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Abstract

Compositional data are nonnegative data carrying relative, rather than
absolute, information—these are often data with a constant-sum constraint
on the sample values, for example, proportions or percentages summing to
1% or 100%, respectively. Ratios between components of a composition
are important since they are unaffected by the particular set of components
chosen. Logarithms of ratios (logratios) are the fundamental transformation
in the ratio approach to compositional data analysis—all data thus need to
be strictly positive, so that zero values present a major problem. Compo-
nents that group together based on domain knowledge can be amalgamated
(i.e., summed) to create new components, and this can alleviate the problem
of data zeros. Once compositional data are transformed to logratios, regular
univariate and multivariate statistical analysis can be performed, such
as dimension reduction and clustering, as well as modeling. Alternative
methodologies that come close to the ideals of the logratio approach are
also considered, especially those that avoid the problem of data zeros, which
is particularly acute in large bioinformatic data sets.

271

mailto:michael.greenacre@upf.edu
https://doi.org/10.1146/annurev-statistics-042720-124436
https://www.annualreviews.org/doi/full/10.1146/annurev-statistics-042720-124436


Unit-sum constraint:
the condition on a
nonnegative
multivariate sample
x1, x2, . . . , xJ that∑

jxj = 1

Closing the data: the
operation of dividing
nonnegative data by
their total

Subcomposition:
a subset of parts after
closure

1. INTRODUCTION

Compositional data analysis (CoDA) is the analysis of nonnegative multivariate data where the
absolute values of the data carry only relative meaning.1 For example, compositional data are
often data with a constant-sum constraint: That is, the values for each multivariate sample are
either observed as summing to a constant, usually 1 or 100%, or are expressed as values rela-
tive to a total that is irrelevant to the research objective, for example, relative counts in samples
of different sizes, or the composition of a chemical sample. Compositional data are observed in
many fields (Aitchison 2005), most prominently: geochemistry (e.g., mineral compositions), ecol-
ogy (e.g., relative abundances of species), biochemistry (e.g., fatty acid proportions), morphology
(e.g., the shapes of living organisms), sociology (e.g., time budgets), geography (e.g., proportions
of land use), political science (e.g., voting proportions),marketing (e.g., brand shares), and recently
genomics and microbiome research (e.g., proportions of operational taxonomic units—see, for ex-
ample, Li 2015, Tsilimigras & Fodor 2016, Quinn et al. 2018). In most applications the original
totals, or sizes, on which the relative values are computed, are irrelevant, with a few exceptions.
Notable exceptions are in marine biology, where different organisms are classified and counted in
samples of equal volume, and similarly in botany, where plant species are counted in samples of
equal area—in these cases, the total sample counts would be meaningful, distinguishing between
samples of varying levels of species richness, and this total could be related to the relative abun-
dances of the species. Similarly, voting percentages for political parties could be related to the size
of each constituency’s electorate.

Data with the unit-sum constraint are assumed here, so a J-component multivariate sample of
nonnegative x1, x2, . . . , xJ, with the property

∑
jxj = 1, is called a composition.The components of

a composition are called its parts, and because of the unit-sum constraint, the multivariate samples
exist in a mathematical simplex: 3-part compositions are inside a triangle (see Figure 1b), 4-part
compositions are inside a tetrahedron, and so on for higher-dimensional simplexes. Zero values
in a sample would force it to lie on a side of the simplex. Compositions are often obtained from
data in the form of counts or positive measurements, such as physical measures of size (grams,
liters, centimeters, etc.), by dividing them by their respective totals, a process called closure or
normalization. Relative abundances of species in ecology, for example, are normalized, or closed,
versions of the original abundance count data. The closure operator is denoted by C( ), so if n1, . . . ,
nJ are the original counts or measurements, thenC(n1, . . . ,nJ) are the relative values x1, . . . , xJ with
unit sum (x j = nj/

∑
j′ nj′ ), forming a composition.When the original totals have some relevance

to a study, then the issues of size and shape in the statistical analysis are important, where size is
related to the total and shape to the composition (Greenacre 2017). If a subset of parts is selected
and the values of that subset are closed again, i.e., reclosed, this results in a subcomposition.

The problem of spurious correlations that result from closure has been known for over a cen-
tury (Pearson 1897), and even compositional data based on random counts exhibit important cor-
relations due to the sum constraint (Mosimann 1962, Aitchison 1981). Moreover, any observed
composition is inevitably a subcomposition of a potentially larger composition. In biochemistry,
for example, suppose that 30 fatty acids (FAs) are measured in a set of samples in laboratory A, and
the same samples are reanalyzed in laboratory B but only 20 of those FAs are identified. Then,
since the data are closed with respect to different totals, the compositional values of the 20 FAs
common to the laboratories will be artificially different and not just different due to measurement
error.

1For a short history of CoDA, see Bacon-Shone (2011). For books on CoDA, see Tolosana-Delgado & van
den Boogaart (2011), Pawlowsky-Glahn & Buccianti (2011), van den Boogaart & Tolosana-Delgado (2013),
Greenacre (2018), and Filzmoser et al. (2018).
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Subcompositional
coherence:
the property that
relationships between
parts are unaffected by
forming
subcompositions after
closure
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Figure 1

Three-part fatty acid compositional data from a sample of 42 marine copepods, observed in three different seasons (these data are more
fully introduced in Section 3). The FAs are amalgamated into three major categories: saturated fatty acids (SFA), monounsaturated fatty
acids (MUFA) and polyunsaturated fatty acids (PUFA). (a) A compositional bar chart of the data, in percentages, using function BAR in
the R package easyCODA. (b) A triangular coordinate representation of the same data, as proportions, using function ternaryplot in
the package vcd. Some minor cosmetic adjustments were made to panels a and b from the original output to improve legibility and to
comply with print specifications.

In the approach to CoDA by Aitchison (1982, 1986, 2008), such paradoxes are eliminated by
not considering the original values of the compositional parts, but rather their ratios, since the
ratio between part A and part B remains constant irrespective of what other parts are present,
before or after closure. Hence, univariate statistics on ratios can be validly compared between
studies that have parts in common.

This property of the ratios is known as subcompositional coherence (Aitchison 1986) because
ratios are unaffected by eliminating (or adding) some parts and reclosing—they are, quite simply,
coherent. The original compositional data themselves are not coherent (i.e., incoherent) since the
values of a subset of parts would change after closing to have unit sum. Hence, summary statistics
such as means, variances, and correlations, as well as methods such as regression and analysis
of variance, are incoherent when computed on the parts in a compositional data set. Ratios are
generally compared multiplicatively, so the logarithmic transformation converts the ratios on a
multiplicative scale to an additive scale (i.e., from a ratio scale to an interval scale). Thus, the
logratio transformation takes the compositional data out of the simplex into real vector space,
with an additive scale, thereby complying with most standard statistical methodologies, but with
special issues around the interpretability of logratios in analytical results.
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Pairwise logratio
(LR): logratio of a pair
of parts

Additive logratios
(ALRs): J − 1 LRs
with respect to a fixed
part

This review continues as follows. Section 2 defines several logratio transformations and de-
scribes their properties. Section 3 defines the total logratio variance, which quantifies the total
variability in a compositional data set. Section 4 defines logratio distances, both between samples
and between parts. Section 5 shows how logratio-transformed data can be visualized using biplots
and cluster analysis. Section 6 deals with variable selection, to find small subsets of logratios or
subcompositions that approximate the full composition, thereby reducing the number of variables
to be considered. Section 7 treats compositional data as either response variables or explanatory
variables in statistical models. Section 8 gives a brief exposé of possible advantages of weighting
the parts. Section 9 treats the analysis of high-dimensional compositional data regularly found
in bioinformatic applications, including the use of correspondence analysis as an alternative ap-
proach. The review concludes with a summary and suggestions of future issues.

2. LOGRATIO TRANSFORMATIONS

There are several types of logratio transformations, summarized in Table 1 and dealt with one at
a time in this section.

The simplest example of a logratio is the log-transformed ratio of two parts of a composition,
or pairwise logratio, denoted throughout this review by LR. For a J-part composition {x1, x2, . . . ,
xJ}, there are 1

2J(J − 1) unique LRs of the form:

LR( j, j′ ) = log
(
x j
x j′

)
j, j′ = 1, . . . , J, j < j′. 1.

Any subset of J − 1 linearly independent LRs that includes all the compositional parts forms a
basis that can generate all the other LRs by linear combinations. The simplest such subset is that
of the additive logratios (ALRs), where a specific reference part is contrasted with all the other
parts (here, the last part is chosen as reference in the denominator):

ALR( j|J) = log
(
x j
xJ

)
j = 1, . . . , J − 1. 2.

Table 1 Logratio transformations of a composition consisting of J parts

Abbreviation Name Description
LR Pairwise logratio The log of the ratio of two parts
ALR Additive logratio A pairwise logratio (LR) that is one of a set of J − 1 ALRs having the same

denominator (or numerator)
SLR Summated (amalgamated)

logratio
The log of the ratio of the sums (amalgamations) of two subsets of parts

CLR Centered logratio The log of the ratio of a part and the geometric mean of all the parts; usually
one of a set of J CLRs, each with one of the J parts in the numerator

ILR Isometric logratioa The log of the geometric means of two subsets of parts
PLR Pivot logratioa The log of the ratio of a single part and the geometric mean of a subset of the

parts; usually one of a set of J − 1 PLRs

SLRs, ILRs and PLRs are often qualified as balances. SLRs are straightforward balances of amalgamated parts, whereas ILRs and PLRs are balances of
geometric means.
aBoth ILRs and PLRs have a scale factor; a PLR is a simpler form and special case of an ILR.
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Amalgamation
(summated) logratio
(SLR) balance: log of
ratio of two sums of
parts

Centered logratios
(CLRs): log of each
part relative to the
geometric mean of all
parts

Log-contrast: linear
combination of logs of
parts, with coefficients
summing to 0

Isometric logratio
(ILR) balance: log of
ratio of geometric
means of two subsets
of parts, with scale
factor

Parts can be amalgamated by adding them together (Aitchison 1982), and these amalgamations
can be used in logratios.An amalgamation (summated) logratio (SLR) balance is defined as follows,
for two subsets J1 and J2 of parts:

SLR(J1, J2) = log

(∑
j∈J1

x j∑
j∈J2

x j

)
. 3.

SLRs are usually defined on substantive grounds: In biochemistry, for example, saturated FAs
(SFA) andmonounsaturated FAs (MUFA) are routinely amalgamated, and their ratio, SFA/MUFA,
is computed for all samples (see the footnote at the end of Section 3 for an explanation of these
groupings). Another example is in water chemistry, where all dissolved solids are amalgamated to
form total dissolved solids, and ratios are investigated with respect to other water components.
Since an SLR contrasts two groups of parts, it is a balance between the groups, where the SLR
is 0 if the numerator and denominator amalgamations are equal (thus balanced) and is positive
or negative depending on whether the numerator is greater than the denominator or vice versa
(Greenacre 2020, Greenacre et al. 2020, Quinn & Erb 2020).

There are several logratio transformations that rely on geometric means to combine parts, the
most important being the centered logratio (CLR) transformation (Aitchison 1986). A CLR is the
logratio between a part and the geometric mean of all J parts in the composition. There are thus
J CLRs, defined as:

CLR( j) = log

(
x j(∏
j′ x j′

)1/J

)
= log(x j ) − 1

J

∑
j′

log(x j′ ) j = 1, . . . , J. 4.

Thus, a CLR is the logarithm of a part, centered with respect to the mean of the logarithms of all
the parts in the sample.TheCLRs serve very useful computational purposes as a substitute for ana-
lyzing all the LRs. For example, the total logratio variance of the CLRs is the same as that of all the
LRs (see Section 3), the differences between two CLRs is the same as the LR of the two numerator
parts, and the CLRs can be analyzed in a reduced-dimensional component analysis to represent
the equivalent analysis of all the LRs (Aitchison & Greenacre 2002), illustrated in Section 5.

The isometric logratio (ILR) transformation (Egozcue et al. 2003) is related to a log-contrast
(Aitchison 1983, Aitchison & Bacon-Shone 1984), which is a linear combination of the log-
transformed parts where the sum of the coefficients of the combination sum to zero:

∑
jaj log (xj),∑

jaj = 0. If the positive coefficients aj > 0 define the index subset J1 and the negative ones
aj < 0 the subset J2, the log-contrast can be written as a logratio:

∑
j∈J1

|a j| log(x j ) −
∑
j∈J2

|a j| log(x j ) = log

⎛
⎝∏ j∈J1

x
|a j |
j∏

j∈J2
x

|a j |
j

⎞
⎠ , 5.

where
∑

j∈J1
|a j| = ∑

j∈J2
|a j|.

Suppose that |J1| and |J2| denote the numbers of positive and negative coefficients, respectively.
Then an ILR balance is a special case when the |J1| positive coefficients are aj = 1/|J1| and the |J2|
negative coefficients are aj = −1/|J2|. The log-contrast then forms a balance between the geo-
metric means of the two respective groups of parts. There is an additional scale factor (explained
below) that depends on the numbers of parts |J1| and |J2| (Egozcue & Pawlowsky-Glahn 2005):

ILR(J1, J2) =
√

|J1||J2|
|J1| + |J2| log

⎛
⎜⎝
(∏

j∈J1
x j
)1/|J1|

(∏
j∈J2

x j
)1/|J2|

⎞
⎟⎠ 6.

=
√

|J1||J2|
|J1| + |J2|

⎛
⎝ 1

|J1|
∑
j∈J1

log(x j ) − 1
|J2|

∑
j∈J2

log(x j )

⎞
⎠ .
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Pivot logratio (PLR):
ILR balance of single
part relative to the
geometric mean of a
subset of parts

The factor rescales the set of coefficients 1/|J1| and −1/|J2| that define the ILR balance to have
unit length, since

∑
j∈J1

(1/|J1|)2 +∑
j∈J2

(1/|J2|)2 = (|J1| + |J2|)/(|J1| |J2|). Thus, when there are
J − 1 sets of such coefficients orthogonal to one another, the resultant J − 1 ILR balances are
defined with respect to an orthonormal basis. Apart from the scale factor, Equation 6 is equal to
the average of the |J1| × |J2| LRs log(x j/x j′ ) where j � J1, j′ � J2.

A simpler case of ILR balances is a set of pivot logratios (PLRs), which are a succession of
J − 1 ILR balances where the numerator in the ratio is a single part and the denominator is all
those parts to the right in the particular ordered list of parts:

PLR( j) =
√

|J2|
1 + |J2| log

(
x j(∏

j′∈J2
x j
)1/|J2|

)
=
√

|J2|
1 + |J2|

⎛
⎝log(x j ) − 1

|J2|

⎛
⎝∑

j′∈J2

log(x j′ )

⎞
⎠
⎞
⎠ , 7.

where j= 1, . . . , J − 1 and J2 is the set of parts J2 = { j+ 1, j+ 2, . . . , J} (Hron et al. 2017, Filzmoser
et al. 2018). A PLR, with its single part in the numerator, has the interpretational advantage of
being equal to the average of a set of LRs where the numerator is the same for each LR. For
example, the first PLR is, apart from the scale factor, equal to the average of J − 1 logratios
(log(x1/x2) + log(x1/x3) + · · · + log(x1/xJ )) /(J − 1).

With the exception of the CLRs, which involve all parts, the abovementioned logratios are
coherent. Since LRs are coherent, so are the special case of ALRs, as are ILRs and PLRs. Like ILR
balances, SLR balances are coherent with respect to adding parts to the composition or removing
parts that are not in the numerator or denominator groups (Greenacre 2020).

Ratios can be represented as graphs in the form of a network, where each edge represents a
ratio of two parts (Figure 2a–c). Each of the graphs in Figure 2b and Figure 2c is an example of an
acyclic connected graph: All parts are connected and there are no cycles. Such graphs necessarily
represent a set of linearly independent LRs, consisting of one less LR than the number of parts.
Figure 2d shows how the parts can be represented as a dendrogram, where each node splits into
two subgroups of parts defining a ratio in an SLR or ILR balance.

A set of J − 1 linearly independent logratios, of any of the types described above, involving all
the parts at least once, can be inverted back (i.e., back-transformed) to the original J closed part
values. Similarly, the complete set of J CLRs can be back-transformed to the closed parts. The
values of the J − 1 SLR or ILR balances defined by the nodes of Figure 1d can also be back-
transformed. These inversion formulae, based on simple matrix computations, are summarized in
the Supplemental Appendix.

3. LOGRATIO VARIANCE

The transformations in Section 2 refer to a single general composition. Since LRs are the central
concept in CoDA, the definition of total variability in a compositional data set consisting of sev-
eral observed compositions is made in terms of them. Henceforth, a data matrix of compositions,
X (I × J), is considered: I rows (with index i = 1, . . . , I) observed on J compositional parts, as
before (with j = 1, . . . , J). A double subindex notation j j′ is introduced to denote a pair of parts.
The mean of the ( j, j′)th LR is thus denoted by Mean j j′ = (1/I )

∑
i log(xi j/xi j′ ).

The variance of the (j, j′)-th LR, denoted by Var j j′ , is defined as

Var j j′ = 1
I

I∑
i=1

(
log(xi j/xi j′ ) − Mean j j′

)2 , 8.

where the sum of squared deviations from the mean is divided by I rather than I − 1 (thereby
assigning an equal weight of 1/I to each sample, weights that can be varied if necessary). The total
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Total logratio
variance: the sum of
all LR variances
divided by J2;
equivalently, the
average of the CLR
variances
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Figure 2

Graphs of logratios of 13 parts (fatty acids) as the edges of a network: (a) all 13 × 12/6 = 78 pairwise logratios (LRs), (b) the 12 additive
logratios (ALRs) with 14:0 as the denominator part, (c) an acyclic connected graph of 12 independent LRs (the five parts in red are
explained in Section 5), and (d) a dendrogram defining balances of two subsets of parts at each node. The examples in panels b and c are
shown as directed graphs where each arrow points to the numerator part, often referred to by the acronym DAG (directed acyclic
graph).

logratio variance, denoted by TotVar, is then defined as:

TotVar = 1
J2
∑∑

j< j′
Var j j′ . 9.

Notice that there are 1
2J(J − 1) terms in the above sum, but the division is by J2, explained below.

A shortcut to obtain TotVar is to average the variances of the CLRs, denoted by Var j (j= 1, . . . ,
J), with a single subindex, which gives an identical solution:

TotVar = 1
J

∑
j

Var j , 10.
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Contained variance:
the contribution of a
logratio to the total
logratio variance

Explained variance:
the contribution of a
logratio to explaining
total variance in the
sense of regression

FA compositions of
marine copepods: a
42 × 40 compositional
data matrix

Logratio analysis
(LRA): PCA of all
pairwise LRs,
equivalent to PCA of
all CLRs

where the variances are similarly computed by dividing by I, not by I − 1. Notice that the equiv-
alent definitions in Equations 9 and 10 are equal to what Aitchison (1986) defined as the total
variance, namely

∑
j Var j , divided by J. The division by J, the number of parts, is for good reason,

because then each part has an equal weight of 1/J, with weights summing to 1, and these can be
varied if differential weights are required (see Section 8).

When quantifying the importance of each LR to TotVar, the distinction needs to be made
between contained variance and explained variance. Each LR contains a part of variance of the
total, which is simply its (weighted) contribution Var j j′/J2 to the sum in Equation 9, where the
weight of an LR is the product of the weights of the jth and j′th parts, each being 1/J in this equally
weighted definition. However, a particular LR can explain a much larger part of the total variance
than its own variance since it is correlated with many other LRs. In fact, as stated at the end of
Section 2, only J − 1 independent LRs are needed to explain 100% of the total variance of all
1
2J(J − 1) LRs, whereas their cumulated contained variances can be a relatively small percentage
of the total.

To illustrate these concepts and the analyses to follow, a real data set from biochemistry is now
introduced.

Data set (FA compositions of marine copepods). Calanoid copepods are small marine organisms
that are a very important food source in the Arctic. They were collected during an extensive field study
in the Rijpfjorden fjord, Svalbard, a high Arctic sea-ice-dominated ecosystem, during the International
Polar Year 2007/2008, in three different seasons: spring, summer, and winter. The objective was to
investigate the seasonal development of the key marine species Calanus glacialis (Søreide et al. 2010).
This data set is composed of 42 copepods and 40 FAs and is available online (see the Supplemental
Appendix).

Initially, attention is restricted to the FAs that have an average occurrence of at least 0.01 (i.e.,
1%). This reduces the number of FAs from 40 to a subcomposition of 13, exactly the subset that
was used in Figure 2. This subset of the data matrix is shown as percentages inTable 2, closed to
sum to 100%.These 13 FAs have no data zeros, so the logratio transformations are possible—later,
the complete data set is analyzed, after the issue of data zeros is dealt with.

The total logratio variance of this 13-part data set is computed, using either of the equivalent
forms of Equations 9 and 10, as TotVar = 0.2462. The (contained) contributions by the individual
FAs (using Equation 10) range from 1.1% for FA 22:1(n-9)2 to 45.7% for 18:4(n-3).

The R package easyCODA (Greenacre 2018, R Core Team 2020) is used for most of the
computations.

4. LOGRATIO DISTANCES: COMPONENT AND CLUSTER ANALYSIS

Once compositional data have been logratio-transformed, multivariate analysis can essentially be
conducted as before for regular interval-scale data, with appropriate adaptation of the interpreta-
tion to the fact that the variables are now logratios of varying complexities. The principal compo-
nent analysis (PCA) of all 1

2J(J − 1) LRs is called logratio analysis (LRA) (Greenacre&Lewi 2009;
Greenacre 2018, 2019). LRA is equivalent to the PCA of the J CLRs (Aitchison 1990; Aitchison
& Greenacre 2002, appendix), the latter being much more efficient computationally.

2FAs, affectionately called the fats of life, are long chains of hydrocarbons coded according to their chemical
structure in the format XX:Y(n-ZZ), where XX = the number of carbon atoms, Y = the number of double
carbon bonds, and ZZ = number of carbons from the last double bond to the methyl, or omega, end. Saturated
FAs have no double bonds, monounsaturated FAs have one double bond, and polyunsaturated FAs have two
or more double bonds.
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Table 2 Fatty acid percentages∗ in a 13-part subcomposition of a 40-part data set

Season 14:0 16:0 16:1(n-7) 18:0 18:1(n-9) 18:2(n-6) 18:4(n-3) 20:1(n-9) 20:1(n-7) 20:5(n-3) 22:1(n-11) 22:1(n-9) 22:6(n-3)

Winter 15.78 13.54 7.28 7.25 8.29 2.26 1.88 17.8 0.96 4.92 11.28 1.44 7.34

Winter 13.44 13.63 8.19 9.24 8.73 2.10 1.29 16.83 0.78 5.18 11.92 1.51 7.16

Winter 7.11 13.14 7.29 15.64 5.91 2.89 1.51 15.34 1.16 5.96 13.43 1.74 8.89

Winter 13.49 12.55 8.34 8.08 8.61 1.94 1.03 19.44 0.96 5.40 10.87 1.46 7.84

Winter 16.54 12.28 8.74 3.25 8.89 1.47 0.84 14.12 0.97 8.08 11.02 1.42 12.37

Winter 8.42 12.53 7.50 20.15 7.08 1.75 0.25 17.37 0.71 4.84 10.71 1.39 7.31

Winter 5.01 11.17 8.15 5.13 9.66 2.16 0.57 20.87 0.85 8.33 14.79 1.80 11.52

Winter 8.19 11.81 9.16 3.71 8.11 1.57 0.26 19.64 0.81 9.39 13.05 2.08 12.21

Spring 9.93 10.51 20.71 2.28 6.56 0.99 2.26 11.30 0.76 13.07 7.92 1.06 12.65

Spring 8.79 10.39 27.45 2.06 4.46 0.71 2.99 10.80 0.67 15.58 6.17 0.93 9.01

Spring 8.56 10.09 30.21 1.50 5.52 0.94 1.65 10.81 0.79 11.90 6.79 1.01 10.21

Spring 9.47 10.30 31.49 1.51 4.54 0.80 1.19 10.36 0.82 11.15 7.24 1.03 10.10

Spring 10.32 10.92 24.97 4.69 5.83 0.96 0.72 13.30 0.78 7.99 8.74 1.22 9.56

Spring 9.00 12.68 21.73 4.52 5.47 0.92 1.88 14.23 0.68 11.06 7.56 1.29 8.99

Spring 7.36 9.89 30.49 1.19 5.02 1.18 1.85 11.32 0.83 13.98 6.82 1.01 9.07

Spring 9.78 10.2 32.26 1.80 4.98 1.23 0.91 9.28 0.68 10.30 7.10 1.10 10.37

Spring 7.45 11.53 23.83 2.98 4.42 0.79 0.93 10.21 0.70 13.33 7.20 1.14 15.50

Spring 9.31 10.72 21.17 2.37 6.28 1.19 1.09 18.02 0.93 8.40 11.44 1.74 7.35

Spring 7.02 10.93 28.00 3.52 5.10 0.80 1.37 10.58 0.76 12.05 7.40 1.09 11.39

Spring 6.60 11.16 29.73 3.27 4.67 0.80 1.10 8.04 0.79 13.53 5.56 1.06 13.68

Summer 7.34 8.74 6.73 1.89 5.23 2.54 16.11 13.34 2.16 13.37 9.15 1.01 12.38

Summer 7.51 8.76 7.07 2.00 5.08 2.64 17.31 12.66 2.38 7.47 9.67 0.98 16.47

Summer 7.05 8.67 8.01 1.74 4.73 2.49 15.12 13.94 2.28 12.59 9.57 1.09 12.72

Summer 5.83 13.27 7.13 5.50 4.69 4.33 9.66 5.67 3.08 14.01 5.52 0.88 20.41

Summer 10.15 9.91 7.04 1.68 9.48 1.89 10.34 17.20 1.47 11.69 10.19 1.44 7.50

Summer 10.18 8.89 7.53 1.60 8.44 1.90 10.90 16.77 1.69 13.06 10.83 1.45 6.75

Summer 10.57 9.49 6.70 1.88 9.04 1.69 11.14 17.09 1.31 12.17 9.89 1.22 7.82

Summer 10.81 8.68 12.5 1.38 6.58 1.56 10.92 16.25 1.34 13.48 9.26 1.32 5.94

Summer 8.22 7.58 9.29 1.61 5.55 2.03 11.56 18.14 1.18 14.55 10.45 1.50 8.34

Summer 9.20 8.16 10.75 1.39 5.91 1.94 11.75 18.35 1.35 11.34 9.35 1.36 9.13

Summer 8.53 9.34 6.54 1.88 8.79 1.67 10.71 18.44 1.28 12.87 10.52 1.38 8.07

Summer 9.38 8.82 7.45 1.71 8.08 1.79 11.03 17.68 1.27 12.67 10.03 1.40 8.69

Summer 9.34 9.12 5.73 1.85 8.19 1.63 10.88 17.09 1.22 13.48 11.48 1.45 8.52

Summer 6.13 6.06 9.46 1.50 4.00 3.09 18.96 14.27 1.58 13.74 8.90 1.45 10.86

Summer 7.61 7.36 14.46 1.30 3.94 1.95 12.10 14.49 1.42 15.78 8.56 1.22 9.82

Summer 6.21 7.17 15.44 0.95 4.01 1.73 11.67 15.78 1.39 15.70 9.42 1.32 9.20

Summer 9.39 8.22 8.89 0.99 7.03 1.65 11.18 16.19 1.22 14.69 10.97 1.48 8.09

Summer 9.91 8.10 6.77 1.05 7.36 2.04 11.67 17.59 1.32 13.32 11.23 1.50 8.16

Summer 8.78 7.43 6.52 1.18 7.41 2.99 12.94 16.82 1.23 12.39 11.30 1.52 9.48

Summer 9.51 8.56 11.61 0.92 7.53 1.75 11.06 16.96 1.26 13.39 9.46 1.26 6.73

Summer 9.47 8.57 9.38 1.08 7.78 1.67 12.66 16.22 1.26 13.13 9.68 1.32 7.79

Summer 9.07 8.02 9.99 1.15 7.39 1.83 12.19 16.24 1.48 13.11 9.45 1.37 8.70

∗The percentages in each row sum to 100%, due to closure of the subcomposition.
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Figure 3

(a) Logratio analysis (LRA) form biplot (Greenacre 2010a) of the 13-part fatty acid (FA) subcomposition, where the intersample
distances approximate logratio distances, and the directions between pairs of FAs represent logratio biplot axes. (b) Ward clustering of
the logratio distances between the 42 samples.

Both the matrix of all LRs and the matrix of the CLRs have the same rank (i.e., dimensionality),
equal to J − 1. The principal components of the CLR matrix have the property that their coef-
ficients sum to 0, so that they reduce to log-contrasts of the parts (Equation 5). In fact, thanks to
their orthogonality, principal components are variables where the contained and explained vari-
ances are the same and so make an identical decomposition of TotVar.

Figure 3a shows the LRA of the FA data set, using function LRA() of the easyCODA package for
the computations,with added color coding of the samples according to season.While it is tempting
to interpret the positions of the FAs as variables in a regular PCA, they only have meaning in their
pairwise positions. For example, the logratio log(16:1(n-7)/18:0 ) would be in the direction of the
connection between these two FAs, pointing almost vertically downward, since 16:1(n-7) is in the
numerator. Hence, it should always be remembered that the PCA of the CLRs is just a shortcut
to analyzing all the pairwise LRs, the latter being the variables of primary interest.

As the number of parts increases, biplots such as Figure 3a soon become crowded. This prob-
lem can be alleviated greatly by either using contribution biplots where only the highly contribut-
ing parts are shown (Greenacre 2013) (see Section 9.1 for an example) or by performing variable
selection (see Section 5).

For clustering, the usual hierarchical or nonhierarchical clustering algorithms can be per-
formed on the samples, using Euclidean distances defined on all the LRs, but again more effi-
ciently computed using the CLRs. If the matrix Y = [yij] denotes the CLR-transformed data set,
andZ = [zi, j j′ ] denotes the matrix of LRs log(xi j/xi j′ ), then dii′ , the logratio distance between sam-
ples i and i′, can be defined in two equivalent forms, analogous to the definitions in Equations 9
and 10, as:

dii′ =
√

1
J2
∑∑

j< j′
(zi, j j′ − zi′ , j j′ )2 =

√
1
J

∑
j
(yi j − yi j′ )2. 11.

Figure 3b shows the Ward clustering of these distances between samples, where three clear
clusters are identified, with only one winter sample misclassified among the spring ones. Using
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the function WARD() from the easyCODA package, the vertical height scale is such that the sum of
squared heights of all 41 nodes is equal to TotVar, the total logratio variance.

Notice that zi, j j′ − zi′ , j j′ = log(xi j/xi j′ ) − log(xi′ j/xi′ j′ ) = log(xi j/xi′ j ) − log(xi j′/xi′ j′ ), i.e., the
difference between two logratios row-wise is identical to a difference computed on the same four
values column-wise. Both are equal to log

(
(xi jxi′ j′ )/(xi j′xi′ j )

)
, which is denoted by sii′ , j j′ , i.e., the

logarithm of the cross-product ratio (xi jxi′ j′ )/(xi j′xi′ j ). The first definition of intersample distance

in Equation 11 can thus be written as dii′ =
√

1
J2
∑∑

j< j′ (sii′ , j j′ )2. In a symmetric fashion, the corre-
sponding logratio distance between parts j and j′ would involve the sum of the same squared values,

(sii′ , j j′ )2, across all unique pairs of rows: d j j′ =
√

1
I2
∑∑

i<i′ (sii′ , j j′ )2. To get the same between-part
distances using CLRs, the CLRs have to be first recomputed columnwise—that is, each column of
the matrix of log-transformed compositional data has to be centered with respect to the column
mean, and then a formula similar to the right-hand side of Equation 11 is applied, averaging over
the I rows.

The total logratio variance can be equivalently obtained from the sum of either the intersample
or interpart squared logratio distances:

TotVar = 1
I2
∑∑

i<i′
d 2
ii′ = 1

J2
∑∑

j< j′
d 2
j j′ . 12.

Yet another way of obtaining the total logratio variance and the logratio distances, between
rows or between columns, is to compute the double-centered matrix of the log-transformed data
matrix log (X):

H =
(
I − 1

I
1I1

T
I

)
log(X)

(
I − 1

J
1J1

T
J

)
, 13.

where 1I and 1J are vectors of I and J ones, respectively. Then the total variance is the av-
erage of the squared elements of H: TotVar = 1

IJ

∑
i
∑

j h
2
i j ; the squared interrow distances are

the averages of the squared differences between rows (samples): d 2
ii′ = 1

J

∑
j (hi j − hi′ j )2; and the

squared intercolumn distances are the averages of the squared differences between columns (parts):
d 2
j j′ = 1

I

∑
i(hi j − hi j′ )2. Moreover, the LRA (Figures 3a and 4a) is equivalent to performing the

singular value decomposition (SVD) of H. This is because the CLR transformation removes the
row means of the log-transformed data, log (X), after which PCA removes the column means;
hence, log (X) is double-centered in the LRA.

It turns out that, with the present definitions of variance and logratio distance, the squared
logratio distance between two parts j and j′ is identical to the variance of the LR of the respective
parts, denoted in Section 3 by Var j j′ : d 2

j j′ = Var j j′ . Gathered in a square symmetric matrix, the
quantities Var j j′ form the variation matrix [Aitchison (1986), who denotes them by τ j j′ ]. Hence, a
multidimensional scaling and cluster analysis of the parts are effectively working on distances equal
to √

τ j j′ , i.e., the standard deviations of the LRs. Figure 4a shows the same LRA as in Figure 3a,
but now the parts (FAs) have a distance interpretation, and Figure 4b shows the corresponding
Ward clustering of the interpart distances.

The squared distances between parts (i.e., variances of the LRs) are related to the concept of
proportionality between parts (Lovell et al. 2015, Erb & Notredame 2016, Quinn et al. 2017). If
two parts were perfectly proportional, related by a constant factor across all the samples, then the
corresponding logratio would be a constant and have a variance of zero, i.e., zero distance apart,
and thus be perfectly correlated. Attempts have been made to turn this measure into a correlation-
type coefficient between parts, the challenge being to define an upper bound on the LR variance
in order to have a coefficient lying between 1 (proportionality 0, i.e., perfect correlation) and 0
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(a) Same analysis as Figure 3a, but the logratio analysis (LRA) covariance biplot version, where logratio distances between fatty acids
(FAs) are now approximately shown, and where these displayed distances between FAs are approximately equal to the standard
deviations of the respective logratios. (b) Ward clustering of the logratio distances between FAs.

(no correlation). Aitchison (1997) proposed the transformation e−τ j j′—Quinn et al. (2017) provide
further discussion and alternatives.

5. LOGRATIO VARIABLE SELECTION

With so many LRs available in a compositional data set, the question arises as to which are the
important ones to focus on and which ones can be ignored in order to make our understanding
of the structure more parsimonious. This question can be similarly posed as identifying the sig-
nificant subcompositions, or alternatively, SLR, ILR, or PLR balances. There are many ways to
answer this question, but the essential idea behind a solution is inspired by the work of Krzanowski
(1987), who in the context of PCA considered how to select variables that were responsible for
the main structure of the data set.

The first consideration in the present case is whether the context is one of unsupervised or
supervised learning. In the former context, we want to identify the LRs, or the subcomposition of
parts, that are essentially defining the logratio structure of the data set. In the latter context, we
want to identify the LRs, or subcomposition of parts, that are explaining some observed response
variable or known grouping structure in the samples. For example, in the FA data set, samples
are from three seasons, so we would be interested to identify the logratios that are separating the
three groups of points. In this particular example, looking at the clear division between the seasons
already observed in Figure 3 in both the PCA and the cluster analysis, both approaches should
arrive at essentially the same results.

Adopting an unsupervised approach, the data have a total logratio variance, TotVar, equal to
0.2462, so the question is:Which LR explains amaximumpart of this variance? AnyLR explains its
own contained part of variance, but it also explains parts of variances contained in many other LRs
with which it is correlated. It turns out that, on the one hand, the LR log(16:0/18:4(n-3)) explains
65.6% of TotVar, more than any other LR. The contained variance of this LR is, on the other
hand, only 5.0% of TotVar, but it is the explained variance which is relevant for variable selection.
The analysis used to determine the explained variance is called redundancy analysis (RDA), a
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generalization of regression analysis to multiresponse data (van den Wollenberg 1977, Gittins
1985, Zuur et al. 2007)—additional details are provided in the Supplemental Appendix. Once
again, the smaller number of CLRs conveniently forms the set of response variables, equivalent
to using all the LRs.

This first LR given above is retained, and then the next step is to find which other LR adds a
maximum additional explained variance—the stepwise process is explained in detail by Greenacre
(2019). The next LR is identified as log(16:1(n-7)/18:0 ), explaining an additional 18.2%, bringing
the variance explained by these two LRs to 83.8%. Adding more LRs in this way would bring the
variance explained to 100% when J − 1 = 12 LRs have entered—in fact, Figure 2c shows the 12
chosen ratios as an acyclic connected graph. However, just the first three selected LRs bring the
variance explained to over 90%, which could be considered satisfactory, effectively replacing the
whole 13-part data set with only three LRs. These three LRs are part of the graph in Figure 2c,
connecting the five FAs labeled in red.

The three LRs are given in Figure 5, which also shows how much of the logratio variance of
individual FAs (specifically, the variance of their CLRs) each of the three LRs explains. The FAs
are ordered in descending order of logratio variance (the bar chart in the right panel displays these
as percentages of total variance). The bars in the left panel show that the high logratio variances
have most of their variance explained by the LRs, with parts of unexplained variance concentrated
mostly in the FAs with low variances.

The PCA of these three LRs alone, involving only five parts (FAs), and the cluster analysis of
the samples based on just these three are shown in Figure 6. The PCA and the cluster analysis
both show an improved separation of the seasons, even though knowledge of this grouping has
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Figure 5

Explanation of logratio variance by the three LRs (these three LRs connect the five red FAs in Figure 2c) chosen stepwise. The
horizontal bar charts on the left show proportionally how much the three LRs explain the logratio variance of each of the parts (FAs),
shown as rows, as well as the unexplained variance in each case (gray). The FAs are listed in descending order of their logratio variances,
shown as percentages of the total logratio variance in the bar chart on the right. Abbreviations: FA, fatty acid; LR, pairwise logratio.
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(a) PCA of the three pairwise logratios that explain 90.9% of the total logratio variance of the 13-part fatty acid data set; 96.9% of the
variance of these three pairwise logratios (LRs) is explained by the two-dimensional solution, i.e., 0.969 × 0.909 = 0.881, or 88.1%, of
the total logratio variance. (b) Ward clustering of the samples based on these three LRs only, showing perfect clustering of the seasons.

not been taken into account in the analysis. The cluster analysis now perfectly coincides with the
three seasonal groups.

The variance explained by these three LRs is 90.9% of the total logratio variance. They in-
volve five parts, 16:0 , 16:1(n-7), 18:0 , 18:4(n-3), and 20:1(n-9), which could be used as a 5-part
subcomposition. Using the five CLRs of this subcomposition would explain 92.7% of the total
variance, 1.8 percentage points more. This is because the three LRs do not connect all five parts
of the subcomposition, shown in red in Figure 2c—one additional LR would be needed to make
an acyclic connected graph of the five parts. Any one connection linking them, e.g., the logratio of
16:0 relative to 16:1(n-7), will make the connection, resulting in the four LRs explaining 92.7%
of the logratio variance, the same as the five CLRs of the subcomposition.

Splitting the parts into two subcompositions, the 5-part one given above and the complemen-
tary 8-part one, gives variance explained by these two subcompositions as 94.7% and 86.1% re-
spectively (Figure 7a)—each of these subcompositions explains a substantial amount of variance
in common. This common part can be identified by again doing an RDA but first partialling
out the variance of either subcomposition and then seeing how much of the residual variance is
explained—it turns out that 81.1% of the variance is common to these two subcompositions. In
Figure 7b, the parts of total variance contained in the LRs of the two subcompositions are shown,
as well the parts of total variance in all the LRs that connect the two.

As a final comment to this section, the set of LRs chosen stepwise might not always be the ones
that an expert, in this case a biochemist, deems the most suitable for representing the composi-
tional data. In fact, at each step there are several candidate LRs for entering that are very close
to explaining the maximum variance, and one of these might be regarded as substantively more
interesting. In a collaboration between a biochemist and a statistician,Graeve &Greenacre (2020)
detail such an exercise on two FA data sets where the LR chosen at each step is either the optimal
one or a slightly suboptimal one that has more substantive meaning biochemically. This idea is
echoed in Section 6.2 when LRs are used as predictors of a response variable.
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(a) Percentages of variance explained by the two disjoint subcompositions, including the common part explained by both. The residual
variance of 0.3% would be explained by any pairwise logratio (LR) that connects the two subcompositions. (b) Percentages of variance
contained in the LRs of the two disjoint subcompositions, and the LRs between them. The percentage contained per LR is highest in
the subcomposition that optimally explains the total logratio variance.

6. MODELING WITH LOGRATIOS

In the previous section, individual LRs themselves were investigated as variables explaining the
set of all LRs, but there was no issue of interpretation of the effects of the chosen LRs—interest
was only in replacing the original data set with a reduced set of LRs that best represented the
original one. When it comes to using LRs of any type in actual models, some care is needed
in their interpretation, especially when the LRs are used as explanatory variables. Two cases are
distinguished here: compositional data as response variables and compositional data as explanatory
variables.

6.1. Logratios as Response Variables

A single LR, or several selected ones, or all of them, can form a set of response variables, mod-
eled in terms of some explanatory variables, which could be continuous or categorical. A simple
application is given by Faes et al. (2011) of modeling a single LR response. In the case of several,
or all, of the logratios as responses, an approach similar to that of Section 5 can be adopted: that
is, investigating which of the explanatory variables explain large and significant parts of the total
logratio variance, using RDA.

For example, in the FA data, the seasons could be considered a categorical variable that
explains logratio variance. An RDA of the complete set of CLRs, with the three dummy variables
for the seasons as explanatory variables, yields the result that a large part, 76.3%, of the total
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logratio variance is explained by the seasons. This is identical to the percentage of between-season
variance, so that the within-season variance is 23.7%. Restricted to the 5-part subcomposition
identified by the best three LRs (see Section 5), the seasonal variable explains an even higher
percentage of variance, 84.3%. By contrast, only 46.7% of the variance of the complementary
8-part subcomposition is explained by the seasons. Section 3 in the Supplemental Appendix,
titled Redundancy Analysis (RDA), provides more details about this result and an additional
graphical representation of the explained variances.

6.2. Logratios as Explanatory Variables

If LRs are considered as explanatory variables, then more care needs to be taken in the model
interpretation. Usually, LRs will be combined additively as explanatory variables in the model,
whether it be regression or any other generalized linear model. In regular regression modeling,
the effect size of an explanatory variable is judged by considering a unit increase while all other
explanatory variables are fixed.This approach can present difficulties in the special case of compo-
sitional data, with its unit sum constraint, since changing the values of any parts necessarily means
changes in some of the other parts.

Aitchison & Shen (1984) first proposed a regression relationship in terms of a log-contrast of
compositional parts, for example, for a response variable y and J parts:

y = a0 +
J∑
j=1

a j log(x j ) + e, where
J∑
j=1

a j = 0. 14.

Coenders & Pawlowsky-Glahn (2020) show how different types of explanatory logratios can
reduce to the log-contrast form above. For example, Equation 14 can be reparameterized as a
model with any set of ALRs, for example, the ALRs with respect to the last part xJ:

y = b0 +
J−1∑
j=1

b j log(x j/xJ ) + e, 15.

where aj = bj, j = 0, 1, . . . , J − 1 and aJ = −(b1 + b2 +· · · + bJ − 1).
In the Supplemental Appendix, further relationships between linear combinations of (J − 1)

independent logratios and the log-contrast form are given, using the concept of a logratio pattern
matrix, which is also useful in the back-transformation of logratios to the original compositional
parts.

The more important issue in practice is that of the interpretation of the regression coefficients
of a set of explanatory LRs in a model. To facilitate the expression of the effect sizes, Müller
et al. (2018) proposed using logarithms to the base 2 so that a unit increase in the logratio cor-
responds to a doubling of the ratio. Since a change in an LR affects the values of other LRs,
depending on the particular mix of explanatory LRs that are included, this can present difficulties
in interpreting the effect sizes.

As an illustration, the same FA data set described up to now includes another variable, total
lipids, in grams, denoted by y. This variable is regarded as a response variable and, after log-
transformation, is modeled as a function of selected LRs of the 13 FAs x1, x2, . . . , x13, choosing
the logratios in a stepwise fashion. The first LR selected, out of the pool of available 1

2 × 13 ×
12 = 78 logratios, is log (x8/x4), the log of 20:1(n-9)/18:0 , explaining 74.3% of the variance of
y. A second LR log (x7/x9) is then selected, the log of 18:4(n-3)/20:1(n-7), with an additional
9.0% variance explained, bringing the variance explained by the two logratios up to 83.3%. The
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regression equation, using logs to the base 2 throughout, and showing p-values, is:

E
(
log2(y)

) = −0.349 + 0.495 log2(x8/x4) + 0.323 log2(x7/x9). 16.

(p < 10−5) (p < 10−4)

The two LRs involve different compositional parts, so the interpretation is fairly straightfor-
ward. A unit increase in the LR log2(x8/x4), i.e., doubling the ratio, keeping log2(x7/x9) fixed,
implies an additive change in E

(
log2(y)

)
of 0.496—that is, a multiplicative change in the response

of 20.495 = 1.410, or a 41.0% increase. The doubling of (x8/x4) would have an effect on the other
parts (e.g., doubling x8 with respect to the same value of x4 would imply decreasing some of the
other parts), so keeping (x7/x9) fixed can mean either that x7 and x9 have not changed or that x7
is changing by the same factor as x9.

Notice that negative regression coefficients on the explanatory variables can always be made
positive, if preferred, by inversion of the ratios. For further details about the interpretation
of logratios as explanatory variables, readers are directed to Coenders & Pawlowsky-Glahn
(2020).

If an additional LR is added to the model to link {x8, x4} with {x7, x9} and thus form an acyclic
connected graph, for example log (x8/x7), the estimated model is:

E
(
log2(y)

) = −1.192 + 0.415 log2(x8/x4) + 0.656 log2(x7/x9) + 0.241 log2(x8/x7). 17.

The log-contrasts implied by Equations 16 and 17 are, respectively:

−0.495 log2(x4) + 0.323 log2(x7) + 0.495 log2(x8) − 0.323 log2(x9)

−0.415 log2(x4) + 0.416 log2(x7) + 0.655 log2(x8) − 0.656 log2(x9).

The latter log-contrast, corresponding to the model in Equation 17, would be the same if any set
of three independent LRs of the subset of variables {x4, x7, x8, x9} were used—also any set of three
independent ILR balances, or any of the 4! sets of PLRs, or any three of the four CLRs.

The log-contrasts above both suggest that the effect is concentrated in raising parts x7 and x8
while lowering x4 and x9, suggesting the ratio of the amalgamation of the former pair of parts
relative to the amalgamation of the latter pair. This simpler model, with just one logratio, is easier
to interpret but does reduce the explanatory power compared with the models represented by
Equations 16 and 17:

E
(
log2(y)

) = −0.704 + 0.909 log2

(
x7 + x8
x4 + x9

)
. 18.

Alternatively, the average of the two logratios as a single explanatory variable could be used:

E
(
log2(y)

) = −0.225 + 0.794
[(

log2

(
x8
x4

)
+ log2

(
x7
x9

))
/2
]

. 19.

The explanatory variable in Equation 19 is identical to the ILR balance of the parts {x8, x7} in the
numerator and {x4, x9} in the denominator—see Equation 6, which has a scaling factor of 1 in this
special case where |J1| = |J2| = 2.

In the same vein as the comment at the end of Section 5, a biochemist (M. Graeve, per-
sonal communication) was asked to intervene in the stepwise procedure, as an expert with do-
main knowledge of this data set. This exercise resulted in the second LR log2(x7/x9) being chosen
in the first step and a different LR chosen in the second step, log2(x12/x2), the log of the ratio
16:0/22:1(n-9). Even though this entailed a loss of 3.1% in explained variance, it gave a model
with a clearer biochemical interpretation. In this way domain knowledge can be combined with
statistical criteria to arrive at a meaningful final model.
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For large compositional data sets, when the above stepwise procedure is not viable, variable
selection can be achieved using penalized regression methods (see, for example, Shi et al. 2016,
Combettes & Müller 2019).

7. THE PROBLEM OF ZEROS

Up to now, the 13-part subcomposition of the original 40-part composition of FAs was used,
where each part had an average occurrence at least 0.01 (1%). In this subcomposition there were
no data zeros and hence no problem with the various logratio transformations. To analyze the
complete 40-part data set, including mainly rarer FAs, a decision has to be made about the 187
zeros in this 42 × 40 data set, which are about 11% of the data. In this case, the zeros are due to
values being below the detection limit and thus recorded as zero (Palarea-Albaladejo et al. 2007). A
pragmatic choice is to base the decision on an assumption of the probability distribution of values
near zero, for example, a triangular distribution from 0 to the smallest positive value xmin, which
gives an expected value equal to 2

3xmin (Martín-Fernández et al. 2003). There are many iterative
algorithms designed to substitute zeros, of various levels of sophistication (e.g.,Martín-Fernández
et al. 2012), summarized by Filzmoser et al. (2018, chapter 13).

The question is whether the particular method chosen makes any substantive difference to the
eventual results of the data analysis. Since the substituted values will be small numbers, engender-
ing large negative or positive logratios, the total logratio variance of the imputed matrices can be
assessed across the alternatives.More specifically, the change induced in the multivariate structure
of the data can be measured using the Procrustes correlation, since the distance structure of the
samples is fundamental to all the results obtained subsequently. The function protest in the R
package vegan (Oksanen et al. 2019) was used (Peres-Neto & Jackson 2001).

Table 3 shows some results for the simple 2
3xmin method as well as three alternative iterative

methods in the two R packages zCompositions (Palarea-Albaladejo & Martín-Fernández 2015)
and robCompositions (Templ et al. 2011). Some of the methods broke down owing to the two
FAs that had 40 and 39 zeros, respectively, out of the 42 samples, so these two parts were eliminated
for this exercise, leaving a 42 × 38 matrix with 108 zeros (6.8% of the data). The total logratio
variances are given down the diagonal, and off-diagonal are the Procrustes correlations between
the logratio configurations of the samples in multivariate space. The methods lrDA (logratio data
augmentation) and BDLs (below detection limits) engender large total logratio variances due to
the high number of very small imputed values close to zero (see Figure 8) creating large logratios

Table 3 Logratio variances (on-diagonal) of zero-substituted tables and Procrustes
correlations (off-diagonal) between their resultant multivariate structures

(2/3)mina lrDAb lrEMc BDLsd

(2/3)min 0.351 0.825 0.941 0.834
lrDA 0.825 0.799 0.851 0.798
lrEM 0.941 0.851 0.455 0.829
BDLs 0.834 0.798 0.829 0.819

a 2
3 times minimum positive values of the respective parts.

bLogratio data augmentation algorithm, function lrDA in R package zCompositions.
cLogratio expectation-maximization algorithm, function lrEM in R package zCompositions.
dStands for “below detection limits”; robust model-based procedure, function BDLsin R package robCompositions.
Two parts with 40 and 39 zeros (out of 42 samples) were removed for this exercise, as the three iterative methods failed to
impute them. A total of 108 zeros were substituted, plotted in Figure 8.
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Histograms of the 108 zero substitutions made by four different algorithms. Abbreviations: (2/3)min, 2
3 times minimum positive values

of the respective parts; BDLs, below detection limits; lrDA, logratio data augmentation; lrEM, logratio expectation-minimization.

in absolute value (for example, 29 values less than 0.001% are substituted by the BDLs method).
The highest concordance between the multivariate structures is between the simplest substitu-
tion method, (2/3)min, and the logratio expectation-minimization algorithm lrEM (Procrustes
correlation =0.941). Some correlations are quite low for this type of comparison, where the con-
figurations should bematched at a correlation of at least 0.9.Admittedly, these results apply only to
this particular example, but this nevertheless shows that the method of zero substitution can have
a strong effect on the structure of the compositional data set and influence its subsequent analysis.
Hence, a sensitivity analysis of the results of statistical analyses using more than one replacement
method is desirable.

8. WEIGHTING THE PARTS

When it comes to the joint analysis of compositional parts, a problem can arise that some parts
excessively dominate the solution.A case in point is given byGreenacre (2018, 2019) in the context
of an archaeometric data set of oxide compositions of Roman glass cups. Manganese oxide, the
rarest oxide in the data, has the highest component of logratio variance, due to large ratios created
between its small values. The relative error in the values of this oxide is extremely high and can
distort any multivariate analysis performed on these data, which was pointed out in the original
publication by Baxter et al. (1990).

Lewi (1976, 1986) realized the importance of weighting both the rows and the columns of a
table of activity spectra of drug compounds, and defined what he called spectral mapping. In his
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own words, Lewi (2005, p. 215) advocated weighting “to reduce the leverage of less important row
and column items.” Spectral mapping is the SVD of a double-centered matrix of log-transformed
data, just like Equation 13, but using weighted centering on both the rows and columns and using a
weighted SVD in the least-squares matrix approximation (Greenacre 2016a, 2018). The proposed
weights were the marginal sums of the table, divided by their totals, which are exactly the weights
used in correspondence analysis (CA) (Benzécri 1973, Greenacre 2016a) (see Section 9). Spectral
mapping can thus be called weighted LRA and is a useful alternative when one wants to reduce
the influence of rare parts that have high relative error (Mert et al. 2016). A compositional data
set, once closed, will have equal row margins, so only the parts would have differential weighting.
If different weights are required to be applied to the samples, for whatever reason, these can be
easily introduced as well.

All the definitions given before of total logratio variance and of logratio distance can be very
easily adapted to include this part weighting. For example, the logratio distance between samples
given in Equation 11 has a weighted form, the weighted logratio distance between samples, for
part weights c1, c2, . . . , cJ, all positive and with

∑
jcj = 1, as:

dii′ =
√∑∑

j< j′
c jc j′ (zi, j j′ − zi′ , j j′ )2 =

√∑
j
c j (yi j − yi j′ )2. 20.

The unweighted version in Equation 11 is then just a special case of this weighted definition, with
weights cj = 1/J for all j.

Notice that the CLRs yij also have to be computed with weights on the parts: That is, in
Equation 20, yi j = log(xi j ) −

∑
j′ c j′ log(xi j′ ). The weights can be based on the means of the part

values, as in spectral mapping, or on any prior knowledge about the relative errors of the parts.
Also, parts originally with many zeros can be downweighted to reduce the sensitivity of the anal-
ysis to zero substitution. As the weights tend to zero for some parts, the influence of these parts
diminishes and they become so-called supplementary, or passive, parts, using the concept from
CA.That is, parts with zero weight play no role in the dimension reduction but can still be related
to the solution afterward and visualized.

The issue of part weighting is similar to the problem of variable standardization. The Eu-
clidean distance is particularly sensitive to the range of the component parts, and it is a good
idea to investigate, for example, the variance–mean relationship in a data set before proceeding
with multivariate analysis. Here expert knowledge is key to making a decision whether weighting
should be introduced or not. When it comes to modeling, the issue is only important when the
logratios are regarded as responses, not when they are explanatory variables.

9. SUBCOMPOSITIONAL INCOHERENCE, CORRESPONDENCE
ANALYSIS, AND THE OMICS CHALLENGE

As a final section, alternative options that do not follow the ideal requirements of the logratio
approach are considered, since these requirements can become restrictive when it comes to an-
alyzing very large data sets, especially those emanating from microbiome and genetic research
(Li 2015). These data sets are almost always compositional (Gloor & Reid 2016, Gloor et al.
2017) and typically involve hundreds or thousands of parts, usually with 50–80% of the data being
zeros.

The underpinning principle of CoDA is that of subcompositional coherence, which recognizes
that any compositional data set is actually a subcomposition and could be extended by extra parts,
or certain parts could be excluded because of missing values or substantive considerations—in
these cases, the compositional data change, but the ratios between the parts do not. The question
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is whether this principle can be sacrificed to a measurably small extent in order to allow other
methods to be used—for example, methods that do not have the zero problem.

9.1. Subcompositional Incoherence in Assessing Data Structure

Seeing that the multivariate structure of the parts is defined by the distances between them,
Greenacre (2011b) considered several distance functions alternative to the logratio distance
and defined a measure of subcompositional incoherence, in the same spirit as one might assess
deviation from the ideal of normality, for example, or lack of model fit. This measure was based
on comparing the matrix of interpart distances D based on the full composition at hand, with
the matrix of interpart distancesD[2] based on 2-part subcompositions after closure. A measure of
stress S(D,D[2]), which is used in multidimensional scaling, was proposed, specifically the measure
called stress-1 (Borg & Groenen 2010):

S(D,D[2] ) =
√√√√∑∑

j< j′ (d j j′ − d[2] j j′ )2∑∑
j< j′ (d j j′ )2

. 21.

For the logratio distance, these two matrices are identical, coherence is perfect, and incoherence,
as measured by stress, is zero. For any other alternative distance measure between parts, however,
the 2-part subcomposition, after dropping all other parts and reclosing, gives different distances.
Clearly, the closed 2-part subcompositions are the worst case that an alternative distance measure
can be subjected to.Using the above approach, and using a 11-part data set, the Euclidean distance
used in PCA turned out to fare the worst, while the chi-square distance in CA (Greenacre 2016a,
Nenadić & Greenacre 2007) fared the best (Greenacre 2011b; see also Jackson 1997, where CA
is proposed as an alternative to the logratio approach).

This is no guarantee that this will be the same for other data sets, but there is a more
compelling reason why CA might be an acceptable alternative approach. It has been demon-
strated that, for strictly positive data, CA of power-transformed compositional data converges
to LRA as the power decreases and tends to 0. The result is due, first, to the fact that both
CA and LRA are SVDs of double-centered matrices, and second, to the Box-Cox transforma-
tion (for more details, see Greenacre 2009, 2010b; see also Stewart 2017). There are two ways
that the power transform can be applied: First, it can be applied to the original data, in which
case the convergence is to unweighted LRA (notice that the margins of the power-transformed
table tend to constants at the limit). Second, it can be applied to the contingency ratios, which
are the positive elements of the data matrix divided by their expected values using the row and
column margins, in which case the original row and column weights in CA are conserved. In this
latter case, weighted double-centering is used, and convergence is to Lewi’s spectral map. Thus,
for a compositional data set with constant row margins, the convergence is to weighted LRA,
remembering once again that this is only true for strictly positive data.

For a compositional data set with zeros, the convergence of the unweighted or weighted form
will start to break down as the power parameter descends to 0, but there could be a value of the
power when incoherence is minimized. For example, a typical sparse microbiome data set is now
considered, with hundreds of parts (bacteria) and more than 50% of the data values zero. The
question is: For such a data set, how can the logratio approach and its ideal of subcompositional
coherence be maintained?

Data set (bacterial counts in stool samples in a study on colorectal cancer). This data set (Baxter
et al. 2016) results from 16S rRNA gene sequencing of stool samples of 490 patients in a study of
colorectal cancer. A total of 335 bacterial operational taxonomic units (OTUs) were identified and

www.annualreviews.org • Compositional Data Analysis 291



Canonical
correspondence
analysis (CCA):
correspondence
analysis, using
chi-square distances,
with explanatory
variable constraints on
the solution

counted, and 58.7% of the data counts in the 490 × 335 matrix are zeros. The patients were classified
into three groups: adenoma (a benign form of the tumor), cancer, and normal. The data should be
regarded as compositional, since the total counts in each sample are not relevant. Several covariates
are available, but here only the disease classification (three categories as dummy variables) and age (a
continuous variable) are considered.

After applying a fourth-root transformation of the data to bring the analysis closer to an anal-
ysis of logratios, and then closing the data, CA is applied, with a constraint on the solution that
the dimensions be linearly related to the three dummy variables for disease and the variable age.
This version of CA, called canonical correspondence analysis (CCA), is one of the most popular
methods for analyzing sparse matrices of abundance data in ecology (ter Braak 1986).

The resultant ordination, shown in Figure 9, uses the contribution biplot scaling (Greenacre
2013), where the bacteria furthest out from the center have the highest contributions to the
dimensions—only the most important contributors are shown, omitting those that have minor
contributions. The horizontal dimension clearly separates the cancer group on the right, and the
top 10 contributors to this dimension can be identified as OTUs {260, 310, 105, 281, 264, 297, 057,
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Figure 9

Canonical correspondence analysis (CCA) of relative bacterial counts constrained by three disease categories and age. Three ellipses
labeled as A, N, and C are 99% confidence regions for the means of the three disease groups, adenoma, normal, and cancer.
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288, 298, 340}, with OTU 340 being the only one with negative value, i.e., it is low in the cancer
group. This list contains almost all of the OTUs identified as important by Baxter et al. (2016),
who used random forests to predict cancer. The 99% confidence ellipse (Greenacre 2016b) for
cancer is well separated from those for the adenoma and normal groups, which are overlapping.
The solution is actually three-dimensional, and the Supplemental Video shows that the confi-
dence ellipsoids of adenoma and normal in the 3D solution space do separate. The biplot axis of
the variable Age lines up the three groups with cancer projected onto it as the oldest and normal
as the youngest. This concords with the highly significant difference in age between the groups,
with the normal group on average 10 years younger than the cancer group (p < 10−12).

All the above interpretation makes substantive sense, but the problem from the CoDA view-
point is that CA, and its variant CCA, are not subcompositionally coherent. To study how inco-
herent the methods are, CA and CCA can be repeatedly performed for various subcompositions
of the OTUs of different sizes, comparing the chi-square distances between the OTUs in each
subcomposition with those in the full composition, using the stress measure in Equation 21. The
comparison is made in the full 334-dimensional space of the data (i.e., the CA space). Notice that
it makes no sense here to use 2-part subcompositions for such a large data set, where a worst-case
scenario might rather be something like a subcomposition of 10% of the OTUs, not just two of
them. Neither is it realistic to exclude OTUs with high frequencies, since in practice it is the rare
OTUs that might be excluded from or added to a given composition. Hence, the extraction of a
subcomposition should give a higher probability to the frequent parts being included.

The results of this exercise are given in Figure 10. For each percentage of the 335 parts, 100
subcompositions are selected at random, closed in each case, and then the interpart chi-square
distances are compared with their corresponding ones in the full composition. The compositional
data are not subject to any root transformation for this exercise. The stress-1 measure, often
expressed as a percentage, shows a low value (median stress = 6.0%) for subcompositions of
10% of the parts (i.e., omitting 90% of the parts), going down to near zero (median stress =
0.3%) for subcompositions of 90% of the parts (i.e., omitting 10% of the parts). It seems that,
at least in this example and using CA, the lack of subcompositional coherence is not a critical
issue.
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Figure 10

Subcompositional incoherence in the chi-square distances measured by stress: For each percentage of parts in the subcomposition, the
2.5% to 97.5% estimated quantiles are plotted, and the median is represented by the circle.
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9.2. Subcompositional Incoherence in Modeling

In a similar exercise, the probability of being a cancer patient was modeled in a logistic regression
as a function of the 10 highly contributing OTUs identified in the CA. The relative abundances
were square-root transformed,which is a regular transformation of proportional data.Two of these
OTUs turned out to be significant, OTU310 and OTU105, with the following linear regression
equation for the logit of probability p of cancer:

logit(p) = −1.67 + 6.92OTU3100.5 + 19.16OTU1050.5. 22.

(p = 0.0002) (p < 10−4)

Then 99 random subcompositions of 50% of the OTUs were generated, discarding 167 OTUs
each time and reclosing the subcomposition, with the condition that the above two OTUs were
always included. The logistic regression equation was re-estimated for each subcomposition of
the data, and Figure 11 shows how the regression coefficients varied as well as the associated p-
values. The variation of the regression coefficients as well as the p-values is relatively small. It is
clear that if any 50% subcomposition of the data were analyzed, the results would be essentially
the same as analyzing the full composition, with the regression coefficients varying well within the
confidence interval of the coefficients estimated in the full composition. As before, it seems that
the incoherence is low and does not affect the overall results of the modeling.
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Subcompositional incoherence in estimation of coefficients in logistic regression in random 50% subcompositions. (a) The regression
coefficients (overlapping dots), also showing the original estimated coefficients (wider horizontal lines) and the extent of the 95%
confidence interval for the original estimates in the full 335-part composition. (b) The p-values (overlapping dots), also showing the
original p-values (wider horizontal lines) when the two variables were in the full composition.
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SUMMARY POINTS

1. Compositional data are multivariate data for which the relative values are important, not
their absolute values. The components, or parts, constituting a compositional sample are
usually expressed as proportions summing to 1 or, equivalently, as percentages summing
to 100%.

2. The fundamental principle underlying compositional data analysis is that of subcompo-
sitional coherence: Relationships between parts should remain constant irrespective of
the other parts present in the composition.

3. Ratios of parts are subcompositionally coherent, and the basic transformation of com-
positional data is the logarithm of part ratios, or logratios. Once transformed, statistical
analysis, both univariate and multivariate, as well as statistical modeling, can proceed
very much as before, while taking into account the relationship between the logratios
and the original compositional values.

4. Important logratios, which effectively drive the multivariate structure of a compositional
data set, can be identified and interpreted, preferably in collaboration with a researcher
who has domain knowledge. Variable selection helps to simplify the interpretation of the
data structure.

5. Zeros in compositional data are a major issue: Various zero substitution strategies have
been proposed, and the impact of any one of these on the eventual results should be
investigated.

6. Since some parts can excessively dominate a data set due to high variance of the logratios
they engender, a differential weighting of the parts can be considered.

7. Other approaches that do not use logratios can be investigated, for example, in the anal-
ysis of large sparse data sets where the problem of zeros is acute. The deviation from
subcompositional coherence, i.e., incoherence, can be measured for the data set as a
whole by comparing interpart distances in the original compositional data set with their
distances in subcompositions of varying sizes.

8. Likewise, if the part values themselves are used as explanatory variables in a statistical
model, rather than their logratios, then the effects on the model can be quantified by
repeating the estimation procedure using various random subcompositions.

FUTURE ISSUES

1. Compositional data are ubiquitous, and there will be increasingly more applications
in the future, especially in the area of microbiome and genetic research. Practitioners
should be aware that these data constitute a special case in statistics and need careful
treatment.

2. For data sets with very many compositional parts, the issue of variable selection is of the
highest importance. Signal has to be separated from the high level of noise in these data
because of the high variability in such data as well as high measurement error.

3. Zeros in compositional data are the Achilles heel of the logratio approach. Present meth-
ods of zero substitution need to be critically examined and compared.When many zeros
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are substituted in an application, a sensitivity analysis should be obligatory. Other ways
of dealing with zeros that arise due to measuring instruments not being able to detect
very low values can be investigated, for example, using measurement error models.

4. Alternative approaches to using logratios can be investigated more widely, especially
those that admit data zeros, using the general idea of subcompositional incoherence to
measure deviation from the ideal approach using logratios.

5. The cases of ordered parts and parts that form natural hierarchies need to be investi-
gated. The use of amalgamated parts can be especially useful when groupings are pre-
determined based on domain knowledge and the research question.
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