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Abstract

Modern studies from a variety of fields record multiple functional observa-
tions according to either multivariate, longitudinal, spatial, or time series
designs. We refer to such data as second-generation functional data be-
cause their analysis—unlike typical functional data analysis, which assumes
independence of the functions—accounts for the complex dependence be-
tween the functional observations and requires more advanced methods.
In this article, we provide an overview of the techniques for analyzing
second-generation functional data with a focus on highlighting the key
methodological intricacies that stem from the need for modeling complex
dependence, compared with independent functional data. For each of the
four types of second-generation functional data presented—multivariate
functional data, longitudinal functional data, functional time series and
spatially functional data—we discuss how the widely popular functional
principal component analysis can be extended to these settings to define,
identify main directions of variation, and describe dependence among the
functions. In addition to modeling, we also discuss prediction, statisti-
cal inference, and application to clustering. We close by discussing future
directions in this area.
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1. INTRODUCTION

Classical functional data analysis (FDA) studies independent random functions, which are some-
times referred to as first-generation functional data (Wang et al. 2016). This area has seen an
explosion of development over the past few decades, and numerous journal publications, books,
and review articles have been written on this topic. In particular, Morris (2015) discussed regres-
sion analysis when the response and/or the predictors are functional observations, andWang et al.
(2016) provided an overview of the common techniques for modeling, prediction, clustering, and
classification.

Modern scientific applications now routinely collect functional data, but as a basic measure-
ment in a longitudinal, multivariate, spatial, time series, or multilevel design. For example, in an
animal study of osteoarthritis (OA), minute-by-minute daily physical activity of indoor cats was
recorded for many days during a 20-day study period (Koner et al. 2022). Figure 1 shows the
daily activity profiles, obtained by connecting the activity measurements (cumulative, log-scale)
recorded in a day, for three of the cats and highlights the activity profiles observed on the 4th, 8th,
12th, and 16th days since the beginning of the study.This is an example of functional data recorded
in a longitudinal design, because each cat (subject) is monitored repeatedly over many days, and at
each day, a curve is measured. This example is further discussed below and in the Supplemental
Appendix. Other examples include medical studies, such as the case of multiple five-years profiles
of Parkinson’s disease markers recorded for many patients, and a plethora of emerging studies
where a continuous data collection regime is present, such as electronic health records–based
studies such as the National Health and Nutrition Examination Survey; manufacturing systems,
neuroimaging, and environmental applications; growth studies; and traffic monitoring systems, to
list a few. We refer to these data as second-generation functional data because not only are func-
tional data recorded at a second layer (multivariate, longitudinal design, and so on), but also, their
analysis needs to account both for the complex dependence between the functional observations

Figure 1

(a) Spaghetti plot of the cumulative average daily activity between 5 AM and 10 PM for three indoor cats observed over a 20-day study
period (light sky blue). Highlighted in different colors are their activity profiles for four days since the start of the period. (b) Top leading
eigenfunctions using the model in Equation 3 and setting the percentage of variation explained to 95%. Data from https://repository.
lib.ncsu.edu/handle/1840.20/39047.
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and for the specific design, while keeping the computations feasible. Analyzing these data requires
more advanced methods.

This review considers second-generation functional data acquired in a multivariate, longitu-
dinal, time series, or spatial design. For each setting in turn, we describe the general statistical
framework and review the methodologies for estimation, prediction, and inference, with a focus
on the interplay between the FDA techniques and the ones from classical statistics for multivari-
ate, longitudinal, time series, and spatial data. The primary focus is modeling and methods and
rather than theory and computation, although we do highlight existing R packages that implement
the reviewed approaches.While the multivariate and longitudinal parts equally review approaches
adequate for functional data obtained from sparse and dense grids of points, the sections on time
series and spatial designs concern functional data observed at fine grids, where the underlying
trajectories can be recovered with negligible error.

Throughout the article, we assume that the real-valued latent functions are in a Hilbert space,
such as L2(D), that is equipped with the inner product ⟨ f , g⟩ = ∫

u∈D f (u)g(u)du. Although research
exists on functional data in Banach space and other non-Euclidean spaces, we do not discuss it in
this review.We based the review on a selection of articles in this fast-moving research area, limited
by journal space constraints. As some of the topics have been researched for nearly 30 years, and all
of them are very active areas of current research, we apologize for any omissions of relevant work.

2. MULTIVARIATE FUNCTIONAL DATA ANALYSIS

2.1. Statistical Framework

Multivariate functional data (MVFD) are one of the most commonly observed types of next-
generation functional data, where the trajectories observed for each subject are multidimensional.
Take, for example, the growth study of infants described by (Han et al. 2018): Each infant is fol-
lowed for a set period of time after birth, and three physical outcomes—head circumference, body
weight, and body length—are measured at different ages. More generally, consider that each sub-
ject i is observed at many time points in a time interval D ⊂ R, and at each time point, denoted
generically by dij, q outcomes Y 1

i j , . . . , Y
q
i j are recorded. We assume that the mi observations for

each outcome, say {Y ℓ
i1, . . . ,Y

ℓ
imi }, are noisy realizations of a smooth latent curve,X ℓ

i (·), defined on
D and evaluated at a finite grid {di1, . . . , dimi }, like Y ℓ

i j = X ℓ
i (di j ) + ϵℓi j for measurement error ϵℓi j ,

where ℓ = 1, . . . , q. The time points dij at which the outcomes Y ℓ
i j are measured are assumed the

same across ℓ; later, we discuss the case when they are outcome specific, introducing the nota-
tion dℓi j . Denote by the bold symbol Xi(d ) = (X 1

i (d ), . . . ,X
q
i (d ))

⊤ the vector of q latent functions,
and assume that Xi(·)s are independent and identically distributed (i.i.d.) copies of a smooth pro-
cess X(·), which lives in L2

q (D)—the space of square-integrable q-dimensional functions on D,
associated with the inner product ⟨f ,g⟩ = ∑q

ℓ=1⟨ f ℓ, gℓ⟩. The measurement errors are assumed
independent, with ϵℓi j ∼ (0, τ 2ℓ ) for all i, j, and ℓ; (0, τ

2
ℓ ) stands for mean zero and variance τ 2ℓ distri-

bution. Denote the mean of X(d ) by µ(d ), with µℓ(·) = E [X ℓ(·)], ℓ = 1, . . . , q, and the covariance
operator by 4, where (4 f )(d ) is a q × 1 vector with elements (4 f )ℓ(d ) = ∑q

ℓ′=1⟨6ℓℓ′ (d, ·) , f ℓ
′ ⟩,

where 6ℓℓ′ (d, d ′ ) = cov{X ℓ(d ),X ℓ′ (d ′ )} for 1 ≤ ℓ ≤ q. It is assumed that the means µℓ(·) and the
covariances6ℓℓ′ (·, ·) are smooth functions. Typical goals for MVFD include (a) characterizing de-
pendence between the components of X(d ), (b) visualizing and detecting outliers, (c) developing
models that account for additional covariates, and (d) detecting clustering.

2.2. Modeling the Multivariate Functional Dependence

The first methods developed for the analysis of MVFD are based on decomposing each latent
function using predefined bases.Guo (2004) used smoothing splines, andMorris & Carroll (2006)
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considered discrete wavelet transform and modeled the coefficients with a Bayesian functional
mixed model (FMM) framework. This is particularly useful for data exhibiting local features. A
detailed review of these functional regression models is provided by Morris (2015).

2.2.1. Multivariate Karhunen-Loéve expansion. One of the most widely used techniques
in FDA is functional principal component analysis (FPCA), which allows us to represent i.i.d.
curves using a few leading eigenfunctions. A direct application of FPCA to each component
X ℓ
i (·) leads to the Karhunen-Loéve (KL) representation as X ℓ

i (d ) = µℓ(d ) + ∑∞
k=1 ξ

ℓ
ilϕ

ℓ
k (d ), where

{ϕℓk (·), λℓk}k≥1 are the eigenelements of6ℓℓ(d, d ′), with λℓ1 ≥ λℓ2 ≥ · · · ≥ 0 and orthogonal functions
ϕℓ1 (·),ϕℓ2 (·), . . . . Here ξ ℓik are functional principal component (FPC) scores ξ ℓik = ⟨X ℓ

i − µℓ,ϕℓk⟩,
such that ξ ℓik ∼ (0, λℓk ) and ξ

ℓ
ik are uncorrelated across k. A naïve FPCA approach is one that

ignores the correlation of FPCs across components and assumes that ξ ℓik are also uncorrelated
over ℓ.

Multivariate FPCA (MVFPCA) captures the joint variation among the vector function com-
ponents. Since the covariance operator 4 is positive, compact, and self-adjoint in D, there exists
a set of orthonormal basis functions {ψk(·)}k≥1, with ⟨ψk,ψk′ ⟩ = I(k = k′ ) such that 4ψk = θkψk,
where θ1 ≥ θ2ÅÅÅ ≥ 0; I(k = k′ ) is the common indicator function. ThenXi(·) can be decomposed
using the multivariate KL expansion

Xi(d ) = µ(d ) +
∞∑
r=1

ζirψr (d ), i = 1, . . . , n,

where ζik = ⟨Xi − µ,ψk⟩ are scalar multivariate FPC (MVFPC) scores, and ζ ik ∼ (0, θ k) are un-
correlated across k and independent over i. The convergence holds uniformly in d with respect to
the norm induced by ⟨·, ·⟩. The vector ζi of the leading FPC scores extracts the main features of
Xi(·). It can be shown that the MVFPC components are a weighted average of the counterparts
obtained from the naïve application of univariate FPCA, where the weights are a function of the
covariance between (ξ ℓik, ξ

ℓ′
ik′ ) for ℓ ̸= ℓ′ and k ̸= k′.

When the time domain is component specific, Dℓ (a setting called heterogeneous domain)
and thus the observed time points dℓi j are also component specific, Happ & Greven (2018) con-
ceptualized the FPCA for MVFD by establishing the theoretical basis of the multivariate KL
theorem. A detailed description of the notation, set-up, and theoretical framework required by a
heterogeneous domain is provided in the Supplemental Appendix.

2.2.2. Adjusting for uneven variability among components. The eigenfunctions ψk(·) in the
MVFPCA discussed above maximize the total variance defined as

∑q
ℓ=1

∫
var{X ℓ(u)}du, which

equals the trace of4, and moreover,
∑∞

k=1 θk. Thus,MVFPCA is meaningful when all the compo-
nent functions of the response are measured on the same scale, or when they have a similar range
of variability.When the components are observed over different scales, normalization is required
to handle the heteroscedasticity of their variance. Normalized MVFPCA first scales the functions
pointwise,Xw (d ) = W(d )−1{X(d ) − µ(d )}, and then represents the weighted functions using mul-
tivariate KL as Xw (d ) = ∑∞

k=1 ζw,kψw,k(d ), where ⟨ψw,k,ψw,k′ ⟩ = I(k = k′ ) and ζw,k = ⟨Xw,ψw,k′ ⟩.
Jacques & Preda (2014) used W(d ) = 6(d, d )1/2, the square root of pointwise q × q covariance,
and Chiou et al. (2014) considered W(d ) = diag{611(d, d ), . . . ,6qq(d, d )}1/2. However, pointwise
normalization fails to account for different sizes of the domains of heterogeneous MVFD, and it
downscales the regions with stronger variation. An alternative is to redefine the inner product as
⟨f ,g⟩w = ∑q

ℓ=1 wℓ⟨ f ℓ, gℓ⟩, where the weights wℓ reflect the adjustment made for the ℓth compo-
nent; the new inner product is equivalent to using Xw (d ) with W(d ) = diag(w1/2

1 , . . . ,w1/2
q ) and

the norm induced by ⟨·, ·⟩. Happ & Greven (2018) consider wℓ = +6ℓℓ(u, u)du.
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2.2.3. Alternative additive models for multivariate functional data. Another approach to
model MVFD is by describing univariate models for each individual component in a manner
that captures the dependence among the components. Chiou & Müller (2016) introduced
the so-called pairwise interaction model, which represents each functional component of the
vector response as the sum of independent processes that quantify the interaction between
the component and all the other components. Specifically, for each ℓ = 1, . . . , q, it is posited
X ℓ(d ) = µℓ(d ) + ∑

ℓ ̸=ℓ′ Z
ℓℓ′ (d ) +V ℓ(d ), where Zℓℓ′ (d ) = Zℓ′ℓ(d ) are mean zero pairwise inter-

action processes with covariance Gℓℓ′ (d, d ′ ) and Vℓ(d) is a mean zero residual process with
variance Hℓ(d, d ′) that describes the remaining variance of Xℓ(d); all processes are assumed
independent. The identifiability of this model is ensured by setting Gℓℓ′ (d, d ′ ) = 6ℓℓ′ (d, d ′ ) for
all ℓ ̸= ℓ′ and Hℓ(d, d ′ ) = 6ℓℓ(d, d ′ ) − ∑q

ℓ′ ̸=ℓGℓℓ′ (d, d ′ ). One appeal of this approach is that the
ratio ρℓℓ′ (d ) = Gℓℓ′ (d, d )/6ℓℓ(d, d ) can be interpreted as a numerical measure of percentage of
variation explained (PVE) by the interaction between Xℓ(d) and X ℓ′ (d ). However, ρℓℓ′ should not
be interpreted as a measure of correlation since it is not symmetric.

2.2.4. Cross-component dependence-based alternatives. Earlier approaches to develop
FPCA for MVFD include pointwise application of the classical PCA to the q-dimensional vec-
tor X(d ) for each d ∈ D. This implies finding directions ak(d ) = (a1k (d ), . . . , a

q
k(d ))

⊤ such that∫
a⊤
k (u)6(u, u)ak(u)du is maximized subject to ∥ak(d )∥2 = 1 for all d ∈ D and a⊤

k (d )ak′ (d ) = 0 for
all k ̸= k′, k = 1, . . . , q. The solutions {ak(d )}qk=1 for the above constrained maximization are the
eigenvectors of6(d, d ) associated with the ordered eigenvalues {λk(d )}qk=1. Berrendero et al. (2011)
considered pointwise PCA separately, for every d, and showed that smoothness of ak(d ) requires
absolute continuity of the covariance function. The optimal number of principal components also
varies across d, and to bypass this challenge different criteria for choosing K(d), uniformly over d,
have been proposed. One choice is to use the minimum value such that the percentage of inte-
grated variation

∑K
k=1

∫
λk(u)du/

∑q
ℓ=1

∫
λℓ(u)du is greater than some prespecified large number.

Although {ak(d )}qk=1 are orthonormal vectors in Rq for each d, the set ak(·)k does not form an
orthonormal basis with respect to the functional norm induced by ⟨ , ⟩.

Related to this direction is the linear manifold learning approach (Chiou & Müller 2014)
that seeks to extract the time-varying linear combinations {b⊤

k (d )(X(d ) − µ(d ))}Kk=1 with zero
integrated variance, ηk = ∫

var{b⊤
k (u)(X(u) − µ(u))}du, across k = 1, . . . , K subject to ⟨bk,bk′ ⟩ =

I(k = k′ ). Since ηk = 0 means
∑q

ℓ=1 b
ℓ
k(d )(X

ℓ(d ) − µℓ(d )) ≡ 0 for all d ∈ D, it follows that unlike
pointwise PCA, which aims at maximal variation, manifold learning attempts to reduce the
dimension by identifying a stable linear dependence between the component functions of the
vector response.

Another way to sparsely characterize the dependence between the components, which is ap-
pealing when the number of functions, q, is large, is functional graphical models. When X(·)
follows a multivariate Gaussian process, Xℓ(d) and X ℓ′ (d ) are conditionally independent if and
only if the conditional cross-covarianceCℓℓ′ (d, d ′ ) = cov(X ℓ(d ),X ℓ′ (d ′ ) | {X r (·), r ̸= ℓ, ℓ′}) = 0 for
all d, d ′ ∈ D for ℓ ̸= ℓ′. In the notion of graphical models, two nodes ℓ and ℓ′ are connected via an
edge ifCℓℓ′ (d, d ′ ) ̸= 0 for some d, d ′. Qiao et al. (2019) reduced the dimension of each component
through truncated KL expansion to rewrite the edges by means of finite-dimensional precision
matrix of the FPC scores, and they further implemented the tools available in the multivariate
graphical literature to estimate the network. Zhu et al. (2016) provided a Bayesian version of the
graphical model.

2.3. Estimation and Prediction

2.3.1. Estimation. The mean function is estimated separately for each component using
smoothing techniques and, typically, a working independence assumption (Wang et al. 2016).
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Let µ̂(di j ) be a vector of estimated mean functions; denote the residuals by Ẽi j = Yi j − µ̂(di j ).
For a dense design, for each ℓ, we estimate the latent processes indexed by i by smoothing the data
{(Ẽℓi j , di j ) : j}; the sample covariance of the vectors of latent processes estimates the big covariance
matrix 6(d, d ′ ). Under a sparse design, one can pool the data for all subjects to obtain an estima-
tor of the covariance. Specifically, the cross-covariance function is modeled as a tensor product
of univariate bases, 6ℓℓ′ (d, d ′ ) = B⊤(d )0ℓℓ′B(d ′ ), where B(d ) is the vector of basis functions and
0ℓℓ′ is a matrix of coefficients; 0ℓℓ′ is estimated by penalized regression using the raw covariances
{Ẽℓi jẼℓ

′
i j′ }i, j as pseudo responses for all 1 ≤ ℓ ≤ ℓ′ ≤ q and setting 0ℓℓ′ = 0⊤

ℓ′ℓ. To bypass working
with a large covariance dimension, Li et al. (2020) proposed an efficient way to extract the eigen-
functions by ψk(d ) = (Iq ⊗ B⊤(d )S− 1

2 )Vk, where S = ∫
B(u)B⊤(u)du and {Vk}k are eigenvectors

of the block matrix with elements S
1
20ℓℓ′S

1
2 , for 1 ≤ ℓ, ℓ′ ≤ q. The positive definiteness of the

estimated covariance is obtained by truncating the negative eigenvalues. The optimal number of
eigenfunctions, K, is chosen by the Akaike information criterion (AIC), the Bayesian information
criterion (BIC), or a prespecified PVE.

Under the heterogeneous domain, the eigencomponents are obtained from a three-stage al-
gorithm (Happ & Greven 2018): (a) conduct univariate FPCA separately for each component,
(b) estimate the cross-covariance between the FPC vectors, and (c) use these covariance estimates
to appropriately weight the eigenfunctions/eigenvalues from univariate FPCA to extract ψk(d )
and also obtain the FPC scores. This method is only suitable for densely observed MVFD be-
cause the univariate scores under a sparse design are shrunk toward zero, subsequently failing to
capture the cross-correlations (Li et al. 2020).

2.3.2. Prediction. A major advantage of modeling the dependence in MVFD is that by using
parsimonious models, such as MVFPCA, one can recover the entire vector of trajectories for a
subject whomay not have observations for all the vector components.Once themean function and
the eigencomponents are estimated, prediction of the latent multivariate process entails prediction
of the FPC scores. If all the profiles are observed over the common grid of dijs and the grid is fine,
then {ζ ik} can be estimated by numerical integration. In the case of a sparse design, or when subjects
miss one or more profiles entirely, ζ̂ik are obtained by best linear unbiased prediction under the
mixed model Yi = µi +

∑K
k=1 ψ̂i,kζik + ϵi and under a Gaussian assumption, where Yi is the long

vector of responses obtained by stackingY ℓ
i j over first j and then ℓ,µi is the mean vector, {ψ̂i,k} are

the estimated leading directions evaluated at the corresponding time points, and ϵi is the vector
of measurement error. Volkmann et al. (2021) proposed this framework to jointly estimate the
mean and the scores. The latent vector process is predicted as X̂i(d ) = µ̂(d ) + ∑K

k=1 ζ̂ikψ̂k(d ), with
K chosen as above.

The pairwise interaction model (Chiou & Müller 2016) can also be used to reconstruct the
trajectories by representing the interaction processes via truncated FPCA.

2.4. Depth Measures and Functional Boxplots

In many applications, functional data are often preprocessed before they enter the analysis. De-
tection of potential outliers accompanied by an informative visualization tool is crucial for robust
inference. A functional observation can be identified as an outlier in terms of its shift, amplitude,
or shape, or a combination of any of these.The depth function, initially developed for multivariate
data (Zuo & Serfling 2000), offers an objective measure of centrality toward the deepest observa-
tion and outlyingness of a function in the sample with respect to the underlying distribution of
curves. Let FX(·) be the cumulative distribution function of X(·), and let D(·,FX ) : Rq → [0, 1] be
a statistical depth function at each d ∈ D. An example of such depth function for the univariate
case is the halfspace depth, i.e.,D(X(u), FXXX (u)) = 2min {FXXX (u), 1 − FXXX (u)}. Multivariate functional
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depth (MVFDP) (Claeskens et al. 2014) is defined as MVFDP(X,FX ) = ∫ 1
0 D(X(u),FX(u))w(u)du

for some unit norm weight function w(·). The MVFDP has a lower value for functions that are
away from the center. Using this measure, a multivariate functional median is defined as the curve
at which MVFDP(X,FX ) is maximized. A functional boxplot can be obtained by finding the band
demarcated by the curves with the highest 25% and 75% depth measure.Hubert et al. (2015) pro-
vided some comprehensive data examples and choices of depth functions. BesidesMVFDP(X,FX ),
whichmeasures only themagnitude of outlyingness,Dai&Genton (2019) developed a generalized
depth function that quantifies also the directional outlyingness of a function. This is implemented
in the generalized functional boxplot (Dai & Genton 2018b), and can detect departures from
centrality with respect to both position and the shape.

2.5. Accounting for Covariate Information

In many applications, multiple covariates Wi = (Wi1, . . . ,Wip)⊤ are also measured, so that
the observed data are [{Yi j , di j},Wi]ni=1. When the objective is to study their association with
the response, it is common to model the covariates’ effect on the mean response. For scalar
covariates, the multivariate varying coefficient model (Zhu et al. 2012) describes the mean as
µℓ(Wi, d ) = ∑p

k=1Wikβ
ℓ
k (d ) for ℓ = 1, . . . , q, where βℓk (·) is a smooth effect of the kth covari-

ate on the ℓth component. Estimation of {βℓ(d )}q
ℓ=1 is done separately for each ℓ by either

local smoothing (Zhu et al. 2012) or a discrete wavelet transform FMM (Zhu et al. 2017).
The multivariate functional additive mixed model uses a nonparametric mean of the form
µℓ(Wi, d ) = ∑p

k=1 f
ℓ
k (Wik, d ), for some smooth f ℓk (Wik, ·) (Volkmann et al. 2021). Functional

predictors {Wik(·)}pk=1 can be accounted for as µℓ(Wi, d ) = ∑p
k=1

∫
Wik(s)ηℓk(s, d )ds, where η

ℓ
k(s, d )

is a smooth effect of the kth predictor at the ℓth component. Like in the univariate functional
data, this model is estimated by projecting bothWik(s) and ηℓk(s, d ) onto a common set of specified
basis functions to convert it to a functional concurrent model (Liu et al. 2022).

2.6. Clustering Methods

Cluster analysis seeks to group the data so that objects within a group are more comparable
with each other than objects from different groups, in terms of a specified measure. For ex-
ample, in clinical electrocardiographs, multiple lead electrocardiograph signals are collected for
the identification of cardiovascular ischemic diseases. Clustering these signals can be helpful for
early diagnosis (Ieva & Paganoni 2013). Clustering algorithms for MVFD partition the n signals
{Xi(·)}ni=1 into a set of disjoint homogeneous clusters and estimate the cluster membership of each
curve from the data, as we review below.

2.6.1. Functional distance-based approach. Assuming that there are G (typically un-
known) clusters, nonparametric distance-based clustering methods aim to find the cluster
centroids {Mg(·)}Gg=1 that minimize the weighted average distance between Mg(·) and Xi(·), i.e.,∑n

i=1 wi∥Xi − Mg∥ using distance ∥·∥ for all possible choices of g andMg and some suitable weights
wi. The object Mg can be interpreted as the center of data associated with the gth cluster, i.e.,
{Xi(·) : Ci = g}, with respect to ∥·∥, where Ci � {1, . . . , G} denotes the cluster membership of Xi.
Ieva et al. (2013) considered the L2 distance between the functions and/or the distance between
the first derivative of the functions to develop a functional analogue to the k-means procedure.
Tokushige et al. (2007) proposed a pointwise approach to estimate the clustermembership through
an integrated version of the pointwise k-means.

Functional subspace-projected clustering (Chiou & Li 2007) assumes that the cluster cen-
troids Mg admit a cluster-specific KL representation, i.e., Mg(d ) = µg(d ) +

∑∞
k=1 ζg,kψg,k(d ), for
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g = 1, . . . , G; Park & Ahn (2017) showed its application to clustering warped MVFD. Dai &
Genton (2018a) used the magnitude and shape of outlyingness (Section 2.4) combined with
Mahalanobis distance as a robust measure of distance to assign cluster membership. Chiou (2012)
developed a multinomial logistic regression based on the weighted distance between Mg and Xi

to estimate the cluster membership probabilistically.

2.6.2. Basis representation. One common approach is to represent the curves using preset
basis functions X ℓ

i (d ) = ∑K
k=1 c

ℓ
ikϕ

ℓ
k (d ), for basis {ϕℓk (d )}k≥1, ℓ = 1, . . . , q, and apply the traditional

multivariate clustering methods to the stacked projections ci = {cℓik : k = 1, . . . ,K}q
ℓ=1. For exam-

ple, a B-spline basis can be used in conjunction with k-means clustering of the coefficients or
Gaussian basis combined with fitting a neural network to the coefficients (Kayano et al. 2010).
Other approaches use MVFPC expansion (Section 2.2.1). Peng & Müller (2008) defined the L2

distances between two curves as a function of the distances between the MVFPC scores in the
truncated KL expansion and applied k-means to the finite dimensional scores to determine the
clustermembership. Jacques&Preda (2014) posed aGaussian latentmixturemodel on the cluster-
specificMVFPC scores to determine the cluster probability assuming that the eigenfunctionsψg(·)
are common to all clusters.

Optimal selection of both the number of clusters and the finite truncation of the preset ba-
sis greatly affects the quality of clustering. The AIC, BIC, and integrated complete likelihood
(Biernacki et al. 2000) are typically used for selection of G. Under the Bayesian framework, a
standard way to estimate G is by maximum a posteriori estimation under a uniform prior.

2.7. Available Statistical Software

Notable software for MVFD include R packages mulitfamm (Volkmann 2021) to implement the
multivariate functional additive mixed model discussed in Section 2.5, MFPCA (Happ-Kurz 2021)
for dense MVFPCA under heterogeneous domain, and mfaces (Li & Xiao 2021) for MVFPCA
under sparse design.

3. LONGITUDINAL FUNCTIONAL DATA ANALYSIS

3.1. Statistical Framework

Many longitudinal studies routinely collect data where the basic measurement is a function or a
surface that can be repeatedly observed. In the study of cats with OA, introduced in Section 1,
minute-by-minute daily physical activity of indoor cats was recorded repeatedly during a 20-day
study period (Koner et al. 2022); Figure 1 shows the daily physical activity profiles between 5 AM
and 10 PM for three cats that were observed every day during this study period. The main study
objective is broader; here, we consider how the daily physical activity changes during 20 days in
household cats with OA.We refer to functional data collected in a longitudinal design as longitu-
dinal functional data (LFD). In this setting, for every subject i = 1, . . . , n multiple functional
data are observed corresponding to different time points, say {(di jr ,Yi jr )Ri jr=1, ti j : j = 1 . . . ,mi},
where (di jr ,Yi jr )

Ri j
r=1 are the functional data observed at time tij. We assume that di jr ∈ D, the grids

{di j1, . . . , di jRi j } are dense in D, and Rij is large for each i, j. As in the classical longitudinal set-up,
the number of repeated time points mi is moderately large or small, but the set of time points
{tij: i, j} is dense in the compact interval T .Without loss of generality, assume dijr = dr and Rij = R.

We assume that the functional data {Yij1, . . . , YijR} corresponding to time tij are error con-
taminated realizations of some latent bivariate process observed at time tij, Xi(·, tij), evaluated at
grid {dij1, . . . , dijR}. We write Yijr = Xi(dr, tij) + ϵijr, where {Xi(·, ·)}ni=1 are i.i.d. copies of a latent
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bivariate process X(·, ·) and ϵijr are i.i.d. (across i, j and r) measurement errors. Define the mean
µ(d, t ) = E [X (d, t )] and the cross-covariance operator4(t, t′) with the associated cross-covariance
kernel 6(d, d ′; t, t′) = cov{X(d, t), X(d ′, t′)}. One of the key focuses in the analysis of LFD is de-
scribing the longitudinal dynamics of the subject-level trajectories, which allows for full trajectory
prediction at any time t ∈ T , for a subject previously observed. Generally, the temporal depen-
dence is modeled using approaches inspired by either the longitudinal data analysis or sparse FDA
literature.

3.2. Modeling Mean Function

The specification of the mean model can incorporate any available information. For example,
Zipunnikov et al. (2014) assume that the mean function is longitudinally invariant, i.e., µ(·, t) =
η(·) for all t ∈ T for a smooth univariate function η(·); Koner et al. (2021) discussed statistical
testing when such structure is doubtful. Other examples are (a) µ(d, t) = µ0(d) + µ1(d) t for
smooth univariate functions µ0(d) and µ1(d), implying that the mean function is linear in t for
every d ∈ D, and (b) separable function of d and t, i.e., µ(d, t) = µ0(d) + η(t), where η(t) is smooth
function of t ∈ T . Lacking any additional information, the mean function µ(d, t) is modeled as a
smooth bivariate function. The mean function is represented using basis function representation,
µ(d, ti j ) = ∑K

k=1 Bk(d )αk(ti j ), for some suitable choice of basis {Bk(·)}Kk=1 in L2(D), where αk(tij)
are basis coefficients. Yuan et al. (2014) modeled the coefficients αk(tij) parametrically, while Park
et al. (2017) proposed semiparametric models as αk(ti j ) = ∑Lk

ℓ=1 Aℓ(ti j )δkℓ, for some basis {Aℓ(·)} in
L2(T ). The latter one is equivalent to modeling µ(d, t) as a tensor product of two univariate bases.

3.3. Covariance Models for Longitudinal-Functional Dependence

Two main approaches are used to model dependence in longitudinal functional data. The first
approach extends the common random effects model, from longitudinal data analysis, by replacing
the usual random effects with processes. The second approach extends the functional principal
component framework, from FDA, by allowing the scores to be time varying.

3.3.1. Longitudinally varying functional mixed model. Let X̃ (d, t ) = X (d, t ) − µ(d, t ) be the
mean zero process. Greven et al. (2011) modeled X̃ (d, t ) using an FMM framework as

X̃i(d, ti j ) = V0i(d ) + ti jV1i(d ) +Ui j (d ), i = 1, . . . , n, j = 1, . . . ,mi, 1.

where the subject-level bivariate mean zero processVi(d ) = (V0i(d ), V1i(d ))⊤ has covariance func-
tionG(d, d ′ ) and the residual process Uij(d) has covariance H(d, d ′) and accounts for the deviation
specific to jth measurement;Vi(·) andUij(·) are assumed mutually independent. The linear depen-
dence in t can be easily extended to accommodate higher-order polynomial terms in the time t.
The model is identifiable as cov{X (d, ti j ),X (d ′, ti j′ )} = (1, ti j )G(d, d ′ )(1, ti j′ )⊤ +H (d, d ′ )I( j ̸= j′ ),
where the first part quantifies the interfunction dependence longitudinally as a function of t.

Other structural assumptions, like separable additive or multiplicative structure, can be incor-
porated in the representation of X̃ (d, t ) (Huang et al. 2017). A common strategy is to represent
Xi(d, t) via preset basis functions, such as smoothing splines (Guo 2002), B-splines, or a wavelet
basis (Morris et al. 2011), and convert the original model to the FMM framework. Shamshoian
et al. (2022) used the tensor product of univariate bases and estimated the coefficients via a
nonparametric Bayes approach based on a Gaussian assumption.

3.3.2. Longitudinal functional principal component analysis. Three different approaches
can be recognized to perform longitudinal FPCA, a term coined by Greven et al. (2011) in
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reference to the model in Equation 1 and the representation obtained by using KL expan-
sion for the two processes Vi(·) and Uij(·). Specifically, assuming smooth covariances of both
G(d, d ′ ) and H(d, d ′), the two latent processes can be KL expanded as Vi(d ) = ∑∞

k=1 ξ
V
ik ϕ

V
k (d ) and

Ui j (d ) = ∑∞
l=1 ξ

U
i jlϕ

U
l (d ), where {ϕVk (d ), λVk }k and {ϕUl (d ), λUl }l are the eigenfunction and eigen-

value pairs of the respective covariance operators, and ξVik = ⟨V0i,ϕV1k⟩ + ⟨V1i,ϕV2k⟩ ∼ (0, λVk ) and
ξUi jl = ⟨Ui j ,ϕUl ⟩ ∼ (0, λUl ) are the associated FPC scores.Here ϕVk (d ) = (ϕV1k(d ),ϕ

V
2k(d ))

⊤ is the vec-
tor eigenfunction; the model in Equation 1 can be approximated by the finite KL truncation
as

X̃i(d, ti j ) ≈
Kv∑
k=1

ξVik
{
ϕV1k(d ) + ti jϕV2k(d )

} +
Ku∑
k=1

ξUi jkϕ
U
k (d ). 2.

The second approach, called double FPCA (Chen & Müller 2012), expands X̃i(d, t ) us-
ing two layers of KL expansions. Specifically, for each t, {ϕk(·|t)}k are the eigenfunctions
of the covariance operator 4(t, t) and represent the residual process at time t using KL
as X̃i(d, t ) = ∑∞

k=1 ξik(t )ϕk(d|t ), where ξik(t ) = ⟨X̃i(·, t ),ϕk(·|t )⟩ are the time-varying basis coeffi-
cients. A second layer of KL expansion is done separately for each coefficient ξ ik(t) by representing
ξik(t ) = ∑∞

p=1 ζipkψpk(t ), for t ∈ T , where {ψ pk(t)}p ≥ 1 are eigenfunctions of the covariance operator
induced by cov{ξ ik(t), ξ ik(t′)}, for each k ≥ 1. This method requires simultaneous smoothing over
d, d ′ and t to estimate 6(d, d ′; t, t) and thus ϕk(d|t), and then of the covariance of the scores ξ ik(t)
for every t ∈ T , which is computationally intensive.

The computational bottleneck of double FPCA is overcome by projecting X̃i(d, t ) onto a set
of time-invariant orthonormal basis {ϕk(·)}k in L2(D). Park & Staicu (2015) proposed to select
the basis of the spectral decomposition of the covariance operator induced by so-called marginal
covariance kernel 6T (d, d ′ ) = ∫

T 6(d, d
′, t )dFT (t ), where FT (t ) is the sampling distribution of the

longitudinal time points in T (see also Chen et al. 2017). The truncated KL expansion leads to

Xi(d, ti j ) ≈ µ(d, ti j ) +
K∑
k=1

ζik(ti j )ϕk(d ), 3.

where ζik(ti j ) = ⟨X̃i(·, ti j ),ϕk⟩ are the marginal FPC scores and K is the truncation parame-
ter. The longitudinal dynamics, captured by ζ ik(tij), can be flexibly characterized through the
rich models for longitudinal data analysis, such as (a) by using the mixed model, ζ ik(tij) =
b0,ik + b1,iktij for some coefficients (b0,ik, b1,ik); (b) by assuming a temporal isotropic covariance
structure cov{ζik(ti j ), ζik(ti j′ )} = λℓρℓ(|ti j − ti j′ |), for some known autocorrelation function ρk(·)
with ρk(0) = 1; or (c) by nonparametric modeling ζik(t ) = ∑∞

p=1 ηipkγpk(t ) for some known or
data-driven basis. While the scores {ηipk}p ≥ 1 are mutually uncorrelated for a fixed k, they may
be correlated for different k. When the design for {ti1, . . . , timi } is dense in T , then a more
parsimonious, yet nonparametric, model can be used to describe the variation of ζ ik(t). Chen
et al. (2017) introduced the eigenbasis {ψ p(·)}p from the spectral decomposition of the marginal
covariance over D induced by 4D (t, t ′ ) = ∫

D cov{X (u, t ),X (u, t ′ )}du. The use of this basis leads
to X̃i(d, t ) = ∑∞

k=1
∑∞

p=1 ηipkψk(d )ψp(t ), where the scores {ηipk}p,k are uncorrelated. The model in
Equation 3 applied to the physical activity variation in cats helps uncover three main directions:
a vertical shift, the contrast in activity between the first half and the second half of the day, and
the contrast between the activity when their owner is at work versus at home (see Figure 1b).

3.4. Estimation and Prediction of Full Trajectory

Let µ̂(d, t ) be a smoothed mean estimator obtained by modeling the mean, as in the Section 3.2,
and fitting a penalized criterion based on independence of the responses Yijr. Let the residuals be
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Ei jr = Yi jr − µ̂(dr , ti j ) for all i, j, and r. To estimate the model dependence, the residuals are pooled
together and smoothing is done differently, corresponding to each approach in part. Greven et al.
(2011) performed linear regressions of the raw covariances Ei jrEi j′r′ onto (1, ti j , ti j′ , ti jti j′ ) for j ̸=
j′. Chen & Müller (2012) used three-dimensional smoothing of Ei jrEi j′r to estimate covariance
surface 4(d, d ′, t) at every d and t; Park & Staicu (2015) perform bivariate smoothing of the
pooled sample covariances to construct a smooth estimator of 6̂T (d, d ′ ). The estimated eigenfunc-
tions {ϕ̂ℓ(·)} and eigenvalues λ̂ℓ are obtained through the spectral decomposition of the estimated
covariance.

Modeling the dependence allows us to make a prediction of the full trajectoryX(·, t) at any time
t ∈ T by means of Equation 2 or 3. Greven et al. (2011) predicted the full trajectory by X̂ (·, t ) =
µ̂(·, t ) + ∑Kv

k=1 ξ̂
V
ik

{
ϕ̂V1k(·) + tϕ̂V2k(·)

}
, where ξVik , along with ξ

U
i jk, are estimated from the mixed model

Yi jr = µ̂(di jr , ti j ) +
∑Kv

k=1 ξ
V
ik {ϕ̂V1k(di jr ) + ti jϕ̂V2k(di jr )} + ∑Ku

k=1 ξ
U
i jkϕ̂

U
k (di jr ) + ϵi jr , for all j = 1, . . . , mi

and r. The computational complexity is O(max{nRKv , nK3
v }). Here the truncations are estimated

from the data. Park & Staicu (2015) first obtained the raw scores ξ̃ik(ti j ) by projecting the residuals
{Eijr}r onto the estimated ϕ̂k(·) and then fitting either a parametricmodel or a nonparametricmodel
as described in Section 3.3.2.

Consistency rates of the estimator of covariance and the eigenfunctions depend on the sam-
pling design at which the functional response is recorded—dense, ultradense, or sparse—and the
smoothing techniques employed. Since nonparametric estimation of the mean in LFD requires
smoothing along both d and t that is commonly observed on sparse grids, the optimal L∞ rate
of convergence for µ(d, t) is slower than the parametric rate (Chen & Müller 2012, Xiao 2020),
and it corresponds to the optimal rate at which a two-dimensional covariance surface can be esti-
mated.The same rate is for estimation of pointwise covariance6(d, d ′, t, t) (Chen &Müller 2012).
Zhu et al. (2019) derived the almost parametric (

√
n) L2 rate of the covariance under the FMM

framework, since the estimation does not require smoothing over t. If estimation of µ(d, t) does
not require smoothing over t, [e.g., under a special structural assumption of µ(d, t), as in Greven
et al. 2011], an almost parametric L∞ rate of convergence for 6T (d, d ′ ) can be achieved under a
dense design for d, or else the convergence rate is affected by the error of estimation of the mean
(Koner et al. 2021). The estimation of eigenfunctions and eigenvalues can be done at an almost
parametric rate if the covariance is estimated at the same rate. For covariance estimated at a slower
rate, the eigenfunctions are estimated at a rate that corresponds to the optimal rate for estimating
a univariate smooth function.

3.5. Available Statistical Software

The R function fpca.lfda in refund (Goldsmith et al. 2021) and the interactive visualization
using plot.shiny (Wrobel et al. 2016) can be used for longitudinal FPCA.

4. FUNCTIONAL TIME SERIES DATA ANALYSIS

4.1. Set-Up and Assumptions

Suppose now that functional observations are collected sequentially over time, such as daily price
curves of a financial stock over consecutive days or annual fertility rates as a function of a woman’s
age for every year since 1970, described in the R package ftsa (see also Figure 2).Mathematically,
we conceptualize the problem by assuming that the observations are a noisy realization of some
latent process {Xn(d ), n ≥ 1 : d ∈ D} observed at finite grids, for a compact interval D, and such
that for fixed d, the sequence {Xn(d), n ≥ 1} is a time series. Such a situation can arise naturally, as
in the above examples, where the days/years are used to index the sequential time, n, or because
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Figure 2

(a) Fertility rates in Australia as a function of age (1970–2020) with one to five years ahead forecasts of 2021–2025. (b) Observed and
predicted one-year ahead fertility rates. Model based on FAR(1) and fitted via ftsm in R package ftsa.

the response is recorded as a long time series that can be partitioned into multiple shorter series
corresponding to the same interval window; for example,Xn(d) would correspond to all the obser-
vations recorded at time points of the form nδ + d, for d � [0, δ], by taking D = [0, δ], or because
a long time series is artificially divided into multiple shorter series corresponding to overlapping
time intervals, which can be aligned to correspond to the same interval window D. Unlike LFD
analysis (Section 3), the time domain, indexed by n, is unbounded, n � Z+, and the entire series
is observed once, thus without replications. Typical scientific goals include forecasting the trajec-
tory behavior at future times, quantifying the dynamics of the process, and formally identifying
changes in its mean, covariance, or other characteristics.

In the following, we denote the observed data by {(Ynj, dnj), j = 1, . . . , mn}n = 1, . . . , N and as-
sume that Ynj = Xn(dnj) + ϵnj, where Xn(·) is a stochastic process defined on D and ϵnj ∼ (0, τ 2)
are i.i.d. measurement errors for each n ≥ 1. Functional time series (FTS) analysis was popular-
ized by Bosq (1991), who introduced the autoregressive Hilbert-valued processes of finite order.
Since then, there have been extensive contributions to the literature in this area, including the
comprehensive monographs of Bosq (2000) and Horváth & Kokoszka (2012). This review focuses
on Hilbertian square integrable processes, Xn ∈ L2(D) for all n ≥ 1, that are weakly (temporal)
stationary.

An FTS is weakly (temporal) stationary if the mean and covariance of the series do not de-
pend on the time at which the series is observed. Let µ : D → R be the mean, µ(d) = E[Xn(d)],
and denote by4 the simultaneous (or lag-zero) covariance operator,4( f )(d ) = ∫

D 6(d, u) f (u)du,
f ∈ L2(D), where 6(d, d ′) = cov{Xn(d), Xn(d ′)} is the simultaneous covariance kernel function.
For serially dependent data, the lag covariances characterize the serial dependence; define as 4h

the lag-h covariance operator and as 6h(d, d ′) = cov[Xn + h(d), Xn(d ′)] its associated lag h covari-
ance kernel,4h( f )(d ) = ∫

D 6h(d, u) f (u)du, f ∈ L2(D). An important quantity that aggregates the
lag covariances of the series and is used to quantify the total serial dependence is the long-run
covariance operator, defined as 4long = ∑

h∈Z4h, provided the series is absolutely convergent.
The long-run covariance, similar to the simultaneous one, is a symmetric and positive definite
Hilbert–Schmidt operator. For independent functions Xn, the long-run covariance coincides with
the simultaneous covariance and describes the functional dependence solely.
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4.2. Modeling Framework

We start with reviewing some models that extend directly from time series literature and then
consider models based on KL-inspired representations.

4.2.1. Functional autoregressive models. A popular model for multi-step ahead predictions
is the functional autoregressive (FAR) model. The first-order FAR model, or FAR(1), is defined
by

Xn(d ) − µ(d ) = 91(Xn−1 − µ)(d ) + εn(d ), d ∈ D,

where 91 is a bounded linear operator,91 : L2(D) → L2(D), with ∥91∥ < 1, and εn are i.i.d. zero
mean square integrable processes onD. The operator inequality ensures that there exists a unique
strictly stationary and causal solution in L2(D), and it can be relaxed (Horváth & Kokoszka 2012).
Here we use the standard operator norm ∥9∥ = sup f ,∥ f ∥=1 ∥9 f ∥.

Bosq (2000) studied FAR(1) by extending the Yule–Walker equations, known to lead to opti-
mal estimation in classical time series (Brockwell & Davis 1991), to the functional setting. This
approach expresses the solution as 91 = 414

−1 and requires inversion of the simultaneous co-
variance operator4. Several alternatives have been proposed to handle the challenge posed by the
unbounded inverse operator, 4−1 (see, e.g., Bosq 1991, 2000; Besse et al. 2000; Antoniadis et al.
2006).Didericksen et al. (2012) reported that prediction using FAR(1), as discussed by Bosq (2000),
shows superior performance in finite samples when compared with other alternatives. Martínez-
Hernández et al. (2019) considered robust methods for parameter estimation, and Damon &
Guillas (2002) extended the framework to accommodate exogeneous variables.

FAR(1) is generalized to a higher order of dependence, FAR(p), using the recursion
Xn(d ) − µ(d ) = ∑p

l=19l (Xn−l − µ)(d ) + εn(d ), where the operators 9 ls are linear such that
9p is not the zero operator and

∑p
l=1 ∥9l∥ < 1. To determine the order p, Kokoszka & Reimherr

(2013b) proposed a sequential testing procedure of hypotheses of the formH (p)
0 : {Xn} are FAR(p),

versus the alternative H (p+1)
A : {Xn} are FAR(p+ 1); the starting null hypothesis is taken to be that

H (0)
0 : {Xn} are i.i.d. The test statistic uses a projection-based estimation of the unknown linear

operator and is shown to have an approximately null chi-square distribution with degrees of
freedom based on the projection space dimension.

4.2.2. Functional autoregressive moving average. A class of models for which predictors
cannot be directly derived are functional autoregressive moving average (FARMA) models (Bosq
2014). The FARMA(p, q) process is defined by

Xn(d ) = µ(d ) +
p∑

l=1

9l (Xn−l − µ)(d ) +
q∑
ℓ=1

2ℓ(εn−ℓ )(d ) + εn(d ), d ∈ D, 4.

where εn are i.i.d. zero mean square integrable random functions with finite fourth moments, and
9 l and 2ℓ are linear operators. Inspired by Brockwell & Davis (1991) for the ARMA models in
classical time series, Klepsch et al. (2017) provided sufficient conditions on the operators to ensure
a stationary and causal solution of Equation 4. The authors study theoretically the h-step predic-
tion and prediction bounds by using the projection of this model to a suitable lower-dimensional
space and prove that it approaches the best linear predictor (Bosq 2014) as the dimension of the
projection space diverges. Fitting of this model is carried out using the KL framework presented
in the next section and requires selection of the projection space dimension and the two tuning
parameters, p and q; in practice, all parameters are selected using cross-validation (CV). Klepsch
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et al. (2017) applied the FARMA(p,q) methodology to model and perform next-day prediction for
traffic velocity data.

4.2.3. Functional autoregressive conditional heteroskedasticity. For modeling financial
time series data, such as daily monitoring of stocks indexes or exchange rates over long pe-
riods, nonlinear models are more adequate. Hörmann et al. (2013) defined FAR conditional
heteroskedasticity (FARCH) as follows:

Xn(d ) = εn(d )σn(d ), σ 2
n (d ) = δ(d ) + ϒ(X 2

n−1 )(d ), ∀d ∈ D, n ≥ 1, 5.

where εn are i.i.d. square integrable functions in L2(D), δ is an unknown nonnegative func-
tion in L2(D), and ϒ is an unknown nonnegative and bounded operator. The magnitude of the
conditional covariance is modeled by the function σ (·) and the conditional correlation is en-
tirely described by εn. Under mild conditions there exists a unique strictly stationary solution of
Equation 5. Recently, Aue et al. (2017) and Cerovecki et al. (2019) developed the functional gen-
eralized autoregressive conditional heteroskedastic model and proposed a consistent estimation
approach.

4.2.4. Karhunen-Loéve representation for functional time series. An entirely different per-
spective is to use basis function representation. Let {ϕ1, ϕ2, . . .} be a unit norm orthogonal basis
in L2(D), and consider the expansion of the FTS Xn in this basis:

Xn(d ) = µ(d ) +
∑
k≥1

ξnkϕk(d ), d ∈ D, 6.

where the basis coefficients ξ nk =<Xn −µ,ϕk> capture the dependence structure of the series.To
avoid using a preset basis, the functions ϕk are selected based on the spectral decomposition of the
simultaneous covariance operator 4 = ∑

k≥1λkϕk � ϕk, assuming strictly decreasing eigenvalues
λk, where � is defined as (ϕk � ϕk) f (d) = <ϕk, f > ϕk(d). Using the eigenbasis of 4, Equation 6 is
known as KL representation; Hyndman & Ullah (2007) discussed KL representation to describe
an FAR(1) dependence, where the h-step ahead curve prediction is approximated by using a finite
truncation of Equation 6 with estimated eigenfunctions and with coefficients that are predicted
separately, using classical AR(1) models. Aue et al. (2015) studied prediction via KL representation
(Equation 6) using a multivariate autoregressive model for the basis coefficients and showed that it
is theoretically optimal and accommodates a variety of dependence structures, such as multivariate
AR(p), MA(p) (moving average), and ARMA(p, q). For example, in the case of FAR(1), this would
entail fitting the multivariate time series model ξKn = BKξKn−1 + δKn , where in bold we have the
K-dimensional vectors of basis coefficients ξKn and vector of innovations δKn , with K being the
truncation, and BK is the K × K unknown matrix. The approach is readily implemented in R.We
modeled the fertility rate data using FAR(1), which is fitted using this approach: Figure 2a shows
one to five years ahead for 2021–2025, and Figure 2b shows the comparison between the one-year
ahead predictions for 2019 and 2020, indicating little impact of COVID-19 on the fertility rates
in Australia.

One criticism of this basis choice is that, while it captures the within curve dynamics, it fails
to capture the serial dependence. An alternative option that addresses this matter with limited
success is the eigenbasis of the long-run covariance operator,4long.

4.2.5. Dynamic Karhunen-Loéve representation for functional time series. Panaretos &
Tavakoli (2013) and Hörmann et al. (2015) proposed to study the series’ dynamics using a fre-
quency domain framework by means of the spectral density operator of the complete set of
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lag autocovariance operators. The idea is to aggregate the lag covariance operators, but in the
frequency domain, and construct functional filters later used to expand the time series.

Let ω � [−π , π ] index the frequencies, and define the spectral density operator at frequency
ω by FX

ω = (2π )−1 ∑
h∈Z4h exp (−ihω), presuming it exists, where i denotes the imaginary unit.

As this is a nonnegative, self-adjoint Hilbert–Schmidt operator, for each ω it admits a spectral
decomposition, FX

ω = ∑
m≥1 λm(ω)φm(ω) ⊗ φm(ω), where {λm(ω), φm(ω)}m are the pairs of eigen-

value/eigenvector. The eigenvectors can be intuitively transformed back to the time domain and
obtain so-called functional filters ϕml (ω) = (2π )−1

∫ π
−π φm(ω|u) exp (−ilu)du, l � Z and m ≥ 1,

which are the building blocks for the dynamic representation of the functional series. Hörmann
et al. (2015) introduced the dynamic KL expansion of Xn (convergence is in mean square),

Xn(d ) = µ(d ) +
∑
m≥1

X̃mn(d ), X̃mn(d ) =
∑
l∈Z

ξm,n+lϕml (d ),

where ξm,n = ∑
l�Z < Xn−l − µ, ϕml > is the mth dynamic FPC score (series convergences in

mean square); the scores ξm,n are uncorrelated across m, n. The number of dynamic components
X̃mn(d ) is determined using a criterion analogous to the PVE for i.i.d. curves. The consistency of
the dynamic scores relies on using a consistent spectral density operator estimator (Panaretos &
Tavakoli 2013). This approach is useful in modeling the series; as the estimation requires data at
future times, it is not clear how to use it for prediction.

4.3. Estimation of Mean and Covariance

Most methods assume the functional observations are measured at fine grids of points, possibly
irregular, in D. Common smoothing techniques (Ramsay & Silverman 2005, Wood 2006) can
be applied to recover each smooth trajectory with negligible error (Zhang & Chen 2007); al-
ternatively, the curve-level data can be smoothed by using a criterion based on truncated basis
representation of the curves, which can be combined with an autoregressive dependence (Besse &
Cardot 1996). The empirical mean and the empirical lag-h covariances are calculated as

µ̂(d ) = 1
N

N∑
n=1

Xn(d ); 6̂h(d, d ′ ) = 1
N

min(N−h,N )∑
n=max(1,1−h)

{
Xn+h(d ) − µ̂(d )

} {
Xn(d ′ ) − µ̂(d ′ )

}
7.

and are used to estimate the mean µ and the lag-h covariance functions 6h, respectively, with
6̂ = 6̂0 estimating the simultaneous autocovariance function 6.

Under analogous conditions to the classical time series counterpart (Brockwell & Davis 1991),
but for Hilbert spaces, the estimators in Equation 7 are unbiased and

√
N-consistent (Bosq 2000).

Mas (2002) showed that, for a prespecified lagH, the set of estimators {4̂h : h = 1, . . . ,H} is jointly
asymptotically normal; in particular, the eigencomponents of the simultaneous covariance opera-
tor are asymptotically normal. Kokoszka & Reimherr (2013a) studied these properties under the
weaker condition of L4 m-approximability (Hörmann & Kokoszka 2010). A natural estimator of
the long-run covariance is a kernel-based estimator

6̂long(d, d ′ ) =
N−1∑

h=−(N−1)

K
(
h
bN

)
6̂h(d, d ′ ),

where the weights are based on a suitable kernel function K(·) with bandwidth bN, which varies
withN; Hörmann &Kokoszka (2010) showed the consistency of this estimator, and Horváth et al.
(2016) proposed an adaptive way to select the bandwidth in practice.
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The situation of sparse functional design is less common for FTS. Nonetheless, different es-
timation and prediction methods are needed; Kowal et al. (2019) considered this problem and
assumed FAR(p) using Bayesian hierarchical Gaussian modeling. Research in this direction has
only recently taken off (Rubín & Panaretos 2020).

4.4. Change Point Detection

Research in FTS often requires detecting changes in the mean structure or the autoregressive
behavior, or beyond. Here we focus on single change point identification.

4.4.1. Change point detection in the mean. Berkes et al. (2009) first studied the testing prob-
lem H0 : E[X1] = · · · = E[XN] versus HA : E[Xn] = · · · = E[Xk∗ ] ̸= E[Xk∗+1] = · · · = E[XN ] for
unknown k∗ � {1, . . . , N} when the functional observations Xn are independent. A common way
to test for a change point in the mean is by using cumulative sum (CUMSUM) type statistics such
as

SN ,k(d ) = N−1/2

{
k∑

n=1

Xn(d ) − k
N

N∑
n=1

Xn(d )

}

to define the test statistic TN = maxk′ ∥SN ,k′∥2. Under the null hypothesis and assuming the resid-
uals of the Xns are weakly stationary, Aue et al. (2018) proved that TN →d supx∈[0,1]

∑
l≥1 λlBl (x)

2

as N → ∞, where λl are the eigenvalues of the long-run covariance kernel of Xns and
Bl, l ≥ 1, are i.i.d. standard Brownian bridges defined on [0, 1]. In practice, the asymptotic
null distribution is approximated with Monte Carlo simulation and using the leading eigen-
values of the estimated long-run covariance. For this purpose, the change point is estimated
as k̂N = min{k : ∥SN ,k∥ = maxk′ ∥SN ,k′∥}. The lag-h covariances, required by the estimation
of the long-run covariance, are estimated as in Equation 7, except the pairwise products
{Xn+h(d ) − µ̂(d )}{Xn(d ′ ) − µ̂(d ′ )} are adjusted to reflect a potential change in the mean; µ̂ is calcu-
lated by µ̂∗

n = (̂kN )−1 ∑k̂n
n=1 Xn if n ≤ k̂N and µ̂∗

n = (N − k̂N )−1 ∑N
n=̂kN+1 Xn if n > k̂N . Asymptotic

properties of the estimated change point are studied along with methods to construct confidence
intervals. For detection of multiple changes in the mean function (epidemic change), Aston &
Kirch (2012) considered low-rank projections of the functional observations using the long-run
covariance and used CUMSUM tests for multivariate data.

4.4.2. Change point detection in the autoregressive behavior. We turn now to testing that
the lag covariance is constant over time; without loss of generality, the process is assumed zero
mean. Horváth et al. (2010) investigated this problem for FAR(1) models, Xn = 9n(Xn − 1) + εn

for 9n bounded and linear operators, where it simplifies to testing H0 : 91 = · · · = 9N and HA :
91 = · · · = 9k∗ ̸= 9k∗ + 1 = · · · = 9N, for some k∗.

The idea is to use the leading directions of variability of the FTS and assess whether the action
of the assumed common operator 9 on the span of these directions changes over time. Testing
the stability of the lag one covariance is now reduced to testing the stability of a long vector of
appropriate means, and one can use a CUMSUM testing procedure similar to the one discussed
in Section 4.4.1. Horváth et al. (2010) proposed a quadratic form based on the CUMSUM test
and studied the null and alternative asymptotic distributions by using the long-run covariance
estimator. Zhang et al. (2011) considered a self-normalized test that allows the investigation of
the constancy of the two or higher-lag covariances.

4.4.3. Testing for stationarity. Horváth et al. (2014) considered the general problem for test-
ing the null hypothesis that the process is stationary versus general alternatives that include the
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ones listed above. They proposed a CUMSUM test procedure TN = ∫ 1
0

∫
D Z

2
N (x, u)dudx, where

ZN(x, u) = SN(x, u) − xSN(1, u) and SN (x, u) = N−1/2 ∑⌊Nx⌋
n=1 Xn(u); its asymptotic null distribution

is based on the eigenvalues of the long-run covariance operator. The asymptotic properties are
studied under specific alternatives. More recently, Aue & Van Delft (2020) considered a similar
testing problem, but from a frequency domain perspective. The key idea is that an FTS is weakly
stationary if and only if the corresponding elements in the frequency domain are uncorrelated.The
testing procedure combines methods from FPCA and spectral density operators and is a quadratic
form of the estimated spectral covariances at various lags in the spectral domain. The asymptotic
distribution of the test is studied both when the null is true and under local alternatives.

4.5. Available Statistical Software

Analysis of FTS is implemented in R via several packages: far ( Julien & Serge 2010) imple-
ments the FAR(1) framework and allows incorporation of exogenous covariates; ftsa (Hyndman
& Shang 2021) performs model fitting, prediction using FPCs, change point detection, and much
more; and the combination of fda (Ramsay et al. 2021) and marss (Holmes et al. 2012) is used by
Aue et al. (2015).

5. SPATIAL FUNCTIONAL DATA ANALYSIS

5.1. Notation and Set-Up

Some applications involve functional observations recorded across many spatial locations, such
as yearly nitrate profiles at many monitoring stations across the United States (King et al. 2018).
For many spatial locations, indexed by i and identified by si ∈ S for domain S ⊂ R2, the observed
data are {(Yi j , di j )nij=1}, with ni large and di j ∈ D for compact interval D. Such data structures are
becoming increasingly common in environmental science, climatology, agronomy, oceanography,
economics, remote sensing, demographics material science, biostatistics, and genetics, to name a
few. Typical goals include understanding and describing the mean and dependence structure and
prediction at unobserved spatial locations.

Spatiotemporal models are often employed for these problems (Chen et al. 2021); however,
when, for each spatial location, the measurements in time are very dense, flexible spatiotem-
poral methods become computationally intractable. Modeling such data requires an alternative
perspective. Analysis of spatial functional data combines techniques from functional data and
spatial statistics to develop flexible approaches to model dependence, while ensuring flexibility
and reasonable computations. Due to the explosion of big data with such characteristics, spatial
functional statistics has attracted huge interest in the past 20 years, with important challenges
and contributions to the field described by Bosq (2000) and Horváth & Kokoszka (2012) and
reviewed by Mateu & Romano (2017).

Assume the observed spatial functional data are noisy realizations of the form Yij =
X(si; dij) + ϵij, where ϵij is an i.i.d. measurement error with zero mean and variance τ 2, and
for each s ∈ S,X (s, ·) ∈ L2(D). The object {X (s, d ), s ∈ S, d ∈ D} is a functional random field, also
known as a spatial functional process (SFP) (Ferraty & Vieu 2006, Delicado et al. 2010). While
spatial functional models have also been studied in describing multilevel functional data (briefly
discussed in the Section 6), where the SFP is observed through multiple repetitions (Morris &
Carroll 2006, Staicu et al. 2010), here we focus on a single realization of the process.

Denote as µ(s, ·) the mean of X(s, ·), µ(s, d) = E[X(s, d)], and by 4crss(s, s′) the cross-covariance
operator with the associated cross-covariance kernel, 6crss(s, s′; d, d ′) = E[{X(s, d) − µ(s, d)}
{X(s′, d ′) − µ(s′, d ′)}]. In spatial statistics, a popular way to describe the process dependence is
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via semivariogram. Here, we use its functional analogue: the semivariogram operator, 0(s, s′),
and the associated semivariogram kernel γ (s, s′; d, d ′) = (1/2)E[ {X(s, d) − X(s′, d)} {X(s, d ′) −
X(s′, d ′)}]. Using the trace of the cross-covariance and semivariogram, summary measures can be
constructed to quantify the global spatial dependence of X:

6tr(s, s′ ) =
∫
D
6crss(s, s′; u, u)du and γtr(s, s′ ) =

∫
D
γ (s, s′; u, u)du.

The trace covariogram 6tr(s, s′) and trace semivariogram γ tr(s, s′) are a valid covariogram and
semivariogram, respectively (Bosq 2000, Menafoglio et al. 2013).

As the complexity can easily increase, simplifying assumptions are generally made on the de-
pendence structure of X(·, ·). Two common assumptions are that (a) X(s, ·) is weakly stationary
in the sense that its mean and auto-covariance functions are invariant to the spatial location and
(b) X(s, ·) has isotropic cross-covariance, meaning that the cross-covariance and semivariogram
functions depend on the lag between the spatial locations and not on the locations per se. By an
abuse of notation, in the case of a weakly stationary and isotropic residual process, we use the
notation 6(d, d ′) = cov{X(s, d), X(s, d ′)} to denote the auto-covariance function, 6crss(h; d, d ′) for
the cross-covariance function at spatial lag h, and γ (h; d, d ′) to denote the semivariogram function
corresponding to spatial lag h = ∥s − s′∥.

5.2. Modeling Framework: Semivariogram and Covariogram Estimation

We consider possible frameworks for modeling spatial functional data and discuss estimation of
the corresponding model components.When estimation accounts for the spatial dependence, this
is typically done via process semivariogram or covariogram.

5.2.1. Preset orthogonal basis expansion. One direct approach to modeling weakly stationary
and isotropic SFPs that reduces the dimensionality of the problem is to use a preset truncated
orthogonal basis. Specifically, let {Bl (·)}Ll=1 be an orthonormal basis of functions in L2(D); then
X (s, d ) = ∑L

l=1 Bl (d )ζl (s), where ζl (s) = ∫
D X (s, u)Bl (u)du are scalar weakly stationary random

fields for all l = 1, . . . , L with isotropic covariance. For a fixed truncation L, fitting the SFP
reduces to estimation and prediction of multivariate random fields (Cressie 2015, Schabenberger
&Gotway 2017).Methods like generalized least squares or maximum likelihood estimation based
on a Gaussian assumption, which rely on positing parametric dependence structures, can be used.
This approach works well for fine temporal grids that ensure accurate integral approximation.
More importantly, it heavily depends on the basis truncation L, which is a tuning parameter; in
practice, L is selected via CV.

5.2.2. Mean model for weakly (non)stationary processes. Another approach, also inspired
by the modeling in classical spatial statistics, is to decompose the latent process into the mean and
the random deviation, X (s, d ) = µ(s, d ) + X̃ (s, d ), where the residual X̃ (s, d ) has zero mean and is
assumed to be a weakly stationary and isotropic process.

To accommodate a possible variation of the mean across space, when the process is ob-
served a single time, we model µ(s, d) as a linear combination of known spatial-based predictors.
Specifically, let { fl (s)}Ll=1 be known spatial predictors and suppose µ(s, d ) = ∑L

l=1 fl (s)βl (d ), where
{β l(·)}l are unknown functional regression coefficients defined on D. For parameter estimation,
Menafoglio et al. (2013) propose an iterative procedure using generalized least squares; the algo-
rithm is based on positing a parametric variogram model to the empirical trace semivariogram of
the residual process.
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If the mean function is space invariant—for simplicity, use the notation µ(d) instead—the sam-
ple mean is an obvious estimator. Hörmann & Kokoszka (2011) proved that the consistency of
this estimator depends on a combination of the spatial dependence decay of the functions, cap-
tured by 6tr(s, s′), and the sampling design for the spatial locations. In particular, the sample mean
is shown to be inconsistent under an infill domain sampling scheme. The sample mean assigns
equal weight to all curves in the data, irrespective of their spatial locations, which is not ideal
when the locations are not uniformly distributed in the spatial domain. Gromenko et al. (2012)
and Martínez-Hernández & Genton (2020) considered mean estimation using a weighted mean
µ̂(d ) = ∑n

i=1 wiX (si, d ), for
∑n

i=1 wi = 1, where the weights are selected to minimize the expected
squared norm of the error, E∥µ̂− µ∥2. This approach requires specifying a parametric model
for the trace covariogram; the optimal weights are determined analytically in terms of the trace
covariogram.

5.2.3. Karhunen-Loéve representation for spatial functional data. Assume the SFP is sta-
tionary and isotropic and that the covariance 6(d, d ′) is positive semidefinite and symmetric and,
furthermore, is assumed continuous on D × D. Using Mercer’s theorem, 6(d, d ′) can be de-
composed into eigenfunctions and eigenvalues; let {ϕk(·), λk}k ≥ 1 be the eigenelements ordered
corresponding to λ1 ≥ λ2 ≥ · · · ≥ 0. KL representation of latent process X(s, d) is

X (s, d ) = µ(d ) +
∑
k≥1

ξk(s)ϕk(d ), 8.

where ξk(s) = ∫
D{X (s, u) − µ(u)}ϕr (u)du are scalar, zero mean, weakly stationary random fields

defined on S. This representation allows X(s, d) to be approximated based on the leading
eigenfunctions (Horváth & Kokoszka 2012, Bohorquez et al. 2016).

The leading eigenfunctions are estimated from the spectral decomposition of an appropriate
estimator of the covariance function, 6̂(d, d ′ ). As they are estimated from the data, their num-
ber is generally very small, unlike the truncation L of Section 5.2.1. Nonetheless, the method
requires estimation of the covariance function 6(d, d ′). Three common approaches exist in the
literature. Let X̃ (s, ·) = X (s, ·) − µ(·) denote the residual latent process. The first approach is
to estimate the covariance function by the sample covariance or, more generally, by a weighted
mean of the raw covariances (Hörmann & Kokoszka 2011, Gromenko et al. 2012), defined as
6̂(d, d ′ ) = ∑n

i=1 wiX̃ (si, d )X̃ (si, d ′ ); when wi = 1/n, this leads to the sample covariance estimator.
When not specified, the weights wi are determined to minimize the expected Hilbert–Schmidt
norm E[

∫
D

∫
D{6̂(u, v) −6(u, v)}2dudv], which can be solved by positing a parametric model for

the empirical semivariogram defined in Section 5.2.5; the resulting covariance is shown to be
consistent, under an increasing spatial domain assumption.

A different direction is to represent the latent process via a known set of basis functions, {Bl(·)}l,
similar to the approach shown in Section 5.2.1. Represent X̃ (s, d ) = ∑L

l=1 Bl (d )ζ̃l (s), with zero
mean random field coefficients ζ̃l (s); it follows that 6(d, d ′ ) = B⊤(d )E[ζ̃(s)ζ̃(s)⊤]B(d ′ ), where B(d )
is the L-dimensional column vector of Bl(d)s and ζ̃(s) is the L dimensional vector of ζ̃l (s)s. This
approach is quite complex and involves fitting parametric covariance models to each pair product
of random field coefficients ζ̃l (s)ζ̃l ′ (s) (see Gromenko et al. 2012).

The last direction first fits a tensor product spline estimator 6̂crss(h; d, d ′ ) to the cross-
covariance function at spatial lag h, 6crss(h; d, d ′), by using pair products of residual processes—
specifically, {X̃ (si, d )X̃ (si′ , d ′ ) : (i, i′ ) such that ∥si − si′∥ ≤ h} (Zhang & Li 2021). Assuming the
model in Equation 8 is valid, the covariance 6(d, d ′) can be then estimated by 6̂(d, d ′ ) =∫ 1
0 6̂crss(h; d, d ′ )W (h)dh, where W(·) is a weight function, taken for simplicity to be W(h) = 1.
This direction requires the specification of the threshold 1, a tuning parameter.
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5.2.4. Penalized regression splines. A completely different direction is to model the latent
SFP using basis representation. Let {Ar (s)}Rr=1 and {Bl (d )}Ll=1 be finite-dimensional bases over
domains S and D, respectively, and assume the representation X (s, d ) = ∑R

r=1
∑L

l=1 Ar (s)Bl (d )βrl
holds, where the βrls are unknown regression coefficients. Bernardi et al. (2017) propose estimat-
ing the coefficients using a penalized criterion that reflects the spatial and temporal dependence.
The modeling framework has the advantage that it can directly accommodate additional covari-
ates or effects of interest (Arnone et al. 2019). Additionally, once the parameters are estimated, the
entire process is recovered, and thus prediction at new sites is readily available. One challenge is
the selection of smoothing parameters involved in the penalized criterion and of the appropriate
basis truncation; existing methods use CV and AIC.

5.2.5. Semivariogram and covariogram. Most of themodels presented in this section require a
valid trace semivariogram or covariogram model. One advantage of using variogram-based meth-
ods is that the variogram is robust to mean misspecification, as long as the process is weakly spatial
stationary. The empirical semivariogram can be calculated by

γ̂ (h; d, d ′ ) = 1
2|N (h)|

∑
(i,i′ )∈N (h)

{X (si, d ) − X (si′ , d )} {X (si, d ′ ) − X (si′ , d ′ )},

where N (h) = {(i, i′ ) : ∥si − si′∥ = h} and |N(h)| denotes the cardinality of the set N(h). The
trace semivariogram is then estimated as γ̂tr(h) = 1

2|N (h)|
∑

(i,i′ )∈N (h)

∫
D{X (si, u) − X (si′ , u)}2du. For

irregular data, the neighboring set is modified to N (h) = {(i, i′ ) : ∥si − si′∥ ∈ (h− ϵ, h+ ϵ )}.
Denote the trace covariogram by 6tr(h) = ∫

D 6crss(h; u, u)du; the notation emphasizes the
spatial dependence on the spatial lag solely. The empirical trace covariogram is

6̂tr(h) = 1
2|N (h)|

∑
(i,i′ )∈N (h)

∫
D
{X (si, u) − µ(u)}{X (si′ , u) − µ(u)}du.

These estimates need adjustment to ensure they are proper variogram (conditionally negative
definite) and covariogram (symmetric and positive semidefinite) models. Alternatively, valid para-
metric variogram (such as spherical,Gaussian, exponential, orMatérn) or covariogrammodels can
be fitted to these models using least squares (Cressie 2015).

5.3. Curve Prediction at Unobserved Spatial Locations

A huge advantage for modeling the spatial dependence is that one can recover an entire tra-
jectory at a new, unobserved spatial location of the spatial domain. If the SFP is modeled as in
Section 5.2.4, then estimation suffices to obtain the prediction of X(s0, ·) at a new spatial location
s0 ∈ S. In any other situation, prediction of a new curve requires prediction of the random fields.
Unlike other areas, spatial statistics, through kriging, allows us to perform prediction without
having to estimate the model components.

5.3.1. Kriging. Some of the oldest work in spatial functional data is on kriging (Goulard &
Voltz 1993). Initial approaches assumed weak stationarity and included a two-step procedure:
(a) to get a prediction at s0, for each time point d, perform kriging using all the available spatial
data {(Yij, si) : i, j, such that dij = d}, and (b) smooth the resulting predictions to ensure smoothness
across d ∈ D. This method is suitable for the case when the grid for the functional observations
is regular and not too fine. For dense functional observations, different versions of kriging have
been developed.
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Giraldo et al. (2011) coined the term ordinal kriging, a method for predicting X̂ (s0, ·) by
X̂ (s0, d ) = ∑n

i=1 λiX (si, d ) for all d ∈ D where the coefficients λi are estimated based on the
constrained criterion

min
λ1 ,...,λn

∫
D
Var

{
X̂ (s0, u) − X (s0, u)

}
du, E

[
X̂ (s0, d ) − X (s0, d )

]
= 0, ∀d ∈ D,

that ensures the prediction X̂ (s0, ·) has the smallest variance and is unbiased. Kriging has been
extended to accommodate increased flexibility in the λ weights, such as time-varying weights
of the form λi(d) (Giraldo et al. 2010) or weighting like X̂ (s0, u) = ∑n

i=1

∫
D λi(u, v)X (si, v)dv

(Monestiez & Nerini 2008). The minimization criterion is over the univariate and bivariate λ-
functions, respectively. In some cases it might be relevant to look for predictions of the form
X̂ (s0, u) = ∑n

i=1

∫ u
0 λi(v)X (si, v)dv, thus using only the curve’s behavior observed prior to the cur-

rent time point u, {X(si, d) : d ≤ u}i in predicting X̂ (s0, u). Kriging amounts to representing the
curves and the weights,λ-functions, using a finite basis system, and solving a constrained optimiza-
tion algorithm that requires a valid variogram model. The basis dimension is typically selected via
CV. Caballero et al. (2013) and Menafoglio et al. (2013) introduced universal kriging, which pro-
vides a framework for curve prediction for nonstationary processes with spatially varying mean
function.

5.3.2. Model-based prediction. When the SFP is modeled as described in Section 5.2, it makes
sense to perform prediction by predicting the random terms.We summarize the ideas for the case
of the KL model representation. Suppose the mean and the leading eigenfunctions are estimated,
and denote them by µ̂(d ) and ϕ̂k(d ), respectively. Projecting on the leading directions, we obtain
the pseudodata ξ̃k(si ) = {∫ X (si, u) − µ̂(u)}ϕ̂k(u)du, for i = 1, . . . , n. Prediction at new location
ξ̂k(s0 ) can be obtained from classical kriging or cokriging of these pseudodata (Liu et al. 2017).
The entire curve is then predicted by X̂ (s0, ·) = µ̂(·) + ∑K

k=1 ξ̂k(s0 )ϕ̂k(·), for some finite truncation
K determined using PVE.

Recently, Zhang & Li (2021) reported good numerical performance by obtaining ξ̂k(s0 ) as best
linear unbiased predictions in the random effects model Yi j = µ(di j ) +

∑K
k=1 ξk(si )ϕk(di j ) + ϵi j , for

[{(Yij, dij)j, si} : |si − s0| ≤ 1 for some threshold 1 and using consistent estimators of the mean,
leading eigenfunctions and covariances of the scalar random fields.

5.4. Available Statistical Software

Kriging is implemented in the R package geofd (Giraldo et al. 2012), or by combining the func-
tions krigeST and fit.StVariogram in the gstatR package (Pebesma 2004), the RandomFields
R package (Schlather et al. 2015), and functions from the fda (Ramsay et al. 2021) R package.
Prediction via regression is implemented in fdaPDE (Arnone et al. 2022).

6. FUTURE DIRECTIONS

In this review we attempt to cover a wide class of second-generation functional data that are
collected using several classical schemes: multivariate, longitudinal, time series, and spatial. For
each setting we discuss only a limited range of problems. In particular, we focus on Hilbert-valued
latent processes observed with measurement error; we do not discus methods for binary-valued
(Serban et al. 2013), nor mixed binary-continuous (Tidemann-Miller et al. 2016), nor manifold-
valued functional data, nor do we carefully consider how to accommodate additional covariate
information; for the latter, Morris (2015) discusses functional regression. Additionally, we do not
review methods for significance testing for the second order of functional data (Crainiceanu et al.
2012).
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The research in this area is motivated and often outpaced by data applications that increase
not only in dimension but also in complexity. Hierarchical complexity enhances for all the dis-
cussed second-generation functional data, when multiple (nested) functions are observed within
one subject or cluster, leading to multilevel second-generation functional data. Key modeling ap-
proaches for multilevel second-generation functional data (see Scott et al. 2013, chapter 13, for a
review and data examples) can be adopted for more complex structured data. For example, mul-
tiple trajectories can be measured at each spatial location, leading to multilevel spatial functional
data (Staicu et al. 2015, Scheffler et al. 2020); multilevel MVFD occurs if multidimensional tra-
jectories are hierarchically observed (Wang & Tsung 2021). Some other pressing open problems
are modeling data with non-Euclidean-valued functional data,modeling FTS when the functional
observations are observed partially or are generalized-valued, and developing significance tests for
MVFD where the functional observations are recorded on sparse grids.
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Shamshoian J, Şentürk D, Jeste S, Telesca D. 2022. Bayesian analysis of longitudinal and multidimensional

functional data. Biostatistics 23(2):558–73
Staicu AM,Crainiceanu CM,Carroll RJ. 2010. Fast methods for spatially correlated multilevel functional data.

Biostatistics 11(2):177–94
Staicu AM, Lahiri SN, Carroll RJ. 2015. Significance tests for functional data with complex dependence

structure. J. Stat. Plan. Inference 156:1–13
Tidemann-Miller B, Reich B, Staicu AM. 2016. Modeling multivariate mixed-response functional data.

arXiv:1601.02461 [stat.ME]
Tokushige S, Yadohisa H, Inada K. 2007. Crisp and fuzzy k-means clustering algorithms for multivariate

functional data. Comput. Stat. 22(1):1–16
Volkmann A. 2021. multifamm: Multivariate functional additive mixed models. R Package, version 0.1.1.

https://CRAN.R-project.org/package=multifamm
Volkmann A, Stöcker A, Scheipl F, Greven S. 2021. Multivariate functional additive mixed models.

arXiv:2103.06606 [stat.ME]
Wang JL, Chiou JM, Müller HG. 2016. Functional data analysis. Annu. Rev. Stat. Appl. 3:257–95
Wang K, Tsung F. 2021. Hierarchical sparse functional principal component analysis for multistage

multivariate profile data. IISE Trans. 53(1):58–73
Wood SN. 2006.Generalized Additive Models: An Introduction with R. Boca Raton, FL: Chapman andHall/CRC
Wrobel J, Park SY, Staicu AM, Goldsmith J. 2016. Interactive graphics for functional data analyses. Stat

5(1):108–18
Xiao L. 2020. Asymptotic properties of penalized splines for functional data. Bernoulli 26(4):2847–75
Yuan Y, Gilmore JH, Geng X, Martin S, Chen K, et al. 2014. FMEM: Functional mixed effects modeling for

the analysis of longitudinal white matter Tract data.NeuroImage 84:753–64
Zhang H, Li Y. 2021. Unified principal component analysis for sparse and dense functional data under spatial

dependency. J. Bus. Econ. Stat. https://doi.org/10.1080/07350015.2021.1938085
Zhang JT, Chen J. 2007. Statistical inferences for functional data. Ann. Stat. 35(3):1052–79
Zhang X, Shao X, Hayhoe K, Wuebbles DJ. 2011. Testing the structural stability of temporally dependent

functional observations and application to climate projections. Electron. J. Stat. 5:1765–96
Zhu H, Chen K, Luo X, Yuan Y, Wang JL. 2019. FMEM: functional mixed effects models for longitudinal

functional responses. Stat. Sin. 29(4):2007
Zhu H, Li R, Kong L. 2012. Multivariate varying coefficient model for functional responses. Ann. Stat.

40(5):2634
Zhu H, Morris JS, Wei F, Cox DD. 2017. Multivariate functional response regression, with application to

fluorescence spectroscopy in a cervical pre-cancer study. Comput. Stat. Data Anal. 111:88–101
Zhu H, Strawn N, Dunson DB. 2016. Bayesian graphical models for multivariate functional data. J. Mach.

Learn. Res. 17(204):1–27
Zipunnikov V, Greven S, Shou H, Caffo B, Reich DS, Crainiceanu C. 2014. Longitudinal high-dimensional

principal components analysis with application to diffusion tensor imaging of multiple sclerosis. Ann.
Appl. Stat. 8(4):2175

Zuo Y, Serfling R. 2000. General notions of statistical depth function. Ann. Stat. 28(2):461–82

572 Koner • Staicu

https://CRAN.R-project.org/package=multifamm
https://doi.org/10.1080/07350015.2021.1938085

