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Abstract

The construction of score-driven filters for nonlinear time series models
is described, and they are shown to apply over a wide range of disciplines.
Their theoretical and practical advantages over other methods are high-
lighted.Topics covered include robust time seriesmodeling, conditional het-
eroscedasticity, count data, dynamic correlation and association, censoring,
circular data, and switching regimes.
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1. INTRODUCTION

One of the principal aims of time series modeling is to construct filters—that is, functions of cur-
rent and past observations that estimate where we are now, where we were in the past, and where
we might be in the future. These objectives are called nowcasting, smoothing, and forecasting,
respectively. When models are linear and Gaussian, the optimal solutions to all three problems
are given by the Kalman filter and smoother. For nonlinear models, recent work has shown that
observation-drivenmodels based on the score of the conditional distribution provide an integrated
solution to the forecasting problem that is theoretically sound and yields results that, on the whole,
compare favorably with those obtained by competing methods.

The purpose of observation-driven nonlinear models is to estimate a changing moment, and
so they entail setting up a dynamic equation driven by a variable whose expectation is equal to that
moment. The generalized autoregressive conditional heteroscedasticity (GARCH) model, which
is widely used in finance, is a leading example.Many other nonlinear models have dynamics based
on arbitrary forcing variables whose main appeal is a simple interpretation. While such models
are important historically, they become less appealing once the score-driven solution becomes
apparent. The use of the score guards against features of the data, such as extreme values, that
might throw a filter off course. In contrast to moment-based models, robustness is automatically
built into the filter.More generally, the score leads to the construction of forcing variables in filters
that respect the key features of the data and whose forms have a natural and intuitive interpretation
even in cases where the analytic expression is complex; scores for dynamic copulas are a good
illustration.

The defining characteristic of observation-driven models is that they are formulated in terms
of the one-step ahead predictive distribution. Hence the likelihood function is immediately avail-
able. This is not the case with nonlinear parameter-driven models, a distinction due to Cox (1981).
At one time, parameter-driven models seemed the way forward as they could impose a meaningful
structure that reflected the nature of the problem and could potentially impose the kind of restric-
tions on the parameter space inherent in linear state spacemodels.More computing power and the
attendant algorithmic development led to an increase in the use of computer-intensive approaches,
especially Bayesian methods (see Durbin & Koopman 2012). However, when observation-driven
models are driven by the score, the balance shifts and, in many situations, they become more at-
tractive than parameter-driven models. Indeed, a score-driven model can be regarded as providing
an approximation to the computer-intensive solution for the corresponding parameter-driven un-
observed componentsmodel.Koopman et al. (2016) demonstrate that the approximation is usually
a very good one.

This article discusses the score-driven approach to modeling in a wide range of situations.
The aim is to consolidate the new results that have appeared since the publication of the book
by Harvey (2013) and the articles by Creal et al. (2011, 2013).1 However, it is not intended to be
comprehensive in its coverage. A full list of papers can be found on a website hosted by the Free
University of Amsterdam (http://www.gasmodel.com/index.htm).

Some packages already exist for estimating score-driven models. The new TSL (time series lab)
package of Lit et al. (2021) is menu driven and intended to be a companion to the STAMP package
of Koopman et al. (2021). Programs in R are provided by Ardia et al. (2019).

1Score-driven models are called dynamic conditional score models by Harvey (2013) and generalized autore-
gressive score models by Creal et al. (2013).
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2. UNOBSERVED COMPONENTS AND FILTERS

A simple Gaussian signal plus noise model for T observations, y, . . . , yT, is

yt =μt + εt , εt ∼ NID
(
0, σ 2

ε

)
, t = 1, . . . ,T , 1.

μt+1 =φμt + ηt , ηt ∼ NID(0, σ 2
η ),

where the irregular and level disturbances, εt and ηt respectively, are mutually independent and
NID(0, σ 2) denotes normally and independently distributed with mean zero and variance σ 2. The
autoregressive parameter is φ and the signal-noise ratio is q = σ 2

η /σ
2
ε .

The unobserved component model in Equation 1 is in state space form, and as such, it may be
handled by the Kalman filter. The parameters φ and q can be estimated by maximum likelihood,
with the likelihood function constructed from the one-step ahead prediction errors. The Kalman
filter can be expressed as a single equation that combines μt�t − 1, the optimal estimator of μt based
on information at time t − 1, with yt in order to produce the best estimator of μt + 1. Writing this
equation together with an equation that defines the one-step ahead prediction error, vt, gives the
innovations form of the Kalman filter:

yt =μt|t−1 + vt , 2.

μt+1|t =φμt|t−1 + ktvt .

The Kalman gain, kt, depends on φ and q. In the steady state, kt is constant.
When the disturbance term, εt, in Equation 1 is non-Gaussian, the Kalman filter is no longer

optimal unless attention is confined to linear filters. The main ingredient in the score-driven
approach is the replacement of vt in the Kalman filter by a variable, ut, that is proportional to
the score, �ln f (yt; μ)/�lnμ, of an assumed conditional distribution, f (yt; μ). Thus, the second
line in Equation 2 becomes

μt+1|t = φμt|t−1 + κut , 3.

where κ is treated as an unknown parameter. The dynamics in a score-driven model need not be
confined to location. A filter such as Equation 3 may be cast in terms of the score with respect to
any parameter, θ .When the information matrix is time invariant and the model is identifiable, the
asymptotic distribution for the maximum likelihood estimator may be derived (see Harvey 2013,
chapter 2).

Likelihood-based tests can be constructed. For example, a test of time variation may be carried
out, prior to fitting a model, using a portmanteau statistic constructed from the autocorrelations
of the scores in the static model. A test of this kind can be derived as a Lagrange multiplier test of
the null hypothesis that κ0 = κ1 = · · · = κP − 1 = 0, against the alternative that κ i �= 0 for some
i = 0, . . . , P − 1, in the dynamic model

θt|t−1 = ω + κ0ut−1 + · · · + κP−1ut−P , t = 1, . . . ,T 4.

(see Harvey 2013, section 2.5; Harvey & Thiele 2016; Calvori et al. 2017).

3. DISTRIBUTIONS AND SCORES

The location-dispersion model is

yt = μ+ ϕεt , − ∞ < yt < ∞, t = 1, . . . ,T , 5.
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where μ is location; the scale, ϕ > 0, is called the dispersion; and εt is a standardized variable with
a probability density function (PDF) that depends on one or more shape parameters. With an
exponential link function, ϕ = exp λ, the score for λ is

∂ ln ft (yt;μ, λ)/dλ = (yt − μ)∂ ln ft (yt;μ, λ)/∂μ− 1, t = 1, . . . ,T.

For a nonnegative variable, the location/scale model is

yt = ϕεt , yt ≥ 0, t = 1, . . . ,T , 6.

where the standardized variable, εt, has unit scale. The location is proportional to the scale, ϕ.
Provided the mean of εt exists, E(yt) = ϕE(εt).

Many of the distributions used for location-dispersion and location/scale models are related.
As a result there is a unity in much of the technical discussion as it pertains to score-driven models.
The generalized beta distribution of the second kind (GB2 distribution) plays a prominent role.
Its PDF is

f (yt;ϕ,υ, ξ , ς ) = υ(yt/ϕ)υξ−1

αB(ξ , ς )
[
(yt/ϕ)υ + 1

]ξ+ς , yt ≥ 0, ϕ, υ, ξ , ς > 0, 7.

where ϕ is the scale parameter; υ, ξ , and ς are shape parameters; and B(ξ , ς ) is the beta function
(see Kleiber &Kotz 2003, chapter 6).GB2 distributions are fat tailed2 for finite ξ and ς with upper
and lower tail indices of η = ςυ and η = ξυ, respectively. The GB2 distribution contains many
important distributions as special cases, including the Burr (ξ = 1) and log-logistic (ξ = 1, ς = 1).
Other distributions are derived by simple transformations, as in the cases of F, generalized t, and
exponential generalized beta of the second kind (EGB2). All the scores are functions of a variable
that has a standard beta distribution.

The GB2 distribution, Equation 7, can be reparameterized so that the (upper) tail index re-
places ς—that is, we define η = υς . To get the generalized gamma as a limiting case as η → ∞,
it is necessary to redefine the scale parameter in the GB2 distribution as ϕη1/υ so that its PDF
becomes

f (yt;ϕ, υ, ξ , η) = υ(yt/ϕ)υξ−1

ϕηξB(ξ , η/υ )
[
(yt/ϕ)υ /η + 1

]ξ+η/υ , yt ≥ 0, ϕ, υ, ξ , η > 0. 8.

The generalized gamma distribution is thin tailed, and the distributions of the scores are functions
of a variable that has a standard gamma distribution.

4. LOCATION

The stationary first-order score-driven model corresponds to the Gaussian innovations form,
Equation 2, and is

yt =μt|t−1 + vt = μt|t−1 + exp(λ)εt , t = 1, . . . ,T ,

μt+1|t = δ + φμt|t−1 + κut , |φ| < 1, 9.

where ω= δ/(1 − φ) is the unconditional mean of μt�t − 1; εt is a serially independent, standardized
variate; and ut is proportional to the conditional score. More generally, a quasi–autoregressive–
moving-average–type model of order (p, r) is

μt+1|t = δ + φ1μt|t−1 + · · · + φpμt−p+1|t−p + κ0ut + κ1ut−1 + · · · + κrut−r. 10.

2Embrechts et al. (1997) define various categories of tails.
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More than one component is possible. These components may be nonstationary, as in the model
with trend and seasonality estimated by Caivano et al. (2016). Explanatory variables can be intro-
duced as shown by Harvey & Luati (2014).

An important aspect of the score-driven model is to guard against outliers. The attractions of
using the t-distribution for this purpose are discussed by Lange et al. (1989). In this article, the
t-distribution is discussed in the wider context of the generalized t and exponential GB2 distribu-
tions and the connections with the robustness literature, as described by Maronna et al. (2006),
are explored.

4.1. Student’s t and Generalized t

The generalized Student’s t-distribution proposed by McDonald & Newey (1988) contains the
general error distribution (GED) and the Student’s t-distribution as special cases. The PDF is

f (yt;μ, υ, η) = υ

2η1/υ
1

B(1/υ, η/υ )
1(

1 + ∣∣(yt − μ)/ϕ
∣∣υ /η)(η+1)/υ , −∞ < yt < ∞, 11.

where υ and η are positive shape parameters and υ = 2 gives Student’s twith η degrees of freedom.
The distribution has fat tails when the tail index, η, is finite. Letting η→ ∞ yields the GED, with
υ = 1 giving the Laplace or double exponential distribution and υ = 2 the Gaussian distribution.
The absolute value of a generalized t variable has a GB2 density in the form of Equation 8, but
with the constraint ξ = 1/υ, so the mode is at zero. When location is dynamic, its conditional
score is

∂ ln ft (yt;μt|t−1, υ, η)
∂μt|t−1

= η + 1
ηeλ

(1 − bt ) |εt |υ−1 sgn(yt − μt|t−1), 12.

where

bt = (
∣∣yt − μt|t−1

∣∣ e−λ )υ/η
(
∣∣yt − μt|t−1

∣∣ e−λ )υ/η + 1
, 0 ≤ bt ≤ 1, 0 < η < ∞, 13.

is distributed as beta(1/υ, η/υ) (see Harvey & Lange 2017). Provided η is finite, the score (influ-
ence) function of location is redescending in that it approaches zero as y moves away from zero.

Because the u′
t s are IID(0, σ 2

u )—that is, independent and identically distributed with zero mean
and variance σ 2

u—μt�t − 1 is weakly and strictly stationary so long as |φ| < 1. All moments of ut ex-
ist, and the existence of moments of yt is not affected by the dynamics. The autocorrelations can
be found from the infinite moving average representation. The patterns are as they would be for
a Gaussian model (see Harvey 2013, chapter 3). Maximum likelihood estimation is straightfor-
ward, and for a first-order dynamic equation (as in Equation 9), an analytic expression for the
information matrix is available.

4.2. Exponential Generalized Beta Distribution of the Second Kind

The EGB2 distribution results from taking the logarithm of a variable with a GB2 distribution,
Equation 7. It has light (exponential) tails. When ξ = ς , it is symmetric, with ξ = ς = 1 giving a
logistic distribution. The normal distribution is obtained as a limiting case when ξ = ς → ∞.

The score function is bounded for positive ξ and ς , giving a gentle form of Winsorizing.
Specifically,

∂ ln ft (yt;μt|t−1,ϕ, υ, ξ , ς )/∂μt|t−1 = υ(ξ + ς )bt (ξ , ς ) − υξ , t = 1, . . . ,T ,
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Figure 1

Location score for t4 (thick blue line), logistic (thin red line), and normal (dashed gray line) distributions. All
these distributions have unit standard deviation.

where

bt (ξ , ς ) = e(yt−μt|t−1 )υ/(e(yt−μt|t−1 )υ + 1) 14.

has a beta distribution with parameters ξ and ς . Because 0 ≤ bt(ξ , ς ) ≤ 1, it follows that as yt → ∞,
the score approaches an upper bound of υς , whereas yt → −∞ gives a lower bound of −υξ (see
Caivano & Harvey 2014). Figure 1 contrasts the score with that of a t4 distribution. The shapes
are unaltered if the scores are divided by their information quantities.

5. SCALE

Since the 1980s, the GARCHmodel has been the standard way of modeling changes in the volatil-
ity of returns (see Bollerslev et al. 1994). It is a moment-based, observation-driven model in which
the conditional variance is a linear function of past squared observations. The first-order case, the
GARCH (1, 1) model, is

yt = μ+ σt|t−1εt , εt ∼ IID(0, 1), t = 1, . . . ,T , 15.

and

σ 2
t|t−1 = δ + βσ 2

t−1|t−2 + αy2t−1, δ > 0,β ≥ 0,α ≥ 0. 16.

The GARCH-t model introduced by Bollerslev (1987) has long been an industry standard. The
restrictions on the parameters ensure that the variance remains positive. An alternative way of
achieving this objective is to set up the dynamic equation in terms of the logarithm of σ 2

t|t−1. This
is the exponential GARCH (EGARCH)model ofNelson (1991). In the corresponding parameter-
driven stochastic volatility (SV) model, the logarithm of the standard deviation, λt in

yt = μ+ σtεt , σ 2
t = exp (2λt ) , εt ∼ IID (0, 1) , 17.
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is an unobserved component. It is usually set up as a Gaussian first-order autoregressive pro-
cess, though it seems that there is no compelling reason for an assumption of Gaussianity. The
likelihood function is not available in closed form, so computer-intensive methods are needed
to estimate it efficiently. Nelson showed that the EGARCH model could be regarded as an ap-
proximate filter for the SV model. However, in his classic formulation the forcing variable is the
absolute value of the standardized observation and the conditions for the existence of the mo-
ments of the observations do not normally hold when the conditional distribution is Student’s t
with finite degrees of freedom.Using the score to define the forcing variable solves this problem.3

The score-driven EGARCH model is set up as

yt = μ+ εt exp(λt|t−1), t = 1, . . . ,T , 18.

where the ε′
t s are IID with location zero and unit scale (the variance need not exist). The stationary

first-order dynamic model for λt�t − 1, the logarithm of the scale, is

λt+1|t = ω(1 − φ) + φλt|t−1 + κut , |φ| < 1, 19.

where ut is the score of the distribution of yt conditional on past observations; λ1|0 = ω, φ, and
κ are parameters. When the conditional distribution is fat tailed, the score is bounded, and so
extreme observations are downweighted. As is clear from Equation 16, this does not happen with
the GARCH-t model. Letting the conditional distribution be Student’s t leads to a model known
as Beta-t-EGARCH. The stationarity conditions are straightforward because in Equation 19, all
that is required is that |φ| < 1, and as Harvey & Lange (2017) show, the invertibility conditions
of Blasques et al. (2018) will be satisfied in most practical situations. This model has now been
widely applied and shown to be more attractive than the standard GARCH-t model from both
the practical and theoretical points of view (see, for example, Harvey 2013, chapter 4, and Catania
& Nonejad 2020).

5.1. Generalized t Exponential Generalized Autoregressive Conditional
Heteroscedasticity

A generalized Student’s t-distribution in Equation 18 gives what Harvey & Lange (2017) call the
Beta-Gen-t-EGARCH model. The GED is a limiting case, but the problem with the resulting
Gamma-GED-EGARCH model is that the score is not bounded and so is vulnerable to fat tails.
The classic EGARCH model of Nelson (1991) is a special case of the Gamma-GED-EGARCH
model obtained when the distribution of the observations is Laplace. The conditional score for
the logarithm of the dynamic scale parameter of the generalized t-distribution is

ut = ∂ ln ft (yt; λt|t−1, υ, η)/∂λt|t−1 = (η + 1) bt − 1, 20.

where bt is as in Equation 13, but with scale dynamic, rather than location. As |yt| → ∞, ut → η, so
the score is bounded for finite η. This reflects a general result that in a location/dispersion model
with a fat-tailed distribution, the score for location is redescending, whereas the score for scale is
not.

The fact that bt is distributed as beta(1/υ, η/υ) enables exact expressions for the moments and
autocorrelations of |yt|c, −1 < c < η, to be found and the information matrix to be constructed.
Much of the theory can be further extended to handle skewness and asymmetry. The advantage

3The solution is implied by Bollerslev et al. (1994), where a forcing variable based on the generalized t-
distribution is proposed. However, the idea was not followed up.
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of the generalized t-distribution is that it has a sharp peak when υ < 2 and this turns out to be
characteristic of many series of returns; for example,Harvey & Lange (2017) estimate υ to be 1.34
for silver returns.

5.2. Asymmetric Impact Curves (Leverage)

The response of volatility to a change in asset price, yt, is often asymmetric. This asymmetry, or
leverage, can be captured in an EGARCH model by the modification

λt+1|t = ω (1 − φ) + φ λt|t−1 + κ ut + κ∗u∗
t , 21.

where ut is the scale score of Equation 20, u∗
t = sgn (−εt )(ut + 1), and κ∗ is a new parameter that,

because the negative of the sign of the return is taken, is usually expected to be positive.When the
distribution of εt is symmetric, u∗

t has zero mean and E(utu∗
t ) = 0. The information matrix for a

Beta-t-EGARCH model with dynamics as in Equation 21 is given by Harvey (2013, pp. 121–24).
Identifiability requires only that either κ or κ∗ be nonzero, so Wald and likelihood-ratio tests of
the null hypothesis that one of them is zero can be carried out.

Figure 2 shows the impact curves, κ ut + κ∗u∗
t , for the Beta-t-EGARCH model for a t5 distri-

bution.The curves,which are plotted against the standardized variable, yt, range from the symmet-
ric, in which κ = 1 and κ∗ = 0, to the antisymmetric in which κ = 0 and κ∗ = 1. In the intermediate
case, when κ = κ∗ = 1, positive values of yt have no effect on volatility.

The standard way of incorporating leverage effects intoGARCHmodels is to include a variable
in which the squared observations are multiplied by an indicator, I(yt < 0), taking the value one
for yt < 0 and zero otherwise (see Glosten et al. 1993, p. 1788). This model is unable to allow
for the asymmetric response in Figure 2. The sign is not used because it could give a negative
conditional variance.

7.552.50–2.5–5–7.5

10

7.5

5

2.5

0

–2.5

–5

Standardized y

Impact

Figure 2

Impact curve for t5 against a standardized y. The thick blue line is symmetric, the thin red line has κ = κ∗,
and the medium dashed purple line is antisymmetric.
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5.3. Components and Long Memory

Long memory in scale may be modeled by a fractionally integrated process. For example, Janus
et al. (2014) fit the autoregressive fractionally integrated moving average score-driven model

(1 − L)d (λt+1|t − ω) = φ(1 − L)d (λt|t−1 − ω) + κ ut ,

where L is the lag operator, to four stocks and find values of d between 0.43 and 0.75. A more
appealing approach is to fit two components. Thus with leverage included,

λt|t−1 = ω + λ1,t|t−1 + λ2,t|t−1, t = 1, . . . ,T ,

λi,t+1|t = φi λi,t|t−1 + κi ut + κ∗
i u

∗
t , i = 1, 2,

22.

where φ1 > φ2 if λ1, t�t − 1 denotes the long-run component. Identifiability requires φ1 �= φ2, which
is implicitly imposed by setting φ1 > φ2, together with κ1 �= 0 or κ∗

1 �= 0 and κ2 �= 0 or κ∗
2 �= 0.

A two-component model allows different asymmetric effects in the short run and the long run.
There seems to be a growing body of evidence suggesting that an asymmetric response is confined
to the short-run volatility component. Indeed, short-run volatility may even decrease after a good
day, as in Figure 2, because it calms the market.

5.4. Autoregressive Conditional Heteroscedasticity in Mean

The EGARCH-Mmodel is a modification of the ARCH in mean model of Engle et al. (1987), in
which a time-varying risk premium, αexp(λt�t − 1), is added to the right-hand side of Equation 18.
A two-component model not only deals with differing leverage effects in the long and short run
but also makes it possible to separate out the effects of long-run and short-run movements in
volatility on the mean. Thus, the model generalizes to

yt = μ+ α1 exp(ω + λ1,t|t−1) + α2[exp(λ2,t|t−1) − 1] + εt exp(λt|t−1), 23.

where μ, α1, ω, and α2 are parameters. The equity risk premium is then captured by the long-
run component, with an equilibrium level of μ + α1expω. Harvey & Lange (2018) demonstrate
that a two-component score-driven model with symmetric long-run volatility (that is, κ∗

1 = 0)
coupled with antisymmetric short-run volatility (κ2 = 0) provides a good fit and yields a plausible
interpretation of market behavior.This accords with the conclusion of Adrian&Rosenberg (2008,
p. 3015), in that the short-run component appears to capture shocks to market skewness, whereas
the long-run component is related to business cycle risk.

6. LOCATION/SCALE

In the location/scale model, the structure is as for EGARCH—that is,

yt = εt exp(λt|t−1), yt ≥ 0, t = 1, . . . ,T. 24.

With the GB2 parameterization of Equation 8, ϕ = exp(λt�t − 1) and

∂ ln ft (yt; λt|t−1,ϕ, υ, ξ , η)
∂λt|t−1

= ut = (υξ + η)bt (ξ , η) − υξ , 25.

where

bt (ξ , η) = (yt e−λt|t−1 )υ/η
(yt e−λt|t−1 )υ/η + 1

, t = 1, . . . ,T ,
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is distributed as beta(ξ , η/υ). As y → ∞, the score approaches an upper bound of η. The corre-
sponding score for the generalized gamma distribution is (yt e−λt|t−1 )υ − υξ , with (yt e−λt|t−1 )υ dis-
tributed as a gamma variate with unit scale and shape parameter ξ .

Special cases of the GB2 distribution have been used in finance to model time series on the
range of daily stock prices and the daily realized variance (or volatility) (see, for example, Harvey
2013, chapter 5, and Opschoor & Lucas 2021). Realized variance may exhibit long memory and
leverage effects, as well as having fat tails. A GB2 location/scale model (Equation 24) can capture
these characteristics by employing two components, as in Equation 22, with the leverage deter-
mined by the sign of (demeaned) returns, rt—that is, u∗

t = sgn (−rt )(ut + υξ ).
When the GB2 is parameterized as in Equation 7, taking logarithms gives the location-

dispersion model

ln yt = λt|t−1 + ln εt , t = 1, . . . ,T ,

with ln εt having an EGB2 distribution. The fact that the EGB2 distribution tends to a normal as
ξ , ς → ∞ shows the link with unobserved component models, such as the one used by Alizadeh
et al. (2002) for modeling the logarithm of the intraday range in the logarithm of an asset price or
exchange rate.

7. COUNT DATA AND QUALITATIVE OBSERVATIONS

Time series models for count data and qualitative observations need to take account of the nature
of the data in constructing dynamic equations. Despite the lack of a general asymptotic theory
for maximum likelihood estimation, such evidence as there is lends support to the dynamics being
driven by the standardized score.

7.1. Count Data

The probability mass function of the Poisson distribution is

p(yt;μ) = μyt e−μ/yt !, μ > 0, yt = 0, 1, 2, . . . , 26.

where the parameter μ is both mean and variance. When the mean changes over time, an ex-
ponential link function, μt�t − 1 = expθ t�t − 1, ensures that it remains positive even though θ t�t − 1

is unconstrained. The conditional score of θ t�t − 1 is yt − expθ t�t − 1, which, when divided by the
information quantity, gives ut = ytexp(−θ t�t − 1) − 1 = yt/μt�t − 1 − 1.

The negative binomial distribution allows for overdispersion. It is convenient to parameterize
it in terms of the mean so the probability mass function for the dynamic model is

p(yt;μt|t−1, υ ) = �(υ + yt )
yt !�(υ )

μ
yt
t|t−1(υ + μt|t−1)−yt (1 + μt|t−1/υ )−υ , yt = 0, 1, 2, . . . ,

where υ > 0; the Poisson distribution is obtained by letting υ → ∞. With the exponential link
function, dividing the score for θ t�t − 1 by the information quantity gives ut = yt/μt�t − 1 − 1, just as
for the Poisson distribution.

Zucchini et al. (2016) give weekly data on firearm homicides in Cape Town over the period
1986–1991. Models were fitted to the first 305 observations, assuming a random walk dynamic
equation,

μt+1|t = μt|t−1 + κut , t = 1, . . . ,T ,

with μ1�0 estimated as a fixed parameter. The negative binomial gave a log-likelihood of −589.15,
as opposed to −610.41 for the Poisson distribution.The estimates were κ̃ = 0.097 and υ̃ = 4.137.
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Weekly firearm homicides in Cape Town, together with predictive filter for weeks in 1990 and 1991 and multistep forecasts at the end.

The (predictive) filtered estimates, μt�t − 1, and multistep forecasts, computed using the TSL pack-
age of Lit et al. (2021), are shown in Figure 3. As can be seen, the forecasts have adapted to the
higher level toward the end of the sample.

Harvey & Kattuman (2020) describe the fitting of a score-driven negative binomial model to
data on deaths from coronavirus disease 2019 (COVID-19). Further details of its implementation
are provided by Lit et al. (2021).

Gorgi (2020) generalizes the score-driven negative binomial model to allow for outliers. He is
able to demonstrate consistency and asymptotic normality of the maximum likelihood estimator.

The Skellam distribution is used to model the difference between two counts. For example,
Koopman & Lit (2019) set up a score-driven model to predict the goal difference in football
matches.

7.2. Categorical Data

In the binary model, where the probability that yt = 1 is π and the probability that yt = 0 is 1 −
π , the usual link function is the logistic. Thus, with time variation,

πt|t−1 = 1/(1 + exp(−θt|t−1)), t = 1, . . . ,T.

The score divided by the information quantity is

ut = yt − πt|t−1

πt|t−1(1 − πt|t−1)
.

Lit et al. (2021) apply the model to the annual Oxford–Cambridge boat race. A dynamic model
for data from a binomial distribution may be formulated in the same way.

Observations frommore than two categories can be handled by extending the binarymodel; the
general logistic transformation described by Catania (2021) can be used. Ordered categorical data
require a different treatment. The observations are defined in terms of intervals on a continuous
distribution for a variable, xt. The probability of being in a given interval is obtained from the
cumulative distribution function (CDF) of xt, and these probabilities define the probability mass
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function of the discrete distribution of yt. Koopman & Lit (2019) model the results of football
matches using the ordered categorical variables win, draw, and lose.

8. MULTIVARIATE MODELS

This section describes dynamic models for a set ofN variables in a vector yt under the simplifying
assumption that they have zero mean. The emphasis is on changing correlation and association.

8.1. Multivariate Scale and Dynamic Correlation

The dynamics in a general GARCHmodel depend on the elements of the filtered covariance ma-
trix,Vt|t−1, for a multivariate-t or Gaussian distribution. As such,Vt|t−1 contains a large number of
parameters, and it is not clear how best to impose restrictions. Furthermore, there is no guarantee
that Vt|t−1 will be positive definite at all points in time. A better way forward is to follow Creal
et al. (2011) and work with a scale matrix, �t|t−1, that allows volatility and correlation parameters
to be separated by the decomposition

�t|t−1 = Dt|t−1Rt|t−1Dt|t−1, 27.

whereDt|t−1 is diagonal and Rt|t−1 is a positive-definite correlation matrix with diagonal elements
equal to unity. An exponential link function may be used for the volatilities in Dt|t−1. Joint mod-
eling of dynamic scale and correlation can be based on a dynamic equation of the form

θt+1|t = (I − �)ω + �θ t|t−1 +Kut ,

where θt|t−1= (λ′
t|t−1, γ

′
t|t−1)

′, with the N(N− 1)/2 vector γt|t−1 determining Rt|t−1 and λt|t−1 mod-
eling the EGARCH effects. The parameters are contained in the � and K matrices and the ω
vector; these are typically restricted.

The attraction of implementing the score-driven approach in this way becomes clear when
modeling changing correlation. Consider the simple setup of a bivariate model with a conditional
Gaussian distribution and let the variances be time invariant. Dividing the observations by their
standard deviations gives variables x1t and x2t. It might be thought that the product of x1t and x2t
provides the information needed to drive the dynamics of correlation, but this turns out not to be
the case. In order to keep the correlation coefficient, ρt�t − 1, in the range −1 ≤ ρt�t − 1 ≤ 1, the link
function

ρt|t−1 = tanh(γt|t−1) = (exp(2γt|t−1) − 1)/(exp(2γt|t−1) + 1) 28.

may be used. The dynamic equation for the unconstrained variable γ t�t − 1 depends on the score,
which, when written in terms of ρt�t − 1, is

uγ t = 1
4
(x1t + x2t )2

1 − ρt|t−1

1 + ρt|t−1
− 1

4
(x1t − x2t )2

1 + ρt|t−1

1 − ρt|t−1
+ ρt|t−1.

The score only reduces to x1tx2t when ρt�t − 1 = 0. In contrast, when ρt�t − 1 is close to one, the
weight given to (x1t + x2t)2 is small and the second term dominates. As a result, uγ t is negative, and
so ρt + 1�t falls unless x1t and x2t are close (Figure 4) (see also the discussion in Creal et al. 2011
and Harvey 2013, chapter 7).

The scores may be computed under the null hypothesis of constant correlation ρt�t − 1 = r,
where r is the maximum likelihood estimator of ρ and is used in a portmanteau test. When r =
0, moment-based tests are obtained because ut = x1tx2t, but when r �= 0 the score-based tests can
be much more powerful (see Harvey & Thiele 2016). The tests can be modified for a bivariate
t-distribution with estimated EGARCH models.
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Plot of score, u, against correlation, ρ, for a bivariate Gaussian distribution with x1 = x2 = 2 (dashed green
line) and x1 = 4; x2 = 1 (solid red line).

8.2. Dynamic Copulas

A copula models the association between two variables independently of their marginal distribu-
tions. It is a joint distribution function of standard uniform random variables, that is

C(u1, u2) = Pr(U1 ≤ u1,U2 ≤ u2), 0 ≤ u1, u2 ≤ 1.

As such it provides a comprehensive measure of dependence. The upper and lower coefficients of
tail dependence are often of special interest in the context of risk (see McNeil et al. 2005). When
two variables have a bivariate normal distribution, they are asymptotically independent in the tails
because the coefficients of tail dependence are both zero (unless ρ = 1). However, a t-copula does
exhibit tail dependence.

Time-varying copulas are best modeled using the conditional score to drive a dynamic equation
for the shape parameter (see Patton 2013, pp. 931–32). The viability of this approach was first
explored by Creal et al. (2011) in an application of dynamic Gaussian copulas to exchange rate
data. Expressions for the conditional score can be quite elaborate. However, a graph of the score
can show that, once obtained, it has a natural and intuitive interpretation. The score for a Clayton
copula shown by Harvey (2013, p. 229) provides an illustration.

Janus et al. (2014) use the t-copula with t-marginals, thereby allowing the degrees of freedom
to be different in the marginal distributions as well as in the joint distribution. More applications
are presented by De Lira Salvatierra & Patton (2015), Oh & Patton (2018), Lucas et al. (2017),
and Bernardi & Catania (2019).

8.3. Spatial Correlation, Count Data, and Location/Scale Models

A number of other models for different aspects of multivariate time series have been proposed.
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8.3.1. Spatial correlation. Blasques et al. (2016) set up a dynamic model for spatial autocorre-
lation as

yt = ρt|t−1Wyt + Xtβ + εt , εt ∼ NID(0,�), t = 1, . . . ,T ,

where W is the spatial weight matrix. The time-varying correlation, ρt�t − 1, is a scalar kept in
the range by the transformation of Equation 28—that is, ρt�t − 1 = tanh (γ t�t − 1). The score with
respect to γ t�t − 1 is

ut = {y′
tW

′�−1(yt − ρt|t−1Wyt−Xtβ)−tr[(I − ρt|t−1W)−1W]}(1 − ρ2
t|t−1)

(see also Catania & Billé 2017).

8.3.2. Bivariate Poisson distribution. The bivariate Poisson distribution can be fitted to two
series of count data. The parameterization is similar to that of the football example discussed for
the Skellam distribution. Koopman & Lit (2019) found the forecasting performance of the model
to be at least as good as that of the corresponding parameter-drivenmodel, but with only a fraction
of the estimation time.

8.3.3. Dynamic location/scale model. Realized covariance can be measured in a similar way
to realized variance, leading to the construction of N × N realized volatility covariance matrices,
Yt , t = 1, . . . , T. Opschoor et al. (2018) propose a location/scale model that uses a multivariate F
distribution. The PDF is

f (Yt | �t|t−1, ν1, ν2) = K (ν1, ν2)

∣∣�t|t−1
∣∣−ν1/2 |Yt |(ν1−N−1)/2∣∣∣I + �−1

t|t−1Yt

∣∣∣(ν1+ν2 )/2 , ν1, ν2 > N − 1,

where �t|t−1 =(ν2 −N − 1)/ν1)Vt|t−1 is a scale matrix, such that Vt|t−1 = E(Yt ) for ν1, ν2 > N
− 1, and K(ν1, ν2) = �N((ν1 + ν2)/2)�N(ν1/2)�N(ν2/2), where �N(.) is the multivariate gamma
function. When ν2 → ∞, the distribution becomes a Wishart distribution, which is the multi-
variate generalization of the chi-squared distribution (see Gorgi et al. 2019). A single entry on
the diagonal of Yt , that is, yii, t, i = 1, . . . , N, is distributed as F(ν1, ν2 − N − 2). When ν2 → ∞,
the distribution becomesWishart, the multivariate generalization of the chi–squared distribution.
Opschoor et al. (2018) model the dynamics of the covariance matrix directly with the filter

Vt+1|t = V + φVt|t−1 + κUt , t = 1, . . . ,T ,

where Ut is a score matrix for Vt|t−1. An alternative would be to decompose �t|t−1 as in
Equation 27.

9. EXTENSIONS

The score provides a solution to constructing viable dynamic models in nonstandard situations.
Some examples are set out below.

9.1. Censoring and Dynamic Tobit Models

Censoring takes place when a variable above or below a certain value is set equal to that value.
When location changes over time the challenge is how to formulate a dynamic Tobit model. A
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number of researchers, beginning with Zeger & Brookmeyer (1986), have addressed this prob-
lem when the underlying (uncensored) observations are Gaussian. However, there is no computa-
tional disadvantage to adopting other, more flexible distributions. It is in this spirit that Lewis &
McDonald (2014) propose the use of generalized t and EGB2 distributions for censored static
regression, and these distributions may be similarly employed for dynamic Tobit models. The
score-driven model automatically solves the problem of how to weight the censored observations
in the dynamic location equation.

Let xt be a variable for which the observations are subject to censoring from below—that is,

yt =
{
xt , xt > c,
c, xt ≤ c,

−∞ < xt < ∞. 29.

The lower bound, c, is usually known. Then Pr(yt = c) = Pr(xt ≤ c) = Fx(c), where Fx is the CDF
of xt. Let I(yt > c) be an indicator that is zero when yt = c and one when yt > c. The distribution
of yt is a discrete-continuous mixture, with a point mass at c, so

ln f (yt; c) = (1 − I(yt > c)) lnFx(c) + I(yt > c) ln fx(yt ). 30.

The score with respect to a changing location is therefore

∂ ln f (yt; c)
∂μt|t−1

= (1 − I(yt > 0))
∂ lnFx(c)
∂μ

+ I(yt > 0)
∂ ln fx(yt )
∂μ

. 31.

The logistic distribution, which is a special case of the EGB2 distribution, has a shape close
to that of the normal but with slightly heavier tails. The score, Equation 31, is I(yt > c)e−λbt −
e−λ(1 − bt), where bt is as defined in Equation 13. The fact that the CDF of a logistic distribution
has a simple closed form makes it an attractive choice, and it has an additional robustness bene-
fit because, in the absence of censoring, as when yt is positive in Equation 31, the score implies
Winsorizing.

Dynamic volatility can also be modeled when the observations are censored. Harvey & Liao
(2021) illustrate the viability of the method with data on Chinese stock returns that are subject to
an upper limit on the daily change.

Harvey & Ito (2019) use similar techniques for modeling time series with a variable that is
continuous, except for a significant number of zeroes. They do this by shifting a continuous
location/scale distribution to the left and censoring all the negative observations so that they are
assigned a value of zero.

9.2. Circular Data

Observations on direction are circular. When circular observations are recorded in radians, they
are usually assumed to have a von Mises density

f (yt;μ, υ ) = 1
2πI0(υ )

exp{υ cos(yt − μ)}, − π < yt ,μ ≤ π , υ ≥ 0, 32.

where Ik(υ) denotes a modified Bessel function of order k, μ denotes location (mean direction)
and υ is a nonnegative concentration parameter that is inversely related to dispersion.When υ =
0, the distribution is uniform, whereas yt is approximately N(μ, 1/υ) for large υ.

Data generated by a time seriesmodel over the real line (that is,−∞< zt<∞) can be converted
into wrapped circular time series observations in the range [−π , π ) by letting yt = ztmod(2π ) −
π , t = 1, . . . , T, as in Breckling (1989). The score-driven model for circular data is

zt = μt|t−1 + εt , t = 1, . . . ,T , 33.
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where the ε′
ts are IID random variables from a circular distribution with location zero, and the

forcing variable, ut, in the dynamic equation for μt|t − 1 is proportional to the conditional score.
A key property of a (continuous) circular distribution is that it satisfies the periodicity condition
f (y± 2πk; θ) = f (y; θ), where k is an integer and θ denotes parameters. Provided the derivatives
of the log-density with respect to the elements of θ are continuous, they too are circular in that
the periodicity condition is satisfied. The conditional distribution of the wrapped observations, yt,
is therefore the same as that of zt in Equation 33, and so the likelihood function is the same. The
problem of estimating a wrapped model, as posed by Breckling (1989), is therefore solved, and
the resulting class of models has considerable advantages over those currently in use (see Fisher
& Lee 1994).

When εt has a von Mises distribution with μ = 0, the score is ut = υsin (zt − μt|t − 1) = υsin
(yt − μt|t − 1). For first-order dynamics, Harvey et al. (2019) derive the asymptotic distribution of
the maximum likelihood estimator.

9.3. Switching Regimes and Dynamic Adaptive Mixture Models

The dynamic adaptive mixture model (DAMM) of Catania (2021) has the probability of being in
a given regime changing over time. The dynamics are modeled using the scores of the regime
probabilities in the conditional distribution. The model may be extended so that the locations
and/or scales in each of the regimes contained in the mixture are also dynamic. Again the con-
ditional scores are used, thus providing a unified approach based on well-established principles.
The scores for locations and scale, like the scores for the regime probabilities, have a natural and
intuitive interpretation.

The DAMM is designed for situations similar to those addressed by the textbook regime-
switchingmodel ofHamilton (1989).Thatmodel introduces dynamics by aMarkov chain in which
there is a fixed probability of staying in the current regime or moving to another. The regime
is not observed—hence the term hidden Markov chain (e.g., in Zucchini et al. 2016). However,
unusually for a nonlinear parameter-drivenmodel, the probability of being in a particular regime is
ultimately given by a filter that depends on past observations, just as the Kalman filter is a function
of past observations in a linear model. These probabilities yield a conditional distribution for the
current observation, as in the DAMM, but with the difference that the DAMM is formulated as
observation-driven at the outset.

The conditional distribution in a two-state DAMM is

ft|t−1(yt ) = ξt|t−1 f1,t|t−1(yt ) + (1 − ξt|t−1) f2,t|t−1(yt ), t = 1, . . . ,T , 34.

where ξ t�t − 1 is the probability of being in state one at time t, based on information available up
to and including time t − 1. A logistic link function

ξt|t−1 = exp(γt|t−1)
1 + exp(γt|t−1)

, − ∞ < γt|t−1 < ∞, 35.

confines ξ t�t − 1 to the range 0 < ξ t�t − 1 < 1. The score with respect to γ t�t − 1, but written in terms
of ξ t�t −, 1, is

ut = ∂ ln ft|t−1

∂γt|t−1
= f1,t|t−1 + (1 − ξt|t−1) f2,t|t−1

ft|t−1
ξt|t−1(1 − ξt|t−1), 36.

and this drives a dynamic equation. The filter in the Markov chain switching model depends on
similar variables to those in ut.
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Figure 5

Wind direction at a site in northwest Spain and filtered regime probability (ξ ) from a two-regime heteroscedastic von Mises model.
Vertical axis is direction in radians and regime probability from 0 to 1. The horizontal axis is for hours at the end of January 2004.

The score for a dynamic parameter within a regime of a DAMM is

∂ ln ft|t−1

∂θi
= ∂ ln ft|t−1

∂ fi,t|t−1

∂ fi,t|t−1

∂θi
= ξi,t|t−1

fi,t|t−1

ft|t−1

∂ ln fi,t|t−1

∂θi
= ξi,t

∂ ln fi,t|t−1

∂θi
, i = 1, 2,

where ξ 1, t�t − 1 = ξ t�t − 1 and ξ 2, t�t − 1 = 1 − ξ t�t − 1. When ξ i, t, the probability of being in a given
regime, is small, the contribution of the observation to the score is downweighted; there is no such
weighting in Markov-switching models.

The DAMM can be combined with other score-driven models. For example, Harvey &
Palumbo (2021) set up a bivariate model for wind speed and direction with EGARCH effects. The
aim is to capture the switching between two prevailing winds at a site in northwest Spain. The
filtered probability, ξ t�t − 1, of being in the higher state—that is, around four radians—is shown in
Figure 5. The data lie between 0 and 2π radians, with the circularity meaning that observations
near the top of the graph are close to those at the bottom.

9.4. Dynamic Shape Parameters, Adaptive Models, and Missing Observations

Dynamic models for shape parameters may be formulated using the score-driven approach. For
example, the degrees of freedom, ν, in a t-distribution may change over time. The score for ν =
− ln ν is

∂ ln ft
∂ν

= ν

2
ψ (ν/2) − ν

2
ψ ((ν + 1)/2) + 1

2
− ν + 1

2
bt − ν

2
ln(1 − bt ), 37.
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where bt is as in the score for scale (Equation 20) and ψ(.) is the digamma function.Figure 6 plots
this score against the standardized y for ν = 5. As y moves toward the tails, ν increases and so the
degrees of freedom fall. This behavior contrasts with that of the score for the logarithm of scale,
λ, which is bounded as y → ±∞. It is interesting that the sum of the third and fourth terms in
Equation 37 is equal to the score of λ multiplied by −1/2. As in other instances, the behavior of
the score makes perfect sense. The only difficulty in implementing shape parameter filters like
this one is that a large sample is needed to obtain reliable estimates. Most of the applications so
far have been for financial time series with several thousand observations.

Nonstationary time series are sometimes subject to sudden upward or downward shifts. A
score-driven filter will adapt to such breaks. However, it may be possible to speed up the ad-
justment by introducing a second layer of dynamics into the model. Thus, in the location model
(Equation 9), κ becomes κ t + 1�t and this evolves according to a dynamic equation in which the forc-
ing variable is the conditional score �ln ft/�κ t�t − 1 = utut − 1 (see Blasques et al. 2019). Adaptive
models are also discussed by Delle Monache & Petrella (2017).

A practical way of dealing with amissing observation is to set ut = 0 and to drop that time period
from the likelihood function.Thus, the filter makes no adjustment for the increased variance, as in
the linear Gaussian model where the solution is exact. Furthermore, the conditional distribution
is assumed to be the same as that of the one-step ahead conditional distribution. Blasques et al.
(2021) provide a more theoretically sound solution to the problem of missing observations by
using indirect inference.

10. BEYOND THE SCORE

The function to be maximized need not be a likelihood. For example, it may be a sum of squares
or absolute values, a quasi-likelihood, or a robust function, such as anM-estimator (as in Maronna
et al. 2006).Dynamic quantiles and kernels may be obtained in this way, and the dynamic equations
for them may be constructed by a natural extension to the score-driven framework.
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A sample quantile, ξ̃ (τ ), 0 < τ < 1, can be obtained as the solution to the minimization of

Sτ (ξ ) =
T∑
t=1

ρτ (yt − ξ ) =
∑
yt<ξ

(τ − 1)(yt − ξ ) +
∑
yt≥ξ

τ (yt − ξ ), 0 < τ < 1, 38.

with respect to ξ = ξ (τ ), where ρτ (.) is the check function.The derivative of this criterion function
is the quantile indicator function

IQ(yt − ξt (τ )) =
{
τ − 1, yt < ξt (τ ),
τ , yt > ξt (τ ),

t = 1, . . . ,T , 39.

where IQ(0) is not determined but can be set to zero (see De Rossi &Harvey 2009).This indicator
provides the forcing variable, ut(τ ), in the quantile filter

ξt+1|t (τ ) = φξt|t−1(τ ) + κut (τ ). 40.

The quantile indicator plays a similar role to that of the conditional score. Indeed, it is the score
for an asymmetric Laplace distribution.

The filter in Equation 40 belongs to the class of conditional autoregressive value at risk
(CAViaR) models proposed by Engle & Manganelli (2004) in the context of tracking value at risk
(VaR). In CAViaR, the filter is driven by a function of yt but includes an adaptive model, which in
a limiting case has the same form as Equation 40. Other CAViaR specifications, which are based
on actual values rather than indicators, not only are inconsistent with the quantile framework but
also may suffer from a lack of robustness to outliers.

Patton et al. (2019) show that it is possible to set up a joint dynamic model for VaR, ξ t�t − 1(τ ),
and expected shortfall, Et − 1(yt�ξ t�t − 1(τ )). The forcing variables depend on conditional quantiles
and expectiles.

Harvey & Oryshchenko (2011) construct a dynamic kernel estimator for the PDF of a time
series. The criterion function for the observation at time t is

ρ(yt | ft|t−1(y)) = −1
2

[
1
h
K

(
yt − y
h

)
− ft|t−1(y)

]2

, − ∞ < y, yt < ∞, t = 1, . . . ,T ,

where K(.) is a kernel, and differentiating with respect to ft�t − 1(y) gives the forcing variable

ut ( ft|t−1(y)) = 1
h
K

(
yt − y
h

)
− ft|t−1(y), t = 1, . . . ,T. 41.

The updating filter in the basic case is then

ft+1|t (y) = (1 − φ) f T (y) + φ ft|t−1(y) + κut , t = 1, . . . ,T ,

where ut = ut( ft�t − 1(y)). The application presented by Harvey & Oryshchenko (2011) has φ set to
one.

11. CONCLUSION

Modeling the dynamics in nonlinear time series by the score of the conditional distribution pro-
vides a comprehensive and unified solution to a range of problems. Estimation is by maximum
likelihood and is usually straightforward. Tests, including diagnostics based on the Lagrange mul-
tiplier approach, can be formulated.

It might be thought that assuming a particular parametric distribution makes the resulting
filter vulnerable to misspecification. On the contrary, basing a model on a heavy-tailed distribu-
tion makes it far more robust than methods, such as quasi-maximum likelihood, that are usually
motivated by analogies with Gaussian models.
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