014a,Moodie et al. 2014, Zhang et al. 2015, Xu et al.
2016, Zhou & Kosorok 2017), as well as methods for combining Q-learning with policy search
methods (Zhang et al. 2012, Zhang et al. 2015).We review each of these in Section 3.Moreover, as
statisticians have become increasingly interested in long-horizon problems such as those arising in
mHealth and spatial-temporal decision-making, infinite-horizon analogs of the methods reviewed
in Section 3 have been developed; we discuss these in Section 4.

3. FINITE-HORIZON Q-LEARNING

For simplicity, we focus on Q-learning in two-stage problems (i.e., in which T = 2), but the
discussion generalizes to any finite T . The statistical literature on finite-horizon Q-learning is
largely concerned with the estimation of optimal decision strategies in a medical context; the
data sets used for estimation are often obtained from a multistage clinical trials (see Section 5.2)
or observational longitudinal studies. In these settings, the actions are treatments, states are
covariates, utilities are outcomes, policies are typically referred to as dynamic treatment regimes,
and each trajectory from the decision process corresponds to the complete history of a single
patient. Given the prevalence of the usage of finite-horizon Q-learning in medical contexts, we
adopt this terminology in this section. Table 2 serves as a reference for the correspondence
between the respective terminologies.

3.1. Backward Induction in the Potential Outcomes Framework

A patient’s baseline covariates (measured before stage 1) are denoted X1 ∈ R
p1 , and X2 ∈ R

p2 are
time-varying covariates measured after the first treatment and before the second. Treatments are
given at times 1 and 2, denoted respectively by A1,A2 ∈ {0, 1}. The outcome Y ∈ R is observed
after time point 2 and is the quantity whose expectation we wish to maximize. Finally, we define
two history variables, H1 = X1 and H2 = (X1,A1,X2), which collect the observations available at
times 1 and 2, respectively.

Let X ∗2 (a1) be the potential outcome (Splawa-Neyman et al. 1990; Rubin 1978, 2005; Hernán
& Robins 2019) of covariate X2 if treatment a1 had been given at time 1, and let Y ∗(a1, a2) be the

Table 2 Translation between terminology in the dynamic treatment regime and
reinforcement learning literatures

Generic Reinforcement learning Dynamic treatment regimes Symbol
Decision Action Treatment A, a
Context State Covariate X , x
Utility Reward Outcome Y, y
Observation unit Trajectory Patient Indexed by i
Time index Time (or time point) Stage Indexed by t
Decision strategy Policy (Dynamic) treatment regime π
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potential outcome of the response if treatments a1 and a2 had been given at times 1 and 2. The
expected response for a regime π = (π1,π2) is

EY ∗(π ) � EY ∗{π1(H1),π2(H2)}. 9.

In order to be able to estimate the causal effects of candidate regimes from observed data, we need
to be able to write Equation 9 in terms of observables only, rather than potential outcomes. This
is possible under the following, now standard, causal inference assumptions:

� (CA 1)Consistency: X ∗2 (a1) = X2 when a1 is actually received, andY ∗(a1, a2) = Y whenever
(a1, a2) are actually received.

� (CA 2) No unmeasured confounders (a.k.a. sequential ignorability): For any sequence of
treatments (a1, a2), A1 ⊥⊥ {X ∗2 (a1),Y ∗(a1, a2)} | H1 and A2 ⊥⊥ Y ∗(a1, a2) | H2.

� (CA 3) Positivity: P{b1[A1 = π1(H1) | H1]b2[A2 = π2(H2) | H2] > 0} = 1 for all π ∈ �,
where P is the joint data-generating distribution, and b1, b2 give the conditional probabil-
ity distributions over actions under the behavior (data-generating) regime given histories at
stages 1 and 2, respectively.

Under CA 1–3, Robins’s g-computation formula (Robins 1986, 1987) allows us to write the ex-
pected potential outcome of a regime in terms of observables:

EY ∗(π ) CA= E{E[E(Y | X1,A1,X2,A2 = π2(H2)) | X1,A1 = π1(H1)]}
= V (π ).

10.

Note that themost troublesome assumption in off-policy, observational settings, that of no unmea-
sured confounders, is often met automatically in engineering and computer science applications
where actions are all taken by the same agent attempting to learn an optimal policy from the data.
That is, because the process by which actions are taken is known exactly, there is no question
of the confounding of the effects of actions with unmeasured variables. But in medical and epi-
demiological settings, the focus of most statisticians working in sequential decision-making, the
problem of confounding looms large, and it is necessary to make it explicit. [There is only a small
literature on the development of methods for the estimation of optimal regimes from potentially
confounded observations. Kallus & Zhou (2018) recently presented confounding-robust policy
improvement, a direct-search method that parameterizes the degree of possible confounding and
attempts to find the policy with the best worst-case value for parameters in a neighborhood of the
no-confounding case.]

Writing the g-formula as a repeated expectation (Equation 10) suggests the optimal regime,
πopt = argmaxπ∈� EY ∗(π ), can be computed with the backward induction strategy introduced in
Section 2. Recall the definition of the optimal Q-functions (Equation 3). In view of the foregoing,
assuming E(|Y | | Ht ) is bounded almost surely and that the action space is finite, we have that πopt

is given by π
opt
t (ht ) = arg maxat∈�t (ht )Q

opt(ht , at ) (Murphy 2003).

3.2. Q-Learning with Linear Models

We first consider the case where each Q-function is modeled linearly. We will also consider the
simple case of two treatments at each stage, coded as A1 = A2 = {0, 1}. Letting ht = (hᵀt0, hᵀt1)

ᵀ

be vectors summarizing the histories at stages t = 1, 2, we model the Q-functions as

Q1(h1, a1;β1) = hᵀ10β01 + a1hᵀ11β11,

Q2(h2, a2;β2) = hᵀ20β20 + a2hᵀ21β21,
11.
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with parameters estimated using least squares

β̂2 � arg min
β2

Pn{Y −Q2(H2,A2;β2)}2,
β̂1 � arg min

β1

Pn{max
a2

Q2(H2, a2; β̂2)−Q1(H1,A1;β1)}2, 12.

where Pn denotes the empirical expectation over patient trajectories. Then, the estimated optimal
dynamic treatment regime is given by

π̂
opt
t (ht ) � 1(hᵀt1βt1 > 0).

As touched on in Section 2, the estimator β̂1 is nonregular, meaning that it is sensitive to 1/
√
n-

perturbations of the data-generating model. This creates difficulties for statistical inference. De-
fine the population-level versions of the estimators in Equation 12:

β∗2 � arg min
β2

E{Q2(H2,A2;β2)−Y }2,
β∗1 � arg min

β1

E{Q1(H1,A1;β1)−max
a2

Q2(H2, a2;β∗2 )}2.
13.

First, β̂1 is asymptotically biased when P(Hᵀ
21β
∗
21 = 0) > 0. That is, the limiting distribution of√

n(β̂1 − β∗1 ) need not have mean zero when there is a positive probability of a null effect (Moodie
et al. 2010). Second, as a nonregular estimator, it is impossible to uniformly consistently esti-
mate the sampling distribution of β̂1 (Van der Vaart 1991, Andrews 2000, Leeb & Poetscher
2003, Hirano & Porter 2012). In particular, the limiting distribution

√
n(β̂1 − β∗1 ) is normal if

P(Hᵀ
21β
∗
21 = 0) > 0 but nonnormal otherwise.

Because inferential problems arise when hᵀ21β
∗
21 is close to 0, Chakraborty et al. (2010) propose

shrinking or thresholding values of hᵀ21β̂21 near 0. Letting [z]+ denote the positive part of a scalar z,
define the pseudooutcome under estimator β̂2 as Ŷβ̂2

� maxa2 Q2(h2, a2; β̂2), which in turn satisfies
maxa2 Q2(h2, a2; β̂2) = hᵀ20β̂20 + [hᵀ21β̂21]+ [from the definition of Q2(·; β̂2) and the 0-1 coding of
the actions]. Thus, Ŷβ̂2

is the target of the regression problem which defines the second step of
Q-learning. Define a hard-thresholded version of the pseudooutcome:

Ŷ HT
β̂2

� hᵀ20β̂20 + [hᵀ21β̂21]+1(|hᵀ21β̂21| > λ), 14.

for some threshold λ. Similarly, define the soft-thresholded version:

Ŷ ST
β̂2

� hᵀ20β̂20 + [hᵀ21β̂21]+
[
1− λ

|hᵀ21β̂21|2

]+
. 15.

Given a modified pseudooutcome Ŷ •Tβ2
∈ {Ŷ HT

β2
, Ŷ ST

β2
}, one may estimate the Q-function by using

the new pseudooutcome as the target of the second step of Equation 12:

β̂•T1 � argmin
β1

Pn

{
Q1(H1,A1;β1)− Ŷ •Tβ̂2

}2
. 16.

In a similar spirit, Song et al. (2015) propose penalized Q-learning. These authors point out that
the previously proposed hard- and soft-thresholding methods (a) may suffer from large bias in
finite samples (therefore leading to bias in the first stage estimator in regular settings), and (b) do
not in general possess the oracle property that, as the sample size grows, they will perform as well
as the estimator that knows the set of patients with unexceptional laws in advance. They instead
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propose minimizing a penalized version of the objective in the first step of Q-learning:

β̂Pen
2 � arg min

β2

Pn
{
[Q(H2,A2;β2)−Y ]2 + pλn (|HT

2 β1
2 |)
}
, 17.

where pλn is a penalty function with tuning parameter λn. The benefit of this approach, the authors
argue, is that it allows for the identification (through the shrinkage of individual subject effects) of
subjects whose effects are 0, thereby allowing us to separate exceptional and nonexceptional laws
and use standard inferential procedures for each separately. They demonstrate the consistency
and asymptotic normality of their first-stage estimator, but only under the assumption that the
stage-two histories take only finitely many values. This assumption assures that treatment effects
are either identically zero or well-separated from zero, thereby excluding the case of small but
nonzero effects in their asymptotic regime. Laber et al. (2014b) showed that shrinkage methods
can be arbitrarily worse than standard (unregularized) Q-learning when such small effects are
present.

As for inference, Chakraborty et al. (2010) conducted simulation studies using various boot-
strapping procedures for their thresholding estimators, though these were not theoretically
motivated. Inference for Song et al.’s (2015) penalized Q-learning follows from the estimation
of the asymptotic (normal) distribution of the penalized Q-learning estimator. Chakraborty et al.
(2014) propose an m-out-of-n bootstrap procedure (a general method for bootstrapping under
nonregularity). Bootstrap consistency for certain nonregular parameters can be obtained by
constructing bootstrap confidence intervals using small [i.e., of size m = o(n)] subsets of the full
data. Chakraborty et al. (2014) present an m-out-of-n bootstrap for inference for the estimated
Q-function parameters, including several methods for adaptively choosing m.

The foregoingmethods were developed under a fixed parameter framework that fails to capture
the finite sample instability of Q-learning estimators (Laber et al. 2014b). We now review two
approaches designed to overcome these inferential problems using amoving parameter asymptotic
framework: the projection interval of Robins (2004), and the adaptive confidence interval of Laber
et al. (2014b).

Themethod of Robins (2004) can be used to construct a projection region for β1 as follows. Let
In,α (β21) be a valid, (1− α) · 100% confidence region for β1 when the true second-stage treatment
effect parameter is β21; if the latter were known,we could construct such a confidence region using
the asymptotic normality of β̂1. However, β21 is unknown, so in the projection interval approach
one constructs a conservative confidence region for β1 by first constructing a confidence region
for β21 and taking the union of regions In,α (β̃21) for each β̃21 in the confidence region for β21. The
coverage of this procedure is at least (1− α − η) · 100%, where η is the coverage of the region
constructed for β21.

The approach of Laber et al. (2014b) is instead to bound (for constants c ∈ R
dim(β1 )) the non-

regular cᵀ
√
n(β̂1 − β1) between two regular, uniformly convergent upper and lower bounds. Such

a procedure is necessarily conservative; however, since nonregularity occurs only for generative
models where hᵀ1β21 is near 0, conservatism can be limited by adapting the bound based on ev-
idence as to whether a subject’s second-stage effect is near 0. This is accomplished by using a
pretest based on comparing β̂21 to a test statistic that is large (i.e., diverges to ∞) if and only if
hᵀ1β21 is nonzero.

3.3. Q-Learning with Nonlinear Models

The model in Equation 11 is simple and prone to misspecification. In order to address the prob-
lem of misspecification in linear Q-learning, Laber et al. (2014a) present interactive Q-learning
(IQ-learning). IQ-learning attempts to replace linear Q-learning with an ordinary mean-variance
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modeling problem, rendering it amenable to the large toolkit of regression architectures and diag-
nostics. Define the contrast and main-effect functions for Q2, δ(H2) = {Q2(H2, 1)−Q2(H2, 0)}/2,
μ(H2) = {Q2(H2, 1)+ Q2(H2, 0)}/2. Then, let gh1,a1 be the conditional distribution of δ(H2)
given H1 = h1,A1 = a1. Defining L(h1, a1) � E{μ(H2) | H1 = h1,A1 = a1}, we can then rewrite
Q1(h1, a1) as

Q1(h1, a1) = L(h1, a1)+
∫
|z|gh1,a1 (z)dz. 18.

IQ-learning, then, estimates Q1 as

Q̂IQ
1 (h1, a1) � L̂(h1, a1)+

∫
|z|̂gh1,a1 (z)dz. 19.

The estimators L̂ and ĝh1,a1 used in this construction are obtained using Q̂2 from the first step of
ordinary Q-learning and the corresponding plugin estimators δ̂, μ̂.

With respect to using more flexible classes of candidate Q-functions, alternatives to IQ-
learning include maintaining the linear model framework, but with choices of feature functions
ht , which allow for more flexible function classes (radial basis functions, for instance), or carrying
out the sequential regression procedure in Equation 8 with a more flexible class of models, at the
cost of foregoing the relative theoretical tractability of the linear framework; Moodie et al. (2014),
for instance, use a generalized additive model architecture, and Zhao et al. (2009) use support
vector regression. Q-learning with flexible models is also closely related to fitted Q-iteration
(a form of approximate value iteration; see Section 4.1) with flexible models (Ernst et al. 2005,
Riedmiller 2005, Geurts et al. 2006). Finally, in combining Q-learning with policy search for the
estimation of interpretable dynamic treatment regimes, Zhang et al. (2016) (see Section 3.4) use
a kernel ridge regression estimator for the Q-function.

3.4. Connections with Policy Search Methods

Finally, Q-learning with policy search (QLPS) refers to a class of methods that use elements
of both Q-learning and policy search methods. In the latter approach, one estimates πopt

by optimizing an estimator of the policy-value function over a predefined class of treatment
regimes (policies). That is, one constructs an estimator V̂ of the policy-value function and takes
π̂opt � arg max

π∈�V̂ (π ).
Zhang et al. (2013) provide a general framework for policy search methods, which allows

for searching over policies corresponding to candidate Q-functions. Consider T -stage decision
problems, and introduce coarsening variables Cπ ,i (which measure the agreement of patient i’s
treatments with policy π ):

Cπ ,i �

⎧⎪⎪⎨⎪⎪⎩
1, if Ai

1 = π1(X i
1 );

∞, if Ai
t = πt (Hi

t ) for t = 1, . . . ,T ;
maxk=2,...,T−1

{
k :
∏k−1

t=1 1[Ai
t = πt (Hi

t )] = 1
}
, otherwise.

20.

Define discrete hazard functions λπ ,t , which give the probability of the behavior policy ceasing to
agree with π at stage t for history Ht , given that the behavior policy has agreed with π until t.
Then define the survivor function Kπ ,t :

Kπ ,t (X
i
t ) �

t∏
k=1
{1− λπ ,k(X

i
k )}. 21.
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[Kπ ,t play a role analogous to propensity scores (Rosenbaum & Rubin 1983) in the evaluation of
single-stage treatment regimes, and indeed depend on a model for propensity scores.] If the coars-
ening mechanism is correctly specified, all regular, asymptotically linear, consistent estimators for
V (π ) are of the form (Tsiatis 2006)

V̂ (π ) = 1
n

n∑
i=1

⎧⎨⎩1(Cπ ,i = ∞)

Kπ ,T (X
i
T )

Y i +
T∑
t=1

1(Cπ ,i = t )− λπ ,t (X
i
t )1(Cπ ,i ≥ t )

Kπ ,t (X
i
t )

t (X i
t )

⎫⎬⎭ 22.

for arbitrary functions t . Varying the choice of t leads to different estimators of the value
function. The simplest is the inverse probability weighted estimator, obtained by setting
t ≡ 0:

V̂ IPW(π ) � 1
n

n∑
i=1

1(Cπ ,i = ∞)

K̂π ,T (X
i
T )

Y i. 23.

V̂ IPW requires the correct specification of the propensity scores in order to be consistent, and it is
relatively inefficient. This motivates the doubly robust estimator:

V̂ DR(π ) � V̂ IPW + 1
n

n∑
i=1

T∑
t=1

1(Cπ ,i = t )− λ̂π ,t (X
i
t )1(Cπ ,i ≥ t )

K̂π ,t (X
i
t )

m̂πt {Hi
t , [πv (Hi

v )]
t
v=1}. 24.

In Equation 24, [πv (Hi
v )]

t
v=1 is the sequence of treatments recommended by regime π for patient

i at the corresponding observed histories and m̂πt is an estimator of the function mπt � E{Y ∗(π ) |
H∗t [(πv )tv=1] = ht}, where H∗t [(πv )tv=1] is the potential history at stage t if π is followed until that
stage. V̂ DR is consistent if either the models for the propensity scores are correctly specified or
the models for m̂πt are, and it is semiparametric efficient if both are.

Finally, there is the augmented inverse probability weighted estimator, which replaces m̂πt in
Equation 24 by estimated optimal Q-functions:

V̂ AIPW(π ) � V̂ IPW + 1
n

n∑
i=1

T∑
t=1

1(Cπ ,i = t )− λ̂π ,t (X
i
t )1(Cπ ,i ≥ t )

K̂π ,t (X
i
t )

Q̂t{X i
t , [πv (Hi

v )]
t
v=1}. 25.

While m̂πt must be refitted at each step of optimizing V̂ DR in π , the Q̂ts used in V̂ AIPW are constant,
thus improving computational efficiency while hopefully reaping most of the efficiency gains of
V̂ DR.

Given an estimator V̂ and class of policies �, one may estimate the optimal policy as
π̂ � argmaxπ∈� V̂ (π ). A variant of QLPS is obtained by choosing � = {[argmaxa1 Q1(·, a1),
argmaxa2 Q2(·, a2)] : (Q1,Q2) ∈ Q1 ×Q2} for classes of Q-functions Q1,Q2. While the estimated
optimal policy will belong to the same class of regimes as Q-learning with model classesQ1,Q2, if
the propensity scores are correctly specified then QLPS will be consistent for the best regime in
the class; a similar guarantee does not hold for Q-learning (Qian &Murphy 2011). In Section 5.1
we return to discuss some of the benefits of QLPSmethods over using either Q-learning or policy
search alone.
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Zhang et al. (2016) use the following QLPS procedure, for classes of decision rules �1,�2:

Q̂2 ← arg min
Q2∈Q2

Pn{Y −Q2(H2,A2)}2;
π̂2 ← arg max

π2∈�2

PnQ̂2{H2,π2(H2)};
Q̂1 ← arg min

Q1∈Q1

Pn{Q̂2[H2, π̂2(H2)]− Q1(H1,A1)}2;
π̂1 ← arg max

π1∈�1

PnQ̂1{H1,π1(H1)}.

26.

Zhang et al. (2016) choose �1,�2 to be classes of decision lists in order to enforce parsimony and
interpretability in the estimated policy.

4. INFINITE-HORIZON Q-LEARNING

While Q-learning in statistics originally arose in the context of optimal finite-horizon treatment
regimes, there is growing interest among statisticians in decision problems with long horizons.
In such problems, data efficiency typically takes precedence over computational efficiency (in
contrast to many test-bed problems used in infinite-horizon reinforcement learning, e.g., game-
playing and robotics, where data efficiency may be secondary to the ability of an algorithm to
make split-second decisions). Applications of this kind include the estimation of optimal treatment
strategies to be administered via mHealth technologies (Ertefaie & Strawderman 2018, Luckett
et al. 2018) and allocating limited resources in complex spatio-temporal problems such as control-
ling the spread of an emerging epidemic (Laber et al. 2018). In this section we examine methods
for estimating the optimal policy in infinite-horizon settings using Q-functions.

4.1. Estimating the Optimal Infinite-Horizon Q-Function

In this section we work in the setting of MDPs (Section 2.1). Recall that optimal infinite-horizon
Q-function for an MDP is characterized by the Bellman equations (Equation 6):

Qopt(x, a) � E
πopt

[ ∞∑
t=1

γ t−1Yt | X1 = x,A1 = a

]
= (BQopt )(x, a).

Given a set of data for trajectories indexed by i = 1, . . . , n and time points indexed by t = 1, . . . ,T
and a differentiable parametric model Q(·; θ ) for Qopt, the Bellman equation allows us to derive
an estimating equation for θ as follows:

E[Yt + γ max
a′

Q(Xt+1, a′; θ ) | Xt = x,At = a] = Q(x, a; θ )
⇒ E[Yt + γ max

a′
Q(Xt+1, a′; θ )− Q(x, a; θ ) | Xt = x,At = a] = 0

⇒ E{[Yt + γ max
a′

Q(Xt+1, a′; θ )−Q(x, a; θ )]∇θQ(x, a; θ ) | Xt = x,At = a} = 0

⇒ E

{
T−1∑
t=1

[Yt + γ max
a′

Q(Xt+1, a′; θ )−Q(x, a; θ )]∇θQ(x, a; θ ) | Xt = x,At = a

}
= 0.

27.

Then given a set of data for trajectories indexed by i = 1, . . . , n and time points indexed by t =
1, . . . ,T , the empirical estimating equation is

Pn

{
T∑
t=1

[Yt + γ max
a
Q(Xt+1, a; θ )−Q(Xt ,At ; θ )]∇θQ(Xt ,At ; θ )

}
= 0. 28.
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Consider, in particular, linear models of the form Q(x, a; θ ) = φ(x, a)ᵀθ . Define D̂(θ ) �
Pn{

∑T
t=1[Yt + γ maxa′ φ(Xt+1, a′ )ᵀθ − φ(Xt ,At )ᵀθ ]φ(Xt ,At )}. Then Equation 28 under the linear

model becomes

D̂(θ ) = 0. 29.

This is the approach of Ertefaie & Strawderman (2018), who formulate the estimation of θ via the
equivalent (under certain conditions) optimization problem:

θ̂ � argmin
θ∈�

D̂(θ )ᵀŴ −1D̂(θ ), where

Ŵ � Pn

{
T∑
t=1

φ(Xt ,At )φ(Xt ,At )ᵀ
}

.
30.

Indeed, the optimization problem in Equation 30 is a batch version of the incremental algorithm
of Maei et al. (2010) (Ertefaie & Strawderman 2018), itself a variant of the original incremen-
tal algorithm for Q-learning with approximation (Baird 1995). Ertefaie & Strawderman (2018)
demonstrate the consistency and asymptotic normality of the solution to Equation 30 as an esti-
mator of Qopt under regularity conditions and a fixed parameter asymptotic framework.

An alternative is to estimate the Q-function via an approximate version of the value iteration
algorithm mentioned in Section 2.1. Value iteration with function approximation (Bertsekas
& Tsitsiklis 1996), or fitted Q-iteration (FQI) (Ernst et al. 2005), is similar to finite-horizon
Q-learning in that it converts the estimation of the Q-function into a sequence of super-
vised learning problems. Let Q0,Q1, . . . be a sequence of candidate Q-functions (i.e., function
approximation architectures). Then FQI is given by:

Algorithm 2 (Fitted Q-iteration for estimating Qopt ).
Q̂0 ← arg minQ0∈Q0Pn

{∑T
t=1[Yt − Q0(Xt ,At )]2

}
for k=0, 1, … until convergence do

Qk+1 ← arg minQk+1∈Qk+1 Pn

{∑T
t=1
[
Yt + γ maxa Q̂k(Xt+1, a)−Qk+1(Xt ,At )

]2}
One advantage of FQI over the estimating-equation approach is that it easily allows the analyst

to use a wider array of flexible function architectures (such as random forests). And as with finite-
horizon Q-learning, FQI allows the analyst to check the adequacy of the estimated Q-function at
each iteration.

FQI suffers from bias and nonregularity as in finite-horizon Q-learning (Section 3).
Chakraborty et al. (2008) present a variant of the thresholding approach for reducing bias
in Q-learning for the case of FQI with linear function approximation.

4.2. Exploration

Methods for estimating the optimal infinite-horizon policy are often used in online sequential
decision problems, in which the decision maker observes data over a time horizon T and must
make a decision at each of these times based on accumulated data. A central issue in online se-
quential decision problems is the exploration-exploitation trade-off, which refers to the trade-off
between acting on one’s current best estimate of the optimal policy (exploiting) and acting so as
to gain more information about the environment so as to improve future decisions (exploring).
In Q-learning, this refers to the problem that the Q-function is estimated with error at any time
step, and therefore the decision maker has a choice between (a) following the estimated optimal
Q-function or (b) acting so as to gain information that would improve the estimated Q-function.
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There is an enormous literature on the exploration-exploitation trade-off in reinforcement
learning and other sequential decision settings, and a thorough review is beyond the scope of
this article; Auer (2002), Villar et al. (2015), Ghavamzadeh et al. (2015), and Russo et al. (2018)
provide reviews emphasizing different perspectives on the exploration-exploitation problem.

We present one class of solutions to the exploration-exploitation problem that involve intro-
ducing randomness into the parameters of the estimated Q-function in order to induce explo-
ration. An analogous exploration strategy for model-based reinforcement learning (in which one
attempts to model the entire transition dynamics of the system rather than just the conditional
means of cumulative rewards) is Thompson sampling (Thompson 1933, Russo et al. 2018). In
Thompson sampling, a posterior distribution is maintained over the parameters indexing the tran-
sition dynamics model. At each decision point this posterior is sampled from, and the decision
maker takes the action that is optimal under the sampled model. In the case of Q-learning, we
can achieve similar behavior—i.e., sampling from a distribution that concentrates on the solution
to the population-level variant of the Q-learning estimating Equation 28 as data accumulate—by
perturbing the estimating equation that defines the Q-function estimator as follows:

Pn

{
T∑
t=1

Wt

[
Yt + γ max

a
Q(Xt+1, a; θ )−Q(Xt ,At; θ )

]
∇θQ(Xt ,At; θ )

}
= 0, 31.

where Wv are multiplier bootstrap weights, e.g., Wv

iid∼ Exp(1) (Præstgaard & Wellner 1993,
Chatterjee 2005). Similar approaches have been proposed in the machine learning literature
(Eckles & Kaptein 2014, Fortunato et al. 2017, Osband et al. 2017, Plappert et al. 2017).

Algorithm 3 (Online Q-learning with bootstrap Thompson sampling).
Observe initial data {(X i

1,A
i
1,Y

i
1 ,X2)}ni=1

for T = 2, . . . ,T ′ do
θ̂BTS
T ← arg minθ∈�

∥∥∥Pn{∑T
t=1Wt

[
Yt + γ maxa Q(Xt+1, a; θ )

−Q(Xt ,At; θ )
]
∇θQ(Xt ,At ; θ )

}∥∥∥2 (Equation 31)

Ai
T ← arg maxa∈AQ(X i

T , a; θ̂BTS
T ) for i = 1, . . . , n

Observe X i
T+1 ∼ P(· | X i

T ,A
i
T ) and Y

i
T ≡ u(X i

T+1) for i = 1, . . . , n

Algorithm 3 displays the online sequential decision algorithm in which the optimal policy is esti-
mated using Ertefaie & Strawderman’s (2018) version of Q-learning and exploration is achieved
using bootstrap Thompson sampling.

4.3. Q-Learning with Policy Search in Infinite Horizons

As with finite horizons, it is possible to estimate the value of a policy in an infinite-horizon MDP
directly, and thereby obtain an estimator of the optimal policy. Policy search methods for MDPs
rely on variants of the Bellman equations (Equation 6) for the Q- and V-functions associated with
a given policy π :

Qπ (x, a) = E{Y1 + γQπ [X2,π (X2)] | X1 = x,A1 = a};
V π (x) =

∑
a∈A

π (a|x)Qπ (x, a), 32.

where π (a|x) is the probability of taking action a under policy π in state x. Given this characteri-
zation, we may obtain an estimator Q̂π using methods analogous to those discussed in Section 4.1
for the estimation of the optimal Q-function.This in turn yields an estimator of the value function

www.annualreviews.org • Q-Learning: Theory and Applications 293



ST07CH12_Laber ARjats.cls February 11, 2020 13:9

for π , V̂ π
Q (x) �

∑
a∈A π (a|x)Q̂π (x, a). Then, for reference distribution ν, we have the policy-value

estimator V̂ π �
∫
V̂ π
Q (x)dν(x).

As with finite-horizon policy search, estimating the policy-value function directly means eval-
uating policies other than the policy that was used to generate the observed data. This can be
addressed using inverse probability weighting. Call the behavior policy—i.e., the policy used
to generate the data—b, and let b̂(a|x) be an estimator of the propensity score for action a in
state x under the behavior policy.1 Define the inverse probability weights or importance sampling
weights ρt (π; b̂) = π (At |Xt )

b̂(At |Xt ) and subsequently define an inverse probability weighting estimator of

the policy-value function as V̂ IPW-MDP(π ) � Pn{[
∏T

t=1 ρt (π; b̂)][
∑T

v=t γ
t−1Yv]}. This estimator is

unbiased and consistent when b̂ is correctly specified, but it suffers from high variance.
To improve upon the above classes of estimators, Jiang & Li (2015) present a doubly robust

estimator that extends a doubly robust estimator for contextual bandits (Dudík et al. 2014) and is
analogous to V̂ DR from the finite-horizon setting (Equation 24). The estimator is defined recur-
sively as follows:

V̂ DR-MDP
0 (π ) � 0;

V̂ DR-MDP
T+1−t (π ) � Pn

{
V̂ π
Q (Xt )+ ρt (π; b̂)

[
Yt + γV DR-MDP

T−t (π )− Q̂π (Xt ,At )
]}

.
33.

The final estimator of the value of π is then V̂ DR-MDP � V̂ DR-MDP
T . When ρ(π; b̂) and Q̂π are

independent, we have that V̂ π (x) = Ea∼̂b(·|x){ρ(π; b̂)Q̂π (x, a)}; independence may be achieved by
estimating Q̂π on a separate data set. In this case, V̂ DR-MDP has the double-robustness policy that
if either the propensity model or the Q-function estimator is correctly specified, then it will con-
sistently estimate the policy-value function at π . The estimator also has lower variance than V̂ Q

and V̂ IPW-MDP.
Luckett et al.’s (2018) V-learning is a policy search method that optimizes this estimator of the

policy-value function:

V̂ VL(π ) �
∫
V (x; η̂π )dν(x), where η̂π solves

Pn

{
T∑
t=1

ρt (π; b̂)
[
Yt + γV (Xt+1; ηπ )−V (Xt; ηπ )

]
∇ηπV (Xt; ηπ )

}
= 0,

34.

whereV (·; ηπ ) is a model for the V-function for policy π indexed by parameter ηπ . Equation 34 is
derived from the Bellman equation,which characterizes the V-function of a policy π (Equation 32)
analogously to the derivation of the Q-learning estimating equation (Equation 28).

As in the finite-horizon setting, policy search methods may be combined with Q-function
methods. We will discuss this again in Section 5.1.

4.4. Deep Reinforcement Learning

Outside of statistics, reinforcement learning has in recent years enjoyed a surge of interest in the
computer science community with the advent of deep learning. Among the first major successes
of deep reinforcement learning was the deep Q-network (DQN), which achieved performance
comparable to that of human experts in a number of Atari video games using only raw pixels as

1For simplicity, we assume that b depends only on the current context x rather than the history, but this will not
generally be true, especially in online settings where actions are taken according to a policy estimated from the
entire history.Nevertheless, the assumptionmay still lead to reasonable performance; see the online simulation
experiments of Luckett et al. (2019), for instance. Alternatively, one could have the estimated behavior policy
depend on a low-dimensional sufficient statistic for the history.
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a state representation (Mnih et al. 2015). DQN is similar to fitted Q-iteration (Algorithm 2), in
that it estimates the infinite-horizon Q-function via a sequence of supervised learning problems.
The difference is that, in the case of DQN, the target of each supervised learning problem is an
estimator of the Q-function trained on a different batch of data. Let T (i) denote the time point of
the ith update to the DQN Q-function estimator; let T (i) be a set of indices sampled uniformly
at random from {1, . . . ,T (i)}, so that {(Xt ,At ,Yt ,Xt+1)}t∈T (i) are sampled uniformly from the data
observed until time T (i); and let PT (i) be the empirical expectation taken with respect to this batch
of data. Then the Q-function at the ith update of the DQN algorithm is estimated as

Q̂i � arg min
Q∈Q

PT (i)

{
Yt + γ max

a∈A
Q̂i−1(Xt+1, a)−Q(Xt ,At )

}2

, 35.

where Q is the class of candidate Q-functions indexed by the parameters of a deep neural net-
work. Rainbow DQN subsequently collected a number of improvements on the original DQN
algorithm into a single algorithm,which demonstrated considerably improved performance on the
Atari benchmark (Hessel et al. 2018). These include a method for increasing sample efficiency by
prioritizing higher-error tuples in the sampling used to construct the DQN objective (prioritized
experience replay; Schaul et al. 2015); a method for reducing the finite-sample maximization bias
(Smith &Winkler 2006) induced by the max operator (double Q-learning; Hasselt 2010, Hasselt
et al. 2016); and the Noisy Net method for inducing and tuning exploration via adding noise to
the parameters of the Q-function (Fortunato et al. 2017).

However, policy-based methods represent the state of the art in model-free deep reinforce-
ment learning. One popular approach is the trust region policy optimization (TRPO) algorithm
(Schulman et al. 2015) and its refinements under the heading of proximal policy optimization
(Schulman et al. 2017). In TRPO, the estimated optimal policy at the ith iteration is obtained by
maximizing the objective

V̂ TRPO(π ) � PT (i)

[
ρt (π; π̂ i−1)Q̂π̂ i−1 (Xt ,At )

]
− ι

{
PT (i)KL

[
π̂ i−1(· | Xt ) ‖ π (· | Xt )

]
< λ

}
, 36.

where KL is the Kullback-Leibler (KL) divergence, λ is a tuning parameter, and ι is the
0-∞ indicator [yielding a hard constraint on the average KL divergence between π (·|Xt ) and
π̂ i−1(·|Xt )]. That is, these methods update the previous policy π̂ i−1 by maximizing an importance-
sampling estimator of the policy-value without moving too far away from π̂ i−1 (in KL diver-
gence). Notice that the policy-value estimator PT (i)[ρt (π; π̂ i−1)Q̂π̂ i−1 (Xt ,At )] is an estimator of
E

π̂ i−1 [ρt (π; π̂ i−1)Qπ (Xt ,At )] = E
π [Qπ (Xt ,At )], using Q̂π̂ i−1 as an estimator of the target-policy

Q-function Qπ ; this is computationally easier than estimating the latter directly. Forcing the pol-
icy not to be too far from the previous policy (rather than globally optimizing the policy-value
estimator) has two advantages. First, because π̂ i−1 is used as a stand-in for π in the estimation
of the target policy Q-function, the quality of the estimator presumably decays as π moves away
from π̂ i−1. Second, the penalty induces stability in the estimation of the optimal policy, as not only
is the policy-value estimator high-variance for a fixed policy, but the class of policies searched over
(i.e., one indexed by the parameters of a deep neural network) is extremely large.

5. Q-LEARNING IN APPLICATION

5.1. Q-Learning with Policy Search as the Best of Both Worlds?

Any method for estimating an optimal policy must, at least implicitly, solve two problems: (a) It
must provide a reasonable criterion for choosing the estimated optimal policy from a given class,
and (b) it must use a reasonable class of candidate policies. In Q-learning, the class of policies is
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defined implicitly by the class of candidate Q-functions. Policy search methods, instead, address
a by attempting to give a good estimator of the value of a policy. But, they do not automatically
address b, as the policy-value estimator may in principle be optimized over any class of policies.

So, Q-learning naturally enforces the choice of a reasonable class of policies, as an analyst may
diagnose the fit of the estimated Q-functions against the actual outcomes and pseudooutcomes at
each stage and choose different modeling strategies accordingly—just as with typical regression
problems. After conducting such an analysis, an analyst may at least feel confident that they have
estimates that do a reasonable job of capturing the relationship between actions and the condi-
tional mean of the outcome. Policy search does not come with any analogous method for ensuring
that the policy class is well specified.While this may not be a problem in the context of deep rein-
forcement learning, where extremely general classes of policies may be searched over to optimize
an estimator constructed from huge amounts of data, in statistical contexts, the policy class must
allow for data-efficient estimation as well as interpretability by domain experts. Policy search has
the advantage of directly optimizing an estimator of the quantity of interest (the policy value),
whereas Q-learning estimates the optimal policy only indirectly.

In our view, the best of both worlds can be achieved by usingQ-learning as a criterion for policy
search and as a method for evaluating a class of candidate policies. When used in constructing a
criterion for policy search, Q-function methods can reduce the variance of the objective function
(Section 3.4), are flexible and have a low risk of misspecification, and provide a means to esti-
mate the optimal policy nonparametrically. In infinite-horizon settings, one may choose a feature
representation φ via Q-learning by, for instance, minimizing the cross-validated weighted tem-
poral difference error (Equation 30). Alternatively, one may estimate the transition dynamics of
the MDP and attempt to construct a parsimonious representation of the Q-function using Monte
Carlo estimates of the same from the estimated transition model. One may then optimize over a
differentiable class of stochastic policies indexed by θ that give probability to actions a in state x
as an increasing function of φ(a, x)ᵀθ ; one commonly used such class is π (a|x) ∝ exp{φ(a, x)ᵀθ}.

5.2. Sample Size Considerations

Applying Q-learning to the estimation of an optimal regime from clinical trial data—in particular,
from a SMART (Murphy 2005b)—ideally involves sizing the trial so as to construct high-quality
estimates of the optimal regime. SMARTs are typically sized for comparisons of two fixed treat-
ment sequences, with estimation of the optimal regime done as a secondary analysis. However,
Rose et al. (2019) present sample size calculations for powering tests of the value of the optimal
dynamic treatment regime itself (against a standard-of-care null), for both parametric and non-
parametric assumptions on the data-generating process. That is, letting π̂n be an estimator of πopt

based on a SMART of sample size n, and letting B0 > 0, γ ,α, η, ε, ζ ∈ (0, 1) be constants, they
derive procedures for choosing n such that

(POW) There exists an α-level test of H0 : V (πopt ) ≤ B0 based on π̂n that has power at least

(1− γ ) · 100+ o(1) provided V (πopt ) ≥ B0 + η,

(OPT) P
{
E [Y ∗(π̂n ) | Dn] ≥ V (πopt )− ε

} ≥ 1− ζ + o(1).
37.

5.3. Combining Model-Based and Model-Free Q-Learning
for Sample Efficiency

In cases where data are scarce, combining model-based estimators (Section 2.1.1) with model-free
estimators may improve estimation by reducing variance. A downside of model-based approaches
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in comparison to model-free ones is the bias introduced by an incorrectly specified transition
model. As such, the best strategy may be to adaptively combine model-based and model-free
estimators.

An early example of a hybrid model-based and model-free approach is the Dyna-Q architec-
ture, which draws from an estimated dynamics model supplement observed data in order to reduce
variance in the estimation of the Q-function (Sutton 1990). However, this algorithm does not at-
tempt to trade off the strengths and weaknesses of its model-based and model-free components.
More recent work in the deep reinforcement learning literature has attempted to address this
problem. For instance, Kalweit & Boedecker (2017) describe a method in which a model-free ap-
proach is augmented using data generated from an estimated dynamics model, with the amount
of imagined data increasing with the (bootstrap-estimated) uncertainty in the estimated dynamics
model [see also Feinberg et al. (2018) and references therein for more examples of hybrid strate-
gies]. However, these methods still reside in the deep reinforcement learning setting in which
large amounts of simulated data are available, rather than being tailored to more data-poor cases.
In the direction of optimally combiningmodel-based andmodel-free approaches in the latter case,
Thomas&Brunskill (2016) combine a version of V̂ DR-MDP (Section 4.3) withmodel-based estima-
tors of the policy-value function, i.e., estimators derived from the estimated dynamics of theMDP
and measuring the value of the target policy in this estimated MDP via simulation. In particular,
they present the Model and Guided Importance Sampling Combined (MAGIC) estimator, which
takes the estimated MSE-optimal combination of several different blended estimators, each of
which uses the model-based value estimator up until a particular time horizon and then V̂ DR-MDP

thereafter. Extending the statistically principled combination of model-free and model-based es-
timators to other methods is a promising direction for research into improving the data efficiency
of reinforcement learning.

One possible application area for a hybrid variant of Q-learning is the control of infectious
disease, in particular extending the model-based approach of Laber et al. (2018) for controlling
the spread of an emerging epidemic via the optimal allocation of limited resources to incorpo-
rate model-free elements, as the former approach depends on a low-dimensional model of disease
dynamics that is unlikely to be correctly specified. Among model-free approaches, policy search
methods are likely to suffer from prohibitively high variance, given the small number of observa-
tions available to decision makers in these contexts paired with the combinatorially large action
spaces. Variants of Q-learning may allow for the relatively stable model-free estimation of the
optimal policy.

6. DISCUSSION

While the use of Q-learning for the estimation of optimal finite-horizon treatment regimes has
matured considerably since its inception with the work of Murphy (2003, 2005a), there are still
open research directions, including the extension of the sample size procedures discussed in
Section 5.2 to different sets of assumptions on the data-generating model. At the same time, the
development of Q-learning in batch infinite-horizon settings, such as mHealth and large-scale
spatio-temporal decision-making, is just beginning. Q-learning in these settings shares several of
the challenges that Tewari &Murphy (2017) list for contextual bandits as applied to mHealth, in-
cluding exploring efficiently, finding a good initial policy, balancing policy interpretability and per-
formance, assessing the usefulness of features with respect to the performance of the learned policy,
addressing the computational difficulties associated with an online learning and recommendation
system implemented on mobile devices, and accounting for missingness in features or rewards. Fi-
nally, as touched upon in Section 5.3, the principled combination of model-free Q-learning with
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model-based methods that reduce variance and take advantage of domain knowledge is a promis-
ing direction for improving the performance of Q-learning-based decision support systems.
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