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Abstract

Familial aggregation refers to the fact that a particular disease may be over-
represented in some families due to genetic or environmental factors.When
studying such phenomena, it is clear that one important aspect is the age of
onset of the disease in question, and in addition, the data will typically be
right-censored. Therefore, one must apply lifetime data methods to quan-
tify such dependence and to separate it into different sources using polygenic
modeling. Another important point is that the occurrence of a particular
disease can be prevented by death—that is, competing risks—and therefore,
the familial aggregation should be studied in a model that allows for both
death and the occurrence of the disease. We here demonstrate how poly-
genic modeling can be done for both survival data and competing risks data
dealing with right-censoring. The competing risks modeling that we focus
on is closely related to the liability threshold model.
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1. INTRODUCTION

In statistical genetics, it is common to compare traits within families (for example, twins) to study
the resemblance with respect to a particular trait. When the trait is the time to an event (for
example, age of onset of a particular disease or age of death), one typically needs to deal with
right-censored outcomes, the situation in which not all individuals experience the event of interest
by the end of follow-up. Failure to do so will bias estimates of familial resemblance. Survival
analysis methods have been developed to deal with right-censoring, so that under independence
between censoring and the event of interest, population quantities are consistently estimated. In
this review,we describe how to apply survival analysis methods when the aim is to describe familial
resemblance.

The survival model (Figure 1a) describes the situation where subjects will transition from alive
to dead at some point in time t. This transition is often modeled and described by the hazard rate
α(t), which gives the instantaneous risk of dying for a subject who is at risk at time t. Alternatively,
as shown in Figure 1b, subjects may experience one of several events (die from one of several
diseases) or experience cancer or die, as described by the competing risks model. In this context,
modeling is done using either the cause-specific hazards α1(t) and αd(t) of the event of interest or
death, or the cumulative probabilities of seeing either of the events, F1(t) and Fd(t), as a function
of time. The cause-specific hazards are defined as the instantaneous risks of experiencing event 1
or dying among those that are still alive and have not experienced event 1, respectively. When
interest is on the possible relationship between multiple types of cancer, such as ovarian and breast
cancer, one could consider the competing risks model with three competing risks (Figure 1c),
since in addition to the two causes of interest, we will also have death as a competing risk. This
extendedmodel would also requiremodeling of either the cause-specific hazards or the cumulative
incidence probabilities of the causes described in the model. The two main classes of models used
to describe possible dependence in multivariate event history data are random effects models, also
called frailty models, and copula models, where one would more generally describe dependence
parameters for a multivariate distribution. Both these approaches are described in several excellent
books (Hougaard 2000,Wienke 2011, Duchateau & Janssen 2007). In addition, one may also use
standard conditional hazard models (Andersen et al. 1993), which can give a simple and useful
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Survival model and competing risks models.
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description of how events for one family member change our prediction of the risk for another
family member.

Random effects models make it possible to decompose the dependence in a family into, for
example, environmental and genetic sources using polygenic modeling—that is, models with sev-
eral additive random effects that account for these different sources (see Falconer 1967, Neale
& Cardon 1992, Falconer & Mackay 1994, Lynch & Walsh 1998, Sham 1998). There is also a
long tradition of population genetics in the animal breeding field (Hill 2014), where heritability
of longevity and age of onset has been examined in a survival analysis setting (see, for example,
Ducrocq & Casella 1996, Yazdi et al. 2002). Below, we illustrate how to use such models in the
twin setting.

Sørensen et al. (2013) considered the age of menarche based on data from the Danish Twin
Registry consisting of monozygotic (MZ) and dizygotic (DZ) female twin pairs to learn about a
possible genetic component in the timing of menarche. The time of menarche was described by
a survival model, since death prior to menarche is extremely rare. The authors compared asso-
ciation in the MZ and DZ twins using a polygenic model for the dependence, which leads to a
decomposition of the correlation into genetic and environmental effects. The sizes of these ef-
fects were partly summarized by reporting a heritability of 61% [95% confidence interval (CI):
0.38–0.84]—that is, the part of the variation that is due to genes. We later consider the age of
menopause for Danish twins and do a similar decomposition as well as describing the dependence
in MZ and DZ twins.

Another equally important problem is to study heritable factors in the causation of cancer,
as illustrated by Lichtenstein et al. (2000), Hjelmborg et al. (2014), Möller et al. (2016), and
Mucci et al. (2016), where the interest is in studying the resemblance in the occurrence of a
particular type of cancer. This problem is different from the study of dependence in the timing
of menarche, in that the occurrence of cancer may be prevented by death and therefore needs
to be studied in the competing risks context (see Figure 1b), where causes compete for the first
event. When the interest is in describing correlation or cooccurrence between family members
for one of the causes, then one is also forced to consider the other cause as well due to a possible
cross-dependence—for example, if the death of one family member before cancer is predictive of
the risk of cancer for the other family member. In addition, there might also be interest in possible
dependence between multiple competing events such as breast cancer and ovarian cancer, and
that death is a competing risk that needs to be taken into account (see Figure 1c). We illustrate
the methods for competing risks data considering the age of prostate cancer in a twin study that
resembles that of Hjelmborg et al. (2014), which found a heritability of 58% (95%CI: 0.52–0.63).

1.1. Data and Notation

We consider k = 1, . . . , K independent clusters with i = 1, . . . , nk subjects within each cluster. For
each cluster, we are given a set of independent random effects V T

k = (Vk1, . . . ,Vkm ). The depen-
dence structure between the subjects in a cluster is now described by design vectors Qk1, . . . ,Qknk ,
such that the ith subject has random effectQT

kiVk.Qki = (Qki1, . . . ,Qkim)T is often specified as a vec-
tor of ones and zeroes that makes relevant parts of Vk active and possibly shared for each subject.

In addition to survival times, Tki, and the possible cause indicators for the competing risks
data ϵik � {1, 2, 3}, which are not needed when we consider survival data, we assume that we
have independent right-censoring times, Uki, such that given Vk and the covariates Qki and Xki,
i = 1, . . . , nk, (Uk1, . . . ,Uknk ) are conditionally independent of (Tk1, . . . ,Tknk , εk1, . . . , εknk ), and
the conditional censoring distribution does not depend on Vk. We thus observe T̃ki = Tki ∧Uki,
the event indicator δki = I(Tki ≤ Uki), and a possible cause of death ε̃ki = δkiεki. The censoring

www.annualreviews.org • Family Studies with Lifetime Data 49



Liability threshold
model: a model where
a binary (or ordinal)
trait, Y, is related to a
latent continuous
variable Y∗ (the
liability) through the
relation Y = I(Y∗ > κ)
for some threshold
value κ > 0

Broad-sense
heritability: the
proportion of
phenotypic variation
described by genetic
factors

distribution conditional on covariates, X, is denoted by Gc(·|X). We can also express the survival
times via counting processes Nki(t) = I(Tki ≤ t, Tki ≤ Uki) with at risk indicators Yki(t) = I(Tki ≥ t,
Uki ≥ t). For a p-dimensional vector x, let x�2 = xxT.

1.2. Polygenic Modeling

Tobriefly present the random effectsmodels that are often used to decompose the dependence into
different sources, we consider the analysis in the combined Nordic study of the Danish, Finnish,
and Swedish twin registries (Lichtenstein et al. 2000, Hjelmborg et al. 2014, Möller et al. 2016,
Mucci et al. 2016) that aimed to model the dependence in twin pairs in the occurrence of breast
cancer. There is a large literature on polygenic modeling that aims to decompose the correlation
into different sources of variation using, for example, the liability threshold model (see, for exam-
ple, Falconer 1967,Neale & Cardon 1992, Falconer &Mackay 1994, Lynch &Walsh 1998, Sham
1998).

Here, the event of interest is Yki(τ ) = I(Tki ≤ τ , ϵki = 1), i.e., the outcome that the subject
gets cancer before τ and before dying, obviously. In a general family setting, we assume that given
covariates, Xki, and a set of random effects, Vki, for each family member i = 1, . . . , nk, the cancer
occurrences among family members are independent and follow a probit model:

probit(P(Yki(τ ) = 1|Xki,Vki )) = XT
ki β +Vki, i = 1, . . . , nk, k = 1, . . . ,K. 1.

Note that we here assume that the survival time is fully observed to discuss how a population
model might be structured and formulated, and we return to an inverse probability of censoring
weighting (IPCW) adjustment for the right-censoring later.

A properly designed family study may make it possible to decompose the random effect vari-
ance into genetic and environmental components,Vki =Vgene, ki +Venv, ki.Thus, assuming indepen-
dence between genetic and environmental effects makes it possible to quantify the heritability as
the fraction of the total variance due to genetic factors.The probit model,Equation 1, is equivalent
to a latent variable model formulation where the binary outcome is defined from a conditionally
normally distributed latent variable,

Y ∗
ki = X T

ki β +Vgene,ki +Venv,ki +VE,ki,

such thatYki(τ ) = I(Y ∗
ki > κ ). For identification, the threshold is fixed at κ = 0, andVE,k1, . . . ,VE,knk

are independent standard normally distributed. Under an assumption of no gene-environment
interaction, this model then leads to a broad-sense heritability, conditional on covariates,
defined by

H2 = Var(Vgene,ki )
Var(Vgene,ki ) + Var(Venv,ki ) + Var(VE,ki )

.

Under additional assumptions of parents not transmitting their environmental effects to their
offspring, random mating (no inbreeding), linkage equilibrium, and no epistasis, the genetic vari-
ation can be further decomposed into additive and dominant genetic components (see Lange
2002):

Var(Vgene,ki ) = σ 2
A + σ 2

D, 2.

where σ 2
A is the variance of additive genetic effects and σ 2

D is the variance of the dominant genetic
effects. Furthermore, the genetic correlation can, in this case, be determined from the familial
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Table 1 Kinship and fraternity coefficients for different family members

�7 �

Parent-offspring 0 1
4

Grandparent-grandchild 0 1
8

Great grandparent-great grandchild 0 1
16

Half siblings 0 1
8

Full siblings, DZ twins 1
4

1
4

MZ twins 1 1
2

Uncle/aunt-nephew/niece 0 1
8

First cousins 0 1
16

Double first cousins 1
16

1
8

Second cousins 0 1
64

	7 is the fraternity coefficient, which describes the probability that, at a given locus, both alleles for the two relatives are
identical by descent. 
 is the kinship coefficient, which is the probability that two randomly selected alleles from the same
locus of relatives are identical by descent.

resemblance such that for relatives i and j the genetic covariance structure is defined by

Cov(Vgene,ki,Vgene,k j ) = 2
i jσ
2
A + 	7i jσ

2
D, 3.

where, as in Lynch & Walsh (1998) and Lange (2002), 
ij is the kinship coefficient, which is the
probability that two randomly selected alleles from the same locus of relatives i and j are identical
by descent, and the fraternity coefficient 	7ij describes the probability that at a given locus both
alleles for the two relatives are identical by descent (see Table 1). It is through this dependence
structure that the variance components can be identified by the inclusion of different types of
relatives in the study, such as MZ and DZ twins in the classical twin study design. The model
with both additive (A) and dominant (D) genetic effects as well as shared (C) and individual (E)
environmental effects is typically denoted the ACDE model. For identification reasons, subsets—
e.g. ADE, AE, or ACE models—are typically considered.

For the survival data, it can be even harder to find an appropriate scale on which to report a
heritability, and we therefore suggest focusing more on the variances of the shared random effects
and, in addition, trying to compute other more easily interpretable summary measures to describe
the dependence between family members.

2. SURVIVAL DATA

When we observe multivariate survival data from a family or, equivalently, multivariate data from
the competing risksmodel where the competing risks can be assumed independent, the aim is often
to describe the strength of dependence between different family members. The standard tools are
to use either random effects or copula models where the multivariate survival distribution is given
via the marginal survival distributions and a copula (see, for example, Hougaard 2000, Duchateau
& Janssen 2007,Wienke 2011). When random effects models are used for modeling dependence
in a family, or in a pair, one can further apply the structured polygenic random effects models
that makes assumptions about how the sources of dependence can be split up into genetic and
environmental components.

Structured polygenicmodeling will typically describe themultivariate distribution of the whole
family. One could also model and describe only pairwise dependence for specific pairs in a family.
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As an alternative to the random effects or copula modeling, one can specify directly conditional
models for how the information about one subject alters the prediction of the instantaneous risk
for another using conditional intensity models as described by Andersen et al. (1993). Note that
random effects models lead to specific conditional models, but it is often useful to specify other,
simpler intensity models that are easier to fit. We return to this point in Section 2.3.

2.1. Pairwise Dependence Modeling

A simple and useful first attempt to learn about genetic dependencies represented by the degree of
familial aggregation or dependence is to consider pairwise modeling of the dependence, as is often
done. One might describe the dependence between MZ and DZ twins or, in the broader context
of family studies, look at dependence between siblings, or parents and offspring, or in general for
any two subjects in a family. In a survival context, a simple approach is to use, for example, the
Clayton-Oakes model (Clayton 1978, Oakes 1982, Glidden 2000), thus assuming that we have
marginals for the members of our clusters on, for example, Cox form, such that marginally given
covariates Xki and Tki follow a Cox model:

λmki(t;Xki ) = λ0(t ) exp(XT
ki β ). 4.

We let the related marginal survival function be denoted as Smki (t ) = Sm(t|Xki ). Clearly, other
marginals may be used and the simple Cox model may be extended in various ways.

Then, for two such members of a family, the Clayton-Oakes copula model specifies that the
bivariate survival distribution is given as

Sk,i j (t, s;Xki,Xkj ) = �(ν(i, j), ν(i, j),�−1(Smki (t )) + �−1(Smki (s))), 5.

where �(ν, ν, ·) denotes the Laplace transform of the Gamma distribution �(ν, ν) with mean
1 and variance ν−1,�−1 is the inverse �, and by ν(i, j) we indicate that the dependence parameter
depends on the considered type of pair, such as siblings, half-siblings, or parents-offspring.

The dependence parameters are easy to estimate using two-stage fitting, where the marginals
are fitted in the first step and then used in pseudolikelihood to estimate ν(i, j) (as in Glidden 2000,
Glidden & Self 1999, Shih & Louis 1995).

One useful simple extension of this model is to allow a regression structure on the dependence
parameters, for example, for MZ and DZ twins.We thus suggest modeling ν(i, j) = Z(i, j)θ , where
Z(i, j) is a regression design depending on the considered pair.

Clearly, it can be of interest to use other copula models, and it is useful to investigate the
goodness of fit for the chosen pairwise dependence model. For the Clayton-Oakes model, there
are several suggestions for extensions of theGamma-frailtymodel to allow dependence parameters
locally in time (Glidden 1999; see also Nan et al. 2006, Shih & Albert 2010,Hu et al. 2011, Scheike
et al. 2015b).

2.2. Hazard Random Effects Modeling

When the interest is in separating the dependencies into different sources using polygenic mod-
els, the additional structure from random effects models is needed. In the context of survival data,
the natural starting point is therefore to consider polygenic random effects models in this con-
text. We describe such models and present in further detail one class of models that has certain
computational advantages.

Fitting polygenic models for survival data can be done by using random effects models, and
there are several useful ones. One class of such models are the additive Gamma random effects
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models (Petersen et al. 1996, Korsgaard & Andersen 1998, Petersen 1998, Li 1999), where, con-
ditional on covariates and the random effects, the hazard for subject i in cluster k is on the form(

m∑
l=1

QkilVkl

)
λ0(t ) exp(X T

ki β ), 6.

with regression effects β, independent Gamma-distributed random effects V T
k = (Vk1, . . . ,Vkm ),

1/0 random effects design QT
ki = (Qki1, . . . ,Qkim ), and baseline hazard λ0(t). The estimation for

these models is not simple, even though it is possible to use the expectation–maximization algo-
rithm (Klein 1992, Nielsen et al. 1992), and there exists no available software that can fit these
models for large registry data, to the best of our knowledge.

An alternative formulation has been considered by Ripatti & Palmgren (2000):

exp
(
QT
kiVk

)
λ0(t ) exp(X T

ki β ), 7.

where it is assumed that Vk follows a multivariate normal distribution. This makes the random
effects very flexible, and this can sometimes be a big advantage, in particular when there is negative
correlation between random effects. The models in Expression 7, and in Expression 6 with only
one random effect, have been implemented in various useful R packages [for example,coxme,phmm,
and frailtyEM (Therneau 2020, Donohue & Xu 2019, Vaida & Xu 2000, Balan & Putter 2019)],
but again is limited to at most medium-sized data. In particular, Expression 7 is slow to fit because
one needs to do numerical integration to approximate the likelihood.

2.2.1. Additive Gamma two-stage hazard modeling. We now present a version of the two-
stage model, the copula model (Glidden 2000, Glidden & Self 1999, Shih & Louis 1995), which
is easier to use and here is extended to the structured random effects setting. This model has
marginals that follow a Cox model and then uses a copula to specify the joint distribution. The
model is easier to fit because the semiparametric marginals are fitted first using marginal modeling
(Spiekerman & Lin 1998), and then subsequently we estimate the dependence parameters from
the random effects using these marginals.

To facilitate the two-stage model, we set up the random effects in a particular way by making
sure the total variance of all random effects acting for each subject is the same.We let (Vk1, . . . ,Vkm)
be independent Gamma-distributed random variables, denoted as Vkl ∼ �(ηl, ν), l= 1, . . . ,m, such
that the random effects have mean E(Vkl ) = ηl/ν and variance Var(Vkl ) = ηl/ν

2. Furthermore, let
�(ηl, ν, ·) denote the Laplace transform of the Gamma distribution �(ηl, ν), and let its inverse be
�−1(ηl, ν, ·). The η = (η1, . . . , ηm)T parameters are given such that η = Dθ , where D is a m × p
matrix and the parameters θ = (θ1, . . . , θ p)T are of dimension p. This makes it possible to specify
restrictions on the parameters, for example, when considering standard polygenic models that we
use (Falconer 1967, Neale & Cardon 1992, Falconer & Mackay 1994, Sham 1998).

The key assumption to make the two-stage construction possible is to assume that the total
variance of the random effects for each subject is the same, ν, such that ν = QT

kiη for all i = 1, . . . ,
nk and all k = 1, . . . , K. Therefore, QT

kiV is Gamma distributed: �(ν, ν). We get back to specific
models where this is the case, but this assumption is often reasonable and needed in the context of
polygenic models that aim to characterize genetic effects (Korsgaard & Andersen 1998, Petersen
1998).

Marginally we assume that Tki given covariates Xki follows a Cox model,

λmki(t;Xki ) = λ0(t ) exp(X T
ki β ),

and let the related marginal survival function be denoted as Smki (t ) = Sm(t|Xki ). The estimators of
the marginal models are obtained by fitting the models as if the data were independent and lead
to consistent and asymptotically normal estimators, as pointed out by Spiekerman & Lin (1998).
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Kendall’s τ: measures
dependence as the
probability of
concordance minus
the probability of
discordance

We now assume that, given the random effects of the cluster Vk and the covariates Xki,Qki for
i = 1, . . . , nk, subjects within the cluster are independent with survival distributions

Ski(t|Xki,Qki,Vk ) = exp(− (QT
kiVk

)
�−1(ν, ν, Smki (t ))).

Then,by construction, themarginal survival distribution,when integrating out the random effects,
is given by Ski(t). Furthermore, the hazard is given as

λki(t;Xki,Vki,Qki ) = (
QT
kiVk

) [−D3�
−1(ν, ν,Smki (t ))S

m
ki (t )

]
λ0(t ) exp(XT

ki β ),

where D3 denotes the partial derivatives with respect to the third argument of �, and is then
evaluated at (ν, ν, Ski(t)). This is a more complicated looking hazard, but the random effects still
act in a multiplicative manner.

We can express the multivariate survival distribution as

S(t1, . . . , tnk ) = E(exp(−
nk∑
i=1

(QT
kiVk )�

−1(ν, ν,Smki (ti ))))

=
m∏
l=1

�(ηl , ν,
nk∑
i=1

Qkil�
−1(ν, ν,Smki (ti ))). 8.

In the case of bivariate data for subjects i and j within a cluster, we write this function as S(t1, t2) =
C(Smki (t1),S

m
k j (t2)).

This model is easy to fit using our software in the R package mets and can be fitted for large
registry data by taking advantage of two-stage fitting; the standard errors of the dependence pa-
rameters can be derived by extending the original two-stage arguments to this setting, along the
lines of Glidden (2000) and Shih & Louis (1995).

2.2.2. Kendall’s τ. One consequence of the random effects acting multiplicatively in all the
above conditional hazardmodels is that we can computeKendall’s τ for all models.The probability
of concordance minus the probability of discordance in two clusters, 1 and 2, with subjects (i, j),
for example, mother and daughter, is

τ = E
(
sgn

[
(T1i − T2i )(T1 j − T2 j )

])
,

where sgn(·) gives the sign of its argument. Concordance is thus the probability that those
from one cluster either come before or after the cluster to which they are compared—that is,
the probability that either (T1i > T2i) and (T1j > T2j), or (T1i < T2i) and (T1j < T2j). Discordance
is the opposite.

For the extended two-stage model, we can compute this dependence measure specifically as

E

(
(QT

1iV1 − QT
2iV2)(QT

1 jV1 −QT
2 jV2)

(QT
1iV1 + QT

2iV2)(QT
1 jV1 +QT

2 jV2)

)

under the assumption that we compare pairs with equivalent marginals [SX1i (t ) = SX2i (t ) and
SX1 j (t ) = SX2 j (t )] and that SX1i (∞) = SX1 j (∞) = 0. Here, we use that ν is the same across clus-
ters. Kendall’s τ would be the same for Equation 6 due to the same additive structure for the
frailty terms, and the random effects thus have the same interpretation in terms of Kendall’s τ .
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When we do not have full follow-up, we can still define Kendall’s τ , but now also given two event
times, and still compute concordance minus discordance using the formula.

We also note that the model with normally distributed random effects,

exp(QT
kiVk )λ0(t ) exp(XT

ki β ),

when the marginal covariates are equivalent, leads to a Kendall’s τ for two subjects (i, j) across two
clusters, 1 and 2, on the form

E

(
(exp(QT

1iV1) − exp(QT
2iV2))(exp(QT

2 jV1) − exp(QT
2 jV2))

(exp(QT
1iV1) + exp(QT

2iV2))(exp(QT
1 jV1) + exp(QT

2 jV2))

)
.

This quantity can be approximated by numerical integration or with simulations. We note that
Kendall’s τ is independent of the marginals.

2.3. Conditional Hazard Models

When a family, or a pair of subjects, is observed over time, a possible relationship between the
considered subjects will be reflected in the conditional intensity—that is, the instantaneous risk of
death for a subject that is under risk given what we observed up to time t for the family, denoted
by the history Hk(t ):

λcki(t|Hk(t ), T̃ki ≥ t ) = Yk1(t ) lim
h→0

1
h
P(Tki ∈ [t, t + h]|Hk(t ), T̃ki ≥ t ).

Andersen et al. (1993) provide a general treatment of these models. If this conditional hazard
depends on the information we have accumulated about other subjects, it indicates that subjects
are related and there will be familial aggregation. The random effects models that we considered
above all lead to specific conditional models, and the conditional hazardmodel, therefore, provides
a general approach for learning about dependence. Working with and estimating the parameters
of the conditional hazard models can be based on fully specified models or composite likelihood
methods (Varin et al. 2011). Considering a pair of twins (i= 1, 2), or a mother and child of a family,
we may try to learn about a possible dependence by fitting an intensity model of the form

λck1(t|Hk(t ), T̃k1 ≥ t ) = Yk1(t )λ0(t ) exp(X T
ki β + γNk2(t−)), 9.

where the conditional intensity has an increase in the hazard if the cotwin has died.Note that twin
2 may be censored prior to t if the twins are censored at different points in time. In this model,
that can be estimated by standard software and provided with robust standard errors; we consider
γ as an indication of the strength of the association between the twins. When the model is fitted
for MZ and DZ twins, we can evaluate if the twins are related and how strongly, and if MZ and
DZ are differently related.

In the simple case where we do not adjust for covariates, it is useful to remember that if an
underlying frailty model is assumed, with conditional hazard Zλ(t) for each twin and Z Gamma
distributed with mean 1 and variance θ , then the conditional hazard will be on the form

λck1(t|Hk(t ), T̃k1 ≥ t ) = Yk1(t ) (α(t ) + θα(t )Nk2(t−)) = Yk1(t )α(t ) exp(log(θ + 1)Nk2(t−)),
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Cause-specific
hazard: the
instantaneous risk of
the event of interest
among those still
under risk

with α(t ) = λ(t )/(1 + θ (�(t ) + �(T̃k2 ∧ t ))), and �(t ) = ∫ t
0 λ0(s)ds. Note that α(t) is in fact also a

function of T̃k2 that we have hidden in our notation. This also reveals that the simple conditional
hazardmodel (Equation 9), although useful, does provide parameters that are hard to interpret due
to the lack of adjustment for the risk-time of the other twin that needs to be done in this model.
Similar complications arise when the conditional intensity modeling is used for the cause-specific
hazards in the competing risks models (Eriksson & Scheike 2015).

2.4. Worked Example: Time to Menopause in Twins

We consider 503 pairs of female twins born between 1931 and 1952 that were identified through
the Danish Twin Registry. The twins are established as MZ or DZ. There are 269 MZ twin pairs
and 234 DZ twin pairs.We here look at the time to menopause, with a broad definition that con-
sisted of either natural menopause; surgical menopause as a result of removal of uterus, cervix, or
ovaries; or hormone treatment for menopausal-related issues.Of the 1,006 twins, 845 experienced
this broad definition of menopause.

An important first step is to look first at the marginals of the MZ and DZ twins, which often
are believed to be the same and, in addition, to be similar to those of the general population. If
these have the same marginals and thus the same total variation, it is possible to consider heri-
tability estimates that describe how much of the variation is due to variation in the genes. Here,
the marginals appeared similar.

We first estimated the variance of the MZ and DZ twins separately, using the two-stage model
with the same marginal for MZ and DZ twins. The variances of the Gamma-distributed random
effects (with 95% CI) were 1.08 (0.73; 1.42) and 0.11 (−0.12; 0.36) for MZ and DZ twins, re-
spectively. Comparing the estimates as a test for genetic effects, we found p < 0.001, thus clearly
rejecting that the dependence is the same for MZ and DZ twins.

Then, fitting the ACEmodel, we found the environmental effect at the boundary, thus suggest-
ing that there is no shared environmental effect. We then considered the AE model, which leads
to an estimate of a genetic variance at 0.98 (0.75; 1.22)—that can be transformed into a Kendall’s
τ at 0.33 and 0.14 for MZ and DZ sisters, respectively. Note also that the AE model without the
C component shows a lack of fit when compared to the variance for MZ and DZ twins, when
estimated without restrictions on the parameters. In contrast, the DE model leads to an estimate
of a genetic variance at 1.08 (0.82; 1.33), and this model fits the data well. As we also observe be-
low in the worked example of competing risks data, the choice of the preferred polygenic model,
however, is highly dependent on the considered scale and modeling approach.

Using the fact that the two-stage hazard model is also a transformation model, with a trans-
formation that depends on the covariates, however, we can still say that for given covariates X, the
part of the variation due to genes is 50% using the AE model, since after a linear transformation,
the survival times consist of log (Z) + ϵ, with ϵ being extreme value and log (Z) a log-transform of
the Gamma-distributed random effect that accounts for genetic variation (for more on this, see
Korsgaard et al. 1999, Yazdi et al. 2002). The random effects models may further be used to com-
pute relevant probabilities, such as, for example, the probability that both twins have experienced
menopause by a given age.

3. COMPETING RISKS MODELING

Generally speaking, there are two modeling approaches for competing risks data, one based on
hazardmodeling and one based on the cumulative incidencemodeling (seeFigure 1b).The hazard
modeling is based on the cause-specific hazards that give the instantaneous risk of experiencing a
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specific cause for those that are still at risk, formally defined as

λk(t,X ) = lim
h→0

1
h
P(T ∈ [t, t + h], ε = k|T ≥ t,X ).

The cumulative incidence of cancer is given as

F1(t,X ) = P(T ≤ t, cancer|X ) = P(T ≤ t, ε = 1|X ),

that is, the probability of cancer before time t given covariates X.
Similarly, in the multivariate setting with the aim of dependence modeling, one needs to model

either the multivariate hazards or multivariate cumulative incidence functions. General discus-
sions and reviews of methods for dependence modeling and familial aggregation for competing
risks data are provided by Diao & Zeng (2013) and Bandeen-Roche (2013), respectively.

Having modeled either of these quantities, the model is fully specified. In terms of random
effects models, we would need to specify either all cause-specific hazards given random effects, or
similarly, all cumulative incidence functions given random effects.

When we have a particular interest in a particular cause, such as in the studies of heritability
of cancer, then it is worth noticing that by using cumulative incidence modeling, it is sufficient to
model the cumulative incidence of cancer and the strength of the cooccurrence in family mem-
bers. In contrast, when hazard models are used, a fully specified random effects models for all
causes is needed. In the remainder of the article, we focus particularly on cumulative incidence
modeling and just briefly mention that there exists much interesting work on how to describe de-
pendence in competing risks data via multivariate cross-ratios of the cause-specific hazards (see,
for example, Bandeen-Roche & Liang 2002, Bandeen-Roche & Ning 2008, Shih & Albert 2010,
Ning & Bandeen-Roche 2014). The methods described in this work are not directly applicable
for polygenic modeling that requires more specific modeling to separate the sources of variation.

In the work of Lichtenstein et al. (2000) and Mucci et al. (2016) studying the heritability of
cancer, the dependence modeling was based on cumulative incidence modeling of only the cause
of interest, thus considering and modeling, in essence, the joint probability that a pair of family
members, or twins, both have experienced cancer. This joint probability is given as the concor-
dance probability

C1,1(t ) = P (T1 ≤ t, ε1 = cancer,T2 ≤ t, ε2 = cancer),

and this joint probability is often computed and compared with the expected concordance
under independence, the recurrence risk, and can be computed and estimated nonparamet-
rically (Scheike et al. 2015a). Fully nonparametric estimators of the full joint distribution of
P (T1 ≤ s, ε1 = cancer,T2 ≤ t, ε2 = cancer) were described by Cheng et al. (2007). Below, we de-
scribe random effects models for the joint cumulative incidence in a family.

3.1. Competing Risks Hazards Random Effects Modeling

One modeling approach is to describe dependence, or cooccurrence in cancer (as in Figure 1b),
modeling the two hazards given covariates and random effects that may influence both hazards.
Such random effects will then generate dependence for each of the causes and possible cross-
dependence between cancer and death. These models have been used by Wienke (2011) and
Eriksson & Scheike (2015) and are generally rather difficult to fit, particularly for large registry
data. Given a full description of the cause-specific hazards given random effects, we have a fully
specified model, and all consequences and probabilities can be computed. One important point is
that we need all full models for all hazards and how they are related.

www.annualreviews.org • Family Studies with Lifetime Data 57



Concordance:
probability of both
relatives being cases

Casewise
concordance: the risk
given the relative was a
case

Relative recurrence
risk: excess risk to a
relative of a case
compared with the
population risk

One useful observation is that if the competing risks’ causes are independent, such that likeli-
hood factors into the likelihood for the different event types (possibly given random effects that
also factor), then the two-stage approach described for survival data can be applied to this setting
using the cause-specific hazards. Thus, we would first fit the marginal cause-specific hazards and
then apply the techniques for multivariate survival data described above. In addition, there is still
a Kendall’s τ interpretation in the sense that, given the timing of two event times for the cause of
interest, the probability of concordance minus discordance is still computed using the formula for
Kendall’s τ (Equation 9).

When the causes are related, in the sense that random effects act on multiple causes, then the
models are typically difficult to fit and work with, even though one can still compute the observed
conditional hazard; this is particularly true for large registry data where no software exists for this
type of modeling.

Without the assumption of independent risks, polygenic random effectsmodeling (for example,
an ACEmodel) would be quite complicated due to possible shared genetic or environmental com-
ponents for the different causes. Clearly—and also when considering possible polygenic modeling
of multiple related causes (Figure 1c)—some part of the genetic and environmental components
must be shared across causes.

3.2. Concordance and Recurrence for Time to Event

We start bymaking the observation that there exist simple nonparametric estimators of the relative
recurrence risk and the casewise concordance that extends those from the binary case that often
are computed for binary trait twin/family studies.

Given a binary trait for a twin pair, (Y1, Y2), we have the joint distribution of the pair,
pi j = P(Y1 = i,Y2 = j) for i, j = 0, 1. Focusing on the twin case, we also have symmetry, so that
p10 = p01, thus leading to equivalent marginal rates p0 = p0. = p.0 = p00 + p01, and p1 = 1 − p0.
Now, given observations from a cohort of size n, we have the counts nij =

∑
n I(Y1 = i, Y2 = j) for

i, j = 0, 1 and define nd = n0, 1 + n1,0 as the number of discordant pairs. Here, I() is the indicator
that is one when the condition is fulfilled and zero otherwise.

The casewise concordance is defined as

Pc = P(Y1 = 1|Y2 = 1) = p1,1
p1

= p11
p01 + p11

,

and the maximum likelihood estimators (MLEs), given by Witte et al. (1999), are P̂c =
2n1,1/(2n1,1 + nd ) and p̂1 = (2n1,1 + nd )/2n. Similarly, the relative recurrence risk, R = Pc/p1, can
also be computed and estimated by MLEs R̂ = P̂c/ p̂1.

A direct analog to the age-of-onset setting is to compute and estimate the basic quantities for a
fixed time, such that we define the concordance probability at time t (Scheike et al. 2015a, 2014b)
as

Ci, j (t ) = Pi, j (t, t ) = P(T1 ≤ t, ε1 = i,T2 ≤ t, ε2 = j) for i, j = 1, 2,

and given the marginal probability, the cumulative incidence F1(t), we can still define the casewise
concordance, Cc1,1(t ) = C1,1(t )/F1(t ), and the recurrence risk R1,1(t ) = C1,1(t )/F2

1 (t ). We can also
consider the recurrence risk across different causes (see Figure 1c) as the probability C1+2(t ) =
C1,2(t ) + C2,1(t ) and the related recurrence risk R1+2(t ) = C1+2(t )/(2F1(t )F2(t )).

Critically, one can estimate the concordance probability accounting for right-censoring. A
simple approach for estimating concordance probabilities is to act under the same-censoring
assumption, that all pairs are censored at the first censoring for each pair. This is typically satisfied
automatically in twin studies, and under this assumption we can estimate the concordance
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probability by a standard Aalen–Johansen cumulative incidence estimator Andersen et al. (1993)
based on observing if the pair moves to the state where both have the cancer of interest or
to a competing state, or possibly at some point in time are censored. A useful observation is
also to note that regression modeling can be applied to the concordance probabilities, such
that summaries can be made of how covariates are important for the concordance probability,
Ci, j (t|X ), using competing risks regression modeling.

3.3. Cumulative Incidence Random Effects Modeling

The cumulative incidence model has been extended to clustered data by random effects or copula
models by Katsahian et al. (2006), Scheike et al. (2010), Dixon et al. (2011), and Cheng & Fine
(2012). We again specify a two-stage approach based on marginal cumulative incidence models,
where conditional on a random effect V, the cumulative incidence of cancer for a family member
is given as

F1(t,Xj ,V ) = P(T ≤ t, cancer|V ,Xj ) = 1 − exp
(−V�−1

θ

[
1 − F1(t,Xj )

])
, 10.

where �θ is the Laplace transform of the random effect V that here is assumed Gamma
distributed with mean 1 and variance θ , and �−1

θ is its inverse, thus leading to the marginal cu-
mulative incidence F1(t, X) given X. To estimate such marginal cumulative incidence for corre-
lated data, one can apply the marginal modeling approach (see Chen et al. 2008, Scheike et al.
2010). To estimate the dependence parameters, we then note that given the marginals and the
dependence parameter, we can compute, for example, the concordance function given covariates
C1,1(t,Xi,Xj , θ ) = P(T1 ≤ t, ε1 = 1,T2 ≤ t, ε2 = 1|Xi,Xj ) that can be compared to what is seen in
the data. This leads to an IPCW estimating function

U (θ ) =
∑
k

∑
i, j

Ck,i j (t )Vk,i j
[
I(Tki ≤ t, εki = 1,Tkj ≤ t, εk j = 1) − C1,1(t,Xki,Xkj ,V T

k,i jθ )
]

with Ck, i, j(t) = I(Tki < Ck)I(Tkj < Ck)/Gc(min (Tki, Tkj)|Xki, Xkj)), and i, j are two subjects within
cluster k.We operate again under the same-censoring assumption to simplify the censoringweight.

The parameters of such a model can be estimated in many ways, but a key feature of this
model is, again, that we can fit the marginal cumulative incidence models first using standard
competing risks regression methods and then subsequently estimate the dependence parameters.
Furthermore, this type of modeling can be extended to structured random effects modeling for
polygenic modeling, as by Scheike et al. (2014a).

The simple concordance modeling can be supplemented and summarized differently by the
more detailed description of the joint cumulative incidence of prostate cancer, which is modeled
to approximate well the concordance probabilities. Furthermore, one could jointly model all cu-
mulative incidence functions to learn about cross-cancer dependence.

3.4. Liability Threshold Model

An alternative modeling approach can be obtained via the probit model (Equation 1) by adjusting
for right-censoring through inverse probability weighting (Holst et al. 2016).This is similar to the
direct binomial regression models of Scheike et al. (2008) for univariate time to event outcomes.
The binary outcome of interest is

Yi j (τ ) = I(Ti j ≤ τ , εi j = 1), j = 1, . . . , nk; i = 1, . . . ,K ,

and we let the full data likelihood score function be given by U{θ;Y k(τ ),X k} with Y k(τ ) =
(Yk1(τ )δk1, . . . ,Yknk (τ )δknk )

T , X k(τ ) = (Xk1, . . . ,Xknk )
T , and θ ∈ R

p is the parameter vector. The
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Figure 2

Path diagram for the ACDE polygenic model for twin data. Abbreviations: A, additive genetic effects; C,
shared environmental effects; D, dominant genetic effects; DZ, dizygotic; E, individual environmental
effects; MZ, monozygotic.

IPCW adjusted estimator is then defined as the root of the estimating function

UIPCW(θ;O1, . . . ,Onk ) =
K∑
k=1

∏nk
i=1 δki

Gc(T̃k1, . . . , T̃knk ;X k )
U{Y k(τ ),X k; θ},

where Ok = (Y k(τ ),X k, δk1, . . . , δknk , T̃k1, . . . , T̃knk ) are the observed data. General family depen-
dence structures may be modeled using this approach. However, for larger cluster sizes, nk, the
calculations become computationally intensive due to the numerical integration involved in the
calculations of the multidimensional normal probability functions. In this case, pairwise modeling
via a composite likelihood approach (Varin et al. 2011) can be applied instead. Practically, the pa-
rameter θ can be estimated using a two-stage approach where a plug-in estimator of the censoring
distribution is used in the above estimating function.A challenge is that consistency relies on a cor-
rectly specified censoring distribution. As previously mentioned, we can, under a same-censoring
assumption, use an estimate given by

Ĝc(T̃k1, . . . , T̃knk ;X k ) =
nk∧
i=1

Ĝc(T̃ki;Xki ),

where the marginal censoring distributions Ĝc(T̃ki;Xki ) may be fitted using a semiparametric
model such as a Cox proportional hazards model.

This modeling approach is particularly appealing when the main objective is to separate vari-
ation into environmental and genetic components. Here, we adopt the standard polygenic model
for twin data based on further decomposing the genetic components, as in Equations 2 and 3, into
A and D effects, and the environmental effects into C and E effects. This model is illustrated in
Figure 2. Here, we consider the case where we allow the parameters to be time dependent as a
function of τ ,

P(Yi(τ ) = 1|Xi,Vi ) = 

{
X T
i β (τ ) +VA(τ ),i +VD(τ ),i +VC(τ )

}
, 11.

which then gives us the opportunity to explore how the genetic and environmental variation on
the liability scale evolve over the lifetime.

The A,D, and C components are all assumed to be shared for MZ twins, whereas for DZ twins
who genetically are like normal siblings, we have that

cov(VA(τ ),1,VA(τ ),2 ) = 1
2σ

2
A(τ ), cov(VD(τ ),1,VD(τ ),2 ) = 1

4σ
2
D(τ ).
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In practice, only two of the variance components VA, VC, and VD, which are here assumed to
be mutually independent and normal distributed, can be identified unless information on, for
example, adoption status is included in themodel.More on different genetic models is provided by,
for example,Neale &Cardon (1992) and Sham (1998). In a given polygenic model, the heritability,
the part of the variation due to genes, can be computed.This type of summary measure has several
weaknesses but also some appeal. In the context of the ACEmodel for the liability thresholdmodel,
we would say that the heritability is

H2(τ ) = σ 2
A (τ )

σ 2
A (τ ) + σ 2

C(τ ) + 1
. 12.

Note also that the variances relate to the liability scale and that, therefore, there is additional
variation present in the data on the risk scale.

Another reasonable modeling approach is to apply a more flexible bivariate probit model where
the marginals are kept identical, but instead of a random effect structure, the bivariate distribution
of the twin pairs is captured by a correlation parameter that depends on the zygosity, i.e.,

Y ∗
i (τ ) = μzyg(τ ) + εi(τ ), i = 1, 2; (ε1, ε2)T ∼ N

([
0
0

]
,

[
1 ρzyg(τ )

ρzyg(τ ) 1

])
.

Again, by considering the estimates for different time points τ , this gives an alternative and flexible
approach to estimating parameters on the probability scale as a function of age, such as concor-
dance probabilities and relative recurrence estimates, as in Section 3.2.

3.5. Worked Example: Time to Prostate Cancer in Twins

We consider a data set in the mets R package that resembles the data of Hjelmborg et al. (2014)
that were based on the Nordic Twin Study of Cancer, a collaborative research project studying
the genetic and environmental components of prostate cancer. The data comprise about 18,000
DZ twins and 11,000 MZ twins. It was a population-based register study based on the Danish,
Finnish, Norwegian, and Swedish twin registries.

3.5.1. Hazards random effectsmodeling. In the case of the simple competing risksmodel with
only death as the competing risk (Figure 1b), it may be a reasonable assumption that the cause-
specific hazards can be modeled independently and with different random effects acting on the
cause-specific hazards separately. This is in contrast to the case where the interest is on the com-
peting risks model with multiple causes of interest (Figure 1c), where the interest indeed would
be in the relationships between the two-cause–specific hazards for the causes of interest. Using a
marginal hazard model for the cause-specific hazard of prostate cancer stratified on country, we
fitted the two-stage random effects model with different variances for MZ and DZ twins.

This leads to random effects of 1.32 (0.56; 2.08) and 5.42 (3.54; 7.31) for MZ and DZ twins,
respectively. These can be translated into Kendall’s τ of 0.73 and 0.40 for MZ and DZ twins,
respectively, thus showing a very strong positive correlation for both types of twins. An attempt to
decompose these variances into genetic and environmental effects led to the conclusion that the
ACE and AE did not fit the data particularly well, and we therefore also fitted a DE model that
led to a genetic variance at 5.05 (3.44; 6.67) and no suggestion of an environmental effect.

3.5.2. Concordance modeling. First, we estimate the concordance probability—that is, that
both twins have prostate cancer at different ages. For simplicity of presentation, we do not initially

www.annualreviews.org • Family Studies with Lifetime Data 61



60 70

Monozygotic (± 95% confidence)
Dizygotic (± 95% confidence)
Marginal

Monozygotic (± 95% confidence)
Dizygotic (± 95% confidence)
Marginal

80 90 100
0

0.02

0.04

0.06

Age (years) Age (years)

Co
nc

or
da

nc
e

70 75 80 85 90 95
0

0.2

0.4

0.6

0.8

Ca
se

w
is

e

Figure 3

Concordance and casewise concordance for prostate cancer in monozygotic and dizygotic twins.

stratify according to the different countries. The twins are censored at the same time; otherwise,
we would enforce this in the data by artificially censoring both twins at the first censoring time.
However, given that we have the same-censoring assumption satisfied, we can do the standard
Aalen–Johansen product limit estimator of the concordance probabilities for MZ and DZ twins
(see Figure 3). We see that the concordance is considerably higher for MZ twins compared to
DZ twins and that the casewise concordance also suggests clearly that there is positive dependence
present for both DZ andMZ twins in terms of the occurrence of prostate cancer. The lifetime risk
of a male twin getting prostate cancer (ignoring country differences) was about 10%, and the risk
of both twins getting prostate cancer was about 5% and 2% for MZ and DZ twins, respectively,
thus suggesting a strong positive cooccurrence in prostate cancer. Similarly, looking at the casewise
concordance, if your cotwin has had cancer by the age of 80, your risk is about 40% and 13% for
MZ and DZ twins, respectively.

The simple analysis of concordance did not take into account that the cumulative incidence
is quite different in the different Nordic countries; in particular, Denmark uses different criteria
for the diagnosis of prostate cancer (for more on this, see Hjelmborg et al. 2014). To describe this
further, we also considered a competing risks regressionmodel for the concordance.We started by
considering an interaction between country andMZ/DZ difference (p= 0.15) and then went on to
describe the difference betweenMZ and DZ twins adjusting for country differences (seeTable 2).
Using a logit link, we modeled the concordance probability and found that the concordance was
considerably lower in Denmark compared with other Nordic countries, with an odds ratio (OR)
of about 3, that MZ twins had a concordance with an OR of about 2.8 compared with DZ twins,
and this was similar for all Nordic countries. The logit concordance model makes a statement

Table 2 Concordance regression

OR Estimate 95% CI
Finland 3.57 1.11–6.03
Norway 2.49 0.54–4.43
Sweden 3.00 1.11–4.90
zygMZ 2.81 1.70–3.93

Abbreviations: CI, confidence interval; OR, odds ratio; zygMZ, effect of being a monozygotic twin pair.
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about the concordance probabilities across the time range observed in the study and is thus valid
for all ages. Alternatively, one can also do this modeling for a specific point in time, which is more
in line with the liability threshold modeling.

3.5.3. Cumulative incidence random effects modeling. The simple concordance modeling
can be supplemented and summarized differently by the more detailed description of the joint
cumulative incidence of prostate cancer that can be modeled with our random effects models. To
do this, we used a model for the marginal cumulative incidence that allowed different marginal
cumulative incidences in the different Nordic countries. We then, first, considered the simple
unstructured random effects model with different random effect variances for MZ and DZ twins,
respectively. This type of modeling can be done by modeling over the entire time range or by
considering a fixed point in time. We here considered the entire time range by fitting the model
at the ages 50, 60, 70, 80 and 90.

This led to random effects of 3.22 (1.36; 5.08) and 0.789 (0.05; 1.54) for MZ and DZ twins,
respectively, thus showing a very strong positive correlation for both types of twins. An attempt to
decompose these variances into genetic and environmental effects led to the conclusion that the
ACE and AE did not fit the data particularly well, and we therefore also fitted a DE model that
led to a genetic variance at 3.34 (1.56; 5.04) and no suggestion of an environmental effect.

Interestingly, when we based the estimation only on the concordance at 90 years of age, we
found, in contrast, random effects 2.67 (1.04; 4.30) and 0.66 (−0.05; 1.36) for MZ and DZ twins,
respectively. The DE model led to a genetic variance of 2.74 (1.19; 4.29). There is some sug-
gestion that the Gamma-distributed random effects do not describe the dependence well across
the entire age range, by comparing the nonparametric concordance estimator with that obtained
from the random effects models. Therefore, in this study, it was a good idea to consider specific
time horizons.We return to this point below when considering the liability threshold model with
different time horizons.

3.5.4. Liability threshold. We estimated the parameters of a bivariate probit model separately
for MZ and DZ twins at τ = 95 years with the right-censoring distribution estimated by the
Kaplan–Meier (KM) estimator.

Here, we see a relative recurrence risk of 4.44 (3.50; 5.38) in MZ twins and 2.48 (1.87; 2.81)
in DZ twins. This indicates familial aggregation with elevated risk in both groups compared with
the background population risk. The marginal risk of getting prostate cancer before age 95 is
estimated to be 0.089 (0.081; 0.097). There is significantly stronger dependence between the MZ
twins, suggesting that there is a strong genetic component to the familial aggregation. We can
also calculate dependence measures on the liability scale in terms of the tetrachoric correlations,
with estimates in the MZ group of 0.63 (0.51; 0.72) and the DZ group 0.34 (0.22; 0.45). Next, we
estimated a model with an ACE random effects structure. In this case, the fit of the ACE model is
indistinguishable from the bivariate probit model, and we obtained a heritability estimate ofH2 =
0.58 (0.26; 0.89). A similar conclusion can be drawn when adjusting for country-specific effects in
the marginal of the bivariate probit model and censoring distribution (stratified KM), where we
see an estimate of H2 = 0.59 (0.25; 0.94).

We also examined how the dependence within MZ and DZ twins evolves with age by choosing
different values of τ , with different parameters at each time point, as in Equation 11. The results
are shown in Figure 4, where we see a minor tendency to stronger dependence at earlier age,
though this seems to be happening for both MZ and DZ twins. We also repeated this analysis
for the ACE random effects model. The two models are generally well aligned, as also shown by
correlation plots from the ACEmodel in Figure 5, which agree nicely with the estimates from the

www.annualreviews.org • Family Studies with Lifetime Data 63



70 75

Monozygotic (± 95% confidence)
Dizygotic (± 95% confidence)

Monozygotic (± 95% confidence)
Dizygotic (± 95% confidence)

80 85 90 95

20

15

10

5

Age (years)
70 75 80 85 90 95

Age (years)

Re
la

ti
ve

 re
cu

rr
en

ce
 ri

sk

0

0.2

0.4

0.6

1.0

0.8

Co
rr

el
at

io
n

Figure 4

Relative recurrence risk and tetrachoric correlation estimates from IPCW adjusted bivariate probit models with pointwise 95%
confidence intervals. Abbreviation: IPCW, inverse probability of censoring weighting.

bivariate probit model. From the heritability plot in Figure 5, we see a fairly constant estimate
of the broad-sense heritability over time, with an estimate of about 50%. The CIs are broad,
especially at earlier ages where there are fewer events.

3.5.5. Summary of worked example. The prostate cancer data were analyzed using event his-
tory methods to quantify and compare the dependence in MZ and DZ twins, respectively. Even
though modeling of the cause-specific hazards may be carried out under an assumption of inde-
pendent risks, which may also be validated, we generally believe that it is often more constructive
to be on the risk scale, thus modeling the risk of the event of interest. Nevertheless, we found and
quantified dependence estimates for the cause-specific hazards for MZ and DZ twins, and these
were translated into Kendall’s τ for ease of interpretation. The dependence was further quantified
and separated into different sources on the hazard scale.
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Heritability H2 and tetrachoric correlation estimates from IPCW adjusted liability threshold model with an ACE random effects
structure. Abbreviations: ACE, additive shared and individual environmental effects; IPCW, inverse probability of censoring weighting.
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On the risk scale, we estimated nonparametrically the concordance and casewise concordance
to quantify the strength of dependence in the twins. Additional modeling was carried out using
polygenic random effects models, based on either two-stage Gamma-distributed random effects
or the liability threshold model. Even though both models were fitted to approximate the concor-
dance and the marginals in the data, and both fitted the data well, they led to somewhat different
conclusions in terms of the polygenic model that was deemed most appropriate. This demon-
strates that conclusions based on such models are heavily dependent on the scale on which they
take place and therefore should be interpreted cautiously, thus suggesting that conclusions should
primarily be based on what is seen on the risk scale.

4. DISCUSSION

Family studies are central tools for understanding the etiology of diseases, i.e., by studying if the
risk of disease is greater for individuals with affected relatives, and to investigate to what extent
such familial aggregation may be due to genetic factors. A key point is that the timing aspect of
the event, in most cases, cannot be ignored. Often the outcome of interest is the lifetime risk of
getting the disease, and here special attention should be made to dealing with right-censoring
in the data, i.e., the individuals who are still at risk at the end of follow-up. Another main point
is that competing risks due to, for example, death should also be taken into account in the analysis
to avoid bias in the estimation of dependence measures.

We have discussed several approaches in this review for dealing with these challenges in family
studies. In the absence of competing risks, as in the menopause example, or when the competing
risks can be assumed to be independent, multivariate survival analysis techniques can be applied,
such as frailty models based on additive Gamma or Gaussian distributions. In practice, the imple-
mentation of thesemodels can be difficult in large registry studies due to computational challenges
related to, for example, numerical integration. Here, two-stage models based on copulas are par-
ticularly attractive due to their computational efficiency. Kendall’s τ is easily calculated for these
models, which gives an interpretable dependence measure on the probability scale.

For competing risks data, several options are available. Random effects modeling is possible
either on the hazard scale for each cause or directly on the cumulative incidence scale. In the
common case, when considering disease onset and death as competing risks, it is possible to apply
the liability threshold model with adjustment for right-censoring via IPCW. This makes it possi-
ble to decompose the variation into genetic and environmental components and, thus, to calculate
measures of heritability that are commonly reported in quantitative genetics.While the heritabil-
ity interpretation relies on a number of genetic assumptions and does not capture all the variation
on the risk scale, we note that when the polygenic model fits the data well, the heritability mea-
sure provides a simple summary measure of the dependence structure. For example, for the ACE
model in the classic twin design, the heritability is simply two times the difference in tetrachoric
correlation between MZ and DZ twins, 2(ρMZ − ρDZ).

Rather than putting too much emphasis on a single summary of the differences in dependence
due to genes according to one genetic model, we recommend that the dependence also be mea-
sured using other established measures on the risk scale, such as relative recurrence risks and the
casewise concordance. These numbers are more easily interpretable.

We illustrate how to carry out the analyses demonstrated in the review using our R package
mets in the Supplemental Appendix.

An important direction for further development is to consider in further detail the extended
competing risks models with multiple causes of interest. Here, particular interest may center on
the cross-correlations across causes, but these models require that all multiple causes are modeled
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simultaneously and therefore are complicated. The methods and models considered here can be
further developed to deal with ascertainment sampling based on probands such as case-control
sampling of families (see Chatterjee et al. 2006, Matthews et al. 2008).

In addition, when there is interest on both timing and risk, such as when deciding if early
cancers are more heritable, special models need to be developed to deal with such questions (see,
for example, Cederkvist et al. 2019). Such models are naturally founded on cumulative incidence
models, since the cumulative incidence function gives the timings of the events of interest in
contrast to, for example, the cause-specific hazard.

SUMMARY POINTS

1. The study of familial aggregation for age of onset of diseases or death needs to be ad-
dressed using appropriatemethods that take right-censoring into account.When specific
diseases are the object of interest, one is forced to study the phenomenon using compet-
ing risks modeling due to death as well as other potential competing risks.

2. The two main directions of modeling are based on hazard modeling (or risk modeling)
and cumulative incidence modeling; dependence is often described using random effects
models.

3. The results of polygenic random effects modeling can be difficult to interpret and de-
pend on the specific models used.

4. Simple and easily interpreted summary measures on the risk scale, such as concordance
probabilities, casewise concordance, and relative recurrence risk, are useful to compute.

FUTURE ISSUES

1. The methods introduced here need modification to deal appropriately with ascertained
and case-control sampling, which needs to take the sampling into account. In the case of
delayed entry, which is often the case for many registries, there is also a need for special
attention as software is often not adapted to this situation.

2. Models that deal with the relationship and possible aggregation of different diseases need
to be further developed.This type of modeling will typically need to be done jointly with
death in a competing risks model.

3. Models that deal with timing as well as risk, two separate components, need to be de-
veloped further, and there is often an interest in making statements about a possible
relationship between these.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that
might be perceived as affecting the objectivity of this review.

LITERATURE CITED

Andersen PK, Borgan Ø, Gill RD, Keiding N. 1993. Statistical Models Based on Counting Processes. New York:
Springer

66 Scheike • Holst



Balan TA, Putter H. 2019. frailtyem: an R package for estimating semiparametric shared frailty models. J.
Stat. Softw. 90:1–29

Bandeen-Roche K. 2013. Familial studies. In Handbook of Survival Analysis, ed. JP Klein, H van Houwelingen,
J Ibrahim, TH Scheike, pp. 549–68. Boca Raton, FL: Chapman and Hall/CRC

Bandeen-Roche K, Liang KY. 2002.Modelling multivariate failure time associations in the presence of a com-
peting risk. Biometrika 89:299–314

Bandeen-Roche K, Ning J. 2008. Nonparametric estimation of bivariate failure time associations in the pres-
ence of a competing risk. Biometrika 95:221–32

Cederkvist L,Holst K,AndersenK,Scheike T. 2019.Modeling the cumulative incidence function ofmultivari-
ate competing risks data allowing for within-cluster dependence of risk and timing. Biostatistics 20:199–
217

Chatterjee N,Kalaylioglu Z, Shih JH,HGail M. 2006. Case–control and case-only designs with genotype and
family history data: estimating relative risk, residual familial aggregation, and cumulative risk. Biometrics
62:36–48

Chen BE, Kramer JL, Greene MH, Rosenberg PS. 2008. Competing risks analysis of correlated failure time
data. Biometrics 64:172–79

Cheng Y, Fine JP. 2012. Cumulative incidence association models for bivariate competing risks data. J. R. Stat.
Soc. Ser. B 74:183–202

Cheng Y, Fine JP, Kosorok MR. 2007. Nonparametric association analysis of bivariate competing-risks data.
J. Am. Stat. Assoc. 102:1407–15

ClaytonDG. 1978. Amodel for association in bivariate life tables and its application in epidemiological studies
of familial tendency in chronic disease incidence. Biometrika 65:141–51

Diao G, Zeng D. 2013. Clustered competing risks. In Handbook of Survival Analysis, ed. JP Klein, H van
Houwelingen, J Ibrahim, TH Scheike, pp. 511–22. Boca Raton, FL: Chapman and Hall/CRC

Dixon S, Darlington G, Desmond A. 2011. A competing risks model for correlated data based on the subdis-
tribution hazard. Lifetime Data Anal. 17:473–95

Donohue MC, Xu R. 2019. phmm: proportional hazards mixed-effects models. R Package, version 0.7–11.
https://github.com/mcdonohue/phmm

Duchateau L, Janssen P. 2007. The Frailty Model. New York: Springer
Ducrocq V, Casella G. 1996. A Bayesian analysis of mixed survival models.Genet. Sel. Evol. 28:505–29
Eriksson F, Scheike T. 2015. Additive Gamma frailty models with applications to competing risks in related

individuals. Biometrics 71:677–86
Falconer D. 1967. The inheritance of liability to diseases with variable age of onset, with particular reference

to diabetes mellitus. Ann. Hum. Genet. 31:1–20
Falconer D, Mackay T. 1994. Introduction to Quantitative Genetics. Boston: Addison-Wesley
Glidden DV. 1999. Checking the adequacy of the Gamma frailty model for multivariate failure times.

Biometrika 86:381–93
Glidden DV. 2000. A two-stage estimator of the dependence parameter for the Clayton-Oakes model.Lifetime

Data Anal. 6:141–56
Glidden DV, Self S. 1999. Semiparametric likelihood estimation in the Clayton-Oakes failure time model.

Scand. J. Stat. 26:363–72
Hill WG. 2014. Applications of population genetics to animal breeding, from Wright, Fisher and Lush to

genomic prediction.Genetics 196:1–16
Hjelmborg J, Scheike T, Holst K, Skytthe A, Penney K, et al. 2014. The heritability of prostate cancer in the

Nordic Twin Study of Cancer. Cancer Epidemiol. Biomarkers Prev. 23:2303–10
Holst KK, Scheike TH, Hjelmborg JB. 2016. The liability threshold model for censored twin data. Comput.

Stat. Data Anal. 93:324–35
Hougaard P. 2000. Analysis of Multivariate Survival Data: Statistics for Biology and Health. New York: Springer
Hu T, Nan B, Lin X, Robins J. 2011. Time-dependent cross ratio estimation for bivariate failure times.

Biometrika 98:341–54
Katsahian S, Resche-Rigon M, Chevret S, Porcher R. 2006. Analysing multicenter competing risks data with

a mixed proportional hazards model for the subdistribution. Stat. Med. 25:4267–78

www.annualreviews.org • Family Studies with Lifetime Data 67

https://github.com/mcdonohue/phmm


Klein J. 1992. Semiparametric estimation of random effects using the Cox model based on the EM algorithm.
Biometrics 48:795–806

Korsgaard IR, Andersen AH. 1998. The additive genetic Gamma frailty model. Scand. J. Stat. 25:225–69
Korsgaard IR, Andersen AH, Jensen J. 1999. Discussion of heritability of survival traits. In Proceedings of the

International Workshop of Genetic Improvement of Functional Traits in Cattle: Longevity, Jouy-en-Josas, France,
pp. 31–35. Uppsala, Swed.: Interbull

Lange K. 2002.Mathematical and Statistical Methods for Genetic Analysis. New York: Springer. 2nd ed.
Li H. 1999. The additive genetic Gamma frailty model for linkage analysis of age-of-onset variation. Ann.

Hum. Genet. 63:455–68
Lichtenstein P, Holm N, Verkasalo P, Iliadou A, Kaprio J, et al. 2000. Environmental and heritable factors in

the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J.
Med. 343:78

Lynch M,Walsh B. 1998.Genetics and Analysis of Quantitative Traits, Vol. 1. Sunderland, MA: Sinauer
Matthews AG, Finkelstein DM, Betensky RA. 2008. Analysis of familial aggregation studies with complex

ascertainment schemes. Stat. Med. 27:5076–92
Möller S, Mucci L, Harris J, Scheike T, Holst K, et al. 2016. The heritability of breast cancer among women

in the Nordic Twin Study of Cancer. Cancer Epidemiol. Biomarkers Prev. 25:145–50
Mucci LA,Hjelmborg JB,Harris JR, Czene K,Havelick DJ, et al. 2016. Familial risk and heritability of cancer

among twins in Nordic countries. JAMA 315:68–76
Nan B, Lin X, Lisabeth L, Harlow S. 2006. Piecewise constant cross-ratio estimation for association of age at

a marker event and age at menopause. J. Am. Stat. Assoc. 101:65–77
Neale MC, Cardon LR. 1992.Methodology for Genetic Studies of Twins and Families. Dordrecht, Neth.: Kluwer

Academic
Nielsen GG, Gill RD, Andersen PK, Sørensen TIA. 1992. A counting process approach to maximum likeli-

hood estimation in frailty models. Scand. J. Stat. 19:25–43
Ning J, Bandeen-Roche K. 2014. Estimation of time-dependent association for bivariate failure times in the

presence of a competing risk. Biometrics 70:10–20
Oakes D. 1982. A model for association in bivariate survival data. J. R. Stat. Soc. Ser. B 44:414–22
Petersen JH. 1998. An additive frailty model for correlated life times. Biometrics 54:646–61
Petersen JH, Andersen PK, Gill RD. 1996. Variance component models for survival data. Stat. Neerl. 50:191–

211
Ripatti S, Palmgren J. 2000. Estimation of multivariate frailty models using penalized partial likelihood.

Biometrics 56:1016–22
Scheike T, Hjelmborg J, Holst K. 2015a. Estimating twin pair concordance for age of onset. Behav. Genet.

45:573–80
Scheike T, Holst K, Hjelmborg J. 2014a. Estimating heritability for cause specific mortality based on twin

studies. Lifetime Data Anal. 20:210–33
Scheike T,Holst K,Hjelmborg J. 2014b. Estimating twin concordance for bivariate competing risks twin data.

Stat. Med. 33:1193–204
Scheike T, Holst K, Hjelmborg J. 2015b. Measuring early or late dependence for bivariate lifetimes of twins.

Lifetime Data Anal. 21:280–99
Scheike TH, Sun Y, Zhang MJ, Jensen TK. 2010. A semiparametric random effects model for multivariate

competing risks data. Biometrika 97:133–45
Scheike TH, Zhang MJ, Gerds T. 2008. Predicting cumulative incidence probability by direct binomial re-

gression. Biometrika 95:205–20
Sham P. 1998. Statistics in Human Genetics.New York: Wiley
Shih J, Albert P. 2010. Modeling familial association of ages at onset of disease in the presence of competing

risk. Biometrics 66:1012–23
Shih JH, Louis TA. 1995. Inference on association parameter in copula models for bivariate survival data.

Biometrics 51:1384–99
Sørensen K, Juul A, Christensen K, Skytthe A, Scheike T, Jensen TK. 2013. Birth size and age at menarche: a

twin perspective.Hum. Reprod. 28:2865–71

68 Scheike • Holst



Spiekerman CF,Lin DY. 1998.Marginal regression models for multivariate failure time data. J. Am. Stat. Assoc.
93:1164–75

Therneau T. 2020. coxme: mixed effects Cox models. R Package, version 2.2-16. https://CRAN.R-project.
org/package=coxme

Vaida F, Xu R. 2000. Proportional hazards model with random effects. Stat. Med. 19:3309–24
Varin C, Reid N, Firth D. 2011. An overview of composite likelihood methods. Stat. Sin. 21:5–42
Wienke A. 2011. Frailty Models in Survival Analysis. Boca Raton, FL: Chapman and Hall/CRC
Witte J,Carlin J,Hopper J. 1999.Likelihood-based approach to estimating twin concordance for dichotomous

traits.Genet. Epidemiol. 16:290–304
Yazdi M, Visscher P, Ducrocq V, Thompson R. 2002. Heritability, reliability of genetic evaluations and re-

sponse to selection in proportional hazard models. J. Dairy Sci. 85:1563–77

www.annualreviews.org • Family Studies with Lifetime Data 69

https://CRAN.R-project.org/package=coxme

