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Abstract

This article considers simulation and analysis of incidence data using
stochastic compartmental models in well-mixed populations. Several sim-
ulation approaches are described and compared. Thereafter, we provide an
overview of likelihood estimation for stochastic models. We apply one such
method to a real-life outbreak data set and compare models assuming dif-
ferent kinds of stochasticity. We also give references for other publications
where detailed information on this topic can be found.
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1. INTRODUCTION

Compartmental epidemic models are an important tool for understanding the dynamics of the
spread of infectious diseases and hence provide quantitative support to public health decision
making (Hollingsworth 2009). These models assume that a population can be divided into com-
partments such that, at any given time, an individual belongs to only one of the compartments.
Ordinary differential equations are then used to describe how numbers of individuals in each
compartment evolve over time. An appealing feature of these models is that they capture the
epidemiological or biological mechanism of the disease so that their parameters have a natural
epidemiological or biological interpretation (Anderson & May 1992). In response to the public
health threat posed by infectious diseases, these models therefore provide a useful framework
with which to understand disease transmission processes as well as to interpret outbreak data and
inform public health policy (Brauer & Castillo-Chávez 2001, Hollingsworth 2009). They provide
conceptual results, such as reproduction numbers (average number of infections caused by an
infectious individual), the herd immunity threshold (population fraction to be immunized to
stop the infection from spreading in the entire population), the final size (number of individuals
who ultimately become infected during the entire period of the epidemic), and the future course
of the epidemic (Anderson & May 1992, Daley & Gani 2001, Chowell et al. 2009, Hens et al.
2012). These models have been used to study dynamics of many infectious disease outbreaks,
including the historical 1918 Spanish flu pandemic and the most recent coronavirus disease 2019
(COVID-19). The 1918 Spanish flu pandemic caused by H1N1 influenza A virus was cited as
the most severe pandemic in history. It is estimated that about 500 million people, or one-third
of the world’s population, became infected with this virus and had clinical illnesses. The number
of deaths was estimated to be at least 50 million worldwide. Its impact has not been limited to
1918–1919: Other influenza pandemics, such as H1N1/09, H2N2, and H3N2, have been caused
by descendants of the 1918 virus (Taubenberger & Morens 2006). In December 2019, a local
outbreak of COVID-19 was detected in Wuhan (Hubei, China). The outbreak later spread to
every province of mainland China as well as 188 other countries and regions, with more than
7 million confirmed cases and more than 400,000 deaths as of June 9, 2020 (Dong et al. 2020).

In this article, for illustrative purposes, we consider one example of a compartmental epidemic
model, the susceptible-infected-removed (SIR) model in a well-mixed population. This model
is important in infectious disease modeling because all compartmental epidemic models can be
thought of as extensions of the SIR model (Brauer & Castillo-Chávez 2001, Kypraios & Minin
2018). For example, in the context of Ebola virus disease, greater detail has been incorporated to
account for exposed cases, i.e., infected cases who are not yet infectious, leading to a susceptible-
exposed-infected-removed (SEIR) model. In the context of tuberculosis, for which immunity is
not lifelong, the SEIR model has been extended to include reinfections (Ozcaglar et al. 2012).
With or without modifications, this model has been widely used to study outbreaks of human-
to-human infectious diseases, such as influenza, tuberculosis, measles, and Ebola (see, e.g., Brauer
& Castillo-Chávez 2001, Lekone & Finkenstädt 2006, Hens et al. 2012, Ozcaglar et al. 2012,
King et al. 2015). Though we focus on a basic model applied to human-to-human infections,
compartmental models are more general and can be extended to incorporate, for instance, vector-
borne transmission for diseases such as malaria, where mosquitoes are the vectors (Mandal et al.
2011).

Compartmental models can be formulated as deterministic or stochastic. Deterministic com-
partmental epidemic models implicitly assume that individuals in the same compartment have the
same characteristics and therefore behave the same way. They do not account for the fact that dif-
ferent individuals in the population have different nutritional, environmental, or genetic statuses
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and may therefore have different epidemiological behaviors, making infectious disease spread a
random process (Anderson & May 1992, Daley & Gani 2001, Keeling & Rohani 2008). These
models are popular in the study of infectious diseases in large populations because randomness
due to individual-to-individual variability averages out, making the deterministic model a reason-
able approximation to describe observed data. However, for small populations, randomness has a
large impact on the transmission process, so deterministic models become unsuitable (Anderson
& May 1992, Daley & Gani 2001, Keeling & Rohani 2008). Also, in large populations, because
randomness can cause dramatic deviations from the deterministic model, average trajectories
obtained from a stochastic model may not always be adequately approximated by the deterministic
counterpart (Daley & Gani 2001). It is therefore well recognized that stochastic compartmental
epidemic models are important when studying infectious disease dynamics (Bailey 1955, Bartlett
1957, Daley & Gani 2001). From an estimation viewpoint, stochastic models enable quantifica-
tion of uncertainty for parameters estimated from disease outbreak data (Andersson & Britton
2000).

Simulation of stochastic models plays an important role in the modeling of infectious diseases
using compartmental models. It allows understanding of the qualitative behavior of models (e.g.,
sensitivity of solutions to different assumptions; see Ganyani et al. 2018, 2020). It also enables
the quantitative study of problems that are mathematically intractable—simulations are necessary
for detailed models that are difficult or impossible to solve analytically (Bartlett 1961, Brauer &
Castillo-Chávez 2001). Also, strategies to mitigate or delay the impact of future seasonal or pan-
demic outbreaks can be explored via simulation (see, e.g., Chao et al. 2010, Halloran et al. 2017,
Kaminsky et al. 2019). Moreover, analysis of simulated data can be used to evaluate the perfor-
mance of estimation algorithms as well as to investigate which model parameters or combinations
of parameters are estimable from data (see, e.g., Lekone & Finkenstädt 2006; King et al. 2015,
2016). From an estimation point of view, the ability to simulate from models comes in handy for
problems where the likelihood function is not tractable (King et al. 2016).

Statistical analysis of infectious disease data has been geared toward estimating model param-
eters from observed infectious disease data (Held et al. 2019); therefore, accurate estimation of
model parameters from data is of the utmost importance. Parameter estimation methods for
stochastic compartmental models usually rely on calculating the likelihood. Often, due to the
interplay of a proposed model and the observed data, the likelihood is intractable, leading to es-
timation challenges (O’Neill 2010). With the advent of modern computing power, the problem
of intractable likelihood has led to the continual development of statistical methodologies for pa-
rameter inference, such as Markov chain Monte Carlo (MCMC) methods, approximate Bayesian
computation (ABC) methods, and sequential Monte Carlo (see, e.g., O’Neill 2010, King et al.
2016, McKinley et al. 2018, and references therein).

This review provides an overview of basic ideas on data simulation and statistical analysis for
stochastic compartmental models. We omit technical details whenever they are not essential for
the discussion. The goal of the statistical analysis is not to compare different estimation methods
but to compare models with different levels of stochasticity. Using real outbreak data, we compare
stochastic and deterministic compartmental models with respect to parameter uncertainty; also,
we demonstrate the impact of accounting for overdispersion on model fit as well as on parameter
uncertainty.

2. DETERMINISTIC SUSCEPTIBLE-INFECTED-REMOVED MODEL

In a closed population with no births or deaths, a simplified version of the SIR model (Kermack &
McKendrick 1927) assumes that a population is divided into three compartments (Figure 1): S(t),
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Figure 1

Flowchart for the SIR (susceptible-infected-removed) model. β represents the rate at which individuals
come into effective contact per unit time, and α represents the rate at which infected individuals recover.

the number of susceptible individuals at time t; I(t), the number of infectious individuals at time t
who are capable of infecting susceptible individuals; and R(t), the number of recovered/removed
(immune or dead) individuals at time t. The population sizeM is given by S(t) + I(t) + R(t) = M.
The model postulates that initially, there is a single infective or a small number of infectives,
and they transmit infection to susceptibles during their infectious period; thereafter, an infected
person is infectious for a certain amount of time before recovering or dying.The disease continues
to spread in this manner until there are no more infectives.

Assuming that individuals within a population mix completely and move randomly (homoge-
neous mixing), the total number of possible contacts between susceptibles and infectives is given
by S(t)I(t) (a principle called mass action) (Heesterbeek 2005). In reality, not all contacts will lead
to infection; assuming that the rate at which individuals come into effective contact per unit time
is β (transmission rate), new infections (incidence) will occur at a rate of βS(t)I(t). It is common to
specify the incidence rate as βS(t)I(t)/M to reflect that the probability that a susceptible individual
encounters an infected individual is independent of population density (McCallum 2001). In con-
tinuous time, the SIR model is described by the following set of ordinary differential equations,
referred to hereafter as Model 1:

dS(t )
dt

=−βS(t )I(t )
M

dI(t )
dt

= βS(t )I(t )
M

− αI(t )

dR(t )
dt

=αI(t ), 1.

where 1/α is the average infectious period and t represents calendar time. A common initial con-
dition of Model 1 is S(0) = M − 1, I(0) = 1, and R(0) = 0. The basic reproduction number R0 is
given by β/α—if R0 < 1, then the epidemic will die out, while if R0 > 1, the epidemic can grow
(Diekmann et al. 1990).

In real life, epidemic data are always observed in discrete rather than continuous time (e.g.,
daily, weekly, monthly), and they reflect aggregated information between consecutive reporting
periods. A discrete approximation of Model 1 can be formulated as Model 2:

S(t + h)=S(t ) − βS(t )I(t )
M

h

I(t + h)= I(t ) + βS(t )I(t )
M

h− αI(t )h

R(t + h)=R(t ) + αI(t )h, 2.

where h > 0 represents the discrete time step. As h → 0, Model 2 approaches Model 1; therefore,
for sufficiently small h, the main features of Model 1 also hold for Model 2.
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3. THE GENERAL STOCHASTIC SUSCEPTIBLE-INFECTED-REMOVED
MODEL

Most stochastic models for compartmental epidemic models are Markov processes (Keeling &
Ross 2009). Markov processes are stochastic processes whereby the future state of the population
at time t+ 1 depends only on the current state at time t (see, e.g., Ross 2014). LetMI(t) andMR(t)
be Poisson processes that denote, at time t, the number of individuals who have been infected and
the number of individuals who have recovered, respectively. Following the work of Bartlett (1960),
the standard stochastic version of Model 1, also known as the general stochastic model, is defined
as a bivariate continuous-time Markov process (Markov jump process) {(S(t), I(t)): t ≥ 0}. For
h > 0, it is specified by the following infinitesimal increment probabilities, referred to hereafter
as Model 3:

P
(
�MI (t ) = 1|MI (t )

)
= βS(t )I(t )

M
h+ o(h)

P
(
�MR(t ) = 1|MR(t )

)
=αI(t )h+ o(h), 3.

where �Mi(t) = Mi(t + h) − Mi(t), i � (I, R) denotes increments of Mi(t) and o(h) tends to zero
in limit as h approaches zero. Thus, new infections and new recoveries occur at the points of
two nonhomogeneous Poisson processes with rates βS(t)I(t)/M and αI(t), respectively. A direct
consequence of assuming MI(t) and MR(t) are Poisson processes is that the amount of time until
the next individual gets infected as well as the amount of time until an infected person recovers
are exponentially distributed.

In ecological and epidemiological modeling, the nature of stochasticity represented by model
in Model 3 is usually referred to as demographic stochasticity—it represents unpredictable event
times due to, e.g., individual-to-individual differences in nutrition, environment, or genetic status.
Such effects average out in large populations, which essentially means that the role of this kind of
stochasticity diminishes with increasing population size (McKinley et al. 2018).

4. SIMULATION

4.1. Kolmogorov Forward Equations

From the stochastic model (Model 3), differential equations for the infinitesimal increment prob-
abilities can be derived. The equations, often known as forward Kolmogorov equations or master
equations, can be used for predicting future dynamics of the SIR model. Using a large set of deter-
ministic differential equations for the probability of being in each possible state (S, I), they provide
a complete description of behavior of the stochastic system (see, e.g., Keeling & Ross 2009). For
an SIR model the master equations are given by

dpS,I (t )
dt

= pS+1,I−1(t )
(

β

M
(S+ 1)(I − 1)

)
+ pS,I+1(t ) (α(I + 1)) − pS,I (t )

(
β

M
SI + αI

)
, 4.

where pS, I(t) is the probability of having, at time t, S susceptibles and I infectives. The master
equations are computationally feasible for sufficiently small populations because computational
time increases proportionally to the number of states or even faster (there are as many pS, Is
as there are states). For a SIR model, the number of possible states that the process can be is
(1/2)(M + 1)(M + 2); the number of states grows like 1/k !Mk, where k is the number of possible
compartments that an individual can be in (see Keeling & Ross 2009, Allen 2017 and references
therein). Moreover, for models with multiple compartments (see Section 1), it is often difficult to
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find closed form solutions for the infinitesimal increment probabilities (Equation 4) (Allen 2017).
For large populations stochastic simulation is handy. A commonly used stochastic simulation
algorithm (SSA) for Markovian models is the Gillespie algorithm (Gillespie 1977). The algorithm
simulates an exact stochastic version of the trajectory that would be obtained by solving the
corresponding master equations.

4.2. The Gillespie Stochastic Simulation Algorithm

The algorithm assumes that in a well-mixed population of a fixed size, at a given time, an individual
belongs to one of k compartments; changes in numbers of individuals in each compartment are a
result of reactions between interacting compartments. In the context of the three-compartment
SIR model, the algorithm proceeds in two steps:

1. Simulate time at which the next event will occur; in this case an event refers to themovement
of one individual either from S to I or from I to R. The time Z until the next event occurs
follows an exponential distribution with a rate equal to the sum of the rates over all possible
events (in this case two events are possible, i.e., movement from S to I and I to R). Denoting
c1 = βS(t)I(t)/N and c2 = αI(t) (note there are as many cs as there are reactions), Z is dis-
tributed as:

gZ (z) =
(

2∑
i=1

ci

)
exp

(
−z

2∑
i=1

ci

)
. 5.

2. When the event time has been simulated, next simulate which event occurs. Event rates ci
are converted into probabilities; one of the events is then selected at random according to:

P(Event = v) = cv∑2
i=1 ci

. 6.

Using these distributions, the algorithm proceeds as follows:

(a) Set initial population numbers.
(b) Calculate c1 and c2.
(c) Simulate time to next event from Equation 5.
(d) Simulate which event occurs from Equation 6.
(e) Update the population sizes in line with the event that occurred.
( f ) Update the time and return to step b.

Since a single simulation is insufficient to represent the average behavior of the process, many
replicates are required to obtain a representative picture.

The drawback of the Gillespie SSA is that it requires a great amount of computation time
if the number of individuals in at least one compartment is large—transition rates change with
each jump of the process, which happens very often. Several approximate procedures, known as
τ -leap methods, have been proposed to improve computational speed with acceptable losses of
accuracy.The principle behind thesemethods is that if the time axis can be divided into contiguous
small subintervals such that we can determine, in each subinterval, the number of movements of a
given type, then we can do without the exact time at which the movements occurred. Substantial
computational speed can be gained by leaping along the time axis from one subinterval to the next
instead of moving from one event to the next (Gillespie 2001). Accuracy is achieved for small τ

(leap condition) (Gillespie 2001, Pineda-Krch 2008,Wilkinson 2018).
In the so-called Poisson τ -leap method, it is assumed that for each given type of event, the

number of events occurring in a small subinterval independently follows a Poisson distribution.
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The number of events of a given type is simulated independently, and then numbers of individuals
in each compartment are updated accordingly. The algorithm proceeds as follows, for a fixed time
step τ :

(a) Set initial population numbers.
(b) Calculate c1 and c2.
(c) Simulate the number of events of each type from Po(c1τ ) and Po(c2τ ).
(d) Update the population sizes in line with the events that occurred.
(e) Update the time to t + τ and return to step b.

A disadvantage of this method is that numbers of individuals in the compartments may become
negative due to unboundedness of Poisson random variables; the binomial distribution can be used
to remedy this problem (Pineda-Krch 2008). Another disadvantage is that a particular τ may not
yield similar accuracy along the entire time axis. A remedy to this problem is to allow τ to vary
along the time axis in such a way that at each time step, a trade-off is made between accuracy and
speed (Gillespie 2001, Wilkinson 2018).

4.3. Stochastic Differential Equations

Another way to incorporate stochasticity in compartmental models is via stochastic differential
equations (SDEs). SDEs are used to model systems of continuous variables (states) that fluctuate
in continuous time due to randomness, where randomness might be due to random coefficients
or dependence on a stochastic force (Fuchs 2013). An SDE of a continuous process Y is usually of
the form

dY (t ) = μ
(
Y (t )

)
dt + �

(
Y (t )

)
dW (t ), 7.

where μ is the deterministic component and W is the random component (diffusion process)
intensified by �. In practice, it is common to approximate Markov jump processes (Equation 3)
by Markov processes such as diffusion processes, which have continuous state space and almost
surely continuous sample paths. The justification is that jump sizes in the Markov jump processes
are infinitesimally small, such that the discontinuities in the trajectory of the process can be fairly
approximated by continuous curves (Fuchs 2013, Wilkinson 2018). The SDEs for the SIR are
given by

dS(t )=−(βS(t )I(t )/M)dt −
√

βS(t )I(t )/MdW1(t )

dI(t )= (βS(t )I(t )/M − αI(t )
)
dt +

√
βS(t )I(t )/MdW1(t ) −

√
αI(t )dW2(t )

dR(t )= αI(t )dt +
√

αI(t )dW2(t ), 8.

where W(t) = (W1(t), W2(t))T is a vector of two independent standard Wiener processes, i.e.,
Wi ∼ N(0, t) or dWi ∼ N(0, dt) [see derivations in Allen (2017)]. The choice of the normal distri-
bution in this case preserves the Markov property.

However, analytical solutions are often difficult to obtain. When solutions are not obtainable,
simulating the SDE at discrete time points is straightforward since the random components are
simply normally distributed. Numerical procedures are typically used to approximate the solu-
tion on a regular grid of points; a popular, simple procedure is the Euler-Maruyama approxima-
tion (Fuchs 2013). The approximation proceeds on a regular grid t0, t0 + �, t0 + 2�, . . . , tn as
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Table 1 Time required to simulate the stochastic SIR model (Model 3) using the Gillespie
SSA and Poisson τ-leap (τ = 1/1,000) approaches

M
Time to perform simulation (s)

Gillespie SSA Gillespie τ-leap
10,000 33.17 32.60
100,000 66.39 67.14
500,000 1,405.01 65.99
750,000 3,218.06 77.70
1,000,000 5,456.66 64.13

Simulations are performed using the R package GillespieSSA on a 3.1 GHz PC.M is the population size, as defined in
Section 2. Abbreviations: PC, personal computer; SIR, susceptible-infected-removed; SSA, stochastic simulation algorithm.

follows:

�S(t )=−(βS(t )I(t )/M)�t −
√

βS(t )I(t )/M�W1(t )

�I(t )= (βS(t )I(t )/M − αI(t )
)
�t +

√
βS(t )I(t )/M�W1(t ) −

√
αI(t )�W2(t )

�R(t )= αI(t )�t +
√

αI(t )�W2(t ), 9.

where �Wi (∼N(0, �t)) is finite and sufficiently small.

4.4. Comparison of Simulation Procedures

Table 1 shows the computational time required to simulate one realization of the stochastic
SIR model for different population sizes using the Gillespie SSA and the Poisson τ -leap method
(τ = 1/1,000). Simulations are performed using the R package GillespieSSA. Computational
time for SDE is not included for two reasons. First, the Euler-Maruyama method used to simulate
SDEs is closely related to τ -leaping approaches; hence, it is expected that computational time for
SDEs would be similar to that for τ -leaping approaches. Second, simulation methods for SDEs
are not implemented in the R package GillespieSSA; though it is straightforward to program
SDEs in R, a neat comparison can be made when both τ -leaping and Euler-Maruyama methods
are coded in a similar format.

For the Gillespie SSA, computational time is high and increases rapidly with increasing pop-
ulation size. In contrast, for τ -leaping, there is huge gain in computation speed; moreover, com-
putational time does not increase for larger population sizes (Keeling & Rohani 2008).

Table 2 shows, for epidemics simulated using the Gillespie SSA, Poisson τ -leap (τ = 1/1,000)
and SDE (� = 1/1,000), a descriptive summary of peak time (amount of time from epidemic onset

Table 2 Descriptive summary of peak time, peak incidence, epidemic duration, and final size for epidemics simulated
using the Gillespie SSA, Poisson τ-leap (τ = 1/1,000), and SDE (� = 1/1,000)

Simulation procedure
2.5%, 50%, and 97.5% percentiles

Peak time (days) Peak incidence Epidemic duration (days) Final size
Gillespie SSA (43, 50, 64) (3,054, 3,197, 3,358) (114, 129, 150) (72,500, 73,246, 73,875)
Gillespie τ -leap (43, 51, 67) (3,055, 3,193, 3,350) (119, 137, 165) (72,537, 73,224, 73,993)
SDE (53, 54, 54) (3,153, 3159, 3,165) (144, 145, 147) (73,223, 73,244, 73,268)
True values 54 3,159 145 73,244

Abbreviations: SDE, stochastic differential equation; SSA, stochastic simulation algorithm.
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to peak), peak incidence (number of cases at the peak of the epidemic), epidemic duration (amount
of time from epidemic onset until every infective is recovered), and final size. Also shown are
the true values obtained from the deterministic model. Initial conditions are specified as follows:
S(0) = M − 1, I(0) = 1, and R(0) = 0 with M = 100,000; R0 = 1.8 is chosen similar to R0 for
influenza (Coburn et al. 2009) with a recovery rate α = 1/4.1 days (Chowell et al. 2007) corre-
sponding to a transmission rate of β = αR0. For each method, 650 epidemics were simulated.

As expected, summary statistics for the Gillespie SSA and the τ -leap approaches are in the
same ranges since the τ -leap algorithm approximates the Gillespie SSA well for small τ (Gillespie
2001, Pineda-Krch 2008). Summaries for these two are also fairly close to the true values; this is
also expected since demographic stochasticity averages out in large populations. Summaries for
SDE are very close to the true values because the noise term is very small, i.e., ∼N(0, 1/1,000);
moreover, the noise is smoothed out in large populations. If the noise term is very large, it can
obscure the deterministic component, resulting in a pure random walk (Section 5.2). For small
population sizes, stochasticity can have a greater effect. Notably, for the Gillespie methods,
peak time and epidemic duration, and hence peak incidence and final size, are more variable
compared with SDE. This is due to the manner in which stochasticity is incorporated—it plays
a role at epidemic take off, i.e., some simulated epidemics will take off slower or faster than the
deterministic model. Moreover, the Gillespie methods aim at simulating all possible behavior of
the stochastic model (Section 4.1). In SDE, stochasticity causes variations about the deterministic
component.

5. ESTIMATION

Infectious disease outbreak data are typically available as time series of newly reported cases ag-
gregated over some time period, usually daily or weekly. Statistical analysis typically focuses on
inferring parameters from these data via likelihood-based inference. On the one hand, the recov-
ery rate and other epidemiological parameters are typically measured directly from appropriate
studies, such as laboratory experiments or surveys of infected individuals in a population. On the
other hand, the transmission rate, which combines many biological, social and environmental fac-
tors, is often inferred from time series of case counts (Anderson & May 1992).

Parameter inference in stochastic compartmental models is often complicated by data incom-
pleteness. Only partial information about the disease dynamics is observed. The underlying dis-
ease transmission process is continuous in time, but the exact moments at which events occur are
never observed—recorded data are an aggregation of events that occurred between consecutive
reporting periods, with the exact time of occurrence for each event unknown. Also, it is often
the case that data on at least one compartment are unobserved. Data incompleteness presents an
estimation problem when performing likelihood-based inference as it leads to an intractable like-
lihood (Lekone & Finkenstädt 2006, O’Neill 2010). In this section we first introduce the partially
observed Markov process (POMP) modeling framework (following King et al. 2018), which is a
practical way to connect a postulated dynamic epidemic model with observed data. Next, we dis-
cuss overdispersion, whose role is important in the statistical analysis of infectious disease data
(Bretó 2018, Bretó et al. 2009). Thereafter, we provide an overview of the key aspects regarding
likelihood-based inference.

5.1. Relating Models to Data: The Partially Observed Markov Process Model

Let Ytn denote observed incidence counts at discrete times t1 < t2 < ��� < tN. The observed
counts are modeled as noisy and incomplete observations of a Markov state process {Xt, t ≥ t0},
which can be either discrete or continuous (Section 2). In this case, {Xt, t ≥ t0} represents the
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Figure 2

Illustration of a POMP model: Ytn denotes observed incidence data at discrete time points connected to the
continuous state process Xt at that time point. Adapted with permission from King et al. (2018).
Abbreviation: POMP, partially observed Markov process.

incidence trajectory obtained from the SIR model (process model) which can be either determin-
istic (Section 2) or stochastic (Section 3). A state process {Xt} is Markovian if, given the current
value of the process, the history of the process is uninformative about the future of the process,
i.e., P(Xn|Xn − 1, . . . , X0) = P(Xn|Xn − 1). Thus, a POMP model consists of two components: an
unobserved continuous time process model, which describes the dynamics of disease spread at
the population level, and a measurement model, which describes how dataYtn collected at discrete
time points {t1, . . . , tN} are connected to the process model via the state process {Xt, t ≥ t0}
(Figure 2). The measurement model is specified by a distributional assumption; for count data, a
natural choice is the Poisson model. Stochasticity implied by a distributional assumption is often
referred to as observational or measurement noise. It represents data recording uncertainties,
e.g., incomplete reporting of cases or misdiagnosis (Coulson et al. 2004, Keeling & Rohani 2008).

At any given time tn, the measurements Ytn depend on Xn. Also, conditional on Xn, the distri-
bution of Ytn is independent of all other variables. Figure 3a shows {Xt, t ≥ t0}, and Figure 3b
shows observations Ytn simulated via a Poisson measurement model with conditional mean equal
to Xn. A population of sizeM = 5,000 is assumed; initial conditions and parameters are specified
as in Section 4.4. We use a Gillespie τ -leap algorithm (τ = 1/100).

5.2. Overdispersion

So far the nature of stochasticity considered is demographic (Section 3) and observational
(Section 5.1). Another variation of stochasticity is environmental stochasticity. This type of
stochasticity can affect all individuals equally or can be independent of population levels—its role
overtakes that of demographic stochasticity in large populations (Bretó 2018). Examples of factors
that contribute to environmental stochasticity include external unpredictable events (Keeling &
Rohani 2008) (e.g., temperature, rainfall, or humidity) and individual variation (e.g., variability
in contacts between infectives and susceptibles, superspreaders). These factors translate into
fluctuations in the transmission parameter, a concept that can be related to overdispersion of the
Poisson distribution (Bretó 2018, Bretó et al. 2009). As in generalized linear models, failure to
account for overdispersion may lead to severe underestimation of standard errors (Bretó et al.
2009). Environmental stochasticity is typically modeled by randomizing the transmission rate
with white noise. One way to incorporate it in the SIR model is to multiply the transmission rate
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(a) Deterministic state process. (b) Observations simulated at discrete time points (orange dots) via a Poisson measurement model with
mean given by values of the deterministic state process at the corresponding time points. (c) Five realizations of the stochastic state
process. (d) For each realization of the stochastic state process, observations simulated at discrete time points (orange dots) via a Poisson
measurement model with mean given by values of the stochastic state process at the corresponding time points. Abbreviation: SIR,
susceptible-infected-removed.

by a Lévy white noise process ξ t, which fluctuates around one. In Bretó et al. (2009), the process ξ t

is chosen to be d�(t )
dt where marginally, �(t + h) − �(t) ∼ Gamma(h/σ 2, σ 2). The parameter σ 2 is

known as the infinitesimal variance parameter; it specifies the intensity of the increments of �(t).
In order to separate environmental stochasticity from possibly overdispersed observational

stochasticity, it is common to specify for the measurement model a distribution that accounts
for overdispersion. Failure to do so, or failure to include measurement process overdispersion in
the estimates of environmental stochasticity, can lead to biased estimates of key model parame-
ters and may also mask the structure of the underlying process model (see, e.g., Nadeem et al.
2016). As such, accounting for overdispersion associated with the measurement process can fa-
cilitate distinguishing observational stochasticity from all other sources of variability (Fujiwara &
Takada 2001, Nadeem et al. 2016, Bretó 2018). To allow for extra variability in the measurement
model it is common to specify a distribution which allows variability to be greater than the Poisson
mean. A typical choice is the negative binomial distribution, but other choices are possible, e.g.,
the Poisson-lognormal model or the Poisson–inverse Gaussian.
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5.3. Maximum Likelihood Inference

Maximum likelihood inference is the standard inference approach in the statistical literature owing
to its useful statistical properties, including consistency and asymptotic efficiency (see, e.g., Mood
et al. 1950). The rationale behind this inference approach is to find values in the parameter space
for which observed data are most likely under the proposed model. Following King et al. (2018),
we provide an overview of the likelihood methodology for estimating parameters governing the
POMP model.

The joint density of the state and measurement processes is given by:

f
(
x0:N , y1:N ; 


) = f
(
x0; 


) N∏
n=1

f
(
yn|xn; 


)
f
(
xn|xn−1;


)
, 10.

where x0: N = (x0, x1, . . . , xN), y1: N = (y1, y2, . . . , yN), 
 is the parameter vector, f (xn|xn − 1; 
) is
the transition density, f (yn|xn; 
) is the measurement density, and f (x0; 
) is the initial density.

5.3.1. Inference for deterministic state process. When the state process {Xt} is determinis-
tic, noise is confined to the observation process; as such, inference closely resembles nonlinear
regression (Bretó et al. 2009, King et al. 2018). Assuming that the initial values of the model are
given, {Xt} is nonrandom and the likelihood function (Equation 11) is given by

L(
) =
N∏
n=1

f
(
yn|xn; 


)
. 11.

Here, since the measurement density is known, the likelihood can be easily evaluated given the
value of the state process Xt at each time point tn. The maximum likelihood estimate 
̂ can be
obtained by optimizing L or simply logL via a non-Bayesian approach using standard numerical
methods or via Bayesian MCMC approaches.

5.3.2. Inference for stochastic state process. When the state process is stochastic, the likeli-
hood function is given by the following high-dimensional integral:

L(
)= f (y1:N ;
)

=
∫
x0:N

f
(
x0; 


) N∏
n=1

f
(
yn|xn; 


)
f
(
xn|xn−1; 


)
dx0:N . 12.

The likelihood function (Equation 12) is a high-dimensional integral that cannot be solved
analytically except in simple cases—its dimensionality depends on numbers of compartments
and observations. In the statistical literature, data augmentation via Bayesian MCMC is popular
for parameter estimation in situations of an intractable likelihood (Van Dyk & Meng 2001).
The rationale behind data augmentation is to make the likelihood tractable through introducing
parameters that represent the unobserved data; the joint posterior distribution of parameters
and augmented data is then explored via MCMC sampling (see, e.g., Gibson & Renshaw 1998,
2001; O’Neill & Roberts 1999; Lekone & Finkenstädt 2006). In principle, data augmentation
via Bayesian MCMC is applicable to a model assuming stochastic state processes (Section 3). All
unobserved state variables {Xt, t ≥ t0} can be treated as augmented data; however, doing so results
in a large state space that can lead to slow convergence when using standard MCMC algorithms.
Moreover, MCMC algorithms can quickly become computationally infeasible because designing
and implementing efficient algorithms for high-dimensional problems characterized by strong
dependencies between states and parameters are both methodologically and computationally
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challenging (Fasiolo et al. 2016,McKinley et al. 2018). Considering a discrete state process whose
time step is equal to the reporting interval simplifies the problem at the expense of accuracy
(Lekone & Finkenstädt 2006, Li et al. 2018).

Statistical methods for POMPmodels fall under two main classes: state space and information
reduction. State space methods work on the unobserved state process {Xt, t ≥ t0} to estimate both
the model parameters and the state process itself—one example is sequential Monte Carlo. In con-
trast, information reduction methods perform inference without having to calculate the likelihood
of the observed data—one example is ABC.

5.3.3. Sequential Monte Carlo. Monte Carlo methods simulate the unobserved model state
process and therefore make likelihood evaluation possible. The likelihood function (Equation 12)
can be rewritten as:

L(
)=
∫
x0:N

N∏
n=1

f
(
yn|xn; 


)
f
(
x0;


)
f
(
xn|xn−1; 


)
dx0:N

=
∫
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N∏
n=1

f
(
yn|xn; 


)
f
(
x0:N ; θ

)
dx0:N

=E

[ N∏
n=1

f
(
yn|Xn;


)]
, 13.

where the expectation is taken with respect to X0: N ∼ f (x0: N; θ ). By the law of large numbers, the
expectation can be approximated by the average:

L(
) ≈ 1
J

J∑
j=1

N∏
n=1

f
(
yn|X j

n ;

)
, 14.

where {X j
0:N , j = 1, 2, . . . , J} is a Monte Carlo sample of size J drawn from f (x0: N; θ ). Thus, given

simulated trajectories {X j
0:N , j = 1, 2, . . . , J}, a Monte Carlo estimate of the likelihood can be ob-

tained by evaluating the measurement density of the data at each trajectory and then taking the
average (King et al. 2018). However, this approach is inefficient as it is unconditional on the data
y1: N—simulated trajectories that diverge from the data will make a negligible contribution to the
likelihood estimate, and a large number of trajectories will be needed to obtain a precise likelihood
estimate useful for estimation.

As an alternative, sequential Monte Carlo directs simulated trajectories of the state pro-
cess toward values which are consistent with observed measurements. The likelihood function
(Equation 12) can be rewritten as:

L(
)= f
(
y1:N ,


)
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n=1

f
(
yn|y1:n−1
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=
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, 16.

www.annualreviews.org • Stochastic Compartmental Epidemic Models 81



where the expectation is now taken with respect to the conditional distribution Xn|Y1: n − 1 ∼
f (xn|y1: n − 1; 
), with the understanding that f (x1|y1: 0) = f (x1). As before, by the law of large num-
bers, the likelihood can be approximated by the average:

L(
) ≈
N∏
n=1

1
J

J∑
j=1

f
(
yn|X j

n ; 

)
, 17.

where X j
n is drawn from f (xn|y1: n − 1; 
). On the basis of the Monte Carlo likelihood estimate,

standard optimization methods (e.g., the Nelder-Mead algorithm) can be applied to obtain pa-
rameter estimates. However, as the likelihood estimate is variable, standard optimizers may be
susceptible to convergence problems since they converge to local maxima (Eberhard et al. 1999).
Stochastic optimization methods, e.g., iterated filtering (Ionides et al. 2006), offer a way to per-
form a global optimization. In iterated filtering, unknown parameters are included in the state
process as time varying and are treated as if they follow a random walk with E

(

t |
t−1

) = 
t−1

and Var(
t|
t − 1) = φ2. As the sequential iterations progress, the intensity of the random walk is
successively reduced (limit φ → 0), and the algorithm converges toward the maximum likelihood
estimate; more details are provided by Ionides et al. (2006). Iterated filtering has been success-
fully tested on a variety of complex epidemiological models, some of which are computationally
intractable for available Bayesian methods (Fasiolo et al. 2016). This method is less computation-
ally intensive than its comparable alternatives and has the potential to yield more precise results
(Fasiolo et al. 2016, Bretó 2018). The method can be easily implemented in the R package pomp
(King et al. 2016).

5.3.4. Approximate Bayesian computation. In ABC, the goal is to approximate the posterior
density P (
|yn ),

P(
|yn
)∝L(
)P (
)

∝
N∏
n=1

f
(
yn|y1:n−1

)P (
)

∝
N∏
n=1

∫
f
(
yn|xn; 


)
f
(
xn|y1:n−1; 


)
dxn P (
), 18.

where P (
) is the prior distribution of the model parameters. The procedure proceeds as fol-
lows (see, e.g., Csilléry et al. 2010, King et al. 2016, Kypraios et al. 2017, McKinley et al. 2018,
Beaumont 2019). Simulate a candidate vector of parameters 
∗ from P (
). Next, simulate y j1:N
from fy1:N (.;
). Transform observed data y1: N and simulated data y j1:N into summary statistics z0

and zj, respectively. Using a suitably chosen distance measure d, accept 
∗ when y1: N and simu-
lated y j1:N are sufficiently close, i.e., if d(zj, z0) ≤ ε where ε ≥ 0; otherwise reject it. The output
of the algorithm is an estimate of the posterior density P (
|z0); for an appropriate d and small
ε, P (
|z0) provides a good approximation for P (
|yn ). The choice of summary statistics and dis-
tance measures is a subject of active research (for the main issues and challenges, see Csilléry et al.
2010, King et al. 2016, Kypraios et al. 2017, McKinley et al. 2018, Beaumont 2019). One ABC
approach is implemented in the R package pomp (King et al. 2016).

ABC and sequential Monte Carlo are examples of estimation approaches from a range of ap-
proaches that have been developed to perform parameter inference when the likelihood is in-
tractable. Other examples include particle MCMC, synthetic likelihood, nonlinear forecasting,
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and trajectory matching. These methods are described and their applications are demonstrated by
King et al. (2016), Kypraios et al. (2017), and McKinley et al. (2018); their weakness and strengths
are studied by Fasiolo et al. (2016) and King et al. (2016).

6. REAL DATA EXAMPLE: 1918 INFLUENZA PANDEMIC
IN SAN FRANCISCO

The city of San Francisco (in Northern California, United States) was significantly affected by the
1918 influenza pandemic. At that time the city had a population of approximately 550,000, and
28,310 infected cases were recorded over a period of 63 days between September and November
(Chowell et al. 2007).We use this data set to compare estimates obtained from different transmis-
sionmodels incorporating varying levels of stochasticity.Models considered are (a) a deterministic
SIR model, (b) a stochastic SIR model, and (c) a stochastic SIR model incorporating environmen-
tal stochasticity; each of these models is fitted with Poisson and negative binomial measurement
models. We do not assert that the SIR model is fully adequate for this data set. Several under-
lying assumptions of this model could be at odds with the data, e.g., it does not account for the
latent period; also, the mass action principle may be an oversimplification because in practice,
within a population, an individual has a finite number of contacts that are not necessarily random.
Nevertheless, we use the model for illustration purposes.

We estimate the transmission rate β and use it to compute R0; the removal rate is taken to be
1/4.1 days (Chowell et al. 2007). Where applicable, we also estimate the dispersion parameter of
the negative binomial measurement model or the infinitesimal standard deviation of the trans-
mission model (Section 5.2). We consider these models on a discrete scale (h = 0.01). For the
stochastic models, a τ -leap algorithm is used for simulating the underlying transmission model
(τ = 0.01). The models are fitted to the first 28 data points of the ascending phase using sequen-
tial Monte Carlo for evaluating the likelihood and iterated filtering for optimizing the likelihood
function. We use the Akaike information criterion (AIC) to compare the different models; in the
analysis of outbreak data, this model comparison tool has been found to perform well in detecting
potential misspecification in the transmissionmodel (Stocks et al. 2020).The AIC is calculated as

AIC = −2 logL
(


)+ 2p, 19.

where p is the dimension of 
. It acts as a penalized log-likelihood criterion, providing a trade-off
between a good fit (high value of log-likelihood) and complexity (models with larger p are
penalized more than those with smaller p). Among a set of candidate models, the best model is
the one with the smallest AIC (Claeskens & Hjort 2008). A general rule of thumb is that models
that differ in AIC by more than two units are generally considered to differ in terms of fit.

Table 3 shows parameter estimates, 95% confidence intervals, AIC values, and computation
time for six different models fitted to the data set. In terms of goodness of fit, for all three trans-
mission models, a negative binomial measurement model provides a better fit than a Poisson mea-
surement model. All the three models assuming a negative binomial measurement model yield a
similar fit to these data (see also Figure 4). Estimates of β and R0 are all within the same range
for all six models.

For each measurement model, the greater the level of stochasticity in the transmission model,
the wider the confidence intervals (deterministic SIR < stochastic SIR < stochastic SIR model
incorporating environmental stochasticity), which is expected when the data suggest the presence
of overdispersion (θ 	= 0 and σ 	= 0) (see, e.g., Ganyani et al. 2020). This indicates that determin-
istic models have the potential pitfall of underestimating uncertainty associated with parameter
estimates and, consequently, the key epidemiological parameters calculated using them. As such,
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Table 3 Parameter estimates, 95% confidence intervals, AIC values, and computation time

Transmission
model

Estimate (95% confidence interval)
AIC Time (s)β R0 θ σ

Deterministic
SIR

0.494 (0.492, 0.496) 2.026 (2.019, 2.034) NA NA 442.380 250

0.495 (0.491, 0.500) 2.029 (2.011, 2.048) 0.034 (0.011, 0.063) NA 313.147 259

Stochastic SIR 0.477 (0.422, 0.501) 1.955 (1.730, 2.053) NA NA 337.622 2,716

0.494 (0.451, 0.519) 2.024 (1.849, 2.128) 0.022 (0.002, 0.064) NA 317.611 2,840

Stochastic SIR∗ 0.461 (0.399, 0.499) 1.889 (1.638, 2.045) NA 0.162 (0.015, 0.241) 393.726 6,107

0.494 (0.439, 0.532) 2.026 (1.801, 2.181) 0.001 (0.0003, 0.071) 0.117 (0.003, 0.154) 317.204 7,234

The models were fitted on a 3.1 GHz PC with four cores. For all three transmission models, a Poisson NB measurement model was used. θ denotes the
dispersion parameter of the NB measurement model (θ = 0 � Poisson model). σ represents environmental stochasticity (Section 5.2). Stochastic SIR∗

represents the stochastic SIR model incorporating environmental stochasticity. Abbreviations: AIC, Akaike information criterion; NA, not applicable; NB,
negative binomial; PC, personal computer; SIR, susceptible-infected-removed.

stochastic models should be preferred over deterministic models, as they offer improved account-
ing for variability in the data and improved quantification of uncertainty. Moreover, stochastic
terms that account for environmental stochasticity can, to some extent, compensate for model
misspecification resulting in even greater uncertainty (King et al. 2015).
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Comparison of observed data (red) and fitted models (blue). Abbreviations: NB, negative binomial; SIR, susceptible-infected-removed;
stochastic SIR∗, stochastic SIR model incorporating environmental stochasticity.
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7. DISCUSSION AND CONCLUSIONS

The goal of this article is to give an overview of basic concepts behind simulation and statisti-
cal analysis of infectious disease outbreaks using stochastic compartmental models in well-mixed
populations. Data simulation is important for studying qualitative and quantitative features of
compartmental models. It also facilitates likelihood estimation in cases where the likelihood has
no closed form (King et al. 2016). Moreover, simulated data can be used for testing the perfor-
mance of estimation methods as well as investigating the estimability of parameters from available
data (see, e.g., Ganyani et al. 2018, 2020). In terms of estimation, we show that, compared with
deterministic models, stochastic models offer an opportunity to better quantify uncertainty of
parameter estimates.We also show that, when data suggest the presence of overdispersion, incor-
porating overdispersion in the transmission model or the measurement model can improve model
fit and yield less optimistic parameter estimates (see, e.g., King et al. 2015, Ganyani et al. 2020,
Stocks et al. 2020).

The SIR model used throughout this article assumes a well-mixed population. This assump-
tion implies that an infective is equally likely to infect any susceptible in the whole population
and that all infectives have the same number of contacts. In reality, an individual only has contact
with a small fraction of the whole population. Network models relax the well-mixed assumption
by assigning to each individual in the population a finite set of contacts (links) (Newman 2002).
In the network, individuals in the population are represented by vertices, and links are repre-
sented by edges. Infection can be transmitted via an edge—for each edge between an infective
and a susceptible, it is assumed that there is a probability that an infection will be transmitted.
The network approach can be integrated into the class of compartmental models (see, e.g., Brauer
& Castillo-Chávez 2001, Newman 2002). Though network-based compartmental models can be
formulated, simulation and analysis of the resulting models depend on the network specification,
i.e., different networks will lead to different qualitative behavior of the model trajectory as well as
different quantitative features of the model (peak time, peak incidence, duration of epidemic, and
final size) (see, e.g., Keeling & Eames 2005). Instead of assuming that the population being mod-
eled is homogeneous and describing a disease system only with variables representing the state of
the whole system, agent-based models (ABMs), also known as individual-based models, capture
interactions and behavior at the individual level by representing how individuals and the environ-
mental variables that affect them vary over space, time, or other dimensions. In ABMs, individuals
are explicitly assumed to be unique and autonomous. Individuals are usually assumed to be differ-
ent from each other with respect to characteristics such as age, gender, health status, or behavior.
Autonomy means that individuals act independently of each other and pursue their own objec-
tives. Epidemiological ABMs mainly consist of four components: disease, society, transportation,
and the environment. All four components are to be modeled when formulating an ABM (typi-
cally jointly). Modeling the disease involves describing how the infectious disease is transmitted
between individuals and how the disease progresses in an infected agent. Modeling the society
involves simulating the population. Modeling transportation concerns how the individuals will
move within the environment. Modeling the environment involves creating the space in which
the individuals will interact. An advantage of ABMs is that they allow for more flexibility and a
large amount of freedom in the model structure; a disadvantage is that they are computationally
intensive and may require long running time (see, e.g., Railsback & Grimm 2011, Hunter et al.
2017).

On fitting models to data, we sidestepped parameter identifiability, which is an important
issue from an estimation point of view. Compartmental model parameters are typically difficult
to identify due to inherent model nonlinearities—if parameters are not well identified, epidemio-
logical and biological questions that these models seek to address may not be addressable because
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parameter estimates will be unreliable (Raue et al. 2009). As such, a fundamental prerequisite
for parameter estimation is investigation of structural and practical identifiability. The former
concerns studying which parameters are functionally related in such a way that they cannot be
uniquely determined under noise-free conditions. The latter concerns studying how well param-
eters can be determined by the quantity and quality of data together with the estimation method
used. Few data are typically available during the early stages of a disease outbreak; issues that may
affect the quality of data include underreporting and reporting delays (see, e.g., Held et al. 2019).
On the one hand, a parameter that is structurally identifiable can be practically nonidentifiable;
on the other hand, if a parameter is structurally nonidentifiable, it is practically nonidentifiable
as well. Structural identifiability can be recognized when large parameter variations yield small
changes in model output; practical identifiability can be recognized when confidence intervals
are not too wide (see Raue et al. 2009, Chowell 2017, Tuncer & Le 2018, and references therein).

In closing, stochastic modeling of infectious diseases, an area which encompasses simulation
and analysis, is a subject of enormous research. An important caveat of this article is that it is by
no means exhaustive; nevertheless, we attempt to provide a useful background on the essentials of
simulation and analysis of stochastic compartmental models.
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