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Abstract

Markov chain Monte Carlo (MCMC) is one of the most useful approaches
to scientific computing because of its flexible construction, ease of use, and
generality. Indeed, MCMC is indispensable for performing Bayesian anal-
ysis. Two critical questions that MCMC practitioners need to address are
where to start and when to stop the simulation. Although a great amount of
research has gone into establishing convergence criteria and stopping rules
with sound theoretical foundation, in practice, MCMC users often decide
convergence by applying empirical diagnostic tools. This review article dis-
cusses the most widely used MCMC convergence diagnostic tools. Some
recently proposed stopping rules with firm theoretical footing are also pre-
sented. The convergence diagnostics and stopping rules are illustrated using
three detailed examples.
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1. INTRODUCTION

Markov chain Monte Carlo (MCMC) methods are now routinely used to fit complex mod-
els in diverse disciplines. A Google search for “Markov chain Monte Carlo” returns more than
11.5 million hits. The popularity of MCMC is mainly due to its widespread usage in computa-
tional physics and Bayesian statistics, although it is also used in frequentist inference (see, e.g.,
Geyer & Thompson 1995, Christensen 2004).

The fundamental idea of MCMC is that if simulating from a target density π is difficult so
that the ordinary Monte Carlo method based on independent and identically distributed (i.i.d.)
samples cannot be used for making inference on π , it may be possible to construct a Markov
chain {Xn}n≥0 with stationary density π for forming Monte Carlo estimators. An introduction to
construction of such Markov chains, including the Gibbs sampler and the Metropolis–Hastings
(MH) sampler, is provided byGeyer (2011) (see also Robert&Casella 2004).General purposeMH
algorithms are available in the R packages mcmc (Geyer & Johnson 2017) and MCMCpack (Martin
et al. 2011). There are several R (R Core Team 2018) packages implementing specific MCMC
algorithms for a number of statistical models [see, e.g., MCMCpack (Martin et al. 2011), MCMCglmm
(Hadfield 2010), and geoBayes (Evangelou & Roy 2019)]. Here, we do not discuss development
of MCMC algorithms, but rather focus on analyzing the Markov chain obtained from running
such an algorithm for determining its convergence.

Two important issues that must be addressed while implementing MCMC are where to start
and when to stop the algorithm. As we discuss now, these two tasks are related to determining
convergence of the underlying Markov chain to stationarity and convergence of Monte Carlo es-
timators to population quantities, respectively. It is known that under some standard conditions
on the Markov chain, for any initial value, the distribution of Xn converges to the stationary dis-
tribution as n → ∞ (see, e.g., Meyn & Tweedie 1993, chapter 13; Roberts & Rosenthal 2004).
Since X0 �∼ π and MCMC algorithms produce (serially) correlated samples, the further the initial
distribution from π , the longer it takes for Xn to approximate π . In particular, if the initial value is
not in a high-density (π ) region, the samples at the earlier iterations may not be close to the target
distribution. In such cases, a common practice is to discard early realizations in the chain and start
collecting samples only after the effect of the initial value has (practically) worn off. The main
idea behind this method, known as burn-in, is to use samples only after the Markov chain gets suf-
ficiently close to the stationary distribution, although its usefulness for Monte Carlo estimation
has been questioned in the MCMC community (Geyer 2011). Thus, ideally, MCMC algorithms
should be initialized at a high-density region, but if finding such areas is difficult, collection of
Monte Carlo samples can be started only after a certain iteration n′ when approximately Xn′ ∼ π .

Once the starting value is determined, one needs to decide when to stop the simulation. (Note
that the starting value here refers to the beginning of collection of samples, as opposed to the
initial value of X0 of the Markov chain, although these two values can be the same.) Often the
quantities of interest regarding the target density π can be expressed as means of certain functions,
say, Eπg ≡ ∫

X g(x)π (x)dx, where g is a real-valued function. For example, appropriate choices of
g make Eπg different measures of location, spread, and other summary features of π . Here, the
support of the target density π is denoted by X , which is generally Rd for some d ≥ 1, although it
can be non-Euclidean as well.We later consider vector valued functions g as well (Section 2). The
MCMC estimator of the populationmean Eπg is the sample average ḡn′ ,n ≡ ∑n

i=n′+1 g(Xi )/(n− n′ ).
If no burn-in is used, then n′ = 0. It is known that usually ḡn′ ,n → Eπg as n → ∞ (see Section 2
for details). In practice, however, MCMC users run the Markov chain for a finite n∗ number of
iterations, thus MCMC simulation should be stopped only when ḡn′ ,n∗ has sufficiently converged
to Eπg. The accuracy of the time average estimator ḡn′ ,n obviously depends on the quality of the
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samples. Thus, when implementing MCMC methods, it is necessary to wisely conclude Markov
chain convergence and subsequently determine when to stop the simulation. In particular, while
premature termination of the simulation will most likely lead to inaccurate inference, unnecessar-
ily running longer chains is not desirable either, as it eats up resources.

By performing theoretical analysis on the underlying Markov chain, an analytical upper bound
on its distance to stationarity may be obtained (Rosenthal 1995), which in turn can provide a
rigorous method for deciding MCMC convergence and thus finding n′ ( Jones & Hobert 2001).
Similarly, using a sample size calculation based on an asymptotic distribution of the (appropri-
ately scaled) Monte Carlo error ḡn′ ,n∗ − Eπg, an honest stopping value n∗ can be found. In the
absence of such theoretical analysis, often empirical diagnostic tools are used to check conver-
gence of MCMC samplers and estimators, although, as shown through examples in Section 3,
these tools cannot determine convergence with certainty. Since early 1990s, with the increasing
use of MCMC, a great deal of research effort has gone into developing convergence diagnostic
tools.These diagnostic methods can be classified into several categories. For example, correspond-
ing to the two types of convergence mentioned before, some of these diagnostic tools are designed
to assess convergence of the Markov chain to the stationary distribution, whereas others check for
convergence of the summary statistics like sample means and sample quantiles to the correspond-
ing population quantities.The availableMCMCdiagnostic methods can be categorized according
to other criteria as well, for example, their level of theoretical foundation, if they are suitable for
checking joint convergence of multiple variables, whether they are based on multiple (parallel)
chains or a single chain or both, if they are complemented by a visualization tool or not, if they
are based on moments and quantiles or the kernel density of the observed chain, and so on. Sev-
eral review articles on MCMC convergence diagnostics are available in the literature (see, e.g.,
Cowles & Carlin 1996, Brooks & Roberts 1998, Mengersen et al. 1999). Cowles & Carlin (1996)
provide a description of 13 convergence diagnostics and summarize these according to the differ-
ent criteria mentioned above. While some of these methods are widely used in practice, several
new approaches have been proposed since then. In this article, we review some of these tools that
are commonly used by MCMC practitioners or that we find promising.

2. MCMC DIAGNOSTICS

As mentioned in the introduction, MCMC diagnostic tools are needed for deciding convergence
of Markov chains to the stationarity. Although in general, the longer the chain is run, the better
Monte Carlo estimates it produces, in practice it is desirable to use some stopping rules for pru-
dent use of resources. In this section, we describe some MCMC diagnostics that may be used for
decidingMarkov chain convergence or stoppingMCMC sampling. In the context of eachmethod,
we also report if it is designed particularly for one of these two objectives.

2.1. Honest MCMC

In this section, we describe some rigorous methods for finding n′ and n∗ that were mentioned in
the introduction. Let fn be the density of Xn. It is known that under some standard conditions
(see, e.g., Meyn & Tweedie 1993, chapter 13), 1

2

∫
X | fn(x) − π (x)|dx ↓ 0 as n → ∞, that is, Xn

converges in the total variation (TV) norm to a random variable following π . Jones & Hobert
(2001) mention that a rigorous way of deciding the convergence of the Markov chain to π is by
finding an iteration number n′ such that

1
2

∫
X

| fn′ (x) − π (x)|dx < 0.01. 1.
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(The cutoff value 0.01 is arbitrary, and any predetermined precision level can be used.) Jones &
Hobert (2001) propose to use the smallest n′ for which Equation 1 holds as the honest value for
burn-in.

The above-mentioned burn-in hinges on the TV norm in Equation 1, which is generally not
available. Constructing a quantitative bound to the TV norm is also often difficult, although sig-
nificant progress has been made in this direction (Rosenthal 1995, 2002; Baxendale 2005; Andrieu
et al. 2015). In particular, a key tool for constructing a quantitative bound to the TV norm is us-
ing the drift and minorization (d&m) technique (Rosenthal 1995). The d&m technique has been
successfully used to analyze a variety of MCMC algorithms (see, e.g., Fort et al. 2003, Jones &
Hobert 2004, Roy & Hobert 2010, Vats 2017). The d&m conditions, as we explain later in this
section, are also crucial to provide an honest way to check convergence of MCMC estimators of
popular summary measures like moments and quantiles of the target distributions. Although we
consider the TV norm here, over the last few years, other metrics like the Wasserstein distance
have also been used to study Markov chain convergence (see, e.g., Durmus & Moulines 2015,
Qin & Hobert 2019). Using Stein’s method, Gorham & Mackey (2015) propose a computable
discrepancy measure that seems promising as it depends on the target only through the derivative
of logπ , and hence is appropriate in Bayesian settings where the target is generally known up to
the intractable normalizing constant.

As in the Introduction, let a particular feature of the target density be expressed as Eπg, where
g is a real valued function. By the strong law of large numbers for Markov chains, it is known that
if {Xn}n≥0 is appropriately irreducible, then ḡn′ ,n ≡ ∑n

i=n′+1 g(Xi )/(n− n′ ) is a strongly consistent
estimator of Eπg, that is, ḡn′ ,n → Eπg almost surely as n → ∞ for any fixed n′ (Asmussen & Glynn
2011). Without loss of generality, we let n′ = 0 when discussing stopping rules, and for the ease
of notation, we simply write ḡn for ḡ0,n. The law of large numbers justifies estimating Eπg by the
sample (time) average estimator ḡn, as in the ordinary Monte Carlo. If a central limit theorem
(CLT) is available for ḡn (that is, for the error ḡn − Eπg) then a sample size calculation based on
the width of an interval estimator for Eπg can be performed for choosing an appropriate value for
n∗. Indeed, under some regularity conditions,

√
n(ḡn − Eπg)

d→ N (0, σ 2
g ) as n → ∞, 2.

where σ 2
g ≡ Varπ (g(X0)) + 2

∑∞
i=1 Covπ (g(X0), g(Xi )) < ∞; the subscript π indicates that the ex-

pectations are calculated assuming X0 ∼ π . (Note that, due to the autocorrelations present in a
Markov chain, σ 2

g �= Varπ (g(X0)) = λ2
g , say.) If σ̂g,n is a consistent estimator of σg, then an estimator

of the standard error of ḡn, based on the sample size n, is σ̂g,n/
√
n. Since the standard error σ̂g,n/

√
n

allows one to judge the reliability of the MCMC estimate, it should always be reported along with
the point estimate ḡn. The standard error also leads to a 100(1 − α)% confidence interval for Eπg,
namely ḡn ∓ zα/2σ̂g,n/

√
n. Here, zα/2 is the (1 − α/2) quantile of the standard normal distribution.

The MCMC simulation can be stopped if the half-width of the 100(1 − α)% confidence interval
falls below a prespecified threshold, say ε. Jones & Hobert (2001) refer to this method as the hon-
est way to stop the chain. Indeed, the fixed-width stopping rule (FWSR) (Flegal et al. 2008, Jones
et al. 2006) terminates the simulation the first time after some user-specified ñ iterations that

t∗
σ̂g,n√
n

+ 1
n

≤ ε. 3.

Here, t∗ is an appropriate quantile. The role of ñ is to make sure that the simulation is not stopped
prematurely due to a poor estimate of σ̂g,n. The value of ñ should depend on the complexity of
the problem. Gong & Flegal (2016) suggest that using ñ = 104 works well in practice.
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For validity of the honest stopping rule, a CLT (Equation 2) for ḡn needs to exist, and one
would need a consistent estimator σ̂g,n of σg. For the CLT to hold, the TV norm in Equation 1
needs to converge to zero at a certain rate (see Jones 2004 for different conditions guaranteeing
a Markov chain CLT). The most common method of establishing a CLT (Equation 2), as well
as providing a consistent estimator of σg, has been by showing the Markov chain {Xn}n≥0 is ge-
ometrically ergodic, that is, the TV norm (Equation 1) converges at an exponential rate ( Jones
& Hobert 2001, Roberts & Rosenthal 2004). Generally, geometric ergodicity of a Markov chain
is proven by constructing an appropriate d&m condition (Rosenthal 1995, Roy & Hobert 2010).
For estimation of σ 2

g , while Mykland et al. (1995) and Hobert et al. (2002) discuss the regener-
ative simulation method, Jones et al. (2006) and Flegal & Jones (2010) provide consistent batch
means and spectral variance methods. Availability of a Markov chain CLT has been demonstrated
for myriad MCMC algorithms for common statistical models. Here, we provide an incomplete
list: linear models (Román & Hobert 2012, 2015), generalized linear models including the pro-
bit model (Roy & Hobert 2007, Chakraborty & Khare 2017), the popular logistic model (Choi &
Hobert 2013,Wang&Roy 2018c) and the robit model (Roy 2012), generalized linear mixedmod-
els including the probit mixed model (Wang&Roy 2018b) and the logistic mixed model (Wang&
Roy 2018a), quantile regression models (Khare & Hobert 2012), multivariate regression models
(Roy & Hobert 2010, Hobert et al. 2018), and penalized regression and variable selection models
(Khare & Hobert 2013, Roy & Chakraborty 2017, Vats 2017).

So far we have described the honest MCMC in the context of estimating means of univariate
functions.Themethod is applicable to estimation of vector valued functions as well. In particular, if

g is aRp valued function, and if a CLTholds for ḡn, that is, if
√
n(ḡn − Eπg)

d→ N (0,�g) as n → ∞,
for some p× p covariance matrix �g, then using a consistent estimator �̂g,n of �g, a 100(1 − α)%
asymptotic confidence region Cα (n) for Eπg can be formed (for details, see Vats et al. 2019). Vats
et al. (2019) propose a fixed volume stopping rule, which terminates the simulation the first time
after ñ iterations that

(Vol{Cα (n)})1/p + 1
n

≤ ε,

where, as in Equation 3, ε is the user’s desired level of accuracy. Note that when p = 1, except the
1/n terms, the expression above is the same as Equation 3 with ε = 2ε. Honest MCMC can also
be implemented for estimation of the quantiles (Doss et al. 2014). In order to reduce computa-
tional burden, the sequential stopping rules should be checked only at every l iterations, where l
is appropriately chosen. Finally, even if theoretical d&m analysis is not carried out establishing a
Markov chain CLT, in practice, FWSR can be implemented using the batch means and spectral
variance estimators of σg(�g) available in the R package mcmcse (Flegal et al. 2012).

2.2. Relative Fixed-Width Stopping Rules

FWSR (described in Section 2.1) explicitly addresses how well the estimator ḡn approximates Eπg.
Flegal & Gong (2015) and Gong & Flegal (2016) discuss relative FWSR in the MCMC setting.
Flegal & Gong (2015) consider a relative magnitude rule that terminates the simulation when,
after ñ iterations, t∗σ̂g,nn−1/2 + n−1 ≤ εḡn. Flegal & Gong (2015) also consider a relative standard
deviation FWSR (SDFWSR) that terminates the simulation when, after ñ iterations, t∗σ̂g,nn−1/2 +
n−1 ≤ ε̂λg,n, where λ̂g,n is a strongly consistent estimator of the population standard deviation λg.
Asymptotic validity of the relative magnitude and relative standard deviation stopping rules are
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established by Glynn & Whitt (1992) and Flegal & Gong (2015), respectively. This ensures that
the simulation will terminate in a finite time with probability 1.

In Bayesian statistics applications, Flegal &Gong (2015) advocate the use of relative SDFWSR.
In the high-dimensional settings, that is, where g is an Rp valued function and p is large, without
a priori knowledge of the magnitude of Eπg, Gong & Flegal (2016) prefer relative SDFWSR
over FWSR based on the marginal chains. In the multivariate settings, Vats et al. (2019) argue
that stopping rules based on p marginal chains may not be appropriate, as these ignore cross-
correlations between components and may be dictated by the slowest mixing marginal chain. Vats
et al. (2019) propose a multivariate relative standard deviation stopping rule involving the volume
of the 100(1 − α)% asymptotic confidence region, that is, Vol{Cα (n)}. Let 	̂g,n be the sample co-
variance matrix. Vats et al. (2019) propose to stop the simulation the first time after ñ iterations
that

(Vol{Cα (n)})1/p + 1
n

≤ ε(|	̂g,n|)1/2p, 4.

where | · | denotes the determinant.

2.3. Effective Sample Size

For anMCMC-based estimator, effective sample size (ESS) is the number of independent samples
equivalent to (that is, having the same standard error as) a set of correlated Markov chain sam-
ples. Although ESS (based on n correlated samples) is not uniquely defined, the most common
definition (Robert & Casella 2004) is

ESS = n
1 + 2

∑∞
i=1 Corrπ (g(X0), g(Xi ))

.

Gong & Flegal (2016) rewrite the above definition as ESS = nλ2
g/σ

2
g . In the multivariate setting,

that is, when g is Rp valued for some p ≥ 1, Vats et al. (2019) define multivariate ESS (mESS) as

mESS = n

(
|	g|
|�g|

)1/p

, 5.

where 	g is the population covariance matrix. An approach to terminate MCMC simulation is
when ÊSS (m̂ESS) takes a value larger than a prespecified number, where ÊSS (m̂ESS) is a con-
sistent estimator of ESS (mESS). Indeed, Vats et al. (2019) mention that simulation can be termi-
nated the first time that

m̂ESS = n

(
|	̂g,n|
|�̂g,n|

)1/p

≥ 22/pπ
(p
(p/2))2/p

χ2
1−α,p

ε2
, 6.

where ε is the desired level of precision for the volume of the 100(1 − α)% asymptotic confi-
dence region, and χ2

1−α,p is the (1 − α) quantile of χ2
p . This ESS stopping rule is (approximately)

equivalent to the multivariate relative standard deviation stopping rule given in Equation 4 (for
details, see Vats et al. 2019). Note that ÊSS (m̂ESS) per unit time can be used to compare differ-
entMCMC algorithms (with the same stationary distribution) in terms of both computational and
statistical efficiency. ESS is implemented in several R packages, including CODA (Plummer et al.
2006) and mcmcse (Flegal et al. 2012). In the mcmcse package, estimates of ESS in both univariate
and multivariate settings are available.While Gong & Flegal (2016) and Vats et al. (2019) provide
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a connection between ESS and relative SDFWSR stopping rules, Vats & Knudson (2018) draw
correspondence between ESS and a version of the widely used Gelman–Rubin (GR) diagnostic
presented in the next section.

2.4. Gelman–Rubin Diagnostic

The GR diagnostic appears to be the most popular method for assessing samples obtained from
runningMCMC algorithms. The GR diagnostic relies on multiple chains {Xi0,Xi1, . . . ,Xin−1}, i =
1, . . . ,m starting at initial points that are drawn from a density that is overdispersed with respect
to the target density π . Gelman & Rubin (1992) describe methods of creating an initial distri-
bution, although in practice, these initial points are usually chosen in some ad hoc way. Using
parallel chains, Gelman & Rubin (1992) construct two estimators of the variance of X where
X ∼ π , namely, the within-chain variance estimate,W = ∑m

i=1
∑n−1

j=0 (Xi j − X̄i· )2/(m(n− 1)), and
the pooled variance estimate V̂ = ((n− 1)/n)W + B/n, where B/n = ∑m

i=1(X̄i· − X̄·· )2/(m− 1) is
the between-chain variance estimate, and X̄i· and X̄·· are the ith chain mean and the overall mean,
respectively, i = 1, 2, . . . ,m. Finally, Gelman & Rubin (1992) compare the ratio of these two es-
timators to one. In particular, they calculate the potential scale reduction factor (PSRF) defined
by

R̂ = V̂
W

7.

and compare it to one.
Gelman & Rubin (1992) argue that since the chains are started from an overdispersed initial

distribution, in finite samples, the numerator in Equation 7 overestimates the target variance,
whereas the denominator underestimates it,making R̂ larger than one. Simulation is stopped when
R̂ is sufficiently close to one. The cutoff value 1.1 is generally used by MCMC practitioners, as
recommended by Gelman et al. (2014). Vats & Knudson (2018) propose a modified GR statistic
where the between-chain variance (B/n) is replaced with a particular batch means estimator of
the asymptotic variance for the Monte Carlo averages X̄n. This modified definition allows for
a connection with ESS and, more importantly, computation of the GR diagnostic based on a
single chain. We would like to point out that the expression of R̂ given in Equation 7, although
widely used in practice, differs slightly from the original definition given by Gelman & Rubin
(1992).

Brooks & Gelman (1998) propose the multivariate PSRF (MPSRF) to diagnose convergence
in the multivariate case. It is denoted by R̂p and is given by

R̂p = max
a

aTV̂ ∗a
aTW ∗a

= n− 1
n

+
(
1 + 1

m

)
λ1, 8.

where V̂ ∗ is the pooled covariance matrix,W ∗ is the within-chain covariance matrix, B∗ is the
between-chain covariance matrix, and λ1 is the largest eigenvalue of the matrix (W ∗−1B∗ )/n. As
in the univariate case, simulation is stopped when R̂p ≈ 1. Peltonen et al. (2009) have proposed
a visualization tool based on linear discriminant analysis and discriminant component analysis,
which can be used to complement the diagnostic tools proposed by Gelman & Rubin (1992) and
Brooks & Gelman (1998). The GR diagnostic can be easily calculated and is available in different
statistical packages including the CODA package (Plummer et al. 2006) in R. To conclude our dis-
cussion on the GR diagnostic, note that originally Gelman & Rubin (1992) suggested running m
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parallel chains, each of length 2n. Then, discarding the first n simulations, R̂ is computed based on
the last n iterations. This leads to the waste of too many samples, and we do not recommend it.

2.5. Two Spectral Density–Based Methods

In this section, we discuss two diagnostic tools based on asymptotic variance estimates of certain
statistics to check for convergence to stationarity. Geweke (1992) proposes a diagnostic tool based
on the assumption of existence of the spectral density of a related time series. Indeed, for the
estimation of Eπg, the asymptotic variance of ḡn is Sg(0), the spectral density of {g(Xn ), n ≥ 0}
(treated as a time series) evaluated at zero. After n iterations of theMarkov chain, let ḡnA and ḡnB be
the time averages based on the first nA and the last nB observations. Geweke’s (1992) statistic is the
difference ḡnA − ḡnB, normalized by its standard error calculated using a nonparametric estimate
of Sg(0) for the two parts of the Markov chain. Thus, Geweke’s statistic is

Zn =
(
ḡnA − ḡnB

)/√
Ŝg(0)/nA + Ŝg(0)/nB.

Geweke (1992) suggests using nA = 0.1n and nB = 0.5n. The Z score is calculated under the as-
sumption of independence of the two parts of the chain. Thus Geweke’s (1992) convergence diag-
nostic is a Z test of equality of means where autocorrelation in the samples is taken into account
while calculating the standard error.

Heidelberger & Welch (1983) propose another method based on spectral density estimates.
Heidelberger & Welch’s (1983) diagnostic is based on

Bn(t ) =
( �nt�∑

i=0

g(Xi ) − �nt�ḡn
)/√

nŜg(0).

Assuming that {Bn(t ), 0 ≤ t ≤ 1} is distributed asymptotically as a Brownian bridge, the Cramer–
von Mises statistic

∫ 1
0 Bn(t )

2dt may be used to test the stationarity of the Markov chain. The sta-
tionarity test is successively applied,first on the whole chain, and then rejecting the first 10%, 20%,
and so forth of the samples until the test is passed or 50% of the samples have been rejected. Both
of these two spectral density–based tools presented here are implemented in the CODA package
(Plummer et al. 2006). These are univariate diagnostics, although Cowles & Carlin (1996) men-
tion that for Geweke’s (1992) statistic, gmay be taken to be −2 times the log of the target density
when X = Rd for some d > 1. Finally, we would like to mention that the two spectral density–
based methods mentioned here, just like the ESS and the GR diagnostic, assume the existence of
a Markov chain CLT (Equation 2), emphasizing the importance of the theoretical analysis dis-
cussed in Section 2.1.

2.6. Raftery–Lewis Diagnostic

Suppose the goal is to estimate a quantile of g(X ), that is, to estimate u such that Pπ (g(X ) ≤ u) = q
for some prespecified q. Raftery & Lewis (1992) propose a method for calculating an appropriate
burn-in. They also discuss choosing a run length so that the resulting probability estimate lies in
[q− ε, q+ ε] with probability (1 − α). Thus, the required accuracy ε is achieved with probability
(1 − α). Raftery & Lewis (1992) consider the binary processWn ≡ I(g(Xn ) ≤ u), n ≥ 0. Although,
in general, {Wn}n≥0 itself is not aMarkov chain,Raftery &Lewis (1992) assume that for sufficiently
large k, the subsequence {Wnk}n≥0 is approximately a Markov chain. They discuss a method for
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choosing k using model selection techniques. The transition probability P(Wnk = j|W(n−1)k = i) is
estimated by the usual estimator

∑n
l=1 I(Wlk = j,W(l−1)k = i)∑n

l=1 I(Wlk = i)
,

for i, j = 0, 1. Here, I(·) is the indicator function. Using a straightforward eigenvalue analysis of
the two-state empirical transition matrix of {Wnk}n≥0, Raftery & Lewis (1992) provide an estimate
of the burn-in. Using a CLT for

∑n−1
j=0Wjk/n, they also give a stopping rule to achieve the desired

level of accuracy.
To implement this univariate method, an initial number nmin of iterations is used, and then

it is determined if any additional runs are required using the above techniques. The value
nmin = {�−1(1 − α/2)}2q(1 − q)/ε2 is based on the standard asymptotic sample size calculation
for Bernoulli (q) population. Since the diagnostic depends on the q values, the method should be
repeated for different quantiles, and the largest among these burn-in estimates can be used. The
diagnostic of Raftery & Lewis (1992) is available in the CODA package (Plummer et al. 2006).

2.7. Kernel Density–Based Methods

There are MCMC diagnostics that compute the distance between the kernel density estimates
of two chains or two parts of a single chain and conclude convergence when the distance is close
to zero. Unlike the widely used GR diagnostic (Gelman & Rubin 1992), which is based on com-
parison of some summary moments of MCMC chains, these tools are intended to assess the con-
vergence of the whole distributions. Yu (1994) and Boone et al. (2014) estimate the L1 distance
and Hellinger distance between the kernel density estimates respectively. More recently, Dixit &
Roy (2017) use the symmetric Kullback–Leibler (KL) divergence to produce two diagnostic tools
based on kernel density estimates of the chains. Below, we briefly describe the method of Dixit &
Roy (2017).

Let {Xi j : i = 1, 2; j = 1, 2, . . . , n} be the n observations obtained from each of the twoMarkov
chains initialized from two points well-separated with respect to the target density π .The adaptive
kernel density estimates of observations obtained from the two chains are denoted by p1n and p2n,
respectively. The KL divergence between pin and p jn is denoted by KL(pin|p jn ), i �= j, i, j = 1, 2,
that is,

KL(pin|p jn ) =
∫
X
pin(x) log

pin(x)
p jn(x)

dx.

Dixit & Roy (2017) find the Monte Carlo estimates of KL(pin|p jn ) using samples simulated from
pin using the technique proposed by Silverman (1986, section 6.4.1). They use the estimated sym-
metric KL divergence ([KL(p1n|p2n ) + KL(p2n|p1n )]/2) between p1n and p2n to assess convergence
where a testing of hypothesis framework is used to determine the cutoff points. The hypotheses
are chosen such that the type 1 error is concluding that the Markov chains have converged
when in fact they have not. The cutoff points for the symmetric KL divergence are selected
to ensure that the probability of type 1 error is below some level, say, 0.05. In case of multiple
(m > 2) chains, the maximum among

(m
2

)
estimated symmetric KL divergences (referred to as

Tool 1) is used to diagnoseMCMC convergence. Finally, for multivariate examples—that is, when
X = Rd for some d > 1—although multivariate Tool 1 can be used, in higher dimensions when
kernel density estimation is not reliable, Dixit & Roy (2017) recommend assessing convergence
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marginally, i.e., one variable at a time, where appropriate cutoff points are found by adjusting the
level of significance using Bonferroni’s correction for multiple comparison.

For multimodal target distributions, if all chains are stuck at the same mode, then empirical
convergence diagnostics based solely on MCMC samples may falsely treat the target density as
unimodal and are prone to failure. In such situations, Dixit & Roy (2017) propose another tool
(Tool 2) that makes use of the KL divergence between the kernel density estimate of MCMC
samples and the target density (generally known up to the unknown normalizing constant) to de-
tect divergence. In particular, let π (x) = f (x)/c, where c = ∫

X f (x)dx is the unknown normalizing
constant. Dixit & Roy’s Tool 2 is given by

T ∗
2 = | ĉ − c∗ |

c∗
, 9.

where ĉ is a Monte Carlo estimate, as described in section 3.3 of Dixit & Roy (2017), of the un-
known normalizing constant (c), based on the KL divergence between the adaptive kernel density
estimate of the chain and π , and c∗ is an estimate of c obtained by numerical integration. Dixit &
Roy (2017) discuss that T ∗

2 can be interpreted as the percentage of the target distribution not yet
captured by theMarkov chain.Using this interpretation, they advocate that if T ∗

2 > 0.05, then the
Markov chain has not yet captured the target distribution adequately. Since Equation 9 involves
numerical integration, it cannot be used in high-dimensional examples.

2.7.1. A visualization tool. Dixit & Roy (2017) propose a simple visualization tool to com-
plement their KL divergence diagnostic tool. This tool can be used for any diagnostic method
(including the GR diagnostic) based on multiple chains started at distinct initial values, to in-
vestigate reasons behind their divergence. Suppose m(≥ 3) chains are run, and a diagnostic tool
has revealed that the m chains have not mixed adequately and thus the chains have not yet con-
verged. This indication of divergence could be due to a variety of reasons. A common reason for
divergence is formation of clusters among multiple chains. Dixit & Roy’s (2017) visualization tool
utilizes the tile plot to display these clusters. As mentioned in Section 2.7, for m chains, the KL
divergence tool finds the estimated symmetric KL divergence between each of the

(m
2

)
combina-

tions of chains and reports the maximum among them. In the visualization tool, if the estimated
symmetric KL divergence for a particular combination is less than or equal to the cutoff value,
then the tool utilizes a gray tile to represent that the two chains belong to the same cluster, or else
it uses a black tile to represent that the two chains belong to different clusters.

This visualization tool can also be used for multivariate chains. In cases where the diagnostic
tool for d variate chains indicates divergence, for further investigation, the user can choose a chain
from each cluster and implement the visualization tool marginally, i.e., one variable at a time.This
will help the user identify which among the d variables are responsible for inadequate mixing
among the m multivariate chains.

2.8. Graphical Methods

In addition to the visualization tool mentioned in Section 2.7.1, we now discuss some of the
widely used graphical methods for MCMC convergence diagnosis. The most common graphical
convergence diagnostic method is the trace plot. The trace plot is a time series plot that shows the
realizations of the Markov chain at each iteration against the iteration numbers. This graphical
method is used to visualize how the Markov chain is moving around the state space, that is, how
well it is mixing. If the MCMC chain is stuck in some part of the state space, the trace plot
shows flat bits indicating slow convergence. Such a trace plot is observed for an MH chain if
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too many proposals are rejected consecutively. In contrast, if too many proposals are accepted
consecutively, then trace plots may move slowly, not exploring the rest of the state space. Visible
trends or changes in spread of the trace plot imply that the stationarity has not been reached yet.
It is often said that a good trace plot should look like a hairy caterpillar. For an efficient MCMC
algorithm, if the initial value is not in the high-density region, the beginning of the trace plot
shows back-to-back steps in one direction. In contrast, if the trace plot shows similar pattern
throughout, then there is no use in throwing burn-in samples.

Unlike i.i.d. sampling,MCMC algorithms result in correlated samples. The lag-k (sample) au-
tocorrelation is defined to be the correlation between the samples k steps apart. The autocorrela-
tion plot shows values of the lag-k autocorrelation function (ACF) against increasing k values. For
fast-mixing Markov chains, lag-k autocorrelation values drop down to (practically) zero quickly
as k increases. In contrast, high lag-k autocorrelation values for larger k indicate the presence of a
high degree of correlation and slow mixing of the Markov chain. Generally, in order to get precise
Monte Carlo estimates, Markov chains need to be run a large multiple of the amount of time it
takes the ACF to be practically zero.

Another graphical method used in practice is the running mean plot, although its use has faced
criticism (Geyer 2011). The running mean plot shows the Monte Carlo (time average) estimates
against the iterations. This line plot should stabilize to a fixed number as iteration increases, but
nonconvergence of the plot indicates that the simulation cannot be stopped yet. While the trace
plot is used to diagnose a Markov chain’s convergence to stationarity, the running mean plot is
used to decide stopping times.

In the multivariate case, individual trace, autocorrelation, and running mean plots are gener-
ally made based on realizations of each marginal chain. Thus, the correlations that may be present
among different components are not visualized through these plots. In multivariate settings, in-
vestigating correlation across different variables is required to check for the presence of high
cross-correlation (Cowles & Carlin 1996).

3. EXAMPLES

In this section, we use three detailed examples to illustrate the convergence diagnostics presented
in Section 2. Using these examples, we also demonstrate that empirical convergence diagnostic
tools may give false indication of convergence to stationarity as well as convergence of Monte
Carlo estimates.

3.1. An Exponential Target Distribution

Let the target distribution be Exp(1), that is, π (x) = exp(−x), x > 0. We consider an inde-
pendence Metropolis sampler with Exp(θ ) proposal, that is, the proposal density is q(x) =
θ exp(−θx), x > 0. We study the independence chain corresponding to two values of θ , namely,
θ = 0.5 and θ = 5. Using this example, we illustrate the honest choices of burn-in and stopping
time described in Section 2.1, as well as several other diagnostic tools. It turns out that, even in this
unimodal example, some empirical diagnostics may lead to premature termination of the simula-
tion.We first consider some graphical diagnostics for Markov chain convergence. Since the target
density is a strictly decreasing function on (0,∞), a small value may serve as a reasonable starting
value. We run the Markov chains for 1,000 iterations initialized at X0 = 0.1. Figure 1 shows the
trace plots and autocorrelation plots of theMarkov chain samples. From the trace plots (left panels)
we see that while the first chain (θ = 0.5) mixes well, the second chain exhibits several flat bits and
suffers from slow mixing. Thus, from the trace plots, we see that there is no need for burn-in for
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Figure 1

Trace (left panels) and autocorrelation function (right panels) plots of the independence Metropolis chains (top row, θ = 0.5; bottom row,
θ = 5) for the exponential target example. The presence of frequent flat bits in the trace plot and high autocorrelation values indicate
slow mixing of the Markov chain with θ = 5. 1/θ represents the mean of the proposal exponential distribution.

θ = 0.5, that is, X0 = 0.1 seems to be a reasonable starting value. In contrast, for θ = 5, the chain
can be run longer to find an appropriate burn-in. This is also corroborated by the autocorrela-
tion plots (right panels). When θ = 0.5, autocorrelation is almost negligible after lag 4. For θ = 5,
there is significant autocorrelation even after lag 50.Next, using the CODA package (Plummer et al.
2006), we compute Geweke’s (1992) and Heidelberger &Welch’s (1983) convergence diagnostics
for the identity function g(x) = x. Using the default nA = 0.1n and nB = 0.5n, Geweke’s Z scores
for the θ = 0.5 and θ = 5 chains are 0.733 and 0.605, respectively, failing to reject the hypothe-
sis of the equality of means from the beginning and end parts of the chains. Similarly, both the
chains pass the Heidelberger & Welch (1983) test for stationarity. Next, we consider the Raftery
& Lewis (1992) diagnostic. When the two samplers are run for 38,415 (�nmin� corresponding to
ε = 0.005,α = 0.05, and q = 0.5) iterations, and the Raftery–Lewis diagnostic is applied for dif-
ferent q values (0.1, . . . , 0.9), the burn-in estimates for the θ = 5 chain are larger than those for the
θ = 0.5 chain, although the overall maximum burn-in (981) is less than 1,000. Finally, we consider
the choice of honest burn-in. Since for θ < 1, π (x)/q(x) = θ−1 exp(x(θ − 1)) ≤ θ−1 for all x > 0,
according to Mengersen & Tweedie (1996), we know that

1
2

∫
X

| fn(x) − π (x)|dx ≤ (1 − θ )n,

that is, an analytical upper bound to the TV norm can be obtained. Thus for θ = 0.5, if n′ =
�log(0.01)/ log(0.5)� = 7, then Equation 1 holds. Thus, n′ = 7 can be an honest burn-in for the
independence Metropolis chain with θ = 0.5. Note that, for θ < 1, the independence chain is
geometrically ergodic; for θ = 1, the chain produces i.i.d. draws from the target; and for θ > 1, by
Mengersen & Tweedie (1996), the independence chain is subgeometric. As mentioned by Jones &
Hobert (2001), when θ > 1, the tail of the proposal density is much lighter than that of the target,
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(a) Running estimates of the mean with confidence interval for θ = 0.5. (b) Running mean plot for θ = 5. Panel b reveals that even after
300,000 iterations, the Monte Carlo estimate for the chain with θ = 5 is far off from the truth. 1/θ is the mean of the proposal
exponential distribution.

making it difficult for the chain to move to larger values, and when it does move there, it tends to
get stuck.

Next, we consider stopping rules for estimation of the mean of the stationary distribution,
that is, EπX = 1. Based on a single chain, we apply the FWSR (Equation 3) to determine the
sample size for ε = 0.005 and α = 0.05 (that is, t∗ = 1.96). For the independenceMetropolis chain
with θ = 0.5 starting at X8 = 0.1545, it takes n∗ = 323, 693 iterations to achieve the cutoff 0.005.
The running estimates of the mean, along with confidence intervals, are given in Figure 2a. We
next run the independence Metropolis chain with θ = 5 for 323,700 iterations starting at X0 =
0.1. The corresponding running estimates are given in Figure 2b. Since a Markov chain CLT is
not available for the independence chain with θ > 1, we cannot compute asymptotic confidence
intervals in this case. From the plot, we see that the final estimate (0.778) is far off from the
truth (EπX = 1). Next, we consider ESS. The cutoff value for ESS mentioned in Equation 6, with
ε = 2 ∗ 0.005 = 0.01, is 153,658.The ESSs for the two chains are 163,955 and 1,166, respectively,
which again shows the presence of large correlation among the MCMC samples for θ = 5. We
use the R package mcmcse (Flegal et al. 2012) for computing ESS. Finally, we consider the GR
diagnostic.We run four parallel chains for 2,000 iterations starting at 0.1, 1, 2, and 3, respectively,
each with both θ = 0.5 and θ = 5. We calculate the Gelman & Rubin (1992) PSRF (Equation 7)
based on these chains. The plots of iterative R̂ at the increment of every 100 iterations are given
in Figure 3. We see that R̂ for the chain with θ = 0.5 reaches below 1.1 in 100 iterations (Figure
3a). In contrast, the Monte Carlo estimate for EπX and its standard error based on the first 100
iterations for the chain started at 0.1 are 1.109 and 0.111, respectively. Thus, the GR diagnostic
leads to premature termination of simulation, and the inference drawn from the resulting samples
can be unreliable. Finally, we note that R̂ for the chains with θ = 5 takes large (>16) values even
after 2,000 iterations (Figure 3b), showing that simulation cannot be stopped yet in this case.

3.2. A Sixmodal Target Distribution

This example is proposed by Leman et al. (2009), where the target density is as follows:

π (x, y) ∝ exp

(
−x2
2

)
exp

(
((csc y)5 − x)2

2

)
, −10 ≤ x, y ≤ 10. 10.
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Iterative R̂ plot (from four parallel chains) for the independence chains. (a) θ = 0.5, (b) θ = 5. In panel a, the PSRF reaches below the
cutoff (1.1) before 100 iterations, leading to premature termination of the chain. 1/θ is the mean of the proposal exponential
distribution, and R̂ is the potential scale reduction factor (PSRF).

The contour plot of the target distribution (known up to the normalizing constant) is given in
Figure 4, and marginal densities are plotted in Figure 5. The plots of the joint and marginal
distributions clearly show that the target distribution is multimodal in nature.

To draw MCMC samples from the target density (Equation 10), we use a Metropolis within
Gibbs sampler in whichX is drawn first, and then Y. In this example,we consider only convergence
to stationarity, that is, we do not discuss stopping rules here. Through this example, we illustrate
that when an MCMC sampler is stuck in a local mode, the empirical convergence diagnostic tools
may give false indication of convergence. [Empirical diagnostics may fail even whenmodes are not
well defined (Geyer & Thompson 1995).] In order to illustrate the diagnostic tools, as in Dixit &
Roy (2017), we consider two cases.

In case 1,we run four chains wherein two chains (chains 1 and 2) are started at a particularmode,
while the remaining two chains (chains 3 and 4) are started at some other mode. Each of the four
chains is run for 30,000 iterations. Trace plots of the last 1,000 iterations of the four parallel X
and Y marginal chains are given in panel a of Figures 6 and 7, respectively. Trace plots show the
divergence of theMarkov chains.High ACF values can also be seen from the autocorrelation plots
of the marginal chains in Figures 6 and 7.
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Contour plot of the target distribution in the sixmodal example.
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Marginal densities of X and Y in the sixmodal example.
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(a) Trace and (b) autocorrelation function plots of the X marginal of the four chains for the sixmodal example in case 1.
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(a) Trace and (b) autocorrelation function plots of the Y marginal of the four chains for the sixmodal example in case 1. Unlike for the X
marginal chains, trace plots of some of the Y marginal chains do not have any overlap demonstrating divergence of the Markov chains.

www.annualreviews.org • Convergence Diagnostics for MCMC 401



ST07CH16_Roy ARjats.cls February 11, 2020 13:14

1

2

3

2 3 4

Same cluster
Different cluster

Figure 8

Dixit & Roy’s (2017) tile plot in case 1 of the sixmodal example. The plot shows formation of two distinct
clusters by the four chains.

Next, we apply Dixit & Roy’s (2017) bivariate KL divergence Tool 1 on the joint chain. The
maximum symmetric KL divergence among the six pairs is 104.89, significantly larger than the
cutoff value, 0.06. Finally, we use Dixit & Roy’s (2017) visualization tool to identify clusters among
the four chains. The result is given in Figure 8, which shows that there are two clusters among
the four chains, wherein chain 1 and chain 2 form one cluster, while chain 3 and chain 4 form
another cluster.

In case 2, we also run four chains, but all the chains are started at the same local mode. As
in case 1, all four chains are run for 30,000 iterations. The trace and autocorrelation plots of
the marginal chains are given in Figures 9 and 10. From these plots, one may conclude mixing
of the Markov chains, although the large autocorrelations result in low ESS for the chains. The
minimum and maximum mESS (Equation 5) computed using the R package mcmcse for the four
chains are 412 and 469, respectively.

The adaptive kernel density estimates of the four chains are visualized in Figure 11. This
bivariate density plot does not reveal nonconvergence of the chains to the stationary distribution.
Next, we compute the Geweke (1992) and Heidelberger &Welch (1983) convergence diagnostics
for the identity function g(x) = x for all four individual chains. At level 0.05, the Geweke (1992)
diagnostic fails to reject the hypothesis of the equality of means from the beginning and end parts
of each chain. Similarly, all chains pass theHeidelberger&Welch (1983) test for stationarity.Thus,
both Geweke’s and Heidelberger & Welch’s diagnostics fail to detect the nonconvergence of the
chains to the target distribution. Also, the Raftery–Lewis diagnostic fails to distinguish between
the chains in case 1 and case 2, as it results in similar burn-in estimates in both cases.
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Figure 9

(a) Trace and (b) autocorrelation function plots of the X marginal of the four chains for the sixmodal example in case 2.
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(a) Trace and (b) autocorrelation function plots of the Y marginal of the four chains for the sixmodal example in case 2. The large
amount of overlap between the trace plots of the four marginal chains fails to indicate nonconvergence of the Markov chains to
stationarity.

We also calculate the PSRF for the marginal chains, as well as the MPSRF for the joint chain
based on the four parallel chains, as the GR diagnostic is often used by practitioners for determin-
ing burn-in (Flegal et al. 2008, p. 256). The plots of iterative R̂ at increments of 200 iterations are
given in Figure 12. PSRFs for the marginal chains reach below 1.1 before 3,000 iterations. The
MPSRF (not shown in the plot) also reaches below 1.1 before 6,000 iterations. Both the PSRF
and MPSRF values are close to one, which is often used as a sign of convergence to stationarity.

Since all four chains are stuck at the same local mode, that is, these are not run long enough
to move between the modes, the convergence diagnostics, including PSRF and MPSRF, get
fooled into thinking that the target distribution is unimodal and hence falsely detect convergence.
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Visualizations of the adaptive kernel density estimates of the four chains in case 2 of the sixmodal example. Since the bivariate density
plots look similar, they fail to provide indication of nonconvergence of the chains to the stationary distribution.
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Iterative R̂ plot from four parallel chains for the sixmodal example in case 2.

Laha et al. (2016) demonstrate failures of trace plots, autocorrelation plots, and PSRF in diagnos-
ing nonconvergence of MCMC samplers in the context of a statistical model used for analyzing
rank data. [See Hobert et al. (2011) for examples of multimodal targets arising from the popular
Bayesian finite mixture models where empirical convergence diagnostic tools face similar issues.]
Since these diagnostic tools make use of (only) the samples obtained from the MCMC algorithm,
and all observations lie around the same mode, they fail to diagnose nonconvergence. In contrast,
Dixit & Roy’s (2017) Tool 2 (Equation 9) uses both MCMC samples and the target density. Since
Tool 2 requires only one chain, and since the PSRF suggests that the four chains are similar, we
simply choose one of the four chains. Now, T ∗

2 = 0.88 is significantly greater than zero and thus
indicates that the chain is stuck at a local mode. Furthermore, it also indicates that 88% of the
target distribution is not yet captured by the Markov chain. Thus, Dixit & Roy’s (2017) Tool 2 is
successful in detecting the divergence of the chains.

3.3. A Bayesian Logistic Model

In this section, we illustrate MCMC convergence diagnostics in the context of a real data analysis
using a popular statistical model. In particular, we fit a Bayesian logistic model on the Anguilla
australis distribution data set provided in the R package dismo (Hijmans et al. 2016). Data are
available on a number of sites with the presence or absence of the short-finned eel (Anguilla aus-
tralis) in New Zealand, and some environmental variables at these sites. In particular, we fit the
Anguilla_train data available in the dismo package. Here, the response variable is the presence
or absence of short-finned eel, and six other variables are included as covariates. The six covari-
ates are: summer air temperature (SeqSumT), distance to coast (DSDist), area with indigenous
forest (USNative), average slope in the upstream catchment (USSlope), maximum downstream
slope (DSMaxSlope), and fishing method (categorical variable with five classes: electric, mixture,
net, spot and trap). Thus, the data set consists of (yi, xi ), i = 1, . . . , 1,000, where yi is the ith ob-
servation of the response variable taking value 1 (presence) or 0 (absence), and xi = (1, x̃i ) is the
ten-dimensional covariate vector, 1 for the intercept, and x̃i for the other nine covariates (with four
components for the categorical variable fishing method). This example was also used by Dixit &
Roy (2017) and Boone et al. (2014) to illustrate their MCMC convergence diagnostic tools.
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Denote β = (β0,β1, . . . ,β9) where β0 is the intercept and (β1, . . . ,β9) is the 9 × 1 vector of
unknown regression coefficients. We consider the logistic regression model

Yi|β ind∼ Bernoulli(F (xTi β )), i = 1, . . . , 1,000,

where F (·) is the cumulative distribution function of the logistic distribution, that is,

F (xTi β ) = exp(xTi β )
1 + exp(xTi β )

, i = 1, . . . , 1,000.

We consider a Bayesian analysis with a diffuse normal prior on β. Thus, the posterior density is

π (β|y) ∝ �(β|y)φ10(β ) =
n∏
i=1

F (xTi β )yi {1 − F (xTi β )}1−yiφ10(β ), 11.

where �(β|y) is the likelihood function and φ10(β ) is the density of N (0, 100 I10). The posterior
density (Equation 11) is intractable in the sense that means with respect to this density, which are
required for Bayesian inference, are not available in closed form.

As in Dixit & Roy (2017) and Boone et al. (2014), we use the MCMClogit function in the R
package MCMCpack (Martin et al. 2011) to draw MCMC samples from the target density π (β|y).
The maximum likelihood estimate (MLE) of β is the value of the parameter where the likelihood
function �(β|y) is maximized. Exact MLE is not available for the logistic likelihood function, and
neither is the mode of the posterior density (Equation 11). But numerical optimization methods
can be used to find an approximate MLE or posterior mode, which may then be used as starting
values. In order to assess convergence to stationarity, we run three parallel chains with the default
tuning values for 5,000 iterations, one initialized at theMLE and the other two initialized at points
away from the MLE. Trace plots of the three chains for the last 1,000 iterations for the regres-
sion coefficients of summer air temperature (panel a) and distance to coast (panel b) are given in
Figure 13. Trace plots of the other variables look similar. From these plots, we see that there is
not much overlap between the three parallel chains. From the frequent flat bits, it follows that
the Markov chains move tardily and suffer from slow mixing. Indeed, the default tuning param-
eters in the MCMClogit function result in a low (0.11) acceptance rate. We next set the tuning

0 200 400 600 800 1,000

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1,000

−0.010

−0.006

−0.002

0.002
Summer air temperature Distance to coast

Iteration number

β 1 β 2

ba

Chain 1
Chain 2
Chain 3

Figure 13

Trace plots of the three chains with default tuning for the regression coefficients of (a) summer air temperature and (b) distance to coast
for the Bayesian logistic model example. The presence of frequent flat bits indicates slow mixing of the Markov chains.
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Figure 14

Trace plots of the three chains for the nine regression coefficient variables for the Bayesian logistic model example. The plots show
improved mixing from tuning the acceptance rate of the Markov chains.

parameters to achieve around a 40% acceptance rate, and all analysis in the remaining section is
based on these new tuning values. We run the three chains longer (30,000 iterations) to obtain
reliable ACF plots. Trace plots of the last 1,000 iterations for each of the three chains for the nine
regression coefficient variables are given in Figure 14. From the trace plots, we see that conver-
gence of the chains can be further improved. Autocorrelations for all ten variables for one of the
chains based on all 30,000 draws are given in Figure 15. Autocorrelations for the other two chains
look similar (not included here). Like the trace plots, the autocorrelation plots also reveal that the
Markov chains suffer from high autocorrelations. It is further corroborated by the mESS values,
which are less than 1,000 for all the three chains. To sample from Equation 11, one may use an
alternative MCMC sampler, e.g., the Pólya–Gamma Gibbs sampler (Polson et al. 2013), which
is known to be geometrically ergodic (Choi & Hobert 2013, Wang & Roy 2018c). Here we do
not use the Pólya–Gamma Gibbs sampler, as our goal is to illustrate the convergence diagnostic
methods. The MPSRF reaches close to one before 30,000 iterations. Since the Markov chains are
10-dimensional, to maintain an overall type 1 error rate of α = 0.05, using Bonferroni’s correc-
tion,Dixit & Roy (2017) advocate the cutoff point 0.01 for the KL Tool 1 for marginal chains. For
each of the ten variables, the maximum symmetric KL divergence among the three pairs of chains
is computed. It turns out that the marginal chains do not pass the KL Tool 1 test, as the maximum
symmetric KL divergence takes the value 7.26 for the variable USSlope. After 30,000 iterations,
all marginal chains pass the Heidelberger & Welch (1983) stationarity test. In contrast, for each
of the three parallel chains, for some of the variables, the Geweke (1992) Z test turns out to be
significant at the 0.05 level. Next, we run the chains for another 40,000 iterations. For the last
40,000 iterations, all marginal chains pass the Geweke (1992) Z test, as well as the KL Tool 1 test.
Also, based on these 40,000 iterations, the maximum burn-in estimate from the Raftery–Lewis
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Autocorrelation plots of the ten marginal chains for the Bayesian logistic model example. For all variables,
correlations between samples with more than 100 steps apart are small.

diagnostic (with ε = 0.005,α = 0.05) over different quantiles (q = 0.1, . . . , 0.9) is less than 100
for all 10 variables. We thus use n′ = 70,000 as the burn-in value.

After removing the first 70,000 iterations as initial burn-in, each of the three chains is run
for an additional 15,000 iterations. Table 1 presents the PSRF and the maximum symmetric
KL divergence [Dixit & Roy’s (2017) KL Tool 1] values based on three parallel chains for all
10 variables. The half-widths of the 95% confidence intervals based on the first chain (started
at the MLE) are also tabulated in Table 1. All values are given up to three decimal places.
MPSRF takes the value 1.004. For the three chains, mESS takes the values 515, 520, and 502,
respectively. High cross-correlation between the Intercept and SeqSumT regression coefficient
parameters (−0.984) and between USNative and USSlope (−0.558) suggests that mixing of the
Markov chain can improve if it is run on an appropriate lower dimensional space (that is, after
dropping some variables) or a reparameterization is used. From Table 1, we see that all marginal
chains pass the KL Tool 1 diagnostic. Also, all PSRF values, as well as the MPSRF value, reach

Table 1 Application of various MCMC convergence diagnostic tools to the Bayesian logistic
model

Variable R̂ Half-width Tool 1
Intercept 1.000 0.112 0.008
SeqSumT 1.000 0.006 0.007
DSDist 1.001 0.000 0.005
USNative 1.001 0.025 0.004
M - mix 1.000 0.031 0.005
M - net 1.001 0.031 0.004
M - spot 1.000 0.048 0.004
M - trap 1.002 0.051 0.004
DSMaxSlope 1.000 0.005 0.007
USSlope 1.001 0.002 0.004

Abbreviation: MCMC,Markov chain Monte Carlo.
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Table 2 Estimates of posterior means and standard errors of regression coefficients for the Bayesian logistic model

Variable β0 β1 β2 β3 β4 β5 β6 β7 β8 β9

Estimate −10.46 0.66 −0.00 −1.17 −0.47 −1.53 −1.83 −2.59 −0.17 −0.05
SE ×103 5.73 0.32 0.00 1.52 1.46 1.65 2.76 2.35 0.24 0.08

Abbreviation: SE, Monte Carlo standard error.

below the cutoff 1.1. In contrast, the maximum half-width among the 10 regression parameters
is 0.112, much larger than the cutoff 0.01. Doing a simple sample size calculation, based on the
pilot sample size 15,000, we find that we need 15,000 × (0.112/0.01)2 = 1,881,600 samples for
obtaining confidence intervals with half-widths below 0.01.

Finally, we run one of the chains (the chain started at the MLE) for 1,881,600 iterations after
a burn-in of n′ =70,000 iterations. Thus, the chain is stopped after n∗ =1,951,600 iterations. In
this case, as expected, the maximum half-width of the 95% confidence interval is below 0.01. An
estimate of mESS calculated using the mcmcse package is 55,775, which is larger than the cutoff
value 55,191 given in Equation 6 for p = 10,α = 0.05, and ε = 0.02. In contrast, the chain needs to
be run longer to achieve the cutoff value 220,766 (Equation 6) corresponding to ε = 0.01.Table 2
gives the estimates of posterior means of all regression coefficients and their correspondingMonte
Carlo standard errors.

4. CONCLUSIONS AND DISCUSSION

In this article, we discuss several measures for diagnosing convergence of Monte Carlo Markov
chains to stationarity as well as convergence of the sample averages based on these chains. De-
tection of the first is often used to decide a suitable burn-in period, while the second leads to
termination of the MCMC simulation. Analytical upper bounds to the TV norm required to ob-
tain an honest burn-in may be difficult to find in practice or may lead to very conservative burn-in
values. In contrast, empirical diagnostics can falsely detect convergence when the chains are not
run long enough to move between the modes. For the chains initialized at high-density density re-
gions, there is no need for burn-in. If the global mode of the target density can be (approximately)
found by optimization, then it can be used as the starting value.

Some of the empirical diagnostics for convergence of sample averages may prematurely termi-
nate the simulation, and the resulting inference can be far from the truth.Thus, use of fixed-width–
and ESS-based stopping rules is recommended.Most of the quantitative convergence diagnostics
assume a Markov chain CLT.While demonstrating the existence of a Markov chain CLT requires
some rigorous theoretical analysis of the Markov chain, given the great amount of work done in
this direction, validating honest stopping rules does not present as much of an obstacle as in the
past.

None of the three examples discussed here use thinning.Thinning, that is, discarding all but ev-
ery kth observation, is often used byMCMC practitioners to reduce high autocorrelations present
in the Markov chain samples. Since it wastes too many samples, it should be used only if computer
storage of the samples is an issue or evaluating the functions of interest (g) is more expensive
than sampling the Markov chain. If thinning is used, convergence diagnostics can be used on the
thinned samples.

Some convergence diagnostic tools use parallel chains initialized at different points, or two
parts of a single chain. In the presence of multiple modes, if the initial points of the parallel chains
are not in distinct high-density regions, or the chain is not run long enough to move between the
modes, the diagnostics fail to detect the nonconvergence. Thus, single long runs should be used
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to make a final inference. Running the chain longer may also result in discovering new parts of
the support of the target distribution. In contrast, recently, Jacob et al. (2017) propose a method
for parallelizing MCMC computations using couplings of Markov chains.

Practitioners should be careful while depending purely on empirical convergence diagnostic
tools, especially if the presence ofmultiplemodes is suspected.Empirical diagnostics cannot detect
convergence with certainty. Also, if the target is incorrectly assumed to be a proper density, the
empirical diagnostic tools may not provide a red flag indicating its impropriety (Athreya & Roy
2014,Hobert &Casella 1996).Over the past two decades,much research has been done to provide
honest Monte Carlo sample size calculation for myriadMCMC algorithms for common statistical
models. However, theoretical analysis of MCMC algorithms is an ongoing area of research, and
further important work needs to be done. A potential future study involves theoretically verifying
the convergence (to zero) of Dixit & Roy’s (2017) statistics based on the KL divergence. Another
possible research problem is to construct theoretically valid and computationally efficientMCMC
convergence diagnostics in ultrahigh-dimensional settings.
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