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Abstract

Quantum computing is widely considered a frontier of interdisciplinary re-
search and involves fields ranging from computer science to physics and
from chemistry to engineering. On the one hand, the stochastic essence of
quantum physics results in the random nature of quantum computing; thus,
there is an important role for statistics to play in the development of quan-
tum computing. On the other hand, quantum computing has great potential
to revolutionize computational statistics and data science. This article pro-
vides an overview of the statistical aspect of quantum computing.We review
the basic concepts of quantum computing and introduce quantum research
topics such as quantum annealing and quantummachine learning, which re-
quire statistics to be understood.
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1. INTRODUCTION

Quantum information science investigates the preparation and control of the quantum states
of physical systems for the purposes of information transmission and manipulation. This field
consists of quantum communication, quantum computation, and quantum information. There
is a wide belief that quantum information science will likely lead to a new wave of technologi-
cal innovations in communication, computation, and information (see Wang 2012, Wang et al.
2016, and Wang & Song 2020 for details). As the crown jewel of quantum information sci-
ence, quantum computing is gaining growing interest and tremendous attention in fields rang-
ing from computer science to physics and from chemistry to engineering. Theoretically, it has
been shown that quantum computational algorithms can be much faster than the best or opti-
mal classical algorithms for solving certain tough computational problems. Experimentally, the
Google Quantum AI group (where AI stands for artificial intelligence) designed a hard sampling
problem for its recently created quantum computer and successfully performed sampling compu-
tations in a computational space of dimension 253 ≈ 1016, which is practically beyond the reach
of the fastest classical supercomputers available at present (see Section 4.1, Arute et al. 2019, and
Zhong et al. 2020 for details). The media has frequently reported that a calculation that would
take a quantum computer 3 minutes and 20 seconds would take the most powerful supercom-
puter in the world 10,000 years. This is an example of a concept often termed quantum (com-
putational) supremacy—a demonstration that quantum computers can surpass classical ones—
and requires a combination of hardware construction, software design, and problem creation and
implementation.

As quantum computers of large scale are currently not available to implement faster quan-
tum algorithms for accomplishing difficult computational tasks like breaking cryptosystems that
are secure against any classical computer–based attack, it is important to demonstrate quan-
tum supremacy and provide experimental evidence to support the (theoretical) claim that quan-
tum computation has advantages over classical computation. Since quantum physics is essentially
stochastic, quantum computation is random in nature. Consequently, statistics can play an im-
portant role in quantum computation, which offers, in turn, great potential for computational
statistics and data science. As our goal in this article is to provide an overview of the statistical
aspect of quantum computation, we introduce the basic concepts of quantum computation and
present some selected relevant topics in quantum computing that encounter many statistical is-
sues. Throughout the overview, we illustrate the interplay between statistics and quantum com-
putation. In particular, our focus is on the application of new quantum resources to accomplish
statistical computational tasks that are either very slow or infeasible by classical techniques, and
the use of quantum approaches that may lead to new theories, methodologies, and computational
techniques for statistics andmachine learning.We refer readers toWang (2012) andWang&Song
(2020) for quantum cryptography topics such as quantum code-breaking algorithms and quantum
crypto devices.

The rest of the article proceeds as follows. Section 2 briefly introduces quantum mechanics
and quantum probability and statistics. Section 3 reviews basic concepts in quantum computation
and different architectures for quantum computation. Section 4 features two landmark projects
on quantum computational supremacy that involve boson sampling and random quantum circuits.
Section 5 illustrates quantum annealing and related statistical analysis. Section 6 presents quantum
deep learning and describes both classical and quantum approaches with Boltzmann machines
(BMs). Section 7 provides concluding remarks.
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2. QUANTUM BACKGROUND REVIEW

2.1. Mathematical Concepts and Notations

Denote by N and R the sets of all integers and real numbers, respectively. We introduce finite-
dimensional linear algebra and metric spaces. Denote by C the set of all complex numbers and
by C

k the vector space consisting of the set of all k-tuples of complex numbers (z1, . . . , zk). In
quantum mechanics and quantum computation, we utilize Dirac notations |·〉 (which is called
ket) and 〈·| (which is called bra) to specify that the objects are column vectors or row vectors in
the vector space, respectively. We use superscripts ∗, ′, and † to denote the conjugate of a com-
plex number, the transpose of a vector or matrix, and the conjugate transpose operation, respec-
tively. We denote by 〈u|v〉 the inner product of vectors |u〉 and |v〉 and adopt a natural inner
product for Ck: 〈u|v〉 = ∑k

j=1 u
∗
jv j = (u∗

1, . . . , u
∗
k )(v1, . . . , vk )

′, where 〈u| = (u1, . . . , uk) and |v〉 =
(v1, . . . , vk)′. The inner product induces a norm ‖u‖ = √〈u|u〉 and a distance ‖u − v‖ between |u〉
and |v〉. We say that H is a finite-dimensional Hilbert space if it is a vector space with an inner
product.

We call a matrix A Hermitian (or self-adjoint) if A = A†, and a matrix U unitary if UU† =
U†U = I, where I denotes the identity matrix. A matrix A is called semipositive (or positive)
definite if 〈u|A|u〉 ≥ 0 for all |u〉 ∈ H (or 〈u|A|u〉 ≥ 0 for all |u〉 ∈ H with equality only for |u〉 =
0). For the matrix A = (aj�), denote its trace by tr(A) = ∑k

j=1 a j j . We use � to denote the tensor
product operation of vectors or matrices.

2.2. Quantum Physics

A quantum system is characterized by its state and the dynamic evolution of the state. We de-
scribe a quantum state by a unit complex vector and its dynamic time evolution by a unitary evo-
lution, where the unitary evolution means that the quantum state changes over time, and these
changes are linked by unitary matrices. Furthermore, the dynamic time evolution of the quantum
state is governed by a differentiation equation called the Schrödinger equation. To be specific, let
|ψ(t)〉 be the state of the quantum system at time t. The states |ψ(t)〉 and |ψ(t + s)〉 at times t and
t+ s, respectively, are linked by |ψ (t + s)〉 = U(s) |ψ (t )〉, whereU(s) = exp[−√−1Hs] is a unitary
matrix, and H is a Hermitian matrix on C

d , which is known as the Hamiltonian of the quantum
system. The Schrödinger equation governs the continuous-time evolution of |ψ(t)〉 as follows:√−1 ∂|ψ (t )〉

∂t = H|ψ (t )〉. Alternatively, we may depict a quantum system by a so-called density ma-
trix. The quantum state of a d-dimensional quantum system can be described by a density matrix
ρ on the d-dimensional complex space C

d , where ρ is a positive semidefinite Hermitian matrix
with unit trace. We often classify a quantum state as a pure state or an ensemble of pure states. A
pure state is a unit vector |ψ〉 in C

d with a corresponding density matrix ρ = |ψ〉〈ψ |. An ensem-
ble of pure states has a density matrix ρ = ∑J

j=1 p j |ψ j〉〈ψ j|, which corresponds to the scenario
that the quantum system is in one of the states |ψ j〉, j = 1, . . . , J, with probability pj being in the
state |ψ j〉.Wemay describe the quantum evolution in the density matrix representation as follows:
ρt+s = U(t )ρsU†(t ), where ρs and ρt+s stand for the density matrix of the state of the quantum sys-
tem at times s and t + s, respectively, and the unitary matrix U(s) is introduced above (for details,
see Shankar 2012, Sakurai & Napolitano 2017).

2.3. Quantum Probability

Measurements on quantum systems are often through observables like position and momen-
tum, where an observable M is defined as a Hermitian matrix on C

d . Assume the following
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eigen-decomposition for M:

M =
d∑
a=1

xaQa, 1.

where xa are the real eigenvalues of M, and Qa are the corresponding projections onto the
eigen-spaces of M. Performing a measurement on M for a quantum system prepared in state
ρ, we adopt a measure space (�,F ) to describe its possible measurement outcomes and treat
the measurement result X as a random variable on (�,F ) with probability distribution Pρ as
follows. The random variable X takes values in {x1, x2, . . . , xd}, and the probability of obtaining
measurement outcome xa is given by

Pρ (X = xa ) = tr(Qaρ), a = 1, 2, . . . , d.

With the probability defined, we derive its expectation and variance,

Eρ (X ) = tr(Mρ), Var(X ) = tr(M2ρ) − [tr(Mρ)]2.

A quantum probability is a noncommutative analog of the Kolmogorov probability. We give a
simple illustration using the finite case considered above. The quantum counterparts of sample
space and sigma-field are H = C

d and an algebra A formed by subspaces of H, respectively.
Quantum events are subspaces of H like eigen-spaces of M, and observables are a quantum
analog of random variables.We present a simple quantum probability P on (H,A) as follows. For
a given subspace Q of Cd , define P(Q) = tr(Qρ). Then there is a corresponding distributional
relationship between M under P and random variable X under Pρ. In fact, identifying the
projection matrix Qa with its corresponding eigen-space, we have P(Qa ) = Pρ (X = a) with the
quantum expectation of observable M,

E(M) =
d∑
a=1

aE(Qa ) =
d∑
a=1

aP(Qa ) =
d∑
a=1

aPρ (X = a) = Eρ (X ).

However, the defined quantum probability (H,A,P) is noncommutative. For example, consider
the case of d= 2 and two noncommutable observables

(
1 0
0 −1

)
and

(
0 1
1 0

)
. Although each observable

corresponds to a Bernoulli random variable, there is no quantum analog of the joint distribution
for these two observables, which is related to Heisenberg’s uncertainty principle and the fact
that performing measurements on a quantum system changes its state and thus the resulting
probability. The general definition of quantum probability takesH as a complex Hilbert space,A
as a C∗-algebra on H, and P as a noncommutative probability on (H,A). For details, readers are
directed to Holevo (2001), Parthasarathy (2012), and Wang (2012).

2.4. Quantum Statistics

Statistics is heavily used in quantum theory and quantum experiments, particularly quantum com-
putation. For a quantum system, we may make statistical inference about the measurement dis-
tribution Pρ and thus indirectly about the quantum state ρ based on measurements X1, . . . , Xn

obtained from measuring some observable for the quantum system. That is, X1, . . . , Xn are inde-
pendent and identically distributed observations with distribution Pρ, and we can infer ρ based
on X1, . . . , Xn. Assume that ρ is known up to some unknown parameter θ. Then we use Pρ to
specify a quantum parametric model and draw statistical inference about θ. We may define quan-
tum likelihood and quantum Fisher information and establish quantum statistical theory such as
the quantum Cramér-Rao bound and asymptotic efficient estimation. Specifically, denote by ρθ a
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parametric quantum density matrix family indexed by parameter θ = (θ1, . . . , θp)′. Define its quan-
tum score matrices � j (θ), j= 1, . . . , p, to be symmetrized logarithmic derivatives of ρθ with respect
to θ—that is, � j (θ) are Hermitian matrices satisfying

∂ρθ

∂θ j
= 1

2
[
� j (θ)ρθ + ρθ� j (θ)

]
.

The quantum Fisher information matrix is given by J(θ) = (Ji j (θ))1≤i, j≤p, where

Ji j (θ) = 1
2
tr
[
ρθ

(
�i(θ)� j (θ) + � j (θ)�i(θ)

)]
.

The quantumCramér-Rao bound states that for an unbiased estimator of θ, its variance is bounded
below by the inverse of J(θ). Also, we may model ρ nonparametrically and employ nonparametric
methods to infer ρ. Quantum information science refers to the reconstruction of ρ as quantum
state tomography. For example, consider testing the quantum hypothesis that a quantum state is in
a given state ρ1 against an alternative state ρ2.We can establish the quantum analog of the classical
theory for the trade-off behavior between two types of errors. As a case in point, denote by βn the
type II error of the optimal level α test for the quantum hypotheses based on n identical copies of
the quantum system. Then we have the quantum Stein lemma: limn→∞[n−1 log βn] = −S(ρ1|ρ2),
where S(ρ1|ρ2) = tr(ρ1[log ρ1 − log ρ2]) is the quantum relative entropy (or quantum Kullback-
Leibler divergence) of ρ1 and ρ2. That is, similar to the classical case, the quantum type II error
exponentially decays to zero at a rate determined by the quantum relative entropy. For details,
readers are directed to Artiles et al. (2005), Barndorff-Nielsen et al. (2003), Cai et al. (2016),
Holevo (2001), Petz (2008), and Wang & Xu (2015).

3. QUANTUM COMPUTATION

3.1. Quantum Bit and Superposition

Bits are the most fundamental concept in classical information and computation science. We en-
code the information in a bit with two mutually exclusive states, 0 and 1, and may easily realize it
by a mechanical switch. The quantum counterpart of the classical bit is the quantum bit, or qubit
for short. Similar to the two state values 0 and 1 for the classical bit, a qubit has states |0〉 and |1〉,
where the customary notation |·〉 is used to denote the qubit state. However, there is a key differ-
ence between a classical bit and a qubit. Besides states |0〉 and |1〉, a qubit may be in superposition
states,

|ψ〉 = α0 |0〉 + α1 |1〉,
where α0 and α1 are complex numbers called amplitudes satisfying |α0|2 + |α1|2 = 1. The states
of a qubit consist of unit vectors in C

2, with the states |0〉 and |1〉 forming an orthonormal basis,
that are called computational basis states. Unlike the mutually exclusive states for classical bits,
the superposition states allow qubits to be both 1 and 0 at the same time.

We may realize qubits in various physical systems. For example, a qubit can be represented
by the states of an electron orbiting a single atom. This atom model may treat |0〉 and |1〉 as
the so-called ground and excited states of the electron, respectively; if the atom is exposed to
light with appropriate energy and for a suitable amount of time, we may move the electron from
the |0〉 state to the |1〉 state, and vice versa. Moreover, by changing the length of exposure, we
can move the electron initially in the state |0〉 to halfway between |0〉 and |1〉, say, into the state
|+〉 = (|0〉+ |1〉)/√2, or the state |−〉 = (|0〉−|1〉)/√2,where |+〉 and |−〉 constitute another qubit
basis.
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A classical bit can be checked to determine whether its state is 0 or 1; however, quantum
physics indicates that we cannot examine a qubit to determine its state and find the values of
α0 and α1. Qubits have stochastic behaviors that may be described by quantum probability, as
defined in Section 2.3. We can measure a qubit to yield a measurement outcome that is either
0 with probability |α0|2 or 1 with probability |α1|2. Moreover, measuring a qubit will change its
state.

Similarly to the classical case, we may define multiple qubits. A b-qubit can be described by
C

2b , and its states are unit vectors in C
2b with computational basis states 〈x1���xb|, xi = 0 or 1,

i = 1, . . . , b. A given state can be expressed as a linear combination of the computational basis
states with 2b amplitudes. Quantum exponential complexity refers to the exponential growth in
b of dimensionality of the vector space to describe the b-qubit and the number of amplitudes
required to specify its superposition states (for details, see Nielsen & Chuang 2010,Wang 2012).

3.2. Quantum Entanglement

Quantum entanglement refers to the phenomenon of two particles acting in the same way, as twins
that are linked by an unobserved wave and share each other’s properties. Consider an entangled
2-qubit system. The quantum entanglement leads to an intriguing feature of the entangled state:
Performing a measurement on one of the entangled qubits immediately casts the other one into
the corresponding perfectly correlated state, which results in perfect correlation between the two
measurement outcomes for the qubits. For example, take a 2-qubit system in a Bell state,

|ψ〉 = |01〉 − |10〉√
2

. 2.

Performing a measurement on the first qubit of the Bell state |ψ〉, we obtain a random measure-
ment outcome 0 or 1 with probability 1/2 and 1/2, respectively. However, after the measurement
on the first qubit being either 0 or 1, the result of measuring the second qubit in the Bell state
|ψ〉 is always 1 or 0, respectively. That is, there is a perfect correlation between the measurement
results of the two qubits in |ψ〉. We refer to quantum states like the Bell state in Equation 2 as
entangled states. The correlation phenomenon is called perfect anticorrelation in entanglement
experiments (for more details, see Nielsen & Chuang 2010,Wang 2012,Wang & Song 2020).

3.3. Quantum Algorithms

The goal of quantum computation is to harness the enormous amount of information hidden in
the quantum systems and utilize the exponential power of quantum particles for the purpose of
computation. Classical computers are built by electrical circuits comprising wires for transferring
information around the circuits and logic gates for accomplishing simple computational tasks.
Similarly, quantum computers are created from quantum circuits with quantum gates to perform
quantum computation and process quantum information. Despite the similarities, in contrast to
classical computation, where transistors are used to crunch the ones and zeroes individually, quan-
tum superposition can allow quantum computation to manage both one and zero at the same time
and do the trick of carrying out simultaneous calculations. Moreover, the new quantum resources
such as quantum superposition and quantum entanglement make it possible for quantum com-
puters to outperform classical computers for certain tough tasks. Already it has been theoretically
proven that many quantum algorithms can speed up the best-known classical algorithms, with
examples including quadratic speedup for Grover’s search algorithm and exponential speedup for
Shor’s factoring algorithm (see, e.g., Nielsen & Chuang 2010, Wang 2012).
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3.4. Quantum Machine Learning

Quantum learning extends classical machine learning and statistical learning to the quantum
realm. It studies how quantum resources can enhance classical learning in terms of computational
complexity and statistical efficiency. Quantum computers can be faster than classical computers
for solving certain machine learning problems, and it is possible for quantum learners to achieve
higher statistical efficiency for some particular learning tasks, although there are caveats regard-
ing quantum state preparation in some quantum machine learning algorithms. Examples of in-
creased computational efficiency include support vector machines, principal component analysis,
and BMs.

A case in point is quantum reinforcement learning. Classical reinforcement learning studies
the problem of learning in and from interactive task environments, where a task environment is
specified by a Markov decision process (MDP) through its states that are observed by an agent.
The agent takes actions to produce transitions from states to states, and transitions are rated with
rewards. The agent needs to learn which actions to perform in order to maximize the rewards. In
reinforcement learning, the environments are unknown in the sense of unknown transition rules
ofMDPs, and the goal is to learn how to find optimal policies for achieving the maximum rewards,
where a policy refers to a behavior rule to select actions based on states. Various procedures and
algorithms are developed to estimate the so-called value functions and value-action functions
and find optimal policies based on the estimated functions. Sutton & Barto (2018) provide more
details.

We may consider a quantum approach to learning via interaction and establish a quan-
tum framework for agents, environments, and their interactions—namely, a quantum agent-
environment paradigm for quantum reinforcement learning. The quantum paradigm has the po-
tential to lead to enhancements in both computational complexity and statistical efficiency of
classical reinforcement learning.Moreover, we may mix the classical and quantum approaches for
reinforcement learning frameworks. Depending on whether the agent and the environment are
classical or quantum, we may obtain four agent-environment settings: classical agent and clas-
sical environment (CC), classical agent and quantum environment (CQ), quantum agent and
classical environment (QC), and quantum agent and quantum environment (QQ) frameworks.
The classification loosely corresponds to placing (classical) machine learning in CC; applications
of machine learning to control quantum systems in CQ; quantum speedups in machine learn-
ing algorithms (like quantum annealers with nonquantum data) in QC; and quantum machine
learning/reinforcement leaning with quantum agents, quantum environments, and quantum data
in QQ.

Similar to quantum speedups in the case of supervised and unsupervised machine learning,
quantum algorithms based on quantum walks and quantumMarkov chains lead to provable quan-
tum speedups in reinforcement learning. Like online learning, computational complexity and sta-
tistical efficiency may be closely connected in the context of reinforcement learning. Consider a
reinforcement learning setting where an interaction is happening with respect to some external
real time, and the environment alters with the passage of real time. For a learner with slower pro-
cessing time relative to the environment alteration, the agent recognizes only some time average
of the true environment, and the perceived blurred environment causes the learner to lose some
statistical efficiency or even be unable to learn at all. However, a quantum learner can handle the
environment change by facilitating the agent with enough time to learn before the environment
changes and thus improve the statistical efficiency. Readers are directed to Biamonte et al. (2017),
Ciliberto et al. (2018),Dunjko & Briegel (2018),Wang& Song (2020) andWittek (2014) for more
details.
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4. QUANTUM SUPREMACY

Sections 3.3 and 3.4 mention quantum algorithms with theoretically proven quantum speedups,
such as Shor’s factoring algorithm, Grover’s search algorithm, and other machine learning algo-
rithms. However, from the algorithmic implementation point of view, we need to build quantum
computers with a huge number of qubits in order to actually run the fast quantum algorithms
on these large-scale quantum computers and practically demonstrate their theoretically proven
quantum advantages, which is not possible at the present time due to the limitations of current
technology. It is critical to acquire scalable architectures for constructing quantum computers with
about 100 well-behaved qubits in the near-term future. We may employ such architectures to
show so-called quantum computational supremacy, which refers to any practical major milestone
achievement in the quest for outperforming classical computers on some tough computational
tasks. Quantum computational supremacy is of great current interest in quantum computing and
is being vigorously investigated by academic institutes, government labs, and private companies.
We highlight below two landmark quantum supremacy projects (Arute et al. 2019, Zhong et al.
2020).

4.1. Random Quantum Circuits

This subsection presents the Google quantum supremacy study of Arute et al. (2019) that is based
on random quantum circuits for solving a hard sampling problem. A quantum circuit is a quantum
computation model in which a computation is a sequence of quantum gates, which are reversible
transformations on a quantum mechanical analog of a classical n-bit register. Random quantum
circuits are created as a quantum computation model with statistical sampling (in fact, a mixture of
size-biased samplings) as its computation task. This model is proposed for the study of quantum
computational supremacy. The computational task is to generate each random quantum circuit in
a specific way so that we can sample from the output distribution corresponding to the generated
quantum circuit. The goal is to construct random quantum circuits with enough complexity that
even the most powerful classical supercomputer available at the time cannot directly simulate the
constructed quantum circuits in practice.

4.1.1. Output distribution. We now illustrate the way to generate random quantum circuits
and describe their output distributions. A random quantum circuit refers to a sequence of clock
cycles of 1-qubit and 2-qubit gates with gates applied to different qubits in the same cycle. The
number of clock cycles, denoted by m, is called the depth of the circuit, and the number of qubits,
denoted by n, is called the width of the circuit. When the gates to be put in use are randomly
selected from the set of universal quantum gates, the unitary matrix U of the resulting quantum
circuit is a random matrix. As the depth of the circuit goes to infinity, the distribution of the
random unitary matrix U converges to the Haar measure on the unitary group of degree n.

Denote by X = {|x〉 = |x1x2. . .xn〉 : xi ∈ {0, 1}} the set of quantum computational basis states.
Then X consists of d = 2n states. For a quantum circuit with a unitary matrix U, let |ψU〉 =
U|ψ0〉 be its output state, where ψ0 is an input state. Given a computational basis state |x〉, define
measurement probability pU(x) = |〈x|ψU〉|2—namely, the probability of obtaining measurement
outcome x. The quantum state of the random quantum circuit can be expressed as a linear combi-
nation of the computational basis with d= 2n amplitudes.As each amplitude has real and imaginary
parts, there are a total of 2d= 2n + 1 amplitude parameters.Because of the normalization constraint,
the parameters lie in the unit sphere of a 2d-dimensional Euclidean space. If the unitary matrix of
the random quantum circuit follows the Haar distribution, the distribution of the amplitude pa-
rameters will be uniform on the unit sphere. Thus, as the depth m of the random quantum circuit
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goes to infinity, the measurement probability pU(x) approaches the Porter–Thomas distribution
(Rinott et al. 2020).

4.1.2. Challenges in output distribution sampling. Quantum supremacy can be demon-
strated via random quantum circuits by checking quantum computers against state-of-the-art clas-
sical computers in the task of sampling the output distributions of random quantum circuits. A
major part of the study of quantum supremacy is a purely statistical endeavor. It includes estimat-
ing the noise level in the quantum circuits, assessing their fidelity, and validating that the simulated
bitstring data are actually generated from the claimed target distribution.

For a quantum computer, sampling the output distribution of a random quantum circuit means
performing measurements on the qubits of the quantum circuit in the computational basis to gen-
erate a set of bitstrings, such as {0101101, 1001010, . . .}. Due to the noise in the circuit, the proba-
bility distribution of the observed bitstrings is different from the ideal output distribution pU(x) as
described in Sections 4.1.1, 4.1.3, and 4.1.4. However, because the complexity of a random quan-
tum circuit grows exponentially in its size, which is defined by its width (the number of qubits)
and depth (the number of cycles), classical algorithms for simulating its output distribution suffer
from an exponential scaling of runtime with circuit size, and classical simulation of the output dis-
tribution is practically prohibitive. Indeed, at the time of the quantum supremacy study, classical
sampling of the bitstring distribution is intractable in the quantum supremacy regime of random
quantum circuits with 53 qubits and 20 cycles. Furthermore, the conventional tomographic esti-
mation described in Section 2.4 scales exponentially in the circuit size, and an exponential num-
ber of bitstrings must be generated in order to statistically recover the circuit output distribution.
These challenges motivate new statistical developments for the quantum supremacy study in the
subsequent sections.

4.1.3. Cross-entropy benchmarking. Consider a sample S = {x1, x2, . . . xN }, where xj are bit-
strings obtained from measurements of every qubit in the computational basis. The joint distri-
bution of S is given by PrU(S ) = ∏N

i=1 pU(xi ). An application of the central limit theorem leads
to

1
N

log PrU(S ) = 1
N

N∑
i=1

log pU(xi ) = −H(pU ) + O(N−1/2),

where H(pU ) is the Shannon entropy of the output distribution pU.
For comparison, let us consider a sample S	 = {x	1, x	2, . . . , x	N } as outputs from a classical or

quantum operation taking a specification of some random circuit U�, where the distribution of
x	j depends on the unitary matrix U�, and x	j are uncorrelated with the output measurements xj
of the quantum circuit U. For example, we may take U� as a noisy version of U in quantum
computation, and x	j are measured bitstrings obtained from a quantum circuit with noise (i.e.,
measurement outcomes of the quantum circuit U�), while xj are ideal bitstrings obtained from
a quantum circuit without noise (i.e., measurement outcomes of the quantum circuit U). Again
applying the central limit theorem, we obtain

1
N

log PrU(S	 ) = 1
N

N∑
i=1

log pU(x	i ) = −H(p	, pU ) + O(N−1/2),

where p�(x)= |〈x|U�|ψ0〉|2 is the output distribution of x	j ∈ S	 associated withU�, andH(p	, pU )
is the cross-entropy between the two distributions. In the quantum supremacy study described be-
low, we use the observed bitstrings x	i to estimate the cross-entropy benchmarking by the average
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of the simulated probability distribution evaluated at the observed bitstrings x	i , where the simu-
lated probability distribution refers to the ideal bitstring probability pU(·) for the quantum circuit
U that is computed by classical simulations, and the average is over the bitstrings x	i measured for
the noisy quantum circuit U�.

4.1.4. Quantum circuit model and fidelity estimation. The Google Quantum AI research
group constructed a quantum processor (computer) named Sycamore, with 53 programmable su-
perconducting qubits to implement random quantum circuits in a 2-dimensional lattice. The im-
plementation creates quantum states on 53 qubits, corresponding to a computational state space
of dimension 253 (≈1016). An approach based on the described cross-entropy benchmarking was
adopted to handle noisy random quantum circuits and statistical sampling from bitstring proba-
bility distributions. Cross-entropy benchmarking (XEB), denoted by FXEB, is defined as the ex-
pectation of a function of the ideal output distribution pU(·) with respect to the noisy output
distribution.

To be specific, denote by U a set of r random quantum circuitsU1, . . . ,Ur with n qubits and m
cycles. Each circuit U ∈ U is executed N times on the quantum processor, and every execution of
the circuit U means that a quantum operation (corresponding to U�, described in Section 4.1.3)
as an imperfect realization of U (due to the noise) is applied to the input state |ψ0〉 (with density
matrix |ψ0〉〈ψ0|). We model the imperfect realization of U by a noise model with the density
matrix ρ	U of the noisy quantum operation as follows:

ρ	U = ϒ |ψU〉〈ψU| + (1 − ϒ)χU, 3.

where |ψU〉 = U|ψ0〉 is the ideal output state, ϒ = 〈ψU|ρ	U|ψU〉 is the fidelity, and χU represents
the density matrix of the noise that, along with fidelity ϒ, describes the effect of the errors. The
output probability distribution of ρ	U in Equation 3 is given by

pU,ϒ (x)=ϒ〈x|ψU〉〈ψU|x〉 + (1 − ϒ)〈x|χU|x〉 = ϒ pU(x) + (1 −ϒ)〈x|χU|x〉. 4.

Then, an expression for the cross-entropy benchmarking FXEB is established as follows:

FXEB = ϒd
∑

x∈{0,1}n
[pU(x)]2 −ϒ = ϒ[d 〈pU(·)〉pU − 1], 5.

where d = 2n, and 〈pU(·)〉pU on the right-hand side denotes the expectation of the ideal output
distribution pU(x) with respect to itself that can be computed analytically or obtained numerically
by simulations. Consider two special cases: (a) the bitstrings are sampled from the uniform distri-
bution and (b) the bitstrings are sampled from the theoretical Porter–Thomas output distribution.
For case a, we have pU,ϒ(x) = 1/d, and thus FXEB = ϒ = 0. For case b, pU,ϒ(x) = pU(x) is equal to
the Porter–Thomas distribution, and hence FXEB = ϒ = 1. Furthermore, for random quantum
circuits with enough depth, their theoretical output distribution is essentially the Porter–Thomas
distribution, and therefore from Equation 5 we conclude FXEB

.= ϒ—that is, FXEB is essentially
the same as fidelity ϒ even if bitstrings are sampled from noisy quantum circuits.

Equation 5 naturally leads to the following estimator of the cross-entropy benchmarking FXEB

based on the observed bitstrings xij from randomquantum circuitU j ∈ U withN bitstring samples;
i = 1, . . . ,N; j = 1, . . . , r:

F̂XEB = 1
Nr

N∑
i=1

r∑
j=1

[d pU(xi j ) − 1], 6.

which has an asymptotic variance (1 + 2ϒ − ϒ2)/(Nr).
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Cross-entropy and fidelity measure the closeness of two quantum states. For a quantum circuit
with enough depth,FXEB = 1 when there is no noise in the quantum circuit and thus bitstrings are
sampled from the ideal theoretical output distribution of the circuit; FXEB = 0 when depolarizing
errors are overwhelming in the quantum circuit and thus bitstrings are sampled from the uniform
distribution. Intuitively FXEB calibrates how often high-probability bitstrings are sampled, and its
value corresponds to the probability that bitstrings are sampled from the ideal quantum circuits
(i.e., no error has occurred while running the circuit). From Equations 5 and 6, we must obtain the
ideal output probability pU(x) by classically simulating the quantum circuitU for evaluating FXEB

and F̂XEB,which is exponentially hard.Hence, it is intractable to computeFXEB and its estimates in
the regime of quantum supremacy, such as random quantum circuits with 53 qubits and 20 cycles.
As we present in Section 4.1.5 below, using quantum techniques to manipulate quantum circuits
and statistical methodologies to model and analyze experimental data, a statistical extrapolation
approach has been developed to statistically secure a high enough FXEB for random quantum
circuits that are practically prohibitive for classical computers to simulate at the present time. The
approach utilizes classical numerical simulations to evaluate the likelihood of observed bitstrings
but does not require the reconstruction of the bitstring output probability distribution, which
needs an exponential number of bitstrings for the increasing number of qubits.

4.1.5. Statistical analysis for quantum supremacy. Classical computers were used to simulate
random quantum circuits for confirming the quantum computer and calculating FXEB and F̂XEB

as well as estimating the cost of classical sampling of bitstrings from the random quantum circuits.
They were employed to verify that the quantum computer was working correctly by checking how
often bitstrings were observed experimentally against their corresponding probabilities evaluated
via classical simulations. The classical computers used included a Google cloud cluster of 1,000
machines and the Jülich supercomputer (with 100,000 cores and 250 terabytes), as well as the
Summit supercomputer (the most powerful supercomputer in the world at the time).

We cannot evaluate FXEB and F̂XEB for random quantum circuits in the supremacy regime.
However,wemaymodify the design of randomquantum circuits to reduce their complexity so that
they can be classically simulated to obtain output distributions and compute FXEB and/or F̂XEB

for verifying physical models and validating statistical analysis. All the modified random quantum
circuits closely mimicked the full experiment, with random quantum circuits in the supremacy
regime while still remaining classically simulatable, and their experimental data and associated
statistical analysis provided models to track the cross-entropy benchmarking fidelity FXEB in
the supremacy regime. Various experiments were conducted for r modified random quantum
circuits with n qubits and m cycles to collect N bitstrings, where N ranges from half a million to 5
million, with r, n, andm up to 10, 53, and 20, respectively. Experiments were carried out to collect
N = 3 million bitstrings on each of r = 10 modified quantum circuits with n = 53 qubits and
m = 20 cycles. The data were used to estimate FXEB

.= ϒ and assess the output distribution, and
various statistical methods were employed to evaluate the cross-entropy benchmarking fidelity
estimator F̂XEB and its asymptotic variance and validate the theoretical output distribution. Also,
the systematic uncertainty (Sinervo 2003) was quantified by a linear fit to model how the fidelity
varies over time, as the performance of the quantum system may fluctuate and/or degrade with
time. After the statistical checking and validation, with a total of 30 million bitstring data, an
estimated value of 2.24 × 10−3 was found for the mean cross-entropy benchmarking fidelity of
r= 10 modified random quantum circuits with n= 53 qubits andm= 20 cycles, where the square
root of its mean square error is estimated to be 0.21 × 10−3. Based on these statistical results,
Arute et al. (2019) conclude that the average fidelity for running the random quantum circuits on
the Sycamore quantum computer is about 0.002.
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The computing experiments show that it took 200 seconds for the Sycamore quantum com-
puter to sample a million bitstrings from random quantum circuits with n = 53 qubits and
m = 20 cycles at target fidelity FXEB = 0.002, while an extrapolation based on statistical fitting
of the computing data by the mentioned classical computers indicates that an equal-fidelity clas-
sical sampling would take 10,000 years on a million cores, with further millions of years to con-
firm the fidelity using classical methods. Furthermore, the quantum computer consumed several
orders of magnitude less energy to perform the sampling task than the Summit supercomputer
would have. Therefore, quantum supremacy is demonstrated by the performed sampling task on
the Sycamore quantum computer that is practically beyond the reach of the fastest classical su-
percomputers available at the time. Readers are directed to Arute et al. (2019), Aaronson & Chen
(2016), Boixo et al. (2018), Bouland et al. (2018), Neill et al. (2018), and Rinott et al. (2020) for
more details.

We would like to point out again that the Google quantum supremacy study heavily relies on
statistics. In spite of the extensive statistical analysis conducted by Arute et al. (2019), there are
many statistical issues that deserve further investigation. For example, the authors of this article
found that the noisy quantum circuit model does not fit to the generated bitstrings of Arute et al.
(2019).

4.2. Boson Sampling

This subsection describes the boson sampling quantum supremacy study reported by Zhong et al.
(2020). Boson sampling is a special quantum computation model based on linear optics where
the required physical devices are single-photon sources, beam splitters, phase shifters and photon
detectors. The quantum computation model for boson sampling arranges n identical bosons to
pass through a network of passive optical elements (beam splitters and phase shifters) and then
detects the locations of the bosons, and its purpose is to sample from the output distribution
for demonstrating quantum supremacy. We introduce two equivalent ways to define the boson
sampling model, where one naturally leads to quantum computation and the other directly shows
the difficulty in classical computation.

4.2.1. Physical model definition. Consider the quantum system involving n identical photons
and mmodes, where mode can be loosely interpreted as the place that a photon can be in, and we
are only interested in the case that m is greater than or equal to n. Note that we may write the
computational basis states in the form of |s〉 = |s1, s2 , . . . , sm〉, where si is the number of photons
detected in the ith mode. Denote the set corresponding to all the computational basis states by

�m,n = {s = (s1, s2, . . . , sm ) : si ∈ N, s1 + s2 + · · · + sm = n}.
The number of elements in the set �m, n isM = (m+n−1

n

)
. Since a general state can be expressed as

a linear combination of the computational basis states with complex coefficients whose squared
norms sum up to 1, we may write a general computational state for the boson computer with
n photons and m modes in the following form:

|ψ〉 =
∑

s∈�m,n
αs|s〉, where

∑
s∈�m,n

|αs|2 = 1.

With no loss of generality, we assume the initial state of a quantum computer to be |1n〉 ≡
|1, ......, 1, 0, ......, 0〉, which means that each of the first n modes contains one photon and the
remaining modes do not contain any photons. Consider how the linear optical elements work in
a special case when there is only one photon in the quantum system. Each phase shifter and beam
splitter takes action on at most two modes, without any action on the otherm− 2 modes. Assume
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that a phase shifter takes action on the ith mode, and s � �m, n indicates the photon in the ith
mode. Then the phase shifter changes only one amplitude, αs, by multiplying it with eiθ for some
specified θ , but it does not alter any other amplitudes. Suppose that a beam splitter takes action on
the ith and jth modes, and denote the corresponding quantum states by |s〉 and |t〉, respectively.
Then the action maps the two amplitudes αs and αt into α̌s and α̌t, where their relationship can
be specified by the following transformation:[

α̌s

α̌t

]
=
[
cos θ − sin θ
sin θ cos θ

][
αs

αt

]
.

As the quantum system in this case has only one photon, there are a total ofm computational basis
states. Consequently, the unitary matrices representing the transformations of a beam splitter and
a phase shifter are equal to the m-dimensional identity matrices except for a 2 × 2 submatrix and
a diagonal entry corresponding to the amplitude change, respectively. Then the product of such
matrices corresponding to the optical elements in a linear optical network yields anm×m unitary
matrix U to represent the unitary transformation of the linear optical network. Conversely, any
m × m unitary matrix U can be mathematically decomposed as a product U = UT. . .U1, where
eachUi corresponds to a unitary matrix of a beam splitter or a phase shifter, and T = O(m2). That
is, we can use only linear optical elements to implement any m × m unitary transformation.

Given a quantum systemwith n photons, it can be shown that the unitary transformation corre-
sponding to the optical network has a unitary matrix representation φ(U)= φ(UT). . .φ(U1), where
φ is a homomorphism map. We just need to identify the specification of each φ(Ui) to obtain an
explicit expression for φ(U).

Assume that the ith optical element is a phase shifter.We can mathematically express its action
as the following diagonal unitary transformation:

|s1, s2, . . . , sm〉 → eiθ si |s1, s2, . . . , sm〉,
and the corresponding unitary matrix representation yields an expression for φ(Ui).

Assume that the jth optical element is a beam splitter. The action of the beam splitter is hard
to describe. It takes action on two modes only, without making any change for the other m − 2
modes. Suppose that the two modes the beam splitter has acted on are the ith and jth modes. Then
the corresponding unitary transformation can be expressed as follows:

|s1, s2, . . . , si−1, u, si+1, . . . , s j−1, v, s j+1, . . . , sm〉

→
∑

s+t=u+v

βu,v,s,t |s1, s2, . . . , si−1, s, si+1, . . . , s j−1, t, s j+1, . . . , sm〉,

where

βu,v,s,t =
√
u!v!
s!t!

∑
k+l=u,k≤s,l≤t

(
s
k

)(
t
l

)
(−1)s−k(sin θ )s+l−k(cos θ )k+t−l

for some specified angle θ . The unitary matrix corresponding to this transformation renders an
expression for φ(Uj).

Using the derived expression for each φ(Ui) along with φ(U) = φ(UT). . .φ(U1), we can ob-
tain the unitary matrix for representing the action of the whole optical network. Initiating in the
state |1n〉 and then passing through the optical network, the photons will be in the quantum state
φ(U)|1n〉. We measure the state to obtain a measurement outcome corresponding to a computa-
tional basis state. The measurement we obtain is random. Treating |〈1n|φ(U)|s〉|2 as a mapping
from s � �m,n to [0,1], we obtain a probability distribution on �m,n that assigns probability Pr(s)
to state |s〉, where

Pr(s) = |〈1n|φ(U )|s〉|2, s ∈ �m,n. 7.
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4.2.2. Permanent based model definition. Alternatively, we may define boson sampling by
the permanents of the submatrices of the unitary matrix representing the optical network. Let
A = (aij) be a n × n matrix, and define its permanent as follows:

Per(A) =
∑
π∈Sn

n∏
i=1

aiπ (i),

where Sn is the set of all permutations of 1, . . . , n.
Given an m × m unitary matrix U and s = (s1, . . . , sm) � �m,n, we construct an n × n matrix

Us from U by retaining its first n columns and then copying si times its ith row. Define a discrete
probability distribution on �m,n as follows:

Pr(s) = |Per(Us )|2
s1! . . . sm!

. 8.

It can be proved that the probability distribution Equation 8 is equal to the probability distribution
Equation 7 in the way described in Section 4.2.1, through the system with n photons, m modes,
and an optical network whose action is represented by the unitary matrix U.

4.2.3. Quantum supremacy with boson sampling. The boson sampling problem is defined
as sampling from the distribution Pr(s) defined in Equation 7 or Equation 8. Gaussian boson
sampling makes use of Gaussian states as probability sources of photons, and the resulting output
distribution can be further expressed as matrix functions called Hafnian and Torontonian. Since
the permanent, Hafnian, and Torontonian matrix functions are in the #P-complete complexity
class, it is intractable for classical computers to evaluate the matrix functions and thus handle
boson sampling. However, the physical definition inherently shows that it is possible to carry out
a successful quantum computing experiment on an optical network with appropriate size and thus
render quantum supremacy.

The quantum supremacy study reported by Zhong et al. (2020) built a photonic quantum com-
puter (processor) called Jiuzhang to perform Gaussian boson sampling. Jiuzhang can enable up to
76 qubits to successfully accomplishGaussian boson sampling tasks that are beyond the capacity of
the fastest classical supercomputers available at the time. Zhong et al. (2020) documented physical
experiments performed and statistical analysis undertaken to verify quantum states and validate
output distributions based on the generated samples in the easy regime where the full output dis-
tributions can be obtained. They provided circumstantial evidence to support the results in the
quantum supremacy regime where a full verification is not possible due to the intractable nature
of boson sampling. Also, time costs to run Gaussian boson sampling on supercomputers in the
prohibitive regime were estimated based on statistical fitting of classical computational cost data.
In a nutshell, Zhong et al. (2020) announced that a 200-second job of Gaussian boson sampling
on Jiuzhang would require 0.6 billon years for the fastest supercomputer available at the time to
finish. Hence, quantum supremacy is demonstrated by the performed Gaussian boson sampling
on the photonic quantum computer that was practically beyond the reach of the fastest classical
supercomputers available at the time. More details are provided by Aaronson & Arkhipov (2011),
Hamilton et al. (2017), Harrow & Montanaro (2017), Lund et al. (2017), Markov et al. (2018),
Quesada et al. (2018) and Zhong et al. (2020).

5. QUANTUM ANNEALING

Quantum annealing is the quantum analog of classical annealing, with thermodynamics replaced
by quantum dynamics. Both classical annealing and quantum annealing are employed to solve
optimization problems whose objective function can be represented by the energies of physical
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systems. Quantum annealing may be considered a special-purpose quantum computer that is de-
signed to effectively solve specific optimization problems, and quantum annealers are physical
hardware devices to implement quantum annealing (see McGeoch 2014, Wang et al. 2016).

5.1. Classical Ising Model

Consider a classical Ising model described by a graph G = (V (G ), E (G )), where V (G ) and E (G ) are
the vertex and edge sets of G, respectively. We assign each vertex a random variable with a value
in {+1, −1} and let each edge represent the interaction between two vertex variables connected
by the edge. A configuration s = {s j , j ∈ V (G )} is a set of values assigned to all vertex variables sj,
j ∈ V (G ). In physics, vertices and vertex variables are called sites and spins, respectively, and we
refer to the spin values +1 and −1 as spin up and spin down, respectively. Define the following
Hamiltonian for the classical Ising model:

Hc
I ≡ Hc

I (s) = −
∑

(i, j)∈E (G )
δi j sis j −

∑
j∈V (G )

γ j s j , 9.

where (i, j) represents the edge between the sites i and j, the first summation is over all (i, j) ∈ E (G ),
δij denotes the interaction between sites i and j associated with edge (i, j) ∈ E (G ), and γ j stands
for an external magnetic field on vertex j ∈ V (G ). We refer to a set of fixed values {δij, γ j} as an
instance of the Ising model and Hc

I (s) as the energy of the Ising model at configuration s. Then,
the probability of a specific configuration s is described by the Boltzmann distribution of the Ising
model as follows:

PT (s) = e−Hc
I (s)/T

ZT
, ZT =

∑
s

e−Hc
I (s)/T , 10.

where T is the fundamental temperature of the system in units of energy.
We illustrate the classical annealing by the Ising model as follows. The annealing is used to

solve a combinatorial minimization problem whose objective function is represented by the Ising
energy function Hc

I (s). Denote by b the total number of sites in the Ising model. As Hc
I (s) is de-

fined over s ∈ {−1,+1}b, it is prohibitive to search over the exponential large configuration space
for a minimizer of Hc

I (s) by deterministic exhaustive search algorithms. We resort to annealing
methods to explore the huge search space probabilistically and search for a configuration with the
minimal energy. For example, we implement simulated annealing by using Markov chain Monte
Carlo (MCMC) to generate configurations from the Boltzmann distribution PT (s) with slowly
decreasing temperature T. The lowest energy state is often called a ground state in physics (see
Bertsimas & Tsitsiklis 1993, Kirkpatrick et al. 1983, Wang et al. 2016).

5.2. Quantum Ising Model

The same graph G is used to describe the quantum Ising model, where the vertex set V (G ) stands
for the quantum spins, with the edge set E (G ) for the interactions between two quantum spins.
Each vertex has a qubit that is realized by its quantum spin. As G has b vertices, the vector space
for the described quantum Ising system is Cd (d = 2b). We characterize its quantum state by a
unit vector in C

d and its dynamic evolution by a Hermitian matrix of size d, which is called a
quantum Hamiltonian for the quantum system. The energies of the quantum system are defined
to be the eigenvalues of the quantum Hamiltonian, and ground states refer to the eigenvectors
corresponding to the smallest eigenvalue. Set

I j =
(
1 0
0 1

)
, σxj =

(
0 1
1 0

)
, σzj =

(
1 0
0 −1

)
, j = 1, . . . , b,
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where σxj and σzj are called Pauli matrices in x and z axes, respectively.We replace sj in the classical
Ising Hamiltonian Hc

I (s) by σzj to define the quantum Hamiltonian as follows:

Hq
I = −

∑
(i, j)∈E (G )

δi jσ
z
i σ

z
j −

∑
j∈V (G )

γ jσ
z
j , 11.

where γ j and δij stand for the local field on the vertex j ∈ V (G ) and the Ising interaction along
the edge (i, j) ∈ E (G ), respectively, and we use the quantum convention that σzj and σzi σ

z
j in

Equation 11 denote their tensor products with identity matrices

σzj ≡ I1 ⊗ · · · ⊗ I j−1 ⊗ σzj ⊗︸ ︷︷ ︸
vertex j

I j+1 ⊗ · · · ⊗ Ib 12.

and

σzi σ
z
j ≡ I1 ⊗ · · · ⊗ Ii−1 ⊗ σzi ⊗ Ii+1 ⊗ · · · ⊗ I j−1 ⊗ σzj︸ ︷︷ ︸

vertices i and j

⊗ I j+1 ⊗ · · · ⊗ Ib. 13.

Observe that the quantum Hamiltonian Hq
I in Equation 11 is a diagonal matrix of size 2b whose

diagonal elements (eigenvalues) are the same as the classical Hamiltonian Hc
I (s) in Equation 9

corresponding to all 2b binary states s ordered lexicographically. Therefore, finding the minimal
energy of the classical Ising Hamiltonian Hc

I is equivalent to finding the minimal energy of the
quantum Ising Hamiltonian Hq

I . The quantum formulation of the original optimization problem
is to facilitate the design of quantum annealing in the next subsection, but so far the computational
task for solving the optimization problem is still the same as in the classical case.

5.3. Quantum Ising Model in the Transverse Field

Quantum annealing requires an introduction of a transverse magnetic field to yield a quantum
Hamiltonian in the transverse field.Define a quantumHamiltonian to govern the transverse mag-
netic field as follows:

HX = −
∑
j∈V (G )

σxj , 14.

where again we adopt the quantum convention to denote by σxj the tensor products of b matrices
of size 2,

σxj ≡ I1 ⊗ · · · ⊗ I j−1 ⊗ σxj ⊗︸ ︷︷ ︸
vertex j

I j+1 ⊗ · · · ⊗ Ib. 15.

Observe that the 2b × 2b nondiagonal matrixHX in Equation 14 does not commute with diagonal
matrix Hq

I in Equation 11, and thus introducing HX changes the system behavior from classical
to quantum. Due to the simple symmetric structure of HX , we can derive explicit expressions
for its eigenvalues and eigenvectors. In particular, (1, . . . , 1)′ is its ground state, the eigenvector
corresponding to the smallest eigenvalue of HX .

Quantum annealing proceeds as follows. The quantum annealing system is initially driven by
the transverse magnetic fieldHX prepared in its ground state (1, . . . , 1)′, and then we slowly drive
the system from the initial Hamiltonian HX to its final target Hamiltonian Hq

I . Specifically, we
engineer the quantum annealing process through the instantaneous Hamiltonian for the Ising
model in the transverse field as follows:

HD(t ) = A(t )HX + B(t )Hq
I , t ∈ [0, t f ], 16.
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where tf denotes the total annealing time; time-varying smooth functions A(t) and B(t) are called
the annealing schedules, which satisfy A(tf ) = B(0) = 0; A(t) is decreasing; and B(t) is increasing.
It is evident that at t = 0,HD(0) = A(0)HX , and at t = tf,HD(t f ) = B(t f )H

q
I . As A(0) and B(tf ) are

known constants,HD(t ) has identical eigenvectors asHX at the initial time t = 0 and asHq
I at the

final time t= tf,with the corresponding eigenvalues differing by factorsA(0) andB(tf ), respectively.
Consequently, through HD(t ), we can engineer the system to move from HX initialized in its
ground state to the final target Hq

I .
The adiabatic quantum theorem shows that during the evolution of quantum annealing, the

system tends to stay in the ground states of the instantaneous Hamiltonian via quantum tunneling
(Farhi et al. 2000, 2001, 2002;McGeoch 2014). At the end of the annealing procedure, wemeasure
the quantum system. With some probability, the quantum system stays in a ground state of the
final HamiltonianHq

I , and thus the measurement outcome renders a solution to the optimization
problem. That is, we can utilize the quantum annealing procedure driven by Equation 16 to find
the global minimum of Hc

I (s) and solve the original minimization problem. For details, readers
may refer to Brooke et al. (1999), Hu &Wang (2021), Isakov et al. (2016), Jörg et al. (2010),Wang
et al. (2016), and Wang & Song (2020).

5.4. Quantum Annealer

Quantum annealers, quantum devices to implement quantum annealing, are currently being in-
vestigated by a number of academic labs and companies, with uncertain quantum speedup. In
particular, the D-Wave machine is a commercially available hardware device that is designed and
built to physically implement quantum annealing. It is an analog computing device based on su-
perconducting qubits to process quantum annealing and solve certain combinatorial optimization
problems. Many experiments have been conducted to test D-Wave machines, and computational
studies, such as Monte Carlo simulations, have been carried out to assess the performance of D-
Wavemachines and compare it with classical and quantummodels through sophisticated statistical
analysis. It has been demonstrated that D-Wave machines are useful in designing quantum algo-
rithms and solving application problems and can be faster than classical algorithms like classical
annealing, yet no quantum supremacy or quantum speedup over classical computation has been
found in D-Wave machines. Readers are directed to Albash et al. (2015), Boixo et al. (2014, 2016,
2018), Brady & van Dam (2016), Rønnow et al. (2014), andWang et al. (2016) for more discussion.

6. QUANTUM LEARNING WITH BOLTZMANN MACHINES

BMs have been introduced as probabilistic generative models that contain bidirectionally con-
nected networks of stochastic binary units and can be interpreted as neural network models.
They can be regarded as particular graphical models—more precisely, undirected graphical mod-
els known as Markov random fields. BMs provide a model for deep learning architectures such as
deep belief networks. They have the potential to learn internal representations for complex un-
supervised learning tasks such as object and speech recognition problems. A BM model is mathe-
matically equivalent to the Ising model in physics. This provides a new way to sample from a BM:
(a) map the BM to the corresponding Ising model, (b) engineer a physical system to realize the
target problem to be solved, (c) run the physics until the Ising system establishes some equilib-
rium with a state corresponding to a possible solution, (d) measure the physical system to obtain
a realization of states of the Ising model, and (e) map the Ising measurement outputs into these
corresponding to the BM to render a possible solution to the original problem. The procedure
requires relevant physical implementations or computer simulations, which have been employed
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Figure 1

General Boltzmann machine. The diagram shows that every two nodes are connected to create a fully
connected undirected graph.

in both classical and quantum domains with examples including classical and quantum annealing.
We review classical BMs and describe their training by quantum means; we also introduce quan-
tum BMs for deep learning, where quantum deep learning here refers to both quantum BMs and
the training of classical BMs by quantum resources. The scenarios may bear some resemblance
to quantum reinforcement learning considered in Section 3.4, where mixtures of classical and
quantum approaches are used in the quantum reinforcement learning framework.

6.1. Boltzmann Machines

A BM is a network of symmetrically coupled stochastic binary units, which consists of a set of
visible units v ∈ {0, 1}n associated with observations and a set of hidden units h ∈ {0, 1}m used to
capture dependencies between observed variables. Every two nodes are connected, so the model
creates a fully connected undirected graph as illustrated in Figure 1. The model has a joint
distribution

p(v,h; θ ) = 1
Z(θ )

e−E(v,h;θ ) and Z(θ ) =
∑
v

∑
h

exp(−E(v,h); θ ),

where Z(θ ) is called the partition function; the energy function E(v,h; θ ) is defined as

E(v,h; θ ) = −1
2
vTLv − 1

2
hT Jh − vTWh;

θ = {W,L, J} is the model parameter; and matrices W = (Wij ), L = (Li j ), and J = (Ji j ) represent
visible-to-hidden, visible-to-visible, and hidden-to-hidden symmetric interaction terms. The
diagonal elements of L and J are set to 0. The conditional distributions of hidden and visible
units are given by

p(hj = 1|v,h− j ) = σ

⎛⎝∑
i

Wi jvi +
∑
l �= j

J jl h j

⎞⎠ and

p(vi = 1|h, v−i ) = σ

⎛⎝∑
j

Wi jh j +
∑
k�=i

Likv j

⎞⎠,
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where σ (x) = 1/(1 + e−x) is the sigmoid function. The marginal distribution of the visible units is

p(v; θ ) = 1
Z(θ )

∑
h

exp(−E(v,h; θ )).

Given the observed data, the training of a BM consists of finding the parameter θ that maximizes
the log-likelihood function log p(v; θ ). Because for a general BM it is not possible to analytically
find the maximizer of the likelihood, the usual approach is to apply gradient ascent, iteratively
updating θ (t) to θ (t + 1) by the gradient of the log-likelihood,

θ (t+1) = θ (t ) + η
∂

∂θ (t )

(
log p(v; θ (t ) )),

where η is the learning rate. It can be shown that the parameter increment during the iteration
has the following expressions:

�W = η(EPdata [vh
′] − EPmodel [vh

′]), �L = η(EPdata [vv
′] − EPmodel [vv

′]), and

�J= η(EPdata [hh
′] − EPmodel [hh

′]),

where EPmodel and EPdata denote, respectively, the expectations with respect to the model distri-
bution p(v,h; θ ) and the data distribution Pdata(h, v; θ ) = p(h|v; θ )Pdata(v), and Pdata(v) is the
empirical distribution of the observed data. We call EPdata the data-dependent expectation, and
since EPmodel represents an expectation taken with respect to the joint distribution p(v,h; θ ) of the
visible and hidden variables, we call it the data-independent expectation or model expectation.
For general BMs, it is usually very difficult to directly compute the model expectation due to its
exponential growth in the units.

We employ MCMC approaches to estimate the data-dependent expectation and the data-
independent expectation. In particular, for the computation of model expectation, the conditional
distribution of every node given the other nodes is known, so standard MCMC simulation meth-
ods are often employed to compute the model expectation, althoughMCMC can be very costly or
even impossible for large BMs (for more details, see Hinton& Salakhutdinov 2012; Salakhutdinov
2015; Salakhutdinov & Hinton 2009, 2012).

6.2. Restricted Boltzmann Machines

Because the learning process for general BMs is time consuming,wemay impose some restrictions
on the network topology to simplify the learning problem.A restricted Boltzmannmachine (RBM)
model is a special variant of BMs where every visible node is connected to every hidden node, but
there is no connection between two variables of the same layer, as shown in Figure 2. One major
advantage of the RBM is that its model expectations are easy to calculate. Again it contains n visible
units v = (v1, . . . , vn) associated with observations and m hidden units h = (h1, . . . , hm) to capture
dependencies between observed variables. The joint distribution of the RBM model is given by
p(v,h) = 1

Z e
−E(v,h) with the energy function

E(v,h) = −
m∑
i=1

n∑
j=1

wi jhiv j −
n∑
j=1

b jv j −
m∑
i=1

cihi.

Thus, we have

p(h|v) =
m∏
i=1

p(hi|v) and p(v|h) =
n∏
i=1

p(vi|h).
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Figure 2

Restricted Boltzmann machine. The diagram shows that every visible node is connected to every hidden
node, but there is no connection between two variables of the same layer.

Since the connections between hidden variables are absent, the marginal distribution of the visible
variables has a simplified expression,

p(v) = 1
Z

∑
h

p(v,h) = 1
Z

∑
h

e−E(v,h) = 1
Z

n∏
j=1

(
eb jv j

) m∏
i=1

⎛⎝1 + e
ci+

n∑
j=1

wi jv j

⎞⎠.
The conditional distribution of hi given v and the conditional distribution of vj given h are, re-
spectively, given by

p(hi = 1|v) = σ

⎛⎝ n∑
j=1

wi jv j + ci

⎞⎠ and p(v j = 1|h) = σ

(
m∑
i=1

wi jhi + b j

)
,

where σ (x) is the sigmoid function. For the RMB model with θ = (wij, bj, ci), we can obtain an
explicit form for the gradient of the log-likelihood function, giving

θ (t+1) = θ (t ) + η
∂

∂θ (t )

[
n∑
i=1

lnL(θ (t )|vi )
]

− λθ (t ) + ε�θ (t−1),

where η, λ, and ϵ are positive constants, representing the learning rate, moment weight, and mo-
mentum coefficient, respectively, and L(θ |v) = ∏n

i=1 L(θ |vi ) is the likelihood function. Given one
single training example v̄, the log-likelihood of the RBMmodel with the parameter θ is given by

lnL(θ |v̄) = ln p(v̄|θ ) = ln

[
1
Z

∑
h

e−E(v̄,h)
]

= ln
∑
h

e−E(v̄,h) − ln
∑
v,h

e−E(v,h),

and the gradient is

∂ lnL(θ |v̄)
∂θ

= −
∑
h

p(h|v̄)∂E(v̄,h)
∂θ

+
∑
v,h

p(v,h)
∂E(v,h)
∂θ

.

That is,
∂ lnL(θ |v̄)
∂wi j

= p(hi = 1|v̄)v̄ j −
∑
v

p(v)p(hi = 1|v)v j ,

∂ lnL(θ |v̄)
∂b j

= v̄ j −
∑
v

p(v)v j ,
∂ lnL(θ |v̄)

∂ci
= p(hi = 1|v̄) −

∑
v

p(v)p(hi = 1|v).
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In the above gradient expressions, the second terms correspond to the expectations of the gradient
of the energy function under the model distribution, and their exact computation calls for a sum-
mation over all the visible variables, which is computationally intractable. One way to get around
this difficulty is to estimate the second term in the log-likelihood gradient byMCMC simulations,
though the MCMC approach can be computationally very expensive. Fischer & Igel (2012, 2014)
provide more details.

We may utilize RBMs to build deep BMs (DBMs), where a DBM model consists of multi-
hidden layers and only between-layer connections exist. For example, a DBM with two hidden
layers can be built by a stack of two RBMs with tied weights. The learning procedure for BMs
and RBMs described in this and previous sections can be applied to DBMs (for more details, see
Hinton & Salakhutdinov 2012; Salakhutdinov 2015; Salakhutdinov & Hinton 2009, 2012).

6.3. Quantum Training of Boltzmann Machines

As the typical training of BMs relies onMCMCand thus is computationally very expensive or even
impossible, we may find that training with quantum resources can be very helpful in reducing the
training cost. In fact, the quantum approach in learning with BMs can be more feasible than or
preferable to the classical approach. Quantum training techniques have been developed to train
classical BMs. Examples include special-purpose quantum computers such as quantum annealers
and programmable photonic circuits. In particular, quantum annealing is very suitable for training
BMs, and the D-Wave machine, a quantum annealer with thousands of qubits, has been explored
for training BMs with deep quantum learning protocols. More details are provided by Adachi &
Henderson (2015), Benedetti et al. (2016), and Wiebe et al. (2014).

6.4. Quantum Boltzmann Machines

As in the classical BM case, we adopt a probabilistic graphical model that consists of a set of
visible units v ∈ {−1, 1}n associated with observations and a set of hidden units h ∈ {−1, 1}m used
to capture dependencies between observed variables.We use the notation z = (v,h) to denote the
combined units. A quantum Ising model is defined through its quantum Hamiltonian given by

Hq =
∑
i

biσzi +
∑
i, j

wi jσ
z
i σ

z
j ,

where, as in Section 5, we write

σzi ≡ I ⊗ ...⊗ I︸ ︷︷ ︸
i−1

⊗σz ⊗ I ⊗ ...⊗ I︸ ︷︷ ︸
b−i

, I =
(
1 0
0 1

)
, σz =

(
1 0
0 −1

)
, and b = m+ n.

Define the density matrix as ρ = Z−1e−Hq , where Z = tr[e−Hq ] is the partition function. The ith
diagonal element of the density matrix gives the probability associated with the ith state of the
quantum Boltzmann machine (QBM).We can derive the marginal distribution of the visible units
from the density matrix. For a given visible vector v = (v1, . . . , vn ) ∈ {1,−1}n, define a matrix
�v = |v〉〈v| ⊗ Ih,where Ih is the identicalmatrix of dimension equal to the number of hidden units.
Then, the marginal distribution corresponding to v of the QBM model is given by Pv = tr[�vρ].

Now we consider adding a transverse field to the Ising Hamiltonian to introduce a transverse
field quantum Ising model. Define nondiagonal matrices

σxi ≡ I ⊗ ...⊗ I︸ ︷︷ ︸
i−1

⊗σx ⊗ I ⊗ ...⊗ I︸ ︷︷ ︸
b−i

and σx =
(
0 1
1 0

)
.
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The transverse Ising Hamiltonian is then given by

H =
∑
i

�iσ
x
i +

∑
i

biσzi +
∑
i, j

wi jσ
z
i σ

z
j ,

where �i, bi, and wij are model parameters. Again we define the partition function Z = tr[e−H],
the density matrix ρ = Z−1e−H, and the marginal distribution of the visible units Pv = tr[�vρ].To
train the QBM, we employ gradient descent to update the parameters θ = (�,b,w) and minimize
the negative log-likelihood function

L = −
∑
v

Pdata
v log(Pv ),

where Pdata
v denotes the empirical distribution of the training set. The gradient of L is given by

∂L
∂θ

=
∑
v

Pdata
v

(
tr[�v

∂e−H

∂θ
]

tr[�ve−H]
− tr[ ∂e

−H

∂θ
]

tr[e−H]

)
.

As tr[ ∂e
−H

∂θ
] = −tr[ ∂H

∂θ
e−H], we have

tr[ ∂e
−H

∂θ
]

tr[e−H]
= −

〈
∂H
∂θ

〉
,

where 〈A〉 ≡ tr[ρA] denotes the Boltzmann average of a given matrix A.We may estimate 〈 ∂H
∂θ

〉 by
sampling from the model.However, the term tr[�v

∂e−H
∂θ

]
tr[�ve−H] cannot be estimated using sampling.Thus,

it is almost impossible to find themodel parameters byminimizing the negative log-likelihood.We
use the variational approach to solve this problem by minimizing an upper bound of the negative
log-likelihood.

Let Hv � 〈v|H|v〉. We call Hv the clamped Hamiltonian because every visible qubit σzi is
clamped to its corresponding classical data value vi. An application of the Golden–Thompson
inequality leads us to Pv ≥ tr[e−Hv ]

tr[e−H] , and we then can conclude that

L̃ = −
∑
v

Pdata
v log

(
tr[e−Hv ]
tr[e−H]

)
is an upper bound of the negative log-likelihood function L. Instead of minimizing L, we now
minimize the upper bound L̃ using its gradient,

∂L̃
∂θ

=
∑
v

Pdata
v

(
tr[�v

∂e−Hv

∂θ
]

tr[�ve−Hv ]
− tr[ ∂e

−H

∂θ
]

tr[e−H]

)
=
〈
∂Hv

∂θ

〉
v
−
〈
∂H
∂θ

〉
,

where, for a matrix A, we define

〈A〉v =
∑
v

Pdata
v 〈A〉v =

∑
v

Pdata
v

tr
[
e−HvA

]
tr
[
eHv
] .

Therefore, the updating rules for bi, wij, and �i are given as follows:

�bi = η
(〈σzi 〉v − 〈σzi 〉

)
, �wi j = η

(
〈σzi σzj〉v − 〈σzi σzj〉

)
, and ��i = η

(〈σxi 〉v − 〈σxi 〉
)
,

where η is the learning rate of the gradient descent algorithm (Wang&Wu2020).We can estimate
the unclamped terms 〈σzi 〉 and 〈σzi σzj〉 by sampling from a Boltzmann distribution with Hamilto-
nian H, and the clamped terms 〈σzi 〉v and 〈σzi 〉v by sampling from a Boltzmann distribution with
Hamiltonian Hv. However, there is a serious issue regarding estimating 〈σxi 〉v and 〈σxi 〉. In fact, we
need measurements in the σxi basis to estimate 〈σxi 〉, but we cannot estimate 〈σxi 〉 by sampling in
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the σzi basis, as nondiagonal matrix σxi does not commute with σzi . As a matter of fact, for all visible
variables v, we have 〈σxi 〉v = 0.Note that 〈σxi 〉 > 0 for positive �i and 〈σxi 〉 < 0 for negative �i; thus,
we conclude that ��i < 0 if �i > 0 and ��i > 0 if �i < 0. This renders an invalid training of �i
using the updating rule. One possible ad hoc fix is to treat the bis and wijs as trainable parameters
and regard the �is as superparameters, or even set all the �is to be equal to a fixed value.

As we described in Section 5, quantum annealing driven by the same quantum HamiltonianH
can be implemented by quantum annealers like the D-Wave machine. It turns out that a quantum
annealer can provide a sample from the Boltzmann distribution of the Hamiltonian and train a
QBM to tune the model parameters θ = (�i, bi, wij). More details can be found in the articles by
Amin et al. (2018) and Kieferova & Wiebe (2016).

7. CONCLUDING REMARKS

Quantum computation has attracted enormous attention at the frontiers of science. While the
main goals of quantum computation are the invention of faster quantum algorithms and the cre-
ation of quantum computers to demonstrate quantum advantages and implement quantum al-
gorithms for accomplishing hard computational or communication tasks, this article provides an
overview on the statistical aspect of quantum computation to illustrate the interaction between
statistics and quantum computation. This stands in contrast to classical computation, where there
is little role for statistics to play in its deterministic platform. We introduce important quantum
concepts and key quantum properties for quantum computation. We review quantum annealing,
quantum machine learning with BMs, and quantum supremacy via boson sampling and random
quantum circuits. Our discussion of the selected topics focuses on the use of quantum compu-
tation in statistical machine learning and applications of statistical analysis to resolve issues en-
countered in quantum computation, as well as the interplay between quantum computation and
statistics, which may demonstrate quantum advantage and/or lead to new theories, methodolo-
gies, and computational techniques for statistics and machine learning. In particular, we present
quantum computation and illustrate its interface with statistics and data science, and we highlight
the advantages of quantum computation and quantum learning for statistics and machine learn-
ing in terms of computational complexity and learning efficiency. There is a great demand for
the certification of quantum devices, such as testing and assessing their quantum performance,
and such certification needs sound and scalable statistical methods for calibrating and validating
quantum properties. In fact, a quantum computation endeavor such as quantum supremacy calls
for an integration of new experimental techniques, better mathematical and statistical modeling,
and improved computational tools where statistics and data science can play a major role (Hu
& Wang 2021; Wang 2012, 2022; Wang & Song 2020; Wang et al. 2016). For example, for the
study of quantum supremacy, we need to repeat computing experiments, reanalyze observed data,
and address or close potential loopholes. Classical algorithms and computer power continue to
be improved, and what is impractical for classical computers today may become tractable in the
future. At the same time, the computational power of quantum computers will keep growing.
Hence, the benchmark of the classical computational cost is a moving target, and the quantum
supremacy frontier will be moving toward larger and larger computational problems to herald a
much-anticipated computing paradigm that will ultimately offer a large-scale computational plat-
form to run well-known quantum algorithms, such as the Shor and Grover algorithms. As shown
in Section 4, we expect a high demand for statistics in the continuing study of quantum supremacy.
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