
Annual Review of Statistics and Its Application

Statistical Connectomics
Jaewon Chung,1 Eric Bridgeford,2 Jesús Arroyo,3

Benjamin D. Pedigo,1 Ali Saad-Eldin,1

Vivek Gopalakrishnan,1 Liang Xiang,1

Carey E. Priebe,4 and Joshua T. Vogelstein5

1Department of Biomedical Engineering, Johns Hopkins University, Baltimore,
Maryland 21218, USA; email: j1c@jhu.edu
2Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland 21218, USA
3Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
4Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore,
Maryland 21218, USA
5Department of Biomedical Engineering, Institute for Computational Medicine,
Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland 21218,
USA; email: jovo@jhu.edu

Annu. Rev. Stat. Appl. 2021. 8:463–92

The Annual Review of Statistics and Its Application is
online at statistics.annualreviews.org

https://doi.org/10.1146/annurev-statistics-042720-
023234

Copyright © 2021 by Annual Reviews.
All rights reserved

Keywords

connectomics, networks, graphs, statistical models

Abstract

The data science of networks is a rapidly developing field with myriad appli-
cations. In neuroscience, the brain is commonly modeled as a connectome,
a network of nodes connected by edges. While there have been thousands
of papers on connectomics, the statistics of networks remains limited and
poorly understood. Here, we provide an overview from the perspective of
statistical network science of the kinds of models, assumptions, problems,
and applications that are theoretically and empirically justified for analysis
of connectome data. We hope this review spurs further development and
application of statistically grounded methods in connectomics.
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1. INTRODUCTION

The idea of the brain as a network of interconnected neuronal elements has existed since the
late nineteenth century. These neuronal elements (e.g., long-range fibers, synapses, subcellular
processes) are anatomically organized in multiple scales of space to allow communications over
multiple scales of time, enabling perception, cognition, and action (Shepherd 1991, Rieke 1997,
Russell & Norvig 2016). Recent advances in neuroimaging (Hagmann 2005, Biswal et al. 2010,
Chung & Deisseroth 2013), along with large-scale projects, opened new frameworks for studying
the brain by modeling brain connectivity as networks, or connectomes (Van Essen et al. 2013, Zuo
et al. 2014, Alexander et al. 2017). One of the main challenges in connectomics is to understand
the network structures that link individual histories, such as the genome, developmental stage, or
experience, to cognitive phenotypes, such as personality traits, behaviors, or disorders, which has
been dubbed “connectal coding” (Vogelstein et al. 2019).

A connectome is defined as an abstract mathematical model of brain structure as a network,
composed of two sets: vertices (or nodes) that represents a biophysical entity of the brain and edges
that represent connections or communication between pairs of vertices (Hagmann 2005, Sporns
et al. 2005, Vogelstein et al. 2019). Connectomes can have additional structures. For example,
edges can have weights that describe the strength of connection, and they can have other attributes,
such as physical location of the edge. Similarly, nodes can also have attributes, such as anatomical
labels, shape, and size. This capacity of connectomes as a brain model comes with challenges in
their analysis.

The first challenge is the choice of the representation of a connectome. Figure 1a,b shows
two valid but different representations of a human connectome. In Figure 1a, the connectome is
shown as a collection of vertices and edges in the classical graph theory perspective. The vertices
are organized by their location in the human brain, but this is only one choice of layout. There
are infinitely many layouts that are equally valid and potentially useful. In Figure 1b, the connec-
tome is shown as a collection of numbers laid out in rows and columns as an adjacency matrix in
the computer science perspective. In this view, a row/column pair is a vertex, and edges between
vertices u and v are depicted by a nonzero entry in the corresponding element of the matrix. Con-
sequently, the row identities are linked to column identities. Permuting both rows and columns
together results in a different matrix, but they represent the same connectome. Nonetheless, the
adjacency matrix is a useful representation of connectomes.

The second challenge is that connectomics data are different from typical Euclidean data in
many ways. Some operations, such as addition and multiplication, are not well defined. What
would it mean to add two connectomes together? Distance metrics are also not well defined,
making comparisons between connectomes difficult. In the view of adjacency matrices, each entry
is potentially related and dependent on other entries.

The third challenge is that connectomics data can be highly variable. For a graph with n ver-
tices, there are

(n
2

)
possible edges, so the number of unique graphs is 2(

n
2). Figure 1c shows the

exponential growth in the number of unique graphs as the number of vertices increase. The large
number of possible graphs makes characterizing and describing the graphs difficult without sta-
tistical analysis of connectomics data.

Current connectomics analysis frameworks can be organized into four categories, each of
which address the above challenges to various extents. The first approach, and by far the most
popular, is dubbed the bag of features. In this approach, a set of graph-wise or vertex-wise statistics
that capture the structural aspects of networks are computed and compared (Bullmore & Bassett
2011, Mhembere et al. 2013). One major drawback to this method is that features are not inde-
pendent of one another, making results from subsequent inference using these features difficult
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Figure 1

Different representations of a connectome: human structural connectome estimated from averaging 1,059 human connectomes from
the Human Connectome Project (HCP) (Van Essen et al. 2013). Vertices represent regions of the brain and are assigned into right (R)
and left (L) hemispheres and then further assigned into frontal (F), occipital (O), parietal (P), temporal (T), and subcortical (S)
structures. (a) Connectivity shown in the coronal and axial views. Dots correspond to the center of mass of a region, lines correspond to
connections, and line thickness corresponds to the magnitude of the connection. Only the largest 5% of edges are shown for
visualization purposes. Note that infinitely many spatial arrangements of the vertices exist, and only one particular arrangement is being
shown. (b) Connectivity of the average structural connectome shown as an adjacency matrix, A. The rows and columns are organized by
hemisphere, then further organized by substructures. However, given any permutation matrix P, the permuted adjacency matrix PAP�

is still a valid matrix of the original connectome. For a graph with n vertices, there are n2 permutations. (c) The number of unique
graphs grows exponentially as the number of vertices increases. The large number of graphs motivate statistical analysis to characterize
and describe connectomes.

to interpret. In the second approach, the bag of edges, each edge is studied individually. As a con-
sequence, edges are treated independently, ignoring the other potential interactions (Varoquaux
et al. 2010,Craddock et al. 2013). In the third approach, the bag of vertices, the vertices are studied
while leveraging some structural information of the connectomes. In the fourth approach, the
bag of communities, the vertices are first organized into (typically) disjoint groups to form com-
munities, and then edges within and across communities are studied. The last approach, the bag
of networks, studies the connectomes as a whole to test for differences across groups or to classify
connectomes.

While each of the frameworks provides complementary and meaningful insights into the con-
nectomes, the underlying methodologies—and thus the interpretation of results—can vary signif-
icantly. Statistical modeling of connectomes bridges the gap by providing a unified framework for
studying connectomes. Conceptually, statistical models capture important differences within or
among networks while considering the built-in structures and heterogeneity in networks (Zheng
et al. 2009, Athreya et al. 2017, Zhang et al. 2018a, Arroyo et al. 2019). These differences are
summarized by model parameters that can be used in a variety of subsequent inference tasks.

This article is intended as a quantitative review of current connectomics analysis methods and
how statistical models can be incorporated to improve current analysis methods. We perform
empirical investigations to demonstrate to what extent conclusions can be trusted as a function
of the analysis method and the hypothesis under consideration. We vary parameters for the data,
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Table 1 Notations and symbols used in this article

Symbol Description Symbol Description
[n] {1, 2, . . . , n} P Edge connectivity probability matrix
G Graph B Block connectivity probability matrix
n Number of nodes �τ Vertex community assignment vector
A Adjacency matrix M Edge community assignment matrix
Ai ith row of A X Latent position matrix
Ai j (i, j) entry of A X̂ Estimated latent position matrix
A(l ) lth element in sequence of A

such as the generative model, sample size, and effect size, and hypothesis testing frameworks.
Ultimately, the statistical modeling of networks uniquely provides a framework for meaningful
and accurate testing and estimation for connectomics.

2. REPRESENTATIONS

Due to the flexibility of networks, different representations of the connectomes can be studied,
which we organize into four categories. In the following sections, we first formally define a net-
work and then describe the four different frameworks of studying connectomics data. All frame-
works provide complementary insights and understanding of the connectomes.Table 1 provides
an overview of the notation used throughout the article.

2.1. Graph/Network

A graph, or network, G, is defined as an ordered set of vertices and edges (V, E) where V is
the vertex set and E, the set of edges, is a subset of the Cartesian product of V × V. That is, a
graph has at most a single edge for each pair of unique vertices. A vertex set is represented as
V = {1, 2, . . . , n} where |V| = n, and an edge exists between vertices i and j if (i, j) � E. An
unweighted graph is a graph in which we are only concerned with the presence (or absence) of an
edge. Each graph has an associated adjacency matrix A ∈ {0, 1}n×n, where Ai j represents the pres-
ence (or absence) of the edge between nodes i and j. Note that A provides a unique representation
of G; that is, there exists a one-to-one relationship between a graph and its adjacency matrix.

The above definition can be further extended in two ways:

1. Weighted graphs: The edges can take on arbitrary values, typically a real number. For ex-
ample, the edge weights in human structural connectomes are nonnegative integers that
represent the number of estimated neuronal fibers that traverse from one region of the
brain to another. Thus, each weighted graph has an adjacency matrix A ∈ R

n×n where Ai j

represents the edge weight.
2. Directed graphs: E is now an ordered set of edges. Each edge has an associated direction,

and a directed edge exists between vertices i and j if (i, j) � E. In undirected graphs, the
associated adjacency matrix A is symmetric, but in directed graphs, A is not necessarily
symmetric—that is, it is possible that Ai j �= A ji for any i, j � V.

For the remainder of the article, graphs are considered undirected and unweighted and with
no self-loops, that is, diag(A) = �0, unless specified otherwise.
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GCC = 0.6|Δ| = 9|E| = 15|V | = 10

Disconnected
Connected

Figure 2

Four networks with the same network statistics. Each network 10 vertices (|V|), 15 edges (|E|), and 9 triangles
(|�|), and the global clustering coefficient (GCC) is 0.6. However, these graphs have distinctive topologies.
For example, the left-most network is disconnected, while the others are connected. This suggests that, given
a small set of network statistics, one cannot identify from which network the features are computed.

2.2. Bag of Features

Network statistics, or features, are abstract representations that capture either global or local struc-
tures of a network (Priebe et al. 2010, Mhembere et al. 2013). This method computes a set of
network statistics for each network and analyzes differences between, or among, populations. For
example, when comparing populations of networks from healthy individuals and individuals with
depression, the difference in global clustering coefficient, which measures how likely vertices tend
to cluster together, can be computed (Bullmore & Sporns 2009). These network statistics have en-
joyed applications in many connectomics studies that compare different populations of networks
(Bullmore & Bassett 2011, Ghoshdastidar et al. 2017). However, there are an infinite number of
such statistics, and we lack general guidance on which statistics to compute. Furthermore, no set
of network statistics can adequately characterize a network (Matejka & Fitzmaurice 2017, Chen
et al. 2018). These considerable shortcomings further motivate the use of other representations
of networks, and the examples below demonstrate the shortcomings of studying bags of features.

2.2.1. Nonidentifiability of graph features. Summary statistics, such as the mean, variance,
and correlation, are often used to describe real valued data sets, which can provide insight in
understanding the data. However, Anscombe’s quartet illustrates four drastically different distri-
butions of eleven points that have the same summary statistics (Anscombe 1973). This suggests
that any small number of summary statistics can fail to meaningfully characterize the data.

In network analysis, a variety of network level statistics can be computed to summarize net-
works. Similar to Anscombe’s quartet, networks with different topologies can have the same net-
work features as shown in Figure 2. These four networks have the same number of vertices, edges,
and triangles and the same global clustering coefficient but have different properties, such as con-
nectedness and symmetry. Other works have also explored the distributions of network statistics
(Matejka & Fitzmaurice 2017, Chen et al. 2018).

2.2.2. Network features are correlated and relatively uninformative. We consider all non-
isomorphic, undirected, binary networks with 10 vertices, which results in ≈12 million networks.
Formally, G and H are isomorphic networks when there exists a vertex permutation function
f : V (G ) → V (H) such that if edge (u, v) ∈ E(G ), then ( f (u), f (v)) ∈ E(H). Only nonisomorphic
networks are considered since isomorphic networks have identical network features.
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Density plots of network statistics. (Top row) The distributions of network statistics for all possible 10-node networks are shown. (Middle
row) Networks are constrained by only considering all networks with 20 ± 2 edges. (Bottom row) A base graph with 20 edges is chosen at
random, and only networks that have differences up to 3 edges are considered. In both constrained sets of networks, the distribution of
these network statistics remains essentially unchanged. In other words, changing only a few edges on a network can yield a network
with almost any possible configuration according to these statistics.

For each network, the following six graph network statistics are computed: (a) average path
length, (b) global clustering coefficient, (c) average clustering coefficient, (d) global efficiency,
(e) local efficiency, and ( f ) modularity. These are some of the most commonly computed statistics
(Sporns et al. 2005, Bullmore & Sporns 2009). The distributions of network statistics are plotted
against modularity. The top row of Figure 3 shows that all of the network features are highly
correlated with modularity. We then constrain the networks in two different ways. First, we con-
sider all networks with 20 ± 2 edges. Second, we choose a base network at random with 20 edges
and then identify all networks with no more than 3 edges different from the base network. The
distribution of each of the above network statistics on this subset of networks is computed for
both constraints. The middle and bottom rows of Figure 3 show that constraining the networks
in these ways hardly constrains the network features at all. A similar pattern is shown in the anal-
ysis of HCP data, as shown in the Supplemental Appendix (Section A.1). Changing only a few
edges on a network can yield a network with almost any possible configuration according to these
statistics, and therefore they are inadequate to characterize these populations. Thus, when any
given metric is correlated with a covariate of interest, so are many other metrics. Thus, claiming
that a particular property of the brain explains a given phenotypic property of a person is spurious
reasoning.

2.3. Bag of Edges

In this approach, the edges of connectomes are studied. Most commonly, each edge is studied in-
dependently, while ignoring any interactions between edges (Craddock et al. 2013, Varoquaux &
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Craddock 2013, Zhang et al. 2018b). Univariate edge-wise testing can reveal easily interpretable
relationships between specific edges and covariates through hypothesis testing. However, edge-
wise testing requires performing multiple hypothesis tests, and multiple comparisons must be cor-
rected to control the false positive rate (Genovese et al. 2002, Efron 2008). While certain meth-
ods, such as Benjamini–Hochberg corrections, have strong theoretical guarantees, they require
assumptions about the data, such as independence, that connectomics data do not satisfy (Simes
1986, Benjamini & Hochberg 1995, Zalesky et al. 2010). On the other hand, Bonferroni correc-
tions are considered too conservative and, therefore, lack the sensitivity for connectomics (Simes
1986).

More intricate methods represent each connectome as a long vector containing all of its edges
(Richiardi et al. 2011, Amico et al. 2017). Vector representations can allow for correlation of edges
and direct application of common machine learning algorithms, but still discard the structural
information in networks.

2.4. Bag of Vertices

In this approach, the vertices of connectomes are analyzed while leveraging structural information,
typically global structures, of the graphs. A common approach embeds the connectomes to learn a
low-dimensional and Euclidean representation of the vertices (Grover & Leskovec 2016, Athreya
et al. 2017, Arroyo et al. 2019). Algorithms that operate on Euclidean data [e.g., Gaussian mixture
modeling (GMM) for clustering vertices, random forests for classifying vertices, multivariate hy-
pothesis tests for testing for differences between vertices] can be employed for subsequent analysis
(Priebe et al. 2017, Tang et al. 2018).

2.5. Bag of Communities

Networks often contain structural information such as communities, which are subsets of vertices
that behave similarly. For example, similar vertices can be defined by those that are more likely to
be connected with each other than to other vertices. The set of communities that comprise a net-
work, called community structure, can describe both the local and global patterns of the network.
At a local scale, we can examine the properties of vertices that are within the same community. At
a global scale, we can measure associations between connectivity patterns of communities across
groups or other covariates (Faskowitz et al. 2018, Kim & Levina 2019, Arroyo & Levina 2020).
Furthermore, the community structure in spatial resolution connectomes from human magnetic
resonance imaging can be used to delineate regions of the brain called parcellations (Thirion et al.
2014).

Community detection in networks has been studied extensively (Newman 2013, Fortunato &
Hric 2016). Typically, the community structure is identified by modularity optimization methods
(Clauset et al. 2004, Blondel et al. 2008). In this article, we present spectral methods that rely on
statistical models for community detection,which have strong statistical guarantees for recovering
true communities (Sussman et al. 2012,Lyzinski et al. 2017,Athreya et al. 2017,Arroyo et al. 2019).
It is important to note that analysis of communities depends on the performance of the community
detection algorithms.

2.6. Bag of Networks

In the bag of networks approach, one or more groups of networks are studied in various settings,
such as one- and two-sample hypothesis testing and classification, using some representation of
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Figure 4

Hierarchical relationships of statistical models. (a) Relationships among all the single graph statistical models. The Erdős-Rényi (ER)
model is a stochastic block model (SBM) with one community. An SBM with a positive semidefinite (PSD) block probability matrix B is
also a random dot product graph (RDPG). Any SBM with K blocks fewer than the number of vertices n, or RDPG, and some structured
independent edge models (SIEMs) with K groups fewer than n2 can be represented as a d-dimensional generalized random dot product
graph (GRDPG) with d fewer n. The inhomogeneous Erdős-Rényi (IER) model is equivalent to an n-block SBM, n-dimensional
GRDPG, and n2-group SIEM. (b) Relationships among the two-block SBMs. The most complex model is the asymmetric
heterogeneous SBM, and the simplest model is the ER, which is a degenerate case of two-block SBM.

networks. For example, bag of vertices representation can be used to test whether two networks
are different (Tang et al. 2017a,b). For studying more than two networks, geometry in the space
of the networks is defined and the networks are represented in that geometry, which is then used
for finding differences across groups (Ginestet et al. 2017, Arroyo et al. 2019, Xia & Li 2019).

Another group of methods finds subsets of vertices, or subgraphs, that contain the most infor-
mation about certain covariates (Vogelstein et al. 2012,Wang et al. 2018,Arroyo Relión et al. 2019,
L. Wang et al. 2019b, Guha & Rodriguez 2020). Estimating signal subgraphs is useful since net-
works can be extremely large (i.e., millions of vertices), which presents computational challenges
and can potentially improve the performance of subsequent inference tasks, such as classification.
Different approaches for finding subgraphs have been proposed, but all approaches leverage the
network topologies inherent in connectomics data.

3. STATISTICAL MODELS

Connectomes can be modeled using statistical models designed for network data (Goldenberg
et al. 2010, Kolaczyk & Csárdi 2014). Statistical models consider the entire network as a random
variable, including the inherent structure, dependencies within networks, and the noise in ob-
served data. Thus, statistical models can formalize detecting similarities or differences for each of
the representations in Section 2. This section provides an overview of many statistical models for
network data, including those designed for representing single and multiple networks.

Section 3.1 provides an overview of single graph models that have been extensively studied, as
well as recently introduced models in the order of least to greatest complexity. Figure 4 shows
the relationship between all the single graph models presented in this article. Section 3.2 provides
an overview of some models for multiple networks. While other statistical models for multiple
network data exist (Durante et al. 2017,Nielsen &Witten 2018, Zhang et al. 2018a, S.Wang et al.
2019c), we focus on some recent models that are used in spectral inference for connectomics data.
In Supplemental Appendix Section B, we describe some extensions to these models.
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3.1. Single Graph Models

3.1.1. Erdős-Rényi random graphs. The simplest random graph model is the Erdős-Rényi
(ER) model (Erdős & Rényi 1959). For a given set of n vertices, each distinct pair of vertices
is connected independently with probability p � [0, 1]. Specifically, A ∼ ERn(p) if A has entries
Ai j ∼ Bernoulli(p) for i, j � [n].While the ER model is not representative of real data, it has been
studied extensively since many of its properties can be solved exactly (Newman et al. 2002, Rukhin
& Priebe 2010).

3.1.2. Stochastic block model. First introduced by Holland et al. (1983), the SBM is a model
that can produce graphs with vertices grouped into K communities (Rohe et al. 2011, Sussman
et al. 2012,Wasserman & Anderson 1987). There are two simple variations of the SBM in which
the vertex assignment vector �τ ∈ {1, . . . ,K}n is known a priori, and in which �τ is not known. In
both cases, a symmetric K × K block connectivity probability matrix B with entries in [0, 1]K × K

governs the probability of an edge between vertices given their block memberships.
If �τ ∈ {1, . . . ,K}n is known a priori, the a priori SBM is parameterized only by the block connec-

tivity matrix B, and the model is A ∼ SBMn(�τ ,B) if A has entries Ai j ∼ Bernoulli(Bkl ) where τ i =
k, τ j = l, for i, j� [n], and k, l� [K]. In the case where �τ is not known, the a posteriori SBM is addi-
tionally parameterized by a block membership probability vector �π = [π1, . . . ,πK ]� on the proba-
bility simplex. The model is A ∼ SBMn(�π ,B) if A has entries Ai j

∣∣k = τi, l = τ j ∼ Bernoulli(Bkl ),
where τi∼Multinomial(�π ) for i = 1, . . . , n.

Throughout this article, we focus particularly on a few variations of the two-block
SBM (K= 2) with block connectivity matrixB = [a b

c d], abbreviated asB = [a, b; c, d]. The common
variants include:

1. Kidney-egg: b= c= d. In this model, one of the blocks has edges with a different probability
than the others, but the remaining blocks are homogeneous, where a � b. Furthermore,
when b > a, the model is referred to as a core-periphery SBM.

2. Planted partition: a = d and b = c. In this model, the within-block edges share a common
probability a, and the between-block edges share a common probability b, where a � b.

3. Symmetric heterogeneous: b = c. In this model, the between-block edges share a common
probability b, but the within-block edges have disparate probabilities, where a � b � d.

4. Asymmetric heterogeneous: a� b� c� d. In this directed model, every block has a unique
probability.

5. Erdős-Rényi: a= b= c= d. In this degenerate model, all blocks have a common probability
and the partitioning is irrelevant.

6. Homophilic/assortative/affinity: a, d> b, c. In this model, the within-block probabilities are
greater than cross-block probabilities.

7. Disassortative: b, c > a, d. In this model, the cross-block probabilities are greater than the
within-block probabilities.

Figure 4b summarizes the relationships of SBMs.

3.1.3. Structured independent edge model. The structured independent edge model (SIEM)
is a generalization of the SBM that produces graphs in which edges are grouped into one of K
clusters. Analogous to the vertex assignment vector of the a priori SBM, the SIEM features an edge
community assignment matrixM ∈ {1, . . . ,K}n×n, which is known a priori. Given the community
assignment matrix M, the SIEM is A ∼ SIEMn(M, �p) if Ai j ∼Bernoulli(pk ) where Mi j = k, for
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i, j � [n] and k � [K]. �p = [p1, . . . , pK ]� ∈ [0, 1]K is the edge probability vector that governs the
probability of an edge between vertices.

The a priori SBM is a special case of the SIEM in which edges are assigned to blocks M that
respect the vertex assignment vector �τ . For the purposes of this article, we consider a case that
frequently comes up in neuroimaging, the homotopic SIEM, in which each vertex has a matched
pair among the other vertices. The edges corresponding to a pair are Mi j = 2 where (vi, vj) are
a pair of vertices sharing a property, and the edges corresponding to a nonpair are Mi j = 1. A
matched pair of vertices, for instance, could be homotopic brain regions (two brain regions with
similar functions but in opposing hemispheres of the brain).

3.1.4. Random dot product graphs. Random dot product graphs (RDPGs) belong to the class
of latent position random graphs (Hoff et al. 2002). In a latent position graph, every vertex has
associated to it a (typically unobserved) latent position in some spaceX , and the probability of con-
nection between vertices i and j is given by a link function. In RDPGs, the spaceX is a constrained
subspace of Euclidean space R

d and the link function is the dot product (Young & Scheinerman
2007, Scheinerman & Tucker 2010, Sussman et al. 2014). Thus, in a d-dimensional RDPG with n
vertices, the matrix X ∈ R

n×d , whose rows are the latent positions, and the matrix of connection
probabilities is given by P = XX�, which is positive semidefinite. The model is A ∼ RDPGn(X)
if the adjacency matrix A has entries Ai j ∼ Bernoulli(Xi X�

j ). Subsequent inference tasks include
community detection (Sussman et al. 2012), vertex classification (Tang et al. 2013), or two-sample
hypothesis testing for graphs with matched and nonmatched vertices for a pair of graphs (Tang
et al. 2017a,b; Priebe et al. 2019).

The RDPG is a flexible model, and other models of interest can be seen as special cases of the
RDPG. An SBM whose block connectivity matrix B is positive semidefinite is an RDPG with K
distinct latent positions. Thus, an SBM with K blocks can be represented with a latent position
matrix X ∈ R

n×d , with d ≤ K, where there are only K different rows of X, and letting XU ∈ R
K×d

be the matrix with the subset of the rows U where each row is the latent position for a block, then
the block connectivity matrix is B = XU X�

U ∈ R
K×K . More generally, the RDPG can represent

other models with more complex structures, such as mixed memberships (Airoldi et al. 2008) or
hierarchical communities (Lyzinski et al. 2017).

3.1.5. Generalized random dot product graphs. Unlike the RDPG model, the general-
ized random dot product graph (GRDPG) does not assume that P is a positive semidefinite
probability matrix (Rubin-Delanchy et al. 2017). In this model, the edge probability matrix
is given by P = XIpqX�, and A ∼ GRDPGn(X, p, q) if Ai j ∼ Bernoulli(Xi IpqX�

j ) where Ipq =
diag(1, . . . , 1,−1, . . . ,−1) with p ones followed by q minus ones on its diagonal, and where p ≥ 1
and q ≥ 0 are two integers satisfying p + q = d.

The GRDPG generalizes all of the previous models. When q = 0, GRDPG reduces to an
RDPGmodel. To represent any SBM as a GRDPG, let p≥ 1, q≥ 0 be the number of positive and
negative eigenvalues of the block connectivity matrix B ∈ R

K×K , respectively. The block matrix
can be represented as B = XU IpqX�

U .

3.1.6. Inhomogeneous Erdős-Rényi random graphs. The inhomogeneous Erdős-
Rényi (IER) is a model where each pair of nodes has a unique probability of an edge existing
between the two, and it is therefore the most general independent edge model. For a given set of
n vertices, the IER model is parameterized by a matrix P ∈ [0, 1]n×n, where Pi j is the probability
of an edge connecting vertices vi, vj where i, j � [n]. That is, A ∼ IERn(P) if A has entries

472 Chung et al.



Ai j ∼ Bernoulli(Pi j ) for i, j � [n]. An IER model cannot be estimated from a single graph, as
there are

(n
2

)
unknowns (the probabilities) with

(n
2

)
total observations (the edges).

Note that all single graph models are special cases of the IER. Additionally, an SBM with
K = n, a SIEM with K = n2, and a GRDPG with d = n are equivalent to an IER model.

3.2. Multiple Graph Models

A common idea in statistical models for multiple graphs is a shared latent space that contains
structural information common to all graphs. The two models presented in this section constrain
the shared latent space in different ways to describe the heterogeneity in graphs, which results in
sensitivity to different kinds of heterogeneity. The advantages and disadvantages of each model
are highlighted in Section 6.

In the followingmodels, consider a sample ofm observed graphs G (1),G (2), . . . ,G (m) and their as-
sociated adjacency matrices,A(1),A(2), . . . ,A(m) ∈ R

n×n with n vertices that are identical and shared
across all graphs.

3.2.1. Joint random dot product graphs. In the joint random dot product graph ( JRDPG)
model, we consider a collection of m RDPGs, all with the same generating latent positions. Simi-
lar to an RDPG, given an appropriately constrained Euclidean subspace Rd , this model is param-
eterized by a latent positions matrix X ∈ R

n×d where d � n. The model is (A(1),A(2), . . . ,A(m) ) ∼
JRDPG(X) where A(l )

i j ∼ Bernoulli(Xi X�
j ) for all i, j � [n] and l � [m]. Each graph has marginal

distribution A(l ) ∼ RDPG(X) for all l � [m], meaning that the matrices A(1), . . . ,A(m) are condi-
tionally independent given X (Athreya et al. 2017, Levin et al. 2017). While the model assumes
that the latent positions for the graphs are the same, we note that this assumption is likely violated
in heterogeneous networks, but the model still remains very useful, as shown in Section 6.

3.2.2. Common subspace independent-edge model. In the common subspace independent-
edge (COSIE) model, the heterogeneous networks are described via a shared latent structure on
the vertices, but it also permits sufficient heterogeneity via individual matrices for each graph
(Arroyo et al. 2019).Themodel is parameterized by amatrixV ∈ R

n×d with orthonormal columns,
where n is the number of vertices and d� n, and symmetric individual score matrices R(i) ∈ R

d×d .
The matrix V characterizes a low-rank common subspace and is related to the latent positions for
the vertices, and the score matrices incorporate individual differences to model the heterogene-
ity of the graphs. The model is denoted by (A(1), . . . ,A(m) ) ∼ COSIE(V;R(1), . . . ,R(m) ), where
A(l )
i j ∼ Bernoulli(P(l )

i j ) for all i, j� [n], i< j, and P(l ) = VR(l ) V�. This factorization of the expected
adjacency matrices is related to other decompositions for multiple matrices into population singu-
lar vectors or eigenvectors and individual parameters (Crainiceanu et al. 2011, Afshin-Pour et al.
2012, Lock et al. 2013, L.Wang et al. 2019a).

3.2.3. Correlated models. Finally, we are interested in graph models for a pair of graphs, G1

and G2, where the two graphs are said to be correlated; that is, the edges adjoining incident vertices
have a nonzero correlation. Correlated graph models have numerous applications, such as when
a graph is estimated repeatedly for the same source at different points in time.

The R-correlated (P,Q) model (Lyzinski & Sussman 2017) with parameters R,P,Q ∈
[0, 1]n×n, denoted as CorrER(P,Q,R), produces two graphs G1 and G2 with adjacency matrices
A(1),A(2) such that each graph is marginally an IER with A(1) ∼ IER(P), A(2) ∼ IER(Q), but the
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pairs of corresponding edges have Pearson correlation encoded in the matrix R such that

Ri j = Corr(A(1),A(2) ) = P(A(1)
i j = A(2)

i j = 1) − Pi j Qi j√
Pi j (1 − Pi j )Qi j (1 − Qi j )

.

When P andQ are different, there are restrictions in the values that the correlation matrix R can

take. In particular, if Pi j �= Qi j and P > Q, then Ri j ≤
√

Qi j (1−Qi j )
Pi j (1−Pi j )

(Lyzinski & Sussman 2017).

We are interested particularly in two special cases of the CorrER(P,Q,R):

1. The ρ-correlated RDPGmodel arises when P = Q = XX� for some latent position matrix
X ∈ R

n×d as in Section 3.1.4, and R = ρ111n×n (that is, the matrix of edge correlations R has
only a single unique entry ρ ≥ 0). We say that A1,A2 ∼ ρ RDPG(X).

2. The ρ-correlated ER model arises in the case where P = Q = p111n×n (i.e., the probability
matrix has a single unique entry p > 0), and R = ρ111n×n (as above, the matrix of correlations
has a single unique entry). We say that A1,A2 ∼ ρ ER(p).

4. ALGORITHMS

In this section, we introduce algorithms used for statistical analysis of networks.

4.1. Single Graph Algorithms

In this section, we introduce methods for embedding a network as a way of learning representa-
tions that can be utilized for subsequent inference tasks.

4.1.1. Adjacency and Laplacian spectral embedding. Given an undirected graph with ad-
jacency matrix A, the adjacency spectral embedding (ASE) and Laplacian spectral embedding
(LSE) construct a representation of the vertices of the graphs into d dimensions via its eigende-
composition, given by A = USU� where U ∈ R

n×n is the orthogonal matrix of eigenvectors and
S ∈ R

n×n is a diagonal matrix containing the eigenvalues of A ordered by magnitude, such that
|S11| ≥ |S22| ≥ · · · ≥ |Snn|. The ASE of the graph into R

d is defined as ASE(A) = X̂ = Û|Ŝ|1/2,
where Û ∈ R

n×d contains the first d columns of U, which correspond to the largest eigenvectors,
and Ŝ ∈ R

d×d is the submatrix of S corresponding to the d largest eigenvalues in magnitude. The
LSE of A is defined in a similar manner, using the normalized Laplacian of the graph defined as
L = D−1/2 AD−1/2 whereD ∈ R

n×n is a diagonal matrix with entriesDii = ∑
j Ai j . Then, the LSE

of the graph is given by LSE(A) = ASE(L) = X̃ ∈ R
n×d .

In the case of directed graphs, the eigendecomposition is not available since the adjacency
matrix is not symmetric, so instead we use the singular value decomposition of the adjacency
matrix as A = USV�, where U,V ∈ R

n×n are orthogonal matrices containing the left and right
singular vectors, and S ∈ R

n×n is a nonnegative diagonal matrix with the singular values. The ASE
of a directed graph results in two different latent position matrices, X̂ = ÛŜ1/2 and Ŷ = V̂Ŝ1/2,
denoted as the in and out latent positions, respectively, where Û, V̂ ∈ R

n×d contain the d columns
ofU andV corresponding to the d leading singular vectors, and Ŝ is the submatrix of S containing
the d leading singular values.While many definitions exist for the directed normalized Laplacian,
we define it as L = D−1/2 AO−1/2, whereDii = ∑

j Ai j andOii = ∑
j A ji are the in and out degree

diagonal matrices (Rohe et al. 2016). The LSE of a directed graph is processed similarly to that
of a directed ASE.
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Spectral embedding is the first step in many subsequent inference tasks. For example, spectral
clustering for community detection (Section 4.1.4) can be achieved via GMM on X̂ from either
ASE or LSE.The resulting cluster assignments can further be used to estimate the parameters for
a posteriori SBMs.

For real data, the true embedding dimension d is often not known and must be estimated. A
general methodology for choosing the embedding dimension d is to examine the scree plot of the
singular values of A and look for an elbow or a big gap. While many methods for choosing the
threshold exist ( Jackson 2005, Chatterjee et al. 2015), we consider the method of Zhu & Ghodsi
(2006) when applying any spectral embeddings in real data. Given A = USU� for either ASE or
LSE, the eigenvalues in |S| are used to estimate the embedding dimension d̂ by maximizing the
profile likelihood function, which determines the magnitude of the gap after the first d largest
eigenvalues. Multiple elbows can be found by discarding the d̂ number of largest eigenvalues and
repeating the process with the remaining eigenvalues. For applications in connectomics, we only
consider the largest eigenvalues as input to the profile likelihood function and take the second
elbow as the estimate of d̂.

4.1.2. Diagonal augmentation. Many connectomes have no self-loops, resulting in all zeros in
the diagonal entries of the adjacency matrices. When computing spectral embeddings of graphs,
the zero diagonal results in increased errors in estimation (Tang et al. 2018). Furthermore, the
sum of eigenvalues of the adjacency matrices is zero, leading to an indefinite matrix, which violates
assumptions of the statistical models such as the RDPG.

Diagonal augmentation (diag-aug) is a method for imputing the diagonals of adjacency matri-
ces from graphs with no self-loops (Scheinerman&Tucker 2010,Marchette et al. 2011,Tang et al.
2018). The diagonals are imputed with the average of the nondiagonal entries of each row, which
corresponds to the degree of each vertex divided by n− 1. In the case of directed graphs, the aver-
age of in and out degree is used. Specifically, the diagonal augmented adjacencymatrix is defined as
Ã = A+D̃ where A ∈ R

n×n, and D̃ ∈ R
n×n is a diagonal matrix with entries (A�1� + �1A)/2(n− 1)

where �1 ∈ R
n is a row vector of ones. To achieve the best embedding estimation, the diagonal

entries of adjacency matrices should be imputed prior to ASE (in LSE, the diagonals are imputed
via the normalized Laplacian).

4.1.3. Pass-to-ranks. Connectomes often have weighted edges, which can take on arbitrary
values. Rescaling and normalizing the edge weights has been shown to increase reliability and can
improve estimation of spectral embeddings (Kiar et al. 2018). Pass-to-ranks (PTR) is a method
for rescaling the positive edge weights such that all edge weights are between 0 and 1, inclusive.

Given an adjacency matrix A ∈ R
n×n, let R(Ai j ) be the rank of Ai j , that is, R(Ai j ) = k if Ai j is

the kth smallest number in A. The rescaled adjacency matrix, Ã, is defined as follows:

Ãi j =
{
R(Ai j )

|E| if Ai j > 0,
0 otherwise,

where |E| is the number of nonzero edges. Ties in rank are broken by averaging the ranks. For
spectral embedding of weighted connectomes, they are first normalized via PTR, then the diago-
nals are imputed via diag-aug prior to ASE (diag-aug is skipped for LSE).

4.1.4. Spectral clustering for community detection. One of the most common uses of
spectral clustering is for community detection, in which the vertices with similar connectivity
patterns are grouped together. Given the embeddings of a graph from either ASE or LSE,
classical Euclidean clustering of X̂ results in community structure. Central limit theorems for
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spectral embeddings of many statistical models (e.g., SBM, RDPG) suggest GMM for clustering
(see the Supplemental Appendix, Section C.1).

The true number of clusters, K, is often not known in real data but can be estimated by max-
imizing likelihood functions penalized by model complexity. Commonly used functions include
Bayesian information criterion (BIC), Akaike information criterion, and minimum description
length (Akaike 1974, Rissanen 1978, Schwarz et al. 1978). By default, we use penalized likelihood
via BIC to estimate K (Priebe et al. 2019). In practice, various covariance types and initialization
methods for GMM and number of clusters are swept over to compute the best estimated number
of clusters, K̂ (Scrucca et al. 2016, Athey & Vogelstein 2019).

4.2. Multiple Graph Algorithms

In this section, we introduce embedding methods for populations of networks and various algo-
rithms applicable for multiple networks, such as seeded graphmatching and community detection.

4.2.1. Omnibus embedding. Consider a sample of m observed graphs G (1),G (2), . . . ,G (m) and
their associated adjacencymatrices,A(1),A(2), . . . ,A(m) ∈ R

n×n with n vertices that are identical and
shared across all graphs. Under the JRDPG model, omnibus embedding (OMNI) is a consistent
method (see the Supplemental Appendix, Section C.2.1) for simultaneously estimating the la-
tent position matrices for each graph by computing the spectral embedding into d dimensions on
the omnibus matrix,O ∈ R

nm×nm, as defined below:

O =

⎡
⎢⎢⎢⎢⎣

A(1) 1
2 (A

(1) +A(2) ) · · · 1
2 (A

(1) +A(m) )
1
2 (A

(2) +A(2) ) A(2) · · · (A(2) +A(m) )
...

...
...

...
1
2 (A

(m) +A(1) ) 1
2 (A

(m) +A(2) ) · · · A(m)

⎤
⎥⎥⎥⎥⎦.

The embeddings gives the matrix

Ẑ = ASE(O) =

⎡
⎢⎢⎢⎢⎢⎣

X̂
(1)

X̂
(2)

...

X̂
(m)

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

mn×d ,

where the first n rows are the latent positions corresponding to A(1), and so on.

4.2.2. Multiple adjacency spectral embedding. Multiple adjacency spectral embedding
(MASE) is a consistent method for estimation (see the Supplemental Appendix, Section C.2.1)
of underlying parameters for each graph under the COSIE model (Arroyo et al. 2019). MASE is
a three-step process:

1. Each adjacency matrix, A(i), is embedded into d dimensions via ASE, and the matrix
Û = [ASE(A(1) ), ASE(A(2) ), . . . , ASE(A(m) )] ∈ R

n×dm is the concatenated matrix of spectral
embeddings.

2. Calculate the singular value decomposition of Û = VSW�, and let V̂ ∈ R
n×d be the ma-

trix containing the d singular vectors corresponding to d largest singular values. V̂ is the
estimated shared common subspace matrix.

3. Individual matrices are estimated via R̂(i) = V̂� A(i) V̂, where R̂(i) ∈ R
d×d .
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4.2.3. Spectral clustering for community detection. Similar to the procedure described in
Section 4.1.4, spectral clustering in the multi-graph setting can also be performed. Clustering is

performed on the average latent position matrix, X̄ := 1
m

∑m
i=1 X̂

(i)
, in the JRDPG model and the

vertex subspace matrix, V̂, in the COSIE model. The clustering procedure proceeds identically to
the one described in Section 4.1.4.

4.2.4. Seeded graph matching. Consider two graphs G (1) and G (2) with n vertices and their
associated adjacency matrices A and B, respectively. The graph matching problem seeks to find an
alignment of nodes between these two graphs that minimizes the number of edge disagreements.
Formally, it is defined as the following optimization problem:

min ‖AP−PB‖2F 1.

s.t. P ∈ P ,

where P is the set of permutation matrices in R
n×n. Seeded graph matching is a modification of

the graph matching algorithm that allows for the specification of seed setsW1,W2 with seedingψ :
W1 → W2 and is solved via fast approximate quadratic assignment (Vogelstein et al. 2015). As the
seeded graph matching problem is computationally intractable, seeded graph matching provides
an approximate solution by relaxing the feasible region from P to D, the set of doubly stochastic
matrices. The algorithm is provided below:

Algorithm 1.

1. Initialize at some P(0) ∈ D, whereD is the set of doubly stochastic matrices. Typically,
initialization is chosen as P(0) = �1�1�/n, where �1 denotes the n-vector of all ones.

2. While stopping criteria not met do

a. Compute the gradient � f (P(i) ).
b. Compute the search directionQ(i) ∈ argmax (tr(QT

� f (P(i) ))) via the Hungarian al-
gorithm.

c. Compute step size α(i) ∈ argmax( f (α(i) P(i) +(1 − α(i) )Q(i) )).
d. Update P(i+1) := α(i) P(i) +(1 − α(i) )Q(i).

3. Compute P̂ ∈ argmax(tr(P� P( f inal ) )) via the Hungarian algorithm.

5. APPLICATIONS FOR SINGLE GRAPH DATA

In this section, we explore the applications of the single graph models in Section 3.1 and the
algorithms in Section 4.1.TheDrosophilamushroombody connectome andHCPdata are analyzed
(see the Supplemental Appendix, Sections D.1 and D.2, for a description) along with simulated
examples, and the Supplemental Appendix (Section E) contains additional analysis in weighted
connectomes.

5.1. Testing for Differences Between Communities of Edges

In Figure 5, we compare a number of different strategies using Fisher’s exact test (Fisher 1925)
for testing whether there exists a difference between K = 2 communities, or groups, of edges in
a graph. Formally, let e(k)i j ∼ Fk be a single edge in the graph, where k � {1, 2} is a community of
edges, for i, j � [n]. Our hypothesis test of interest is:

H0 : F1 = F2, Ha : F1 �= F2.
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Figure 5 (Figure appears on preceding page)

Comparing communities of edges in graphs. (a, i–ii) Fisher’s exact test shows reasonable statistical power across both homophilic and
homotopic block structures (a, i) with power converging to 1 as effect size and number of vertices grow (a, ii). (b) The Drosophila
mushroom body in subpanel b, i shows both homophilic planted partition and homotopic structure (b, ii–iii) (Fisher’s exact test,
p-values = 0). (c) All N = 1,059 Human Connectome Project diffusion connectomes (c, i) show homophilic planted partition structure
(c, ii), with within-hemisphere connectivity exceeding between-hemisphere connectivity (c, iii) (Fisher’s exact test,N = 1,059,
Bonferroni corrected p-values <10−21).

We simulate graphs from the homophilic planted partition SBM from Section 3.1.2 and sym-
metric homotopic SIEM from Section 3.1.3 in Figure 5a, subpanel i. Under the given models,
our hypotheses simplify to testing whether p1 = p2 against p1 � p2, that is, whether or not there
exists a different probability for each edge community. Effect size, or the difference in probabil-
ity between the two communities, for the SBM and the SIEM are varied linearly from 0 to 0.1,
and from 0 to 0.5, respectively. A relative effect size of 0 corresponds to an ER graph, in which
F1 = F2; at all other relative effect sizes, the alternative is true.We measure performance using the
statistical power at α = 0.05 in Figure 5a, subpanel ii. Across the simulation settings, we see that
Fisher’s exact test provides an appropriate statistical test and provides sufficiently high power with
large enough effect size and graph. Importantly, Fisher’s test displays both empirical validity (at
an effect size of zero, the power is at most α) and empirical consistency (the test power converges
to 1 as the effect size increases) in both simulations.

We demonstrate our techniques developed above on the Drosophila mushroom body, with
n = 319 vertices in the left or right hemisphere (2 vertices located along the center of the
brain are excluded). In Figure 5b, we investigate the appropriateness of different unweighted
independent edge models for the Drosophila mushroom body. Our goal is to identify whether
the unweighted Drosophila mushroom body displays homophilia (that is, the within-hemisphere
blocks have greater connectivity than between-hemisphere blocks) or homotopia (that is, edges
incident bilateral vertices have a different distribution from edges incident nonbilateral vertices).
Figure 5b, subpanel i shows the unweighted Drosophilamushroom body. The within-hemisphere
blocks appear to have a higher proportion of edges than the between-hemisphere edge blocks,
shown in Figure 5b, subpanel ii. There is strong evidence that the within-hemisphere connec-
tivity exceeds the between-hemisphere connectivity (Fisher’s exact test, p-value = 0.0). Next, we
investigate whether the graph is homotopic; that is, whether bilateral (homotopic) connectivity
exceeds nonbilateral (heterotopic) connectivity, in Figure 5b, subpanel iii. Strong evidence
is present that homotopic connectivity exceeds heterotopic connectivity (Fisher’s exact test,
p-value = 0.0).

Finally, we explore the appropriateness of various independent edge models for diffusion con-
nectomes from the HCP data set. The diffusion connectomes are binarized according to whether
an edge is present (the edge weight is greater than zero) or absent (the edge weight is zero).
Figure 5c, subpanel i shows the average unweighted diffusion connectome over all participants
in the study. Figure 5c, subpanel ii shows the distribution of edge weights within hemisphere
versus between hemisphere. The diffusion connectomes appear to possess homophily—i.e., high
within-hemisphere connectivity, with lower between-hemisphere connectivity. This is demon-
strated by the fact that in allN= 1,059 connectomes, the within-hemisphere connectivity exceeds
the between-hemisphere connectivity. This effect can be observed by looking at the difference
between within-hemisphere connectivity and between-hemisphere connectivity for each of the
N = 1,059 connectomes, shown in Figure 5c, subpanel iii. All 1,059 diffusion connectomes have
significantly higher within-hemisphere connectivity than between-hemisphere connectivity at
α = 0.05 after Bonferroni correction (Fisher’s exact test,N = 1,059, maximum p-value <10−20).
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The Supplemental Appendix (Section E.1) investigates the fit of independent edge models
for weighted graphs from the Drosophila mushroom body and the HCP diffusion connectomes.
We leverage the Mann–Whitney–Wilcoxon test, a nonparametric test of whether there exists a
difference in medians between the two edge clusters. We again find that the weighted Drosophila
mushroom body shows both homotopic planted partition structure and homophily, and that the
weighted HCP connectomes all show homotopic planted partition structure (N = 1,059), a con-
clusion consistent with our results on the unweighted graphs.

5.2. Model Selection for Appropriate Block Structure

Recall that in Section 3.1.2, that for the case of a K= 2 SBM, the matrix B with entries Bkl defines
the probability of an edge connecting a vertex in community k with a vertex in community l. By
the bias-variance trade-off, simply supposing a unique entry for each block of B adds an additional
level of complexity to the model and may reduce the quality of inference, so the ability to make
a principled decision when faced with numerous potential block structures is of importance. For-
mally, we are concerned with choosing one of the appropriate block structures from a subset of
candidate block structures given in Section 3.1.2, presenting a problem in model selection. Our
hypotheses are the alternate candidate models, and our goal is to select the hypothesis correspond-
ing to the candidate model that is most supported by the data by using the model with the lowest
p-value.

InFigure 6a, we perform simulations where the true graph is either planted partition, symmet-
ric heterogeneous, or asymmetric heterogeneous, as shown in Figure 6a, subpanel i. Effect size
corresponds to the magnitude of the difference between disparate blocks in the model. We find
that the χ2 test is an appropriate test for identification of block structure in unweighted graphs
and successfully recovers the correct block structure as the effect size and the number of vertices
increase. Figure 6a, subpanel ii shows that the test features both empirical validity and empirical
consistency, as in Figure 5.

In Figure 6b, we investigate the appropriate block structure for the unweighted Drosophila
mushroom body, which shows the probability of an edge existing within each block of B, where
the n= 319 vertices in either the left or right hemisphere are partitioned according to hemisphere.
The on-diagonal (left, left) and (right, right) blocks share a similar distribution that is distinct
from the (left, right) and (right, left) blocks. Because the Drosophila mushroom body is inherently
a directed graph, we investigate whether it is ER, planted partition, asymmetric homogeneous,
symmetric heterogeneous, or asymmetric heterogeneous using the χ2 test. Testing indicates that
theDrosophilamushroom body possesses a planted partition structure (χ2 test, p-value= 0.0).This
has the interpretation that the optimal SBM includes a shared probability for the on-diagonal (left,
left) and (right, right) blocks and a different shared probability for the off-diagonal (left, right) and
(right, left) blocks. An important consideration is that while the optimal SBM is symmetric, the
graph itself is directed. This has the implication that while the SBM would posit that edges in the
(left, right) and (right, left) blocks have the same probability, realizations of the (left, right) and
(right, left) block will not necessarily be identical.

Figure 6c investigates the optimal block structure for the N = 1,059 diffusion connectomes
from the HCP data set. The figure shows the average connectivity for the three possible unique
entries of the block probability matrix B for an SBM where vertices are segmented into com-
munities according to hemisphere: left-hemisphere connectivity, right-hemisphere connectivity,
and contralateral (between-hemisphere) connectivity. Because the diffusion connectomes are
inherently symmetric, the graph is directionless, and hence it is not possible for the (left, right)
and (right, left) blocks to have different values. We consider three possible block structures for

480 Chung et al.

https://www.annualreviews.org/doi/suppl/10.1146/annurev-statistics-042720-023234


Planted
partition

Asymmetric
heterogeneous

Symmetric
heterogeneous

1 50 1 50 1 50

1

50
Vertex 1

V
er

te
x 

2

20 100 20 100 20 100
0

1

Number of vertices

Eff
ec

t s
iz

e

Drosophila contingency table per block

0 0.25 0.50 0.75

Average block probability

Re
la

ti
ve

 d
en

si
ty

i     Simulationsa

ii     Power maps

Edge
Yes
No

b N=1,059 HCP connectomes
within-block probability

c

93.9%

25.4%

26.8%

6.1%

n=26,569

n=24,336

n=25,428

No edge Edge Marginal

(Left, left)

(Right, right)

(Left, right)

93.7% 6.3% n=25,428(Right, left)

n=85,341 n=16,420 n=101,761Marginal

Block
73.9%

73.2%

0

1.0

0.5

Power

0

1.0

0.5

Proportion
in block

0

0.50

1.00

Left
Block

Right
Between

Figure 6

Estimating optimal block structure. (a) The χ2 test is effective for identifying the ideal block structure across disparate candidate block
structures (a, i), as power improves as both effect size and graph size increase (a,ii). (b) The Drosophilamushroom body displays a planted
partition structure (χ2 test, p-value = 0.0), where (left, left) and (right, right) blocks share a different probability from the (left, right)
and (right, left) blocks. (c) Similarly, all N = 1,059 Human Connectome Project (HCP) diffusion connectomes show planted partition
structure, with a similar interpretation to the Drosophila result.

the diffusion connectome: ER, planted partition, and symmetric heterogeneous. On allN= 1,059
connectomes, the optimal block structure is planted partition, using the χ2 test.

The Supplemental Appendix (Section E.2) proposes the use of several testing variants (anal-
ysis of variance, or ANOVA; Kruskal–Wallis; and distance correlation) for the weightedDrosophila
mushroom body and the weighted HCP diffusion connectomes for investigating the optimal
block structure. All tests yield the same conclusion (and in the case of the HCP data set, again for
all N = 1,059 connectomes) that the mushroom body and diffusion connectomes display planted
partition structure. An important consideration is that the implication for weighted graphs is,
rather than the on-diagonal and off-diagonal blocks sharing the same probability (as is the case for
the unweighted graphs), the two on-diagonal blocks, (left, left) and (right, right), share a common
distribution. The implication is similar for the two off-diagonal blocks, (left, right) and (right,
left).
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5.3. Same Network, Different Communities

In the case of two-block SBMs with positive semidefinite block probability matrix B = [a, b; b, c],
there are two structures of interest: affinity and core-periphery. In affinity structure, a, c � b; that
is, the within-block connectivity is relatively higher than the between-block connectivity. In the
core-periphery structure, a� b, c; that is, one block has relatively higher within-block connectivity
than other blocks’ within-block probability and between-block connectivity.

In this section, we examine the two spectral embedding clustering approaches described in
Section 4.1.1, which produce different clusterings depending on the SBM (Priebe et al. 2019,
Cape et al. 2019). In short, ASE clustering tends to favor core-periphery structure, while LSE
clustering tends to favor affinity structure.

We consider graphs generated from a four-block SBM with n = 4,000 vertices, membership
vector �π = [0.25, 0.25, 0.25, 0.25], and the block probability matrix

B =

A B C D⎡
⎢⎢⎣

⎤
⎥⎥⎦

A 0.01 0.02 0.01 0.002
B 0.02 0.1 0.002 0.015
C 0.01 0.002 0.01 0.02
D 0.002 0.015 0.02 0.01

.

The above four-block SBM exhibits both affinity and core-periphery structures when projected
down to two blocks, which are shown below:

Baffinity ≈
AB CD[ ]

AB 0.04 0.007
CD 0.007 0.04

, Bcore ≈
AC BD[ ]

AC 0.01 0.01
BD 0.01 0.06

.

Blocks AB and CD form Baffinity, which exhibits the affinity structure, while blocks AC and BD
form Bcore, which exhibits the core-periphery structure. A network is sampled from the four-block
SBM, and spectral clustering is performed (see Section 4.1.4) with embedding dimension d̂ = 2
and K = 2 the number of clusters. Figure 7 shows the spectral clustering results. In Figure 7a,
clustering with LSE shows that the blocks forming affinity structures are grouped together, and
in Figure 7b, clustering with ASE shows the blocks forming core-periphery structures grouped
together. Thus, the two different spectral clustering methods provide two different groups that
are both meaningful.

5.4. Detecting Communities with Spectral Clustering

Many of the techniques described above rely on knowing an a priori grouping of nodes or edges,
but in many real-world examples, this information is not available. Additionally, one may seek to
discover communities in the network, either for modeling the network as a block model or to
reveal groups of similar nodes.

As described in Section 4.1.4, one can embed a graph via ASE or LSE and then use GMM
to reveal communities of nodes. Here, we separately embed both the left- and right-hemisphere
induced subgraphs of theDrosophila larva connectome using ASE (see Priebe et al. 2017 for an ex-
tensive investigation) with d̂ = 3.GMMwas performed independently on both hemispheres, with
the clustering assignments and embeddings shown in Figure 8. Note that while the embedding
and clustering of both hemispheres were performed separately, similar structures emerge for the
left and right. In particular, each cluster mostly comprises a single cell type. Thus, spectral clus-
tering can provide neuroscientists a way to find meaningful communities when the assignment is
not known.
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Figure 7

Different clustering results from adjacency spectral embedding (ASE) and Laplacian spectral embedding (LSE). For both ASE and
LSE, the network was embedded into d = 2 dimensions, and GMM with K = 2 clusters was fit. The dots represent vertices in the
embedded space and the colors correspond to block memberships. The dashed black ellipses define the vertices that were clustered into
the same group. (a) Clustering the embeddings from LSE results in affinity clustering. (b) Clustering the embeddings from ASE results
in core-periphery clustering.

6. APPLICATIONS FOR MULTI-GRAPH DATA

In this section, we explore the applications of the multiple graph models in Section 3.2 and
the algorithms in Section 4.2 using simulated and HCP data. The Supplemental Appendix
(Section F) contains additional exploration of weighted connectomes.

6.1. Matching Vertices Between Subgraphs

For many statistical approaches on graphs, knowing an alignment or matching between the ver-
tices of one graph and another can be useful. For instance, if each neuron in the left hemisphere
of the brain has a corresponding neuron in the right hemisphere, then both hemispheres could
be jointly embedded and compared using techniques such as OMNI or MASE. In the case of
the mushroom body network, hemilateral neuron pairs were identified for 198 of the neurons
considered in Figure 8, yielding 99 neuron pairs.

Here, we test the ability of graph matching techniques to identify this structure in an unsu-
pervised manner, based only on the network topology (note that the neuron pairs considered here
were based on both topology and morphology). We perform unseeded graph matching between
the subset of left- and right-hemisphere neurons for which pairs are known.We restart the algo-
rithm 256 times and choose the run with the best objective function value (not matching accuracy).
Results are shown in Figure 9. This matching correctly identified 78.8% (78 of 99) of neuron
pairs, and all incorrectly matched neurons were matched to a neuron of the correct cell type.

Given a new connectome, where the correspondence between neurons is not known, this
method can provide neuroscientists with a faster and statistically grounded estimate of neuron
pairing.
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Spectral clustering of the Drosophila mushroom body network. (a) The first in embedding dimension is
plotted against the first out embedding dimension for both the left- and right-hemisphere networks (note
that the clustering was performed in six dimensions, but only two are shown here for visualization). Each
point represents a neuron, colored by its corresponding cell type. Ellipses show the clusters predicted by
Gaussian mixture modeling, colored according to the cell type with the most neurons in that cluster. Each
color corresponds to one of Kenyon cells, input neurons, output neurons, or projections neurons. (b) Stacked
bar graphs showing each cluster’s composition in terms of neuron cell type, for both the left- and the right-
hemisphere clusterings. Each cluster mostly comprises a single cell type for both left- and right-hemisphere
networks, meaning that spectral clustering can recover true communities.

6.2. Testing for Significant Edges

We consider two populations of networks generated from an ER model and a two-block kidney-
egg SBM model. All networks have n = 20 vertices and π = [0.25, 0.75]. The block probability
matrices for each population are given by B(1) = [p, p; p, p] and B(2) = [p+ δ, p; p, p], where
p = 0.5. The difference between the two populations is in the first block, B11, and δ is the
magnitude of the difference, which ranges from 0 to (1 − p). In other words, δ is the effect size.
In total, m networks are sampled (m2 networks per population). For each edge, the t-test statistic
is computed between the two populations, and these are then ranked from largest to smallest in
magnitude. Ranking of the test statistics and a cutoff are utilized, rather than p-value corrections
(e.g., Bonferroni correction), to control for false positive rate. In this case, the ten edges with the
largest magnitudes are considered since we expect ten edges to be different. Nonparametric tests
are not considered since many of them are based on ranking the underlying data, which is not

484 Chung et al.



RIGHT

Cl
us

te
r

LEFT
a

b

Kenyon cells
Input neurons
Output neurons
Projection neurons

Figure 9

Graph matching on the Drosophila mushroom body network. All panels show the first two dimensions of
principal component analysis on the adjacency spectral embedding of the mushroom body network (for
visualization purposes). Each point represents a neuron in the network that has a manually identified pair in
the opposite hemisphere, and colors represent the cell type of a given neuron. Lines show the neuron pair
that was predicted by graph matching. (a) All of the correctly matched neuron pairs. 78.8% of neuron pairs
(78 of 99) were correctly matched. (b) All of the incorrectly matched neuron pairs. Note that all of the
incorrectly matched neurons are matched to neurons of the same cell type.

sensible for binary data. The performance is evaluated with recall@10, which quantifies the
fraction of the top ten ranked edges that are indeed truly different edges, averaged over 100
repeated trials.

Figure 10a shows that when the effect size is small (δ ≤ 0.05), significant edges cannot be
detected even at the largest sample sizes (m = 1,000). However, when effect size is large (δ ≥
0.45), significant edges can be perfectly detected at relatively small sample sizes (m ≥ 30).

Connectivity in human brains was analyzed using the structural connectomes (see the
Supplemental Appendix, Section D.2). For each edge, the class conditional mean, which is
the estimated connectivity probability, is computed for females (m = 572) and males (m = 488).
The sample sizes and difference in conditional means, which is the estimated effect size, are
used to find the closest recall@10 values from the simulated experiment, denoted as empirical
trustworthiness in Figure 10b. Thus, empirical trustworthiness is the confidence with which
one can trust that a significant edge is truly significant. There are 2,380 possible total edges in
connectomes with 70 vertices, but only 49 edges have trustworthiness ≥0.9, meaning one can
only trust significance for a small set of edges.

The Supplemental Appendix (Section F.2) investigates the edge-wise testing in weighted
connectomes. We leverage the t-test, Mann–Whitney–Wilcoxon test, and Kolmogorov-Smirnov
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Performance of finding significant edges in two different populations of networks. (a) Recall for varying sample size and effect size
when comparing two populations of binary networks using a t-test. The color bar represents recall@10 averaged over 100 trials. When
the effect size is small, significant edges cannot be detected even at large sample sizes. When effect size is large, significant edges can be
detected at small sample sizes (m = 1,000). (b) Analysis of structural connectomes from the Human Connectome Project data, with the
vertices organized by left (L) and right (R) hemispheres. Edge weights are binarized to parallel the simulations. The heat map shows the
empirical trustworthiness of significant edges when comparing each edge between females and males.

(KS) test, which is a nonparametric test of whether there exists a difference in empirical cumulative
distributions between edge weights.We find that the KS test is the only test that is appropriate for
weighted edges since the KS test can detect changes not only in the means but also in the variance.
In weighted HCP connectomes, we find that 256 edges have trustworthiness ≥0.9 and that a very
small fraction of edges can be trusted to be significant.

6.3. Testing for Significant Vertices

In this section, we test for significant vertices using different representations of vertices. The sim-
plest representation is a set of edges, where the corresponding rows (or columns) of a vertex in
the adjacency matrices are collected and tested for difference. Another is the low-dimensional
latent-space representation using the JRDPG and COSIE models, where the latent positions of
vertices are tested for difference. Since all representations are multivariate, hypotheses are tested
using Hotelling’s t-squared test, which is a multivariate generalization of the t-test.

We consider a population of planted partition SBMs and a symmetric heterogeneous
SBM in two different settings. In both settings, the planted partition SBM has B(1) =
[0.125, 0.0625; 0.0625, 0.125] block probability matrix. In setting 1, the symmetric heteroge-
neous SBM has B(2) = [0.125, 0.088; 0.088, 0.25] block probability matrix, and in setting 2,B(2) =
[0.125, 0.0625; 0.0625, 0.25]. The vertices that belong to the second block, which has the dif-
ferent within-block probability, are considered significant vertices, and we vary the number of
vertices that belong to the second block. In total, m = 100 networks are sampled per popula-
tion, and the p-values are computed using Hotelling’s t-squared test on each of the three vertex

486 Chung et al.



True positive rate False positive rate Recall@K
1.00

0.75

Row-wise
JRDPG
COSIE

0.50

Se
tt

in
g 

1

0.25

0

1.00

0.75

0.50

Se
tt

in
g 

2

log number of significant vertices

0
100 101 100 101 100 101

Figure 11

Performance for finding significant vertices using various representations of vertices. We compare a population of graphs from a
planted partition stochastic block model (SBM) and another from a symmetric heterogeneous SBM in two different settings. The
number of vertices for each graph is kept constant (n = 70), but the number of significantly different vertices is varied (x-axis). (Top row)
In this setting, all three representations are not valid as the false positive rate increases with the number of significant vertices. (Bottom
row) In this setting, row-wise and joint random dot product graph ( JRDPG) representations are valid, while common subspace
independent-edge model (COSIE) representation is not. In both settings, the sorting of the p-values can be trusted as recall@K
increases as number of significant vertices increase.

representations for each vertex. Vertices with p-values less than α = 0.05 after Bonferroni correc-
tion are considered significant. The performance is measured via true positive rate, false positive
rate, and recall@K, where K is the number of significant vertices.

Figure 11 shows that the p-values cannot necessarily be trusted. That is, in some settings,
the significant vertices cannot be trusted due to an uncontrolled false positive rate. However, the
sorting of p-values can be trusted in both settings. Thus, in situations when the underlying model
is not known (i.e., in real data), one should trust the sorting of the p-values (or test statistic) but
not the magnitudes.

7. CONCLUSION

Connectomics is an exciting area and is full of interesting ideas; consequently, a variety of anal-
ysis frameworks have emerged. However, the use of statistical modeling in connectomics is still
relatively sparse, especially compared with other areas of science. The key conceptual hurdle in
statistical modeling of connectomes is to model the entire connectome rather than just edges or
features while taking into account the structures and interactions within a connectome. This arti-
cle provides an overview of current analysis frameworks of connectomics data and how statistical
models can be incorporated to improve current analysis methods.

www.annualreviews.org • Statistical Connectomics 487



SUMMARY POINTS

1. Do not rely on network statistics to characterize populations of connectomes. In general,
network statistics do not characterize the data that well and are correlated with one an-
other. Thus, any claim that a specific statistic explains a phenotypic property of a person
is based on spurious reasoning.

2. Do use statistical models developed for networks. Statistical models allow for testing
a variety of hypotheses, such as testing for appropriate models and finding significant
vertices or communities.

3. Do use spectral clustering methods for determining community structure. Theoretical
and empirical results show that spectral clustering methods can estimate meaningful and
trustworthy community structures. However, note that different methods can provide
different but complementary results.

4. Do use appropriate hypothesis tests. For example, the t-test is appropriate for binary
connectomes but typically invalid and/or underpowered for weighted connectomes.

5. Do not trust the p-values when performing multiple hypothesis tests. Multiple testing
requires corrections to control the false positive rate, all of which are inappropriate for
connectomics data.

6. Do trust the sorting of the p-values when performing multiple hypothesis tests. That is,
consider the tests with the smallest p-values to reject the null hypothesis, as the sorting
can be trusted but not necessarily the magnitudes of p-values.

DISCLOSURE STATEMENT

Joshua T. Vogelstein received funding from Microsoft Research within the past three years. The
other authors are not aware of any affiliations, memberships, funding, or financial holdings that
might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

This work is graciously supported by the Defense Advanced Research Projects Agency
(DARPA) under agreement numbers FA8650-18-2-7834 and FA8750-17-2-0112, and Mi-
crosoft Research. All graph-related simulations and analysis were performed using Graspologic

(https://neurodata.io/graspy/), and all multivariate hypothesis testing was done using hyppo

(https://neurodata.io/hyppo) (Chung et al. 2019, Panda et al. 2019).

LITERATURE CITED

Afshin-Pour B, Hossein-Zadeh GA, Strother SC, Soltanian-Zadeh H. 2012. Enhancing reproducibility
of fMRI statistical maps using generalized canonical correlation analysis in NPAIRS framework.
NeuroImage 60:1970–81

Airoldi EM,Blei DM,Fienberg SE,Xing EP. 2008.Mixedmembership stochastic blockmodels. J.Mach. Learn.
Res. 9:1981–2014

Akaike H. 1974. A new look at the statistical model identification. IEEE Trans. Autom. Control 19:716–23
Alexander LM, Escalera J, Ai L, Andreotti C, Febre K, et al. 2017. An open resource for transdiagnostic

research in pediatric mental health and learning disorders. Sci. Data 4:170181

488 Chung et al.

https://neurodata.io/graspy/
https://neurodata.io/hyppo


Amico E, Marinazzo D, Di Perri C, Heine L, Annen J, et al. 2017. Mapping the functional connectome traits
of levels of consciousness.Neuroimage 148:201–11

Anscombe FJ. 1973. Graphs in statistical analysis. Am. Stat. 27:17–21
Arroyo J, Athreya A, Cape J, Chen G, Priebe CE, Vogelstein JT. 2019. Inference for multiple heterogeneous

networks with a common invariant subspace. arXiv:1906.10026 [stat.ME]
Arroyo J, Levina E. 2020. Simultaneous prediction and community detection for networks with application to

neuroimaging. arXiv:2002.01645 [stat.ME]
Arroyo Relión JD, Kessler D, Levina E, Taylor SF. 2019. Network classification with applications to brain

connectomics. Ann. Appl. Stat. 13:1648–77
Athey TL, Vogelstein JT. 2019. AutoGMM: Automatic Gaussian mixture modeling in Python.

arXiv:1909.02688 [cs.LG]
Athreya A, Fishkind DE, Tang M, Priebe CE, Park Y, et al. 2017. Statistical inference on random dot product

graphs: a survey. J. Mach. Learn. Res. 18:8393–484
Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to

multiple testing. J. R. Stat. Soc. Ser. B 57:289–300
Biswal BB,Mennes M, Zuo XNN,Gohel S, Kelly AMC, et al. 2010. Toward discovery science of human brain

function. PNAS 107:4734–39
Blondel VD,Guillaume JL, Lambiotte R, Lefebvre E. 2008. Fast unfolding of communities in large networks.

J. Stat. Mech. Theory Exp. 2008:P10008
Bullmore ET, Bassett DS. 2011. Brain graphs: graphical models of the human brain connectome. Annu. Rev.

Clin. Psychol. 7:113–40
Bullmore ET, Sporns O. 2009.Complex brain networks: graph theoretical analysis of structural and functional

systems.Nat. Rev. Neurosci. 10:186–98
Cape J, Tang M, Priebe CE. 2019. On spectral embedding performance and elucidating network structure in

stochastic blockmodel graphs.Netw. Sci. 7:269–91
Chatterjee S. 2015. Matrix estimation by universal singular value thresholding. Ann. Stat. 43:177–214
Chen H, Soni U, Lu Y,Maciejewski R, Kobourov S. 2018. Same stats, different graphs. In International Sympo-

sium on Graph Drawing and Network Visualization, ed. T Biedl, A Kerren, pp. 463–77.New York: Springer
Chung J, Pedigo BD, Bridgeford EW,Varjavand BK,HelmHS, Vogelstein JT. 2019. GraSPy: graph statistics

in Python. J. Mach. Learn. Res. 20:1–7
Chung K, Deisseroth K. 2013. CLARITY for mapping the nervous system.Nat. Methods 10:508–13
Clauset A, Newman ME, Moore C. 2004. Finding community structure in very large networks. Phys. Rev. E

70:066111
Craddock RC, Jbabdi S, Yan CG, Vogelstein JT, Castellanos FX, et al. 2013. Imaging human connectomes at

the macroscale.Nat. Methods 10:524–39
Crainiceanu CM, Caffo BS, Luo S, Zipunnikov VM, Punjabi NM. 2011. Population value decomposition, a

framework for the analysis of image populations. J. Am. Stat. Assoc. 106:775–90
Durante D, Dunson DB, Vogelstein JT. 2017. Rejoinder: nonparametric Bayes modeling of populations of

networks. J. Am. Stat. Assoc. 112:1547–52
Efron B. 2008. Simultaneous inference: When should hypothesis testing problems be combined? Ann. Appl.

Stat. 2:197–223
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