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Abstract

Online learning is a framework for the design and analysis of algorithms that
build predictive models by processing data one at the time. Besides being
computationally efficient, online algorithms enjoy theoretical performance
guarantees that do not rely on statistical assumptions on the data source.
In this review, we describe some of the most important algorithmic ideas
behind online learning and explain the main mathematical tools for their
analysis. Our reference framework is online convex optimization, a sequen-
tial version of convex optimization within which most online algorithms are
formulated. More specifically, we provide an in-depth description of online
mirror descent and follow the regularized leader, two of the most fundamen-
tal algorithms in online learning. As the tuning of parameters is a typically
difficult task in sequential data analysis, in the last part of the review we
focus on coin-betting, an information-theoretic approach to the design of
parameter-free online algorithms with good theoretical guarantees.
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1. INTRODUCTION

The growing success of technologies based on machine learning is driven by the availability of
massive data sets in digital formats. Processing these large amounts of data poses computational
challenges that are not always properly addressed by traditional statistical learning methods.
For this reason, online or sequential learning, a framework specifically designed to cope with
big data scenarios, has become a key tool in machine learning applications. Online algorithms
go through the data points sequentially, using each new data point to adjust their predictive
model or estimator. Typically, this adjustment is local, as it only involves the current model and
the new data point. As each data point is often processed in constant time, this results in an
overall running time scaling linearly with the number of data points. Besides the computational
advantage, there are more reasons for which sequential learning may be preferred over other
approaches. In many application domains—such as online advertising, digital markets, sensor
networks, and mobile user applications—new data are generated at high rates. In these cases, the
sequential adaptation process of online learning has the potential to capture subtle nonstationary
features of the unknown data source.

A fundamental issue in machine learning is what mathematical assumptions on data sources
are reasonable to make. Online learning advocates an approach in which the source is viewed as
an arbitrary and unknown deterministic process. This is a radical departure from classical statis-
tical approaches to sequential decision-making—such as Bayesian decision theory (Berger 2013)
or Markov decision processes (Puterman 2014)—and finds its roots in the pioneering works on
repeated games by Robbins (1951), Hannan (1957), and Blackwell (1956), where the data source
consists of the opponent’s plays in a two-person game. The theme of predicting individual, deter-
ministic sequences also surfaced in other disciplines, including information theory (Cover 1967,
Feder et al. 1992), and computer science (Borodin & El-Yaniv 2005). More recently, some of the
online learning techniques, such as exponential weighted aggregation, have also appeared in the
statistical literature (see, e.g., Dalalyan & Tsybakov 2008, Dalalyan & Salmon 2012, Rigollet &
Tsybakov 2012).

Stripping the data source of any statistical assumption allows us to define a crisp, minimalistic
framework for investigating the notion of algorithmic learning, where only the empirical prop-
erties of the observed data sequence matter. A substitute for the notion of statistical risk must
then be introduced to define a notion of minimax optimality over the sequence of losses in a
mathematically rigorous way. In view of that, one should note that in online learning we never
measure the predictive power of a single model; rather, we consider the ensemble of models
sequentially generated by the online learner while processing a data sequence. The notion of
risk that we use to evaluate this ensemble is appropriately called sequential risk and measures
the extent to which each model generated by the algorithm is able to predict the next element
in the sequence. Sequential risk is thus associated with the behavior of an algorithm on an
individual data sequence. Based on sequential risk, we then derive the notion of regret, which can
be viewed as the online counterpart of the statistical excess risk measured with respect to a class
of predictive models. The control of regret is the main goal in the analysis of online learning
algorithms.

In the rest of this review, we introduce and describe some of the most fundamental online
learning algorithms.Our goal is to explain the behavior of these algorithms through the analysis of
their regret.Therefore, rather than going through asmany as possible of the existing approaches to
online learning, we prefer to focus on the conceptual foundations and the main proof techniques.
We believe this is a more effective way to keep alive the interest of someone who wants to know
more about this exciting field of research.
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1.1. Online Convex Optimization

The standard framework for the study of parametric online learning with convex losses1 is known
as online convex optimization (OCO) (see, e.g., Shalev-Shwartz 2012, Hazan 2016, McMahan
2017, Orabona 2019).While it is also possible to design and study nonparametric online learning
algorithms (e.g., Hazan &Megiddo 2007, De Rosa et al. 2015, Kuzborskij & Cesa-Bianchi 2017),
we focus here on the more common parametric setting.

As we said earlier, the data-generating mechanism of online learning is an unknown and de-
terministic process. In OCO, the data process is replaced by a deterministic sequence of unknown
and convex loss functions �t, evaluating the performance of the models incrementally generated
by the algorithm. For example, if we want to cast linear regression in the OCO framework, then
the loss functions �t take the form �t (w) = (w�xt − yt )2, wherew ∈ R

d is a linear prediction model
and (x1, y1), (x2, y2), . . . ∈ R

d × R is the underlying deterministic data sequence.
Throughout this article, the model space X is a convex, closed, and nonempty subset of Rd ,

while a loss function is any nonnegative and convex function �t : X → R. For any sequence �1,
�2, . . . of loss functions, an online learnerA is a sequenceA1,A2, . . . of mappings with rangeX. The
learner’s model at time t iswt = At−1(�1, . . . , �t−1), wherew1 = A1 ∈ X is the default initial model,
and the learner’s loss at time t is �t (wt ). While the notation wt = At−1(�1, . . . , �t−1) highlights the
fact that wt+1 can depend on all the past losses, we are especially interested in cases where the
update wt → wt+1 can be done efficiently based only on wt and �t. Also, for certain applications
it makes sense to consider special cases of this framework, where additional assumptions besides
convexity are made on the loss functions.

1.2. Regret and Sequential Risk

The performance of the learner is measured according to the regret

RT (u) =
T∑
t=1

(
�t (wt ) − �t (u)

)
for u ∈ X.

Online learning is concerned with the design of algorithms for which RT (u) grows sublinearly
in T for all u ∈ X and irrespective to the loss sequence (the so-called no-regret property). The
quantity 1

T

∑T
t=1 �t (wt ) is sometimes called sequential risk (as opposed to the classical statistical

risk); thus, sublinear regret implies that the excess sequential risk,

1
T

T∑
t=1

�t (wt ) − 1
T

T∑
t=1

�t (u),

converges to zero for any u ∈ X.
Algorithms that enjoy the no-regret property can also be used to solve convex optimization

problemsminw∈X f (w),which are viewed as instances ofOCOwith �t = f for all t. Indeed, Jensen’s
inequality shows that

f (w) − min
w∈X

f (w) ≤ 1
T

(
T∑
t=1

�t (wt ) − min
w∈X

T∑
t=1

�t (w)

)
≤ RT (w� )

T
,

where w = 1
T (w1 + · · · + wT ) is the average of the iterates wt and w� is the minimizer of f in

X. Similarly, we may also consider stochastic optimization problems minw∈X E[F (w,ω)], where

1Partial extensions of online learning to nonconvex losses have been recently considered by Agarwal et al.
(2019).
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the random variable F (w, ·) is the stochastic objective and F(·, ω) is convex for all ω � �.
Given access to independent and identically distributed (i.i.d.) draws ω1, ω2, . . . , we can solve
stochastic optimization problems using a no-regret algorithm run with �t (w) = F (w,ωt ). Let
w� ∈ argminw∈X E[F (w,ω)] and observe that, using Jensen’s inequality once more,

E
[
F (w,ω) − F (w�,ω)

] ≤ E

[
1
T

T∑
t=1

(
F (wt ,ωt ) − F (w�,ωt )

)]

= E

[
1
T

T∑
t=1

(
�t (wt ) − �t (w� )

)] ≤ E

[
RT (w� )
T

]
.

In machine learning, stochastic optimization is typically used to solve empirical risk minimization
problems:

min
w∈X

1
m

m∑
i=1

F
(
w, zi

)
, 1.

where z1, . . . , zm is a data set and F (w, zi ) measures the loss of w on the data point zi. If F (·, z) is
convex for all z, then we may set �t = F (·,Zt ), where Z1,Z2, . . . are i.i.d. uniform draws from the
data set.

1.3. Lower Bounds

Consider the easy case when X is a bounded2 set with diameter D and all losses �t are Lipschitz
on X; how well can we control the regret RT in this scenario? It turns out that the worst case for
OCO occurs when all loss functions are linear. Interestingly, the proof uses a stochastic rather
than deterministic loss process. More specifically, let v1, v2 ∈ X such that ‖v1 − v2‖2 = D and de-
fine z0 = v1−v2‖v1−v2‖2

. Stochastic losses L1, L2, . . . are defined by Lt (w) = εtL z�
0 w, where ε1, ε2, . . .

are independent Rademacher random variables, i.e., P(εt = 1) = P(εt = −1) = 1
2 , and L > 0 is

the Lipschitz constant for all the losses.
Now, fix any algorithm for OCO. Clearly, its regret satisfies

max
ε1,...,εT

max
u∈{v1,v2}

RT (u) ≥ E

[
max

u∈{v1,v2}
RT (u)

]
,

where the expectation is with respect to the random draw of ε1, . . . , εT. Moreover, since
E[Lt (w)] = 0 for all w, we have

E

[
max

u∈{v1,v2}
RT (u)

]
= E

[
max

u∈{v1,v2}

T∑
t=1

Lt (u)

]
. 2.

Now, using the elementary identity max{a, b} = 1
2 (a+ b+ |a− b|) and Khintchine inequality (see,

e.g., Cesa-Bianchi & Lugosi 2006, lemma 8.2), we obtain that the right-hand side of Equation 2
is equal to

L
2
E

[∣∣∣∣∣
T∑
t=1

εtz�
0 (v1 − v2)

∣∣∣∣∣
]

= LD
2

E

[∣∣∣∣∣
T∑
t=1

εt

∣∣∣∣∣
]

≥ LD
4

√
2T , 3.

2This can be a plausible assumption in many practical cases—for instance, in online linear regression when
upper bounds on max t‖xt‖2 and max t|yt| are known in advance.
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where the equality is proven using z�
0 (v1 − v2) = D due to our choice of z0. This shows that we

cannot expect the regret to grow slower that LD
√
T—where D is the Euclidean diameter of X

and L is the Lipschitz constant of the loss—unless the two main parameters of our setting, that
is, the model space X and the loss process �1, �2, . . . , enjoy some additional properties.

Lower bounds arguments based on the Khintchine inequality are rather common in online
learning; Luo et al. (2016, theorem 1) provide an example close to the one presented here. The
effectiveness of stochastic loss sequences to prove tight lower bounds in OCO settings in not acci-
dental. To gain a better understanding of the connections between stochastic and online learning,
readers are directed to the work of Rakhlin & Sridharan (A. Rakhlin & K. Sridharan, unpublished
book draft), who study online learning as a minimax problem.

The game-theoretic roots of OCO are described by Cesa-Bianchi & Lugosi (2006). Since then,
the interface between sequential optimization, game theory, and statistics has been intensively
explored inmanyworks, including the surveys by Shalev-Shwartz (2007),Hazan (2016),McMahan
(2017), and Orabona (2019).

2. ONLINE MIRROR DESCENT

We now introduce the most popular algorithm for OCO, online mirror descent (OMD). OMD
is the online version of the mirror descent algorithm of Nemirovsky & Yudin (1983) for convex
optimization. Mirror descent is based on a generalization of projected gradient descent in which
distances in the model space X are not necessarily measured using the Euclidean norm. This
allows one to take advantage of specific geometrical properties that X may have. To see how this
is done, we start from the iterates wt+1 = �X(wt − ηt∇F (wt )) of projected gradient descent on a
convex and differentiable objective F : Rd → R, where�X denotes the Euclidean projection onto
X and ηt > 0 is the step size at time t. The expression defining the iterates can be rewritten in an
equivalent optimization form,

wt+1 = argmin
w∈X

1
2ηt

‖w − wt‖22 + w�∇F (wt ).

Mirror descent replaces the Euclidean norm in the above equation with a generalized distance or
divergence D,

wt+1 = argmin
w∈X

1
2ηt

D(w,wt ) + w�∇F (wt ). 4.

Following Beck & Teboulle (2003), the divergences used by mirror descent are parameterized by
mirror map functions ψ : X → R that are strictly convex and continuously differentiable on the
interior of X. Given such a ψ , the Bregman divergence Dψ : X × intX → R is defined by

Dψ (u,w) = ψ (u) − ψ (w) − ∇ψ (w)�(u − w).

Note that Dψ is not necessarily symmetric and, since ψ is strictly convex, is always nonnegative
and equals zero only when w = u. When ψ is also twice differentiable, then Taylor’s theorem
shows that

Dψ (u,w) = 1
2
(u − w)�∇2ψ (z)(u − w)

for some z on the line segment joining u andw. In other words, forψ that are twice differentiable,
the divergence locally behaves like a squaredMahalanobis distance. Just like in the Euclidean case,
we can also write the mirror descent update (Equation 4) using a Bregman projection (see, e.g.,
Bubeck 2015, section 4).
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The online version of mirror descent is now straightforward to obtain. In order to avoid con-
sidering iterates wt on the boundary of X, where Dψ (·,wt ) is not defined, we restrict the argmin
in Equation 4 to a convex and nonempty subset V ⊆ intX and, consequently, measure the regret
RT (u) only for u ∈ V. Let w1 ∈ V and fix a sequence η1 ≥ η2 ≥ ��� > 0 of step sizes. Now, for any
sequence �1, �2, . . . of differentiable loss functions, the iterates of OMD are defined by

wt+1 = argmin
w∈V

1
ηt
Dψ (w,wt ) + w�gt , 5.

where gt = ∇�t (wt ). The differentiability assumption for the losses �t can be relaxed to sub-
differentiability, in which case gt is any element of the subdifferential of �t at wt . This is useful
because some popular loss functions, like the hinge loss �t (wt ) = max{0, 1 − ytw�xt} for binary
classification (yt � {−1, 1}), are not everywhere differentiable. In the rest of this review, we use
the same notation gt to denote ∇�t (wt ) or any subgradient of �t at wt , according to whether �t is
differentiable or only subdifferentiable.

One might wonder why we are using a linear approximation w�gt instead of the loss �t (w) in
the update of OMD. Indeed, the variant where �t (w) replaces w�gt is called the proximal point
method in the convex optimization literature and implicit update in the online learning literature
(see Kivinen & Warmuth 1997, Kulis & Bartlett 2010, and also McMahan 2017, section 6). Con-
nections between implicit updates and optimistic updates in saddle point optimization problems
were investigated by Mokhtari et al. (2019) (see also Section 3). We now look at two important
choices for the mirror map:

1. Euclidean: If ψ = 1
2 ‖·‖22, then Dψ (u,w) = 1

2 ‖u − w‖22 and the OMD update becomes
the online version of gradient descent (OGD) with Euclidean projection, wt+1 =
�V(wt − ηtgt ).

2. Entropic: If X is the simplex of probability distributions over {1, . . . , d} and ψ is the neg-
ative entropy ψ (w) = ∑

i wi lnwi, then Dψ (u,w) = ∑
i ui ln

ui
wi

is the Kullback–Leibler di-
vergence (or cross entropy) and theOMDupdate becomes the exponentiated gradient (EG)
algorithm of Kivinen & Warmuth (1997),

wt+1,i = wt,ie−ηt gt,i∑d
j=1 wt, j e−ηt gt, j

i = 1, . . . , d,

where gt, i are the components of the gradient gt . As in this case

lim
w→bdX

∥∥∇ψ (w)
∥∥
2 = ∞, 6.

where bdX is the boundary of X, we can measure the regret RT (u) against u ∈ X instead
of restricting to u ∈ V ⊆ intX. In fact, under the latter condition, the update rule of OMD
will never return a point on the boundary of X. For instance, when losses are linear,

∑
t�t

is always minimized at a u located on a corner of the simplex, and we can show that EG
(OMD with entropic mirror map) has vanishing regret with respect to any u in the simplex
X, including the corners.

We now look at a different interpretation of the update rule of OMD. First, let a differen-
tiable function f : X → R be μ-strongly convex on V ⊆ intX with respect to a norm ‖·‖ if, for
all u, v ∈ V, we have that f (u) ≥ f (v) + ∇ f (v)�(u − v) + μ

2 ‖u − v‖2. Mirror maps ψ that are
μ-strongly convex with respect to a norm ‖·‖ define Bregman divergences that grow faster than
the square of the same norm, i.e., Dψ (u,w) ≥ μ

2 ‖u − w‖2.
For strongly convex mirror maps, an equivalent way of writing Equation 5 is wt+1 =

∇ψ�
V
(∇ψV(wt ) − ηtgt ), where the function ψV is the restriction of ψ to V, i.e., ψV(w) = ψ (w)
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wt

wt+1

Δψ (wt)

Δψ (wt)–ηtgt

Δψ

Δψ

Figure 1

A step of online mirror descent (OMD) run with ψV (the restriction to the model space V ⊆ X of a strongly
convex mirror map ψ). The function ψ�

V
is the Fenchel conjugate of ψV. The vector gt denotes the loss

gradient ∇�t (wt ) (or any subgradient of �t at wt ), and ηt > 0 is a variable step size.

if w ∈ V and ψV(w) = ∞ otherwise. The function ψ�
V
: Rd → R is the Fenchel conjugate of ψV,

defined by

ψ�
V
(θ) = max

w∈Rd
w�θ − ψV(w). 7.

Strong convexity ensures that ψ�
V
is differentiable and that ∇ψ�

V
is the functional inverse of ∇ψV.

The function ψV maps the iterates wt to the dual space of gradients where a gradient step is
performed. The inverse function ψ�

V
maps back to the primal space of iterates.Figure 1 illustrates

the OMD update. Going back to the previous examples, we see that ψ = 1
2 ‖·‖22 = ψ�.When ψ is

the negative entropy, we instead have that ψ�(θ) = ln(
∑d

i=1 e
θi ).

We now move on to analyze the regret of OMD and show us how the change of geometry
caused by the choice of the strongly convex mirror map ψ affects the algorithm’s performance.
The first step in bounding the regretRT (u) consists in linearizing the loss using convexity, �t (wt ) −
�t (u) ≤ g�

t (wt − u); recall that gt = ∇�t (wt ) for differentiable losses. We call the resulting upper
bound on RT (u) linearized regret. Next, using the properties of the optimization form for the
OMD iterates (Equation 4) and the μ-strong convexity of the mirror map with respect to ‖·‖, it
takes a few steps to prove that

ηtg�
t

(
wt − u

) ≤ Dψ (u,wt ) − Dψ (u,wt+1) + η2t

2μ
∥∥gt∥∥2� ,

where ‖·‖� is the dual norm of ‖·‖. Now, dividing both sides by ηt > 0 and summing over t =
1, . . . , T gives the following chain of inequalities:

RT (u) =
T∑
t=1

(
�t (wt ) − �t (u)

)

≤
T∑
t=1

g�
t

(
wt − u

)
(linearized regret)

≤
T∑
t=1

(
Dψ (u,wt )

ηt
− Dψ (u,wt+1)

ηt

)
+ 1

2μ

T∑
t=1

ηt
∥∥gt∥∥2�
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= Dψ (u,w1)
η1

− Dψ (u,wT+1)
ηT+1

+
T−1∑
t=1

(
1
ηt+1

− 1
ηt

)
Dψ (u,wt+1) + 1

2μ

T∑
t=1

ηt
∥∥gt∥∥2�

≤ D2

η1
+

(
1
ηT

− 1
η1

)
D2 + 1

2μ

T∑
t=1

ηt
∥∥gt∥∥2� [where D2 = max

u,w∈V
Dψ (u,w)]

= D2

ηT
+ 1

2μ

T∑
t=1

ηt
∥∥gt∥∥2� . 8.

We can now set ηt = D
√

μ∑t
s=1‖gs‖2

�

and obtain

RT (u) ≤ 2D

√√√√ 1
μ

T∑
t=1

∥∥gt∥∥2�. 9.

Equipped with this result, we can see how the choice of the mirror map affects OMD per-
formance. Consider first OGD, where V is the closed Euclidean ball of diameter U and
ψ = 1

2 ‖·‖22. If ‖gt‖∞ ≤ G for some G > 0, then
∥∥gt∥∥2� = ∥∥gt∥∥22 ≤ G2d and OGD has a regret

bound of the form RT (u) ≤ 2UG
√
dT . Under these assumptions, losses have Lipschitz constant

L = maxt
∥∥gt∥∥2 ≤ G

√
d, and so this regret bound matches the lower bound, Equation 3 in

Section 1.3, up to constant factors. Therefore, in the Euclidean domain, OGD has essentially
optimal dependence on time, diameter of the model space, and Lipschitz constant of the losses.

Next, consider EG, where V is the probability simplex and ψ (w) = ∑
i wi lnwi, which is 1-

strongly convex with respect to ‖·‖1. Here, we run into a problem because the diameter of the
simplex is unbounded when measured using the cross entropy (i.e., the Bregman divergence Dψ

corresponding to the entropic mirror map). This prevents us from obtaining a constant upper
bound D2 on maxt Dψ (u,wt ). We can fix this by choosing a constant step size η, which allows us
to transform the regret guarantee (Equation 8) into the following alternative bound:

RT (u) ≤ Dψ (u,w1)
η

+ η

2μ

T∑
t=1

∥∥gt∥∥2� . 10.

Under the same assumption ‖gt‖∞ ≤ G as before, we get
∥∥gt∥∥2� = ∥∥gt∥∥2∞ ≤ G2. Hence, choosing

w1 = (1/d, . . . , 1/d ) as first iterate so that Dψ (u,w1) ≤ ln d and setting η =
√
(2 ln d )/(G2T ) gives

RT (u) ≤ G
√
(T ln d )/2. Using the squared Euclidean norm in the same setting would instead give

RT (u) ≤ 2G
√
dT . Note that for linear losses, the quantity G

√
(T ln d )/2 is asymptotically min-

imax, including constants (see Cesa-Bianchi & Lugosi 2006, corollary 8.3). This shows the im-
portance of matching the mirror map to the geometry of the model space. From a practical point
of view, the logarithmic dependence on d in the regret guarantees that EG is robust to a large
number of irrelevant features.

When the convex losses �t are induced by pairs (xt , yt ), as in �t (w) = (w�xt − yt )2, then loss
gradients∇�t (w) are proportional to data points xt . In this case, bounds onRT (u) forOGDandEG
depend on different products of dual norms: (max t‖xt‖2)‖u‖2 for OGD and (max t‖xt‖∞)‖u‖1 for
EG. Since ‖·‖∞ ≤ ‖·‖2 ≤ ‖·‖1, neither bound dominates. However, for sparse u, ‖u‖1 approaches
‖u‖∞ and EG performs better than OGD.

The analysis of OGD can be easily adapted to derive a regret bound for the perceptron
algorithm of Rosenblatt (1958) for binary classification, without the need to assume linear sepa-
rability of the data sequence (see Freund & Schapire 1999). In the special case of separable data
sequences, the regret bound reduces to the result originally proven in the well-known perceptron
convergence theorem (Block 1962, Novikoff 1963).
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If the loss functions are known to be μ-strongly convex and L-Lipschitz inV, then the step size
of OGD can be set more aggressively to ηt = 1

μt to exploit the curvature. The resulting bound on
the regret is

RT (u) ≤ L2

2μ
ln(T + 1) ∀u ∈ V.

Note that there is no dependence on the diameter of the model space in this bound, only on the
gradients of the losses (through the Lipschitz constant L). Many machine learning algorithms,
including support vector machines (Cortes & Vapnik 1995), can be trained using stochastic op-
timization over a training set of data points z1, . . . , zm to minimize a strongly convex functional
F (see Equation 1). A prime example of a stochastic gradient descent algorithm is OGD run on
the sequence of strongly convex losses �t = F (·,Zt ), where Zt is drawn at random from the data
set. The regret analysis of OGD with strongly convex losses can be used to obtain rates of con-
vergence to the minimum of F in Equation 1. This is done, for example, to analyze the Pegasos
algorithm of Shalev-Shwartz et al. (2011).

The EG algorithm is an instance of the multiplicative update method, a technique that found
applications in computer science (Littlestone & Warmuth 1994), game theory (Fudenberg &
Levine 1995), information theory, statistics, and other disciplines (see, e.g.,Cesa-Bianchi &Lugosi
2006, Arora et al. 2012b). In the special case of linear losses with uniformly bounded coefficients,
EG is known as the hedge algorithm (Freund & Schapire 1997), and the corresponding setting is
known as prediction with expert advice (Cesa-Bianchi et al. 1997).

2.1. The AdaGrad Algorithm

A variant ofOMD that has become of widespread use as a stochastic gradient descent algorithm for
training neural networks is the AdaGrad (adaptive gradient) algorithm, independently introduced
by McMahan & Streeter (2010) and Duchi et al. (2011). For simplicity, we look at the so-called
diagonal version of AdaGrad, which uses a coordinate-dependent step size.

Let V be the hyperrectangle [a1, b1] × ��� × [ad, bd] and Di = bi − ai for i = 1, . . . , d. AdaGrad
runs OMDwith mirror mapψ = 1

2 ‖·‖2 and projection ontoV. The iterates, including the projec-
tion step, can be written as wt + 1, i = max {min {wt, i − ηt, igt, i}, ai} for i = 1, . . . , d and an arbitrary
initial point w1 ∈ V. The components of the step size are chosen as

ηt,i = Di√
2
∑t

s=1 g
2
s,i

.

The regret analysis is straightforward: After linearizing the losses so that �t (wt ) − �t (u) ≤ g�
t

(wt − u), one can simply perform the standard OMD analysis independently for each coordinate.
By applying the bound (Equation 9) on each coordinate and then summing over coordinates, we
obtain

RT (u) ≤
d∑
i=1

Di

√√√√2
T∑
t=1

g2t,i. 11.

We can compare this bound to Equation 9 with μ = 1 and ‖·‖� = ‖·‖2. For simplicity, we take V
to be the hypercube withDi = 1, so thatD in Equation 9 is equal to

√
d. Using Cauchy-Schwartz,√√√√ T∑

t=1

∥∥gt∥∥22 ≤
d∑
i=1

√√√√ T∑
t=1

g2t,i ≤
√
d

√√√√ T∑
t=1

∥∥gt∥∥22,
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where Equation 9 appears in the right-hand side and Equation 11 appears in the middle. Hence,
ignoring the fact that the sequence of realized subgradients gt is different for the two algorithms,
with this choice of V, AdaGrad can gain up to a factor of

√
d in the regret bound with respect

to plain OMD. Compared with the EG algorithm, which uses an entropic mirror map on the
probability simplex, here the advantage is brought by a coordinate-dependent step size, which
exploits the decomposability of the regret across the d coordinates granted by the geometry of V.

Note that the specific choice of the step size makes the algorithm independent with respect to
rescalings of the coordinates (Orabona & Pál 2018). This property is especially useful in neural
network training, where the range of gradient components may vary a lot across the different
layers.

3. FOLLOW THE REGULARIZED LEADER

A very natural online learning strategy for the OCO setting is follow the leader (FTL), which
corresponds to predicting with the model minimizing the sum of the losses observed so far,

wt+1 = argmin
w∈V

t∑
s=1

�t (w).

Here w1 ∈ V is any convex, closed, and nonemtpy subset of Rd . When losses are strongly convex
and Lipschitz in V, FTL achieves RT (u) = O(lnT ) for all u ∈ V (McMahan 2017, section 3.7).
However, the curvature of each loss function is necessary to obtain a nontrivial performance.
When losses are linear, FTL provably incurs a regret that grows linearly in T (see, e.g., Shalev-
Shwartz 2012, example 2.2). This is caused by the intrinsic instability of the algorithm: In a non-
stochastic setting, one can design the loss sequence so that the trajectoryw1,w2, . . . of FTLmodels
oscillates wildly in V, a behavior that the adversary can exploit to increase the regret. Similarly to
OMD, which achieves stability by forcing wt+1 to be not too far away from wt (see Equation 5),
FTL can be stabilized by adding a strictly convex regularization function.The resulting algorithm,
appropriately called follow the regularized leader (FTRL), is a close relative of OMD. Indeed, the
regularization functions used by FTRL are formally equivalent to OMD’s mirror maps ψ . As
FTRL is not formulated as a gradient descent method, we replace OMD’s step sizes ηt with time-
dependent regularizers ψ t. For any sequence ψ1, ψ2, . . . of strictly convex regularizers, FTRL
iterates are defined by

wt+1 = argmin
w∈V

ψt+1(w) +
t∑
s=1

�s(w), 12.

where �1, �2, . . . is an arbitrary sequence of convex losses. From the viewpoint of regret minimiza-
tion, we know that �s(w) can be replaced by g�

s w (recall the linearization step in Section 2), where
gs is the gradient (or subgradient) of �s(ws ). If we do that in Equation 12, we obtain

wt+1 = argmin
w∈V

ψt+1(w) +
t∑
s=1

g�
s w. 13.

This is the version of FTRL we study in the rest of this section. Let ψV,t be the restriction of ψ t

to V (see Section 2). If the regularizers ψV,t are all strongly convex, then wt+1 in Equation 13 has
the closed form

wt+1 = ∇ψ�
V,t+1

(
−

t∑
s=1

gs

)
,
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wt+1

θt

θt+1= θt –gt

Δψ ,t+1

Figure 2

A step of follow the regularized leader (FTRL) run with linearized losses and time-dependent regularizers
ψV,t (these are the restrictions to the model space V ⊆ X of strongly convex regularizers ψ t). The functions
ψ�
V,t are the Fenchel conjugate of ψV,t . The vectors gt denote the loss gradients ∇�t (wt ) (or any subgradient

of �t at wt ), while the state variables θt are simply the sum of all past loss gradients, θt = −(g1 + · · · + gt−1).

where ψ�
V,t+1 is the Fenchel conjugate of ψV,t+1 (differentiability of ψ�

V,t+1 is guaranteed by the
strong convexity of ψV,t+1). By letting θt+1 = −(g1 + · · · + gt ), the FTRL iterates can be written
as wt+1 = ∇ψ�

V,t+1(θt+1) (see Figure 2). By comparison, the OMD iterates for strongly convex
mirror maps are written as wt+1 = ∇ψ�

V
(θ′
t+1), where θ′

t+1 = ∇ψV(wt ) − ηtgt .
Note that FTRL keeps a state variable θt in the dual space of gradients. This is mapped to the

primal space of iterates every time a prediction is needed. Instead, OMD keeps its state wt in the
primal space of iterates. This is then mapped to the dual space of gradients every time an update
must be computed. Another difference is that gradients are all equally weighted in FTRL,whereas
in OMD, each gradient gt is weighted by a potentially different step size ηt.

FTRL was originally introduced by Abernethy et al. (2008), although the key ideas are con-
tained in Shalev-Shwartz (2007). The version with linearized losses and ψt = ψ = η

2‖ · ‖22 was
introduced by Zinkevich (2004) as a so-called lazy update variant of OMD.

In order to understand whether the two algorithms can produce the same sequence of iter-
ates, we focus on the case when ηt = η in OMD and ψ t = ψ/η in FTRL, for all t. Then we
define the iterates of both OMD and FTRL through a common optimization problem wt+1 =
argminw∈V Ft+1(w), where, for OMD and FTRL, respectively,

Ft+1(w) = Dψ (w,wt ) + ηg�
t w and

Ft+1(w) = ψ (w) +
t∑
s=1

g�
s w.

WhenV is such thatwt+1 satisfies∇Ft+1(wt+1) = 0 for both instances of Ft + 1, a quick computation
shows us that for both choices of Ft + 1, the gradient vanishes when∇ψ (wt+1) = −ηθt+1.Due to the
strong convexity of ψ , this is equivalent to wt+1 = ∇ψ�(−ηθt+1). Under these conditions, the two
algorithms produce the same sequence of iterates. A concrete setting in which the two algorithms
become identical is V ≡ R

d and ψ = 1
2 ‖·‖22.

FTRL enjoys a regret bound similar to the one we stated for OMD. Let ψ : V → R be a
μ-strongly convex function with respect to a norm ‖·‖. Since FTRL is invariant to positive con-
stants added to the regularizers, without loss of generality we may assume that minu∈V ψ (u) = 0.
For scaling factors β1 ≥ β2 ≥· · ·> 0, let ψ t = ψ/β t. Then, for any sequence �1, �2, . . . of convex
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losses, the regret of FTRL satisfies

RT (u) ≤ ψ (u)
βT

+ 1
2μ

T∑
t=1

βt
∥∥gt∥∥2� ∀u ∈ V. 14.

This is very similar to the OMD bound (Equation 8). However, unlike OMD, where the step size
ηt is used in the update wt → wt+1, in the above formulation FTRL uses the scaling factor β t in
the update wt−1 → wt . In particular, in FTRL, β t cannot depend on gt .

Given the similarities between OMD and FTRL, are there settings in which the latter should
be preferred over the former? Consider, for instance, the analysis of the EG algorithm (i.e., OMD
run with entropic mirror map and V set to the probability simplex). In this case, we cannot use
OMD with a variable step size because of the unboundedness of the Bregman divergence. When
FTRL is applied to the same setting, the regret bound specializes to

RT (u) ≤ ln d
βT

+ G2

2

T∑
t=1

βt ,

where, we recall, G upper bounds ‖gt‖∞ for all t. Taking βt =
√
(ln d )/(G2t ) then gives RT (u) ≤

2G
√
T ln d. Up to constants, this is the same as the bound we obtain for OMD when the step size

is tuned with prior knowledge of the number of rounds T.

3.1. Online Newton Step

As mentioned at the beginning of this section, strongly convex losses are an easy case for online
learning. A simple algorithm like FTL achieves logarithmic regret on any sequence of such losses
whenever the strong convexity coefficients in the loss sequence are bounded away from zero. A
natural question is then whether logarithmic regret is possible for convex loss functions that are
not strongly convex but also not linear.

For any symmetric and positive semidefinite matrixM, introduce the seminorm ‖·‖M such that
‖w‖2M = w�Mw. As it turns out, the right curvature property sufficient to guarantee logarithmic
regret is the following:

�t (u) ≥ �t (w) + g�(u − w) + λ

2
‖u − w‖2gg� u,w ∈ V 15.

for some λ > 0, where g = ∇�t (w) (or any subgradient if �t is only subdifferentiable). In other
words, we require �t to be strongly convex only in the direction of its gradient (or in the direction
of some of its subgradients). For example, the square loss �t (w) = 1

2 (w
�xt − yt )2 satisfies the prop-

erty in Equation 15 for λ ≤ 1
8C2 whenever |w�xt |, |yt | ≤ C (Hazan et al. 2007, lemma 3). Also, the

logistic loss �t (w) = ln(1 + exp(−w�xt )) satisfies Equation 15 when w belongs to an Euclidean
ball of fixed radius.More generally, any loss �t such that e−α �t is concave in V for some α > 0 satis-
fies Equation 15 with λ ≤ 1

2 min{ 1
GD ,α}, whereD is the Euclidean diameter of V and G is a bound

on maxw∈V
∥∥∇�t (w)

∥∥. Such losses are said to be α-exp-concave in V (Kivinen & Warmuth 1999).
If �t is twice differentiable, then α-exp-concavity inV is equivalent to ∇2�t (w) − α∇�t (w)∇�t (w)�

being positive semidefinite for all w ∈ V.
Hazan et al. (2007, theorem 6) prove an O(d lnT ) regret bound on FTL for all sequences of

loss functions �t satisfying Equation 15 for some λ > 0. They do so by introducing the quadratic
approximation of each loss function �̂t (w) = �t (wt ) + g�

t (w − wt ) + λ

2 ‖w − wt‖2gtg�
t
, where gt =

∇�t (wt ) and w1,w2, . . . ∈ V are defined by

wt+1 = argmin
w∈V

t∑
s=1

�̂s(w) 16.
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(w1 can be defined arbitrarily). Observe that Equation 16 is just FTL run on the losses �̂t . More-
over, �̂t (wt ) = �t (wt ), and because of Equation 15, �̂t (u) ≤ �t (u) for all u ∈ V. This implies that
the regret of FTL with respect to the original losses �t satisfies

RT (u) ≤
T∑
t=1

�̂t (wt ) −
T∑
t=1

�̂t (u) ∀u ∈ V.

The rest of the proof uses the special properties of the functions �̂t to derive the desiredO(d lnT )
bound on the regret. Hazan et al. (2007, lemma 4) also prove that Equation 16 is equivalent to

w′
t+1 = S+

t

t∑
s=1

(
g�
s ws − 1

λ

)
gs,

wt+1 = argmin
w∈V

∥∥w − w′
t+1

∥∥
St
,

17.

where S+
t denotes the Moore-Penrose pseudoinverse of St = g1g�

1 + · · · + gtg�
t .

A similar O(d lnT ) bound can be proven through a more general proof, this time using the
FTRL framework with linearized losses. Define the regularizers ψ1, ψ2, . . . given by

ψ1(w) = ‖w‖22
2

and ψt+1(w) = ψt (w) + λ

2
‖wt − w‖2gtg�

t
, 18.

where gt = ∇�t (wt ) and the wt are the FTRL iterates defined in Equation 13,

wt+1 = argmin
w∈V

ψt+1(w) +
t∑
s=1

g�
s w. 19.

An equivalent and more explicit form for the iterates defined in Equation 19, which brings out
the similarity with Equation 17, is

w′
t+1 = A−1

t

t∑
s=1

(
g�
s ws − 1

)
gs,

wt+1 = argmin
w∈V

∥∥w − w′
t+1

∥∥
At
,

20.

where A0 = I and At = At−1 + λgtg�
t .

Each regularizer ψ t of the form in Equation 18 is 1-strongly convex with respect to the norm
‖·‖At−1

. Using this property and the special recursive form of these regularizers, one can prove for
this algorithm a regret bound of the following form: for any sequence �1, �2, . . . of losses satisfying
Equation 15,

RT (u) ≤ ‖u‖22
2

+ 1
2

T∑
t=1

∥∥gt∥∥2A−1
t

≤ ‖u‖22
2

+ d
2λ

ln
(
1 + λGT

d

)
, 21.

where max t‖gt‖2 ≤G and we used a standard majorization for bounding the sum of terms
∥∥gt∥∥2A−1

t

(see, e.g., Cesa-Bianchi & Lugosi 2006, lemma 11.11 and theorem 11.7).
One may also wonder whether the same logarithmic regret bound for losses satisfying

Equation 15 could be achieved using OMD instead of FTL/FTRL as we did in this section.
Noting that, for M symmetric and positive definite, the divergence associated with ψ = 1

2 ‖·‖2M
is D(u,w) = 1

2 ‖u − w‖2M , we may introduce the following instance of OMD:

wt+1 = argmin
w∈V

1
2

‖w − wt‖2At + w�gt ,
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where A0 = I, At = At−1 + λgtg�
t , and gt = ∇�(wt ). The closed-form expression is

w′
t+1 = A−1

t gt ,

wt+1 = argmin
w∈V

∥∥w − w′
t+1

∥∥
At
.

22.

Note that this algorithm is rather different from both Equation 17 and Equation 20. Its regret
analysis is relatively simple, although it is not derived as a special case of the general OMD anal-
ysis (which uses constant mirror maps). Fix any sequence �1, �2, . . . of loss functions satisfying
Equation 15. Sincewt+1 is the projection ofw′

t+1 onto V, the update in Equation 22 ensures that

‖wt+1 − u‖2At ≤ ∥∥w′
t+1 − u

∥∥2
At

= ‖wt − u‖2At + g�
t A

−1
t gt − 2g�

t (wt − u) 23.

for all u ∈ V. By the curvature property (Equation 15), we then have that

2RT (u) ≤ 2
T∑
t=1

(
g�
t (wt − u) − λ ‖wt − u‖2gtg�

t

)

≤
T∑
t=1

(∥∥gt∥∥A−1
t

+ ‖wt − u‖2At − ‖wt+1 − u‖2At − λ ‖wt − u‖2gtg�
t

)
(using Equation 23)

=
T∑
t=1

∥∥gt∥∥2A−1
t

+ ‖u‖2A0
+

T∑
t=1

(wt − u)�(At − At−1 − λgtg�
t )(wt − u)

=
T∑
t=1

∥∥gt∥∥2A−1
t

+ ‖u‖22 ,

using the definition of At. Now note that the above is exactly equivalent to the bound in
Equation 21, which we proved for FTRL.

3.2. Online Linear Regression

An important special case of online learning is (unconstrained) online linear regression, where
V = R

d and the losses �t (w) = 1
2

(
w�xt − yt

)2 are induced by an arbitrary and deterministic se-
quence (x1, y1), (x2, y2), . . . of data points xt ∈ R

d and values yt ∈ R. The online version of the
classical ridge regression algorithm by Hoerl & Kennard (2000) is an instance of FTRL without
linearized losses (see Equation 12):

wt+1 = argmin
w∈Rd

1
2

‖w‖22 + 1
2

t∑
s=1

(
w�xs − ys

)2
. 24.

Letting At = I + ∑t
s=1 xsx

�
s , where I is the d × d identity matrix, the ridge regression iterates

(Equation 24) can be written in closed form as wt+1 = A−1
t (y1x1 + · · · + ytxt ). Online ridge re-

gression enjoys the following regret bound (Cesa-Bianchi & Lugosi 2006, theorem 11.7):

RT (u) ≤ ‖u‖2
2

+ d ln
(
1 + T

d

(
max

t=1,...,T
‖xt‖22

))(
max

t=1,...,T
�t (wt )

)
∀u ∈ R

d .

This result shows a regret potentially logarithmic in time, except for the extraneous quantity
maxt �t (wt ) in place of the correct scaling factor maxt y2t . If we knew an upper bound Y on max t|yt|,
then we could obtain the desired scaling by clipping predictionsw�

t xt in the interval [− Y,Y] (Vovk
2001, theorem 4). Luckily, there is a better fix, which does not require any preliminary knowledge
about max t|yt|: Simply add to the objective function in Equation 24 an extra loss term associated
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with the data point xt+1 and the value yt + 1 = 0. As we see next, this has the effect of shrinking
(toward zero) the linear predictions w�

t xt , thus adding stability to the algorithm. Cesa-Bianchi
& Lugosi (2006) call the resulting algorithm VAW, after Vovk (2001) and Azoury & Warmuth
(2001), who independently introduced it. VAW iterates are defined by

wt+1 = argmin
w∈Rd

1
2

‖w‖22 + 1
2

t∑
s=1

(
w�xs − ys

)2 + 1
2
(
w�xt+1

)2
. 25.

The closed form expression is simply wt+1 = A−1
t+1(y1x1 + · · · + ytxt ). In order to appreciate how

predictions are shrunk by the addition of the term 1
2 (w

�xt+1)2, let ŷRRt+1 = w�
t+1xt+1 be the ridge

regression prediction computed via Equation 24. Then, the VAW prediction ŷVAWt+1 = w�
t+1xt+1

computed via Equation 25 satisfies

ŷVAWt+1 = ŷRRt+1

1 + x�
t+1A

−1
t xt+1

.

Clearly, |̂yVAWt+1 | < |̂yRR| whenever ‖xt + 1‖2 > 0. It is interesting to compare VAW to a Gaussian
process (GP) for regression (Rasmussen &Williams 2005). It is known that GP predicts with ŷRRt+1;
however, it also returns an estimate of the variance of the prediction that depends on x�

t+1A
−1
t xt+1.

Hence, VAW shrinks more the points that are assigned a high variance estimate by a GP. The
regret analysis of WAV shows that

RT (u) ≤ ‖u‖2
2

+
(

max
t=1,...,T

y2t

)
d
2
ln

(
1 + T

d

(
max

t=1,...,T
‖xt‖22

))
∀u ∈ R

d . 26.

Note that this bound simultaneously holds for any sequence (x1, y1), (x2, y2), . . . ∈ R
d × R, for any

time horizon T, and for any linear comparator u ∈ R
d . Moreover, as proven in Vovk (2001, sec-

tion 3.3), the bound in Equation 26 is asymptotically optimal, including the leading constant.

3.3. Optimistic Updates

The iterates of VAW are computed by adding to the expression in the argmin an extra loss term
1
2 (w

�xt+1)2 that predicts the next label yt + 1 to be zero. This idea can be generalized to what is
known in the literature as an optimistic update (Chiang et al. 2012, Rakhlin & Sridharan 2013).
Given any sequence �1, �2, . . . of convex losses, FTRLwith linearized losses and optimistic updates
uses the iterates

wt+1 = argmin
w∈V

ψt+1(w) +
t∑
s=1

g�
s w + ĝ�

t+1w,

where gs = ∇�s(ws ), ĝt+1 is a guess for∇�t+1(wt+1), andψ1,ψ2, . . . are arbitraryμ-strongly convex
regularizers with respect to a norm ‖·‖. One can show that, for all u ∈ V,

RT (u) ≤ ψT+1(u) − ψ1(w1) + 1
2μ

T∑
t=1

( ∥∥gt − ĝt
∥∥
�
+ ψt (wt+1) − ψt+1(wt+1)

)
. 27.

We now describe two concrete and simple examples. First, consider ĝt+1 = 1
t

∑t
s=1 gs with ĝ1 = 0

and—for the sake of simplicity—assume the convex losses are 1-Lipschitz in V, so that ‖gt‖2 ≤ 1
for all gt generated in Equation 27. Take ψt = μ

2 ‖·‖22 for all t. Then, for all u ∈ V,

RT (u) ≤ μ

2
‖u‖22 + 1

2μ

T∑
t=1

∥∥gt − ĝt
∥∥2
2 .
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Now note that �t = 1
2

∥∥gt − ·∥∥22 is a 1-strongly convex loss, and ĝ1, ĝ2, . . . correspond to the pre-
dictions of FTL on the sequence �1, �2, . . . of such losses. Therefore, using the FTL analysis for
strongly convex losses mentioned at the beginning of this section, we have that

T∑
t=1

∥∥gt − ĝt
∥∥2
2 − min

g :‖g‖2≤1

T∑
t=1

∥∥gt − g
∥∥2
2 = O(lnT ).

It is easy to see that the minimizer in the above expression is g = 1
T

∑
t gt . So, we conclude

RT (u) ≤ μ

2
‖u‖22 + 1

2μ

T∑
t=1

∥∥gt − g
∥∥2
2 + O(lnT ).

Hence, the regret is bounded in terms of the cumulative empirical variance of the loss gradients.
Using more sophisticated time-dependent regularizers, the regret can be bounded by an expres-
sion sublinear in the cumulative variance.We mention a similar result in the next example, where
we choose ĝt+1 = gt . In other words, we guess the next loss gradient to be similar to the current
one.This is only beneficial under the additional assumption that losses are smooth,which is equiv-
alent to assuming that gradients are Lipschitz. Then, choosing regularizers ψ t = β tψ , where ψ is
a base 1-strongly convex regularizer with respect to a norm ‖·‖ and β t > 0 is a scaling factor, one
can prove that the regret is bounded by an expression of the order of (see Orabona 2019)√√√√1 +

T∑
t=2

∥∥∇�t (wt−1) − ∇�t−1(wt−1)
∥∥2
�
.

Bounds of this form were first proven by Chiang et al. (2012). Optimistic updates have been also
applied to show fast rates for regret minimization problems in game theory by Syrgkanis et al.
(2015) and Foster et al. (2016).

4. UNCONSTRAINED ONLINE CONVEX OPTIMIZATION

As discussed in previous sections, both OMD and FTRL enjoy a regret of order O(D
√
T ) for

convex and Lipschitz losses, where D bounds the diameter of V according to the divergence Dψ

(for OMD) or to the range of the base regularizer � (for FTRL) (see Equations 8 and 14). If V is
unbounded, say V = R

d , and losses are convex Lipschitz, we can still run OGD with w1 = 0 and
fixed step size η = α/

√
T for α > 0. Using Equation 10, we get the following upper bound on the

regret:

RT (u) ≤ 1
2

(
‖u‖22
α

+ α

)√
T ∀u ∈ R

d . 28.

By tuning α optimally with respect to ‖u‖22, we could get the bound RT (u) ≤ ‖u‖2
√
T . This

is equivalent to what we would get by running OGD with projection in the Euclidean ball of
radius U = ‖u‖2. However, this bound cannot be simultaneously achieved for all u because the
algorithms must be run with only one choice of their parameters. The problem we study in this
section is whether we can get a bound better than Equation 28 in the unconstrained setting. In
order to answer this question, we explore the connection between OCO and the problem of se-
quentially betting on the elements of a deterministic sequence of values.

The fact that certain instances of online learning could be phrased as a gambling problem has
been known since the works of Kelly (1956), Cover (1974), and Feder (1991). It was only recently,
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however, that Orabona & Pál (2016) realized that certain betting strategies could be used to derive
OCO algorithms with no parameters to tune, which could be also used for solving unconstrained
OCO in an optimal way.

The betting game we are interested in is parameterized by an unknown deterministic sequence
x1, x2, . . . � [−1, 1] of real numbers. The bettor starts out with an initial wealth of C0 = ε > 0. In
each round t = 1, 2, . . . of the game:

1. The bettor bets αt � [−1, 1], whose absolute value is the fraction of their current wealth
Ct − 1 they are betting, and whose sign indicates which sign we bet xt will have.

2. The next value xt � [−1, 1] is revealed.
3. The bettor’s return is xt × αtCt−1 ∈ R.

Note that the bettor’s wealth changes in each step t according to Ct = (1 + αtxt)Ct − 1.
In order to show how to apply a betting strategy to any OCO problems, we first consider the

1-dimensional case with losses �1, �2, . . . defined on R and having uniformly bounded derivatives
|�′
t | ≤ 1 for all t. First of all, recall that, because of the convexity of losses, for any u ∈ R the regret

RT(u) of any online algorithm predicting withw1,w2, . . . ∈ R is upper bounded by
∑T

t=1(wt − u)gt ,
where gt is the derivative of �t at wt. In order to use a betting strategy to solve the online problem,
we set wt = αtCt − 1. We then have Ct = Ct − 1 + wtxt, which implies CT = ε + ∑T

t=1 wt xt . If we
now set xt = −gt � [−1, 1] (by our assumption on the losses), we get

CT = ε

T∏
t=1

(1 + αt xt ) = ε +
T∑
t=1

wt xt = ε −
T∑
t=1

wt gt ∀x1, . . . , xT . 29.

Next, we prove that a lower bound on the wealth CT can be used to upper bound RT(u) for all
u ∈ R. In particular, assume that we have a betting strategy α1,α2, . . . ∈ R such that

CT ≥ φ

(
T∑
t=1

xt

)
= φ

(
−

T∑
t=1

gt

)
30.

for some convex real function φ. Then, for any u ∈ R we have

RT (u) ≤
T∑
t=1

(wt − u)gt

=
T∑
t=1

−ugt −
(
ε −

T∑
t=1

wt gt

)
+ ε

=
T∑
t=1

−ugt −CT + ε (using Equation 29)

≤
T∑
t=1

−ugt − φ

(
−

T∑
t=1

gt

)
+ ε (by our assumption on CT )

≤ sup
θ∈R

θu− φ(θ ) + ε

= φ�(u) + ε,

using the definition of Fenchel conjugate, Equation 7. Now that we have established a formal
connection between online prediction (in the one-dimensional case) and betting, we must pick
a good betting strategy, one that has a small regret in the betting game. We measure this regret
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against the class of strategies that always bet the best constant α � [−1, 1]. After T steps, the final
wealth of each such strategy is CT (α) = ε

∏T
t=1(1 + αxt ). Since wealth changes multiplicatively,

it is natural to define the regret of a betting strategy α1, α2, . . . using the logarithm of the
wealth,

RT (α) = ln

(
ε

T∏
t=1

(1 + αxt )

)
− ln

(
ε

T∏
t=1

(1 + αt xt )

)
=

T∑
t=1

ln(1 + αxt ) −
T∑
t=1

ln(1 + αt xt ).

In the special case of Boolean values xt � {−1, 1}, the optimal regret RT(α) was very precisely
determined (including constants) by Shtarkov (1987), who established that

RT (α) = 1
2
lnT + 1

2
ln
π

2
+ o(1) ∀α ∈ [−1, 1].

Unfortunately, Shtarkov’s strategy is not efficiently computable. A more efficient (and nearly
optimal) strategy was introduced a bit earlier by Krichevsky & Trofimov (1981). The Krichevsky–
Trofimov (KT) strategy has a regret of

RT (α) = 1
2
lnT +�(1) ∀α ∈ [−1, 1],

which is optimal only up to constants. When xt � [−1, 1], the KT strategy takes the simple form
α1 = 0 and αt = (x1 + ��� + xt − 1)/t. Orabona & Pál (2016) proved that the wealth of the KT
strategy satisfies

CT ≥ ε

c
√
T

exp

⎛⎝ 1
2T

(
T∑
t=1

xt

)2⎞⎠
for some universal constant c > 0.

Going back to the one-dimensional OCO case and recalling Equation 29 and xt = −gt � [−1,
1], we see that the KT strategy generates predictions of the form

wt = αtCt−1 = −
(
1
t

t−1∑
s=1

gs

)(
ε −

t−1∑
s=1

gsws

)
. 31.

Using Equation 30 and our bound RT(u) ≤ φ�(u) + ε on the regret, we can compute φ� for our
case and derive the bound

RT (u) ≤ |u|
√
T ln (u2c2T + 1) + 1 ∀u ∈ R, 32.

where, for simplicity, we set ε= 1.Recall that this bound holds, simultaneously for all u ∈ R, under
the condition that |��t| ≤ 1 for all t. Under the same conditions, OGD guarantees a bound on
the regret RT(u) of worse order u2

√
T (see Equation 28).

This result has been extended to R
d (and more generally to Banach spaces) by Cutkosky &

Orabona (2018) using a simple trick: In order to bound the regret RT (u) against any u ∈ R
d we

use the one-dimensional KT strategy to learn the length ‖u‖ of u and OMD with model space
V ≡ {

u ∈ R
d : ‖u‖ ≤ 1

}
to learn the direction u/ ‖u‖ of u, where ‖·‖ is any desired norm. This is

done as follows: Letwt be the prediction (Equation 31) of KT and let vt be the prediction ofOMD.
Then, the combined algorithm predicts wtvt and, upon receiving the gradient gt = ∇�t (wtvt ),
feeds the derivative g�

t vt to KT and the gradient gt to OMD.
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To analyze the regret of this combined KT-OMD strategy, note that ‖vt‖ ≤ 1 for all t because
OMD projects onto V. Therefore, |g�

t vt | ≤ ∥∥g∥∥
�
. So, by linearizing the regret, we can write

RT (u) =
T∑
t=1

�t (wtvt ) −
T∑
t=1

�t (u)

≤
T∑
t=1

g�
t (wtvt − u)

=
T∑
t=1

(
wtg�

t vt − ‖u‖g�
t vt

) +
T∑
t=1

(‖u‖g�
t vt − g�

t u
)

=
T∑
t=1

(
wtg�

t vt − ‖u‖g�
t vt

) + ‖u‖
T∑
t=1

(
g�
t vt − g�

t
u

‖u‖
)
.

Now note that the first sum is the linearized regret of KT against ‖u‖, where g�
t vt are the loss

derivatives. The second sum (ignoring the ‖u‖ factor) is instead the linearized regret of OMD
against u/ ‖u‖ with loss gradients gt .

Since KT requires the loss derivatives to belong to [−1, 1], we can apply the above bound when
|g�
t vt | ∈ [0, 1], which holds when �t is 1-Lipschitz for all t. Assuming that, and in comparison with

Equation 28, we consider OGD run on the unit Euclidean ball with step size ηt = 1/
√
t and KT

run with ε = 1. Then, using Equation 9 for OGD and Equation 32 for KT, we obtain that the
regret of KT-OGD satisfies

RT (u) = O
((√

ln
(‖u‖22 T + 1

) + 1
)

‖u‖2
√
T + 1

)
∀u ∈ R

d . 33.

Note that, except for the logarithmic factor
√
ln

(‖u‖22 T + 1
) + 1, this bound matches the bound

‖u‖2
√
T for OGD tuned with the unknown knowledge of ‖u‖. Indeed, this logarithmic term is

the price we have to pay for the adaptivity of the algorithm to ‖u‖, as Streeter &McMahan (2012)
showed it to be unavoidable in the unconstrained setting.

Note that parameter-free algorithms like KT-OMD are useful also when u lives in a bounded
subset V ⊂ R

d , but the Bregman divergence Dψ is unbounded in V. The prime example for this
scenario is the entropic mirror mapψ on the simplexV, where Dψ is the cross-entropy.The regret
bound (Equation 10) for the corresponding instance of OMD (which we called EG) has the form

RT (u) = O
(
Dψ (u,w1)

η
+ ηT

)
∀u ∈ V

for any fixed choice of the step size η. In the setting of prediction with expert advice (a special case
ofOCO), an implicitly defined parameter-free version of EG for linear losses calledNormalHedge
was introduced by Chaudhuri et al. (2009). The bound was later improved by Chernov & Vovk
(2010) with another implicitly defined algorithm.Using a different reduction to betting strategies,

Orabona & Pál (2016) proved a bound of order
√(

Dψ (u,w1) + 1
)
T for all u in the simplex using

a closed form update. Note that, as before, this bound is equal to the bound that one would get by
tuning EG using the (unknown) knowledge of Dψ (u,w1). Further improvements were obtained
by Koolen & Van Erven (2015), who introduced an algorithm called Squint.

One of the nice features of Equation 33 is that RT (0) does not depend on T. So we can then
run multiple instances of the combined KT-OMD strategy using a different mirror map for each
OMD instance. This allows us to bound the regret as if we ran the algorithm using the best
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mirror map in hindsight (where best is relative to the linearized regret). Suppose, for example, we
run two instances of KT-OMD and predict using the sum wt = w(1)

t + w(2)
t of their predictions.

Then, linearizing the regret, we obtain

RT (u) ≤
T∑
t=1

g�
t (wt − u) = min

v,z∈Rd
v+z=u

(
T∑
t=1

g�
t

(
w(1)
t − v

)
+

T∑
t=1

g�
t

(
w(2)
t − z

))

= min

{
T∑
t=1

g�
t

(
w(1)
t − u

)
,

T∑
t=1

g�
t

(
w(2)
t − u

)}
.

For instance, if we run OMD using the p-norm3 mirror map ψ = 1
2 ‖·‖2p for 1 < p ≤ 2, which is

(p −1)-strongly convex with respect to the same norm, then RT (u) is bounded in terms of ‖u‖p
and ‖gt‖q, where q is the conjugate coefficient of p, satisfying 1

p + 1
q = 1. Interestingly, one can

show (Gentile & Littlestone 1999) that choosing p = 2ln d/(2ln d − 1) (for d ≥ 3) gives a regret
bound of the form

(‖u‖21 /α + α
)
G

√
T ln d for all u ∈ R

d and for max t‖gt‖∞ ≤ G. As this is very
similar to the bound obtained by EG when V is the simplex, we see that by choosing p � (1, 2]
we can interpolate between OGD and EG. By running multiple instances of KT-OMD, where
the OMD instances use different values of p, one can derive a regret bound almost as good as the
p-norm OMD run with the best value of p.

5. OTHER NOTIONS OF REGRET

Bounding the regret RT (u) for all u ∈ V may not be crucial in some practical applications. For
example, if the loss sequence �1, �2, . . . is such that no u ∈ V achieves a small cumulative loss
�1(u) + �2(u) + · · · , then regret bounds may not be at all helpful in telling good algorithms from
bad ones. This lack of a single good minimizer in V of the cumulative loss is likely to occur when
the loss sequence is generated by a highly nonstationary data sequence, possibly affected by sea-
sonalities and other disturbances. In this case, regret should be replaced by more robust measures,
allowing better comparators than fixed elements of V. In what follows,D2 is the Euclidean diam-
eter of V and L is the Lipschitz constant of the convex loss functions in the sequence �1, . . . , �T.

5.1. Dynamic Regret

A notion of regret which captures nonstationary comparators is that of dynamic regret (Herbster
& Warmuth 1998b),

Rdyn
T (u1, . . . ,uT ) =

T∑
t=1

�t (wt ) −
T∑
t=1

�t (ut ) where u1, . . . ,uT ∈ V.

Note that Rdyn
T (u, . . . ,u) = RT (u), so dynamic regret includes standard regret as a special

case. Zhang et al. (2018a) show a general lower bound on dynamic regret of the form
�
(
L
√
(D2 +�2,T )D2T

)
, where

�p,T =
T−1∑
t=1

‖ut+1 − ut‖p

is the p-norm path-length function, measuring the nonstationarity of the comparator sequence
u1, . . . ,uT . When u1 = · · · = uT then �p, T = 0. In this case, the lower bound on the dynamic
regret reduces (for p = 2) to the lower bound �(L2D2

√
T ) on the standard regret proven in

Section 1.3.

3Recall the definition of p-norm of a vector u ∈ R
d , ‖u‖p = (|u1|p + ��� + |ud|p)1/p.
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Herbster & Warmuth (1998b) (see also Cesa-Bianchi & Lugosi 2006, theorem 11.4) prove
upper bounds on the dynamic regret of OMD run with the p-norm mirror map (for 1 < p ≤ 2) of
the form

Rdyn
T (u1, . . . ,uT ) ≤ ‖uT ‖2p +�p,TDp

η
+ ηL2

qT ∀u1, . . . ,uT ∈ V,

where Dp is the diameter of V measured using the p-norm, and Lq is the Lipschitz constant (with
respect to the dual q-norm) of the loss functions in the sequence �1, . . . , �T —Zinkevich (2003)
shows similar results in the special case of p = 2. Choosing the step size as η = 1/(Lq

√
T ) gives

a suboptimal upper bound of the order of Lq(D2
p +�p,TDp)

√
T . In the Euclidean case (p = 2),

Zhang et al. (2018a) use theHedge algorithm (a special case of EG) to aggregateO(lnT ) instances
of OGD, each one run with a different choice of η to guess the desired value of �2, T (up to a
constant factor). They prove the dynamic regret bound O (

L2
√
(D2 +�2,T )D2T

)
, matching the

lower bound up to constants.

5.2. Adaptive Regret

A different view on the theme of nonstationary comparators is offered by the notion of adap-
tive regret (Hazan & Seshadhri 2007). Adaptive regret evaluates the performance of the online
algorithm against that of the best fixed comparator in any interval of time. Formally,

Rada
τ ,T = max

s=1,...,T−τ+1

(
s+τ−1∑
t=s

�t (wt ) − min
u∈V

s+τ−1∑
t=s

�t (u)

)
, where τ ∈ {1, . . . ,T }.

In their paper,Hazan& Seshadhri (2007) use a harder notion of adaptive regret, namelymaxτ Rada
τ ,T .

They show an online algorithm whose regret grows in T like
√
T (lnT )3. In a follow-up paper,

Daniely et al. (2015) devise an online algorithm with the adaptive regret bound

Rada
τ ,T (u) = O (

(DL+ lnT )
√
τ
)

u ∈ V, 34.

where D is the Euclidean diameter of V and L is the Lipschitz constant (with respect to the Eu-
clidean norm) of the loss functions in the sequence �1, . . . , �T. This result is improved by Jun et al.
(2017), who show the better bound Rada

τ ,T (u) = O((DL+
√
lnT )

√
τ ) using the betting framework

described in Section 4.
Most of the online algorithms for minimizing adaptive regret work by combining several in-

stances of an online algorithm for the standard notion of regret. Each instance is run in a specific
interval of time, where the set of intervals is carefully designed so that the overall number of in-
stances to be run is O(lnT ). These instances are then combined using an algorithm based on
the framework of prediction with expert advice (Cesa-Bianchi et al. 1997), where each instance is
viewed as an expert. As instances typically run for less than T time steps, Jun et al. (2017) combine
the betting framework with the sleeping experts model (Freund et al. 1997), which allows only for
a subset of the experts to be active at any point in time.

Although the algorithm of Jun et al. (2017) is designed to minimize adaptive regret, Zhang
et al. (2018b) show that the same algorithm can be also used to prove the following dynamic
regret result:

Rdyn
T (u1, . . . ,uT ) = O

(
DLmax

{√
T lnT , T 2/3V 1/3

T (lnT )1/3
})

, 35.

where

VT =
T∑
t=2

sup
u∈V

∥∥�t (u) − �t−1(u)
∥∥
2
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measures the variation of the loss sequence �1, . . . , �T. As shown by Besbes et al. (2015), the de-
pendence on VT in Equation 35 is not improvable.

A result relating dynamic regret to adaptive regret is proven by Zhang et al. (2018b), who show
that

Rdyn
T (u1, . . . ,uT ) ≤ min

PT

∑
I∈PT

(
Rada

|I|,T + 2|I|VT (I )
)
,

where themin is taken over all partitionsPT of {1, . . . ,T} in intervals I = {tr , . . . , ts} of consecutive
time steps, with 1 ≤ r ≤ s ≤ T. The quantity

VT (I ) =
∑
t∈I

sup
u∈V

∥∥�t (u) − �t−1(u)
∥∥
2

is the variation of the loss sequence within the time interval. This is later extended by Zhang et al.
(2020), who prove

Rdyn
T (u1, . . . ,uT ) ≤ min

PT

∑
I∈PT

(
Rada

|I|,T + L|I|�T (I )
)

∀u1, . . . ,uT ∈ V,

where

�T (I ) =
∑
t∈I

‖ut+1 − ut‖2

is the path length over the interval I. However, when combined with known bounds on the dy-
namic regret, this bound does not give the optimal bound O (

L2
√
(D2 +�2,T )D2T

)
for dynamic

regret.Zhang et al. (2020) also derive algorithms simultaneouslyminimizing adaptive and dynamic
regret.

Some of these notions of regret were originally introduced in the setting of prediction with
expert advice (i.e., OCO with linear losses, where V is equal to the probability simplex and regret
is measured against the corners of the simplex, where linear functions are minimized). In that
framework, dynamic regret is known as tracking or shifting regret (Herbster &Warmuth 1998a).
Other notions of regret, instead, are mostly studied in the experts framework. For example, policy
regret (Arora et al. 2012a) applies to settings where the loss function �t at each time t depends
not only on the current model wt but also on the past models wt−s, where s spans a window in
the past (whose size H could potentially depend on t). These loss functions can be used to model
natural scenarios, such as the switching cost scenario where H = 1 and �t (wt ,wt+1) = c whenever
wt �= wt−1 (Kalai & Vempala 2005). Swap regret (Blum &Mansour 2007) instead measures regret
against a set of modification rules. Each modification rule F is an operator on the set {1, . . . , d}
of coordinates. The instantaneous regret at time t against F of an algorithm choosing w in the
simplex is �t (w) − �t (w(F ) ), where w

(F )
i = ∑

j :F ( j)=i w j . Note that when F( j) = i for all j = 1, . . . ,
d, swap regret against F reduces to standard regret against the ith corner ei of the simplex, that
is, �t (w(F ) ) = �t (ei ) for all w. Swap regret is especially important when using online learning
algorithms to approximate equilibria in games (Cesa-Bianchi & Lugosi 2006).
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