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Abstract

After cell entry, human immunodeficiency virus type 1 (HIV-1) replication
involves reverse transcription of the RNA genome, nuclear import of the
subviral complex without nuclear envelope breakdown, and integration of
the viral complementary DNA into the host genome. Here, we discuss re-
cent evidence indicating that completion of reverse transcription and viral
genome uncoating occur in the nucleus rather than in the cytoplasm, as pre-
viously thought, and suggest a testable model for nuclear import and uncoat-
ing. Multiple recent studies indicated that the cone-shaped capsid, which
encases the genome and replication proteins, not only serves as a reaction
container for reverse transcription and as a shield from innate immune sen-
sors but also may constitute the elusive HIV-1 nuclear import factor. Rup-
ture of the capsid may be triggered in the nucleus by completion of reverse
transcription, by yet-unknown nuclear factors, or by physical damage, and it
appears to occur in close temporal and spatial association with the integra-
tion process.
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1. INTRODUCTION

Human immunodeficiency virus type 1 (HIV-1) is an enveloped retrovirus containing two plus-
strand RNA molecules inside the cone-shaped mature capsid together with the viral replication
enzymes. Once the virus enters a cell by fusion with the cell membrane, genome replication com-
mences inside the capsid by reverse transcription of the RNA genome into a double-stranded
DNA (dsDNA), also termed complementary or copy DNA (cDNA), which eventually integrates
into host chromatin, leading to permanent infection of the cell and its daughter cells. Reverse
transcription is catalyzed by the virally encoded reverse transcriptase (RT) as part of the reverse
transcription complex (RTC). Integration of the viral cDNA is mediated by the viral integrase
(IN) as part of the preintegration complex (PIC). HIV-1—in contrast to some other retroviruses—
productively infects nondividing cells. Thus, a subviral complex comprising the genome must ac-
cess the nucleus without nuclear envelope breakdown, but the composition of this complex is not
yet fully defined. For integration to occur, the capsid needs to be shed in a process termed uncoat-
ing, but the timing and mechanism of uncoating and the role of the capsid in early replication have
been debated (1-6). Until very recently, completion of reverse transcription and uncoating were
believed to occur in the cytosol. In this review, we focus on recent evidence indicating nuclear un-
coating and completion of cDNA synthesis. For details on the mechanism of reverse transcription,
we refer the reader to other comprehensive reviews (7, 8).

The mature HIV-1 capsid is composed of ~250 hexamers and 12 pentamers of the viral capsid
protein (CA), arranged into a fullerene cone (9, 10) (Figure 14). Seven pentamers at the wide
end and five at the narrow end induce curvature and enable closure of the structure (11, 12)
(Figure 1a). The capsid contains at least three conserved interfaces that mediate interaction with
host cell factors (Figure 15-e): (7) a hydrophobic binding cleft encompassing neighboring CA sub-
units within a hexamer (Figure 1b,d,e), (if) the R18 pore at the center of the hexamer (Figure 15.c),
and (7i) a cyclophilin A (CypA)-binding loop on each CA subunit (Figure 154,d). Furthermore, the
restriction factor tripartite motif 5o (TRIM5a) can form a large secondary hexagonal lattice on
the capsid. Binding of TRIMS5a with its SPRY domain to the capsid lattice spanning six CA hex-
amers leads to proteasomal degradation (13-15). CypA binding to the capsid can prevent TRIMS5a
restriction (16).

The past 30 years have seen a constant evolution of our perspective regarding HIV-1 capsid
integrity and uncoating. This started in the 1990s with pioneering experiments by Haseltine and
Fassati, who biochemically characterized HIV-1 RTC/PIC isolated from infected cells (17-20)
(Section 2), and proceeded with labeling of subviral complexes by Hope and colleagues in the early
2000s (21-23) (Section 3) to recent studies applying advanced microscopic methods (Section 4).
In this review, we attempt to reconcile the data of earlier reports with today’s insights and propose
models regarding nuclear import, completion of reverse transcription, and uncoating of the viral
genome.

2. HISTORICAL PERSPECTIVE ON CYTOSOLIC COMPONENTS
OF THE REVERSE TRANSCRIPTION COMPLEX/PREINTEGRATION
COMPLEX AND SEARCH FOR THE NUCLEAR IMPORT FACTOR

Initial attempts to define the composition of HIV-1 RT'C/PIC focused on biochemically isolated
subviral complexes (17-20). Viral cDNA extracted from the cytosol of newly infected cells was
found to be associated with IN, and these complexes were competent for integration in vitro (18).
Neither CA nor RT was detected in the complexes by immunoblotting (18), but association with
RT activity indicated the presence of this enzyme (19). The observation that functional RT'C, bio-
chemically isolated from the cytosol of infected cells, lacked CA suggested that uncoating occurs
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Figure 1

Structure and interaction interfaces of the HIV-1 capsid. (#) Complete model of the mature HIV-1 capsid, encompassing ~250 CA
hexamers (b/ue) and 12 CA pentamers (red). The model was built from cryo-electron microscopy density maps of hexameric and
pentameric units: EMD-3465 (12). HIV-1 capsid cone model courtesy of Simone Mattei. (b) Top view of the hexameric CA assembly
(PDB: 5mcx) (12) highlighting conserved interaction interfaces. Orange indicates the central R18 pore (CA residues 5-29); purple
indicates the hydrophobic cleft (residues 50-80 of one CA subunit and residues 160-190 of a neighboring CA subunit); and green
indicates the CypA-binding loop (residues 88-96). Surrounding hexamers are colored in blue, and a single CA monomer is visualized in
a darker shade. (¢) The central R18 pore in complex with IP6 (top panel; PDB: 6bhs) (150) and dATP (bottom panel; PDB: Shgm) (75).
The transparent surface and ribbon representation of residues 5-29 are colored in yellow. The positively charged R18 residues, IP6 and
dATP are rendered in stick representation (C atoms, gray; O, red; P, orange; N, blue). (d) Side view of the hexameric CA assembly shown
in panel 4. The white box indicates the part of the hydrophobic binding cleft shown in panel e. (¢) Structures of CA binding regions of
Sec24C (left, green; PDB: 6pul) (113), Nupl53 (middle, green; PDB: 4u0c) (107), and CPSF6 (right, green; PDB: 4u0a) (107) in complex
with the CA hexamer. The hydrophobic binding cleft is colored in purple and rendered in transparent surface representation with
underlying ribbon visualization of the secondary structure. CA residues N57, N74, and A77, directly involved in host factor binding
(66, 81, 95, 103), are rendered in stick representation. Abbreviations: CA, capsid protein; CPSF6, cleavage and polyadenylation
specificity factor 6; CypA, cyclophilin A, dATP, deoxyadenosine triphosphate; HIV-1, human immunodeficiency virus type 1; IP6,
inositol hexakisphosphate; NPC, nuclear pore complex; Nup153, nucleoporin 153; PDB, Protein Data Bank.

early after virus entry and prior to reverse transcription; this was supported by the observation that
HIV-1 capsids immediately disintegrate upon detergent stripping of the lipid membrane of com-
plete virions (24-26). On the contrary, studies demonstrating that certain point mutations in CA
affected reverse transcription, and—yvice versa—that blocking reverse transcription impaired un-
coating, argued for a temporal and functional connection between these processes (27-33). These
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findings supported a model of delayed uncoating, either gradually during cytosolic trafficking of
subviral complexes or directly before nuclear entry. A pioneering study employed correlative light
and electron microscopy (CLEM) to visualize actively reverse transcribing complexes from the cy-
tosol of infected cells. It revealed large complexes trafficking along microtubules, but their exact
structure and composition could not be determined (21). Transport of the capsid through intact
nuclear pores was not considered at the time because its size exceeded the assumed limit of the
nuclear pore complex (NPC) channel.

A key issue addressed in many studies was the nature of the nuclear import mechanism for
the HIV-1 RT'C/PIC. These analyses mostly relied on quantitation of 2-long terminal repeat
(LTR) circles, a dead-end product that results from circularization of full-length HIV-1 cDNA
via the non-homologous end joining pathway in the nucleus (34), as surrogate readout of nuclear
import. Canonical nuclear import requires a karyophilic, or nuclear localization, signal (NLS)
(35). Potential NLSs were identified within the HIV-1 MA (matrix) protein (36-38) and the bona
fide RT'C/PIC components IN (39) and Vpr (40, 41). Because some of these proteins display
predominantly nuclear localization when expressed alone and outside of the viral context (42),
they were discussed as potential nuclear import factors of the RT'C/PIC. Other studies suggested a
critical role for the DNA flap, a structural intermediate of reverse transcription, in HIV-1 nuclear
import (43, 44). However, further studies did not support an essential role for either of these
hypothetical import factors (45-50). A comprehensive analysis found neither of these components
alone, nor a combination thereof, to be required for HIV-1 nuclear import; only deletion of the
flap resulted in some delay in 2-LI'TR circle formation (51). The search for a nuclear import factor
of the HIV-1 RTC/PIC was further expanded to host cell proteins, and it was suggested that the
canonical import factor Importin 7 (52) as well as transfer RNA (tRNA) (53) and Transportin 3
(54) played a role. The contribution of Transportin 3 to nuclear entry of HIV-1 subviral complexes
was subsequently disputed as well (55). In summary, these studies did not yield a conclusive model
for the nuclear import of HIV-1 replication complexes and did not identify an essential import
signal or import factor.

3. THE QUEST FOR THE SITE OF CAPSID UNCOATING

More sophisticated uncoating assays later indicated that the viral capsid may be retained, at least
for some time, on the cytoplasmic subviral particle and suggested a role of capsids in early repli-
cation. The fate of capsid assay (56, 57) involved ultracentrifugation of post-entry cell extracts
through a dense sucrose layer to separate pelletable CA associated with viral nucleoprotein com-
plexes from free CA, and suggested the presence of CA-associated subviral complexes inside the
cytosol. The cyclosporine A (CsA) washout assay employed cells expressing the chimeric restric-
tion factor Trim-Cyp (58), which specifically binds the HIV-1 capsid through the CA Cyp-binding
loop and targets it for proteasomal degradation. Controlled induction of Trim-Cyp restriction by
washout of the competing compound CsA revealed a time-dependent loss of sensitivity against
capsid-targeted restriction, indicating gradual uncoating in the cytosol (57, 59).

While these results suggested the presence of capsid-encased subviral complexes in the cytosol
of infected cells, most early electron microscopy (EM) studies, including our own, readily de-
tected complete virions inside endosomes but failed to detect cone-shaped capsids in the cytosol.
However, visualization of rare structures in the vast electron-dense cytosolic environment is very
difficult to achieve. The first study applying CLEM to identify subviral structures by EM (21) re-
lied on extraction of cytoskeletal structures and scanning EM (SEM), substantially limiting spatial
and structural resolution; this study did not provide evidence for cytosolic capsids. Another SEM
study detected capsid-shaped objects associated with the nuclear envelope (60) but employed
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an extraction procedure that could have led to deposition of plasma membrane-associated and
endosomal material on the nuclear envelope. Subsequent technological advances enabled the
application of CLEM analysis in infected cells (61). One study (61) reported a small number of
capsid-shaped objects in the cytosol, but only for a variant carrying a capsid-stabilizing mutation
in CA, further illustrating the difficulty of visualizing the capsid on entering subviral structures.
The large proportion of nonproductive (endosomal) cell-associated virus particles that need to
be distinguished from cytosolic post-fusion intermediates further confounds such analyses.

Mamede etal. (27) developed a fluorescence microscopy-based assay to correlate the integrity
of the incoming capsid with subsequent productive infection of the respective cell. To this end,
green fluorescent protein (GFP) was incorporated into the virion as an internal fluid-phase marker,
and cells were infected at a low multiplicity of infection to ensure that individual cells underwent
only a single entry event that could be correlated with subsequent productive infection. These
authors observed a two-step loss of the GFP marker, which was interpreted as (#) fusion and loss
of CA not incorporated into the capsid and (#) subsequent uncoating of the capsid lattice with
loss of internal GFP; only cells undergoing this two-phase loss of GFP were later found to be
productively infected (27). However, Li et al. (62) revisited this question using the same approach
but reported that capsid integrity remained largely intact in the cytosol.

Early capsid disintegration in the cytosol cannot easily be reconciled with the findings that
(@) CAis critical for HIV-1 for infection of nondividing cells (63, 64), (b)) some CA mutants display
defects in post-entry steps (65-67), and (¢) CA-host factor binding affects early viral replication
(68, 69). Rather, these observations indicate that at least part of CA is retained during cytoplasmic
trafficking, potentially until nuclear import. This conclusion was supported by the discovery that
the capsid can protect the viral genome from innate immune detection by cytosolic DNA sensors
(70-72). Even partial disintegration of the capsid, as indicated by loss of the fluid phase GFP
marker, should allow cytosolic DNA sensors access to the viral nucleic acid. However, this was not
observed unless the capsid was pharmacologically permeabilized (72).

As discussed above, the observation that isolated HIV-1 particles in vitro immediately lose their
capsid upon stripping the viral membrane strongly suggested rapid cytosolic uncoating. Strikingly,
however, isolated HIV-1 capsids were later found to be stable in the presence of the metabolite
inositol hexakisphosphate (IP6), transforming their half-life from minutes to many hours (73, 74).
IP6 binds to a prominent pore in the center of the CA hexamer lined by six positively charged
arginine (R18) residues contacting each other (Figure 1c). It has been suggested that this pore
allows import of deoxynucleoside triphosphates (AINTPs) into the capsid, thereby promoting re-
verse transcription (75, 76) (Figure 1c¢). Molecular dynamics simulations indicated that coop-
erative binding of multiple dN'TPs to the central pore may translocate them into the core (77).
Interestingly, Huang et al. (78) identified a host protein, FEZ1, that binds to the R18 pore via neg-
atively charged glutamate residues potentially competing with dNTPs and IP6. FEZ1 is a kinesin
adapter and can mediate capsid transport on microtubules (79). It is tempting to speculate that
FEZ1, or another R18 pore binding protein, might regulate the degree of reverse transcription
(Section 6).

The high sensitivity of HIV-1 CA to mutations (80) impairs functional fluorescent CA label-
ing. Most analyses of CA content of subviral particles therefore relied on antibody detection by
immunofluorescence. Ideally, these studies would allow distinction of cytosolic from (nonproduc-
tive) endosomal structures and should identify subviral complexes undergoing productive reverse
transcription. Many recent studies showed a clear colocalization of strong CA signals with cytoso-
lic subviral particles identified by fluorescent replication proteins (33, 60, 70, 81-88). Metaboli-
cally labeling the newly synthesized cDNA indicated that actively reverse transcribing post-fusion
cores also exhibit a strong CA signal with a similar intensity as virion-associated bona fide capsids
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(81, 82). Direct support for retention of the capsid on cytoplasmic subviral HIV-1 particles came
from a recent CLEM study in the T cell line SupT1-R5. Cytoplasmic structures identified by a
fluorescent IN fusion clearly revealed the typical cone-shaped capsid of HIV-1 with the electron-
dense viral nucleoprotein complex inside (89). This was observed independent of cytosolic local-
ization, including in direct vicinity to nuclear pores. Taken together, these data provided strong
evidence that most of the CA content, as well as the shape of the capsid shell, is retained on cy-
tosolic subviral HIV-1 complexes, indicating that the ill-defined cytoplasmic RT'C is in fact the
intact viral capsid, at least until reaching the nuclear pore.

In conclusion, the HIV-1 capsid is a metastable structure stabilized by the high IP6 concentra-
tion (10-100 wM) in the cytosol (73). The capsid thus appears to provide the enclosed space sup-
porting reverse transcription by concentrating dNTPs, preventing loss of replication factors, and
facilitating strand transfer and recombination events while protecting the genome from degrada-
tion and immune sensing. Providing the interface for interaction with host cell factors, the capsid
also mediates cytosolic transport processes along microtubules (90, 91).

The results discussed so far argue against immediate or delayed uncoating of subviral cytosolic
complexes. Given that the width of the capsid (~60 nm at the broad end) is larger than the reported
diameter of the central channel of isolated NPCs [~43 nm (92)], the most likely location for
uncoating would be directly at the nuclear pore. Uncoating of the capsid at the nuclear pore
was indeed reported for other viruses with nuclear genome replication, including adenovirus and
herpes simplex virus (93). Recent reports suggested that HIV-1 subviral particles also lose their CA
content upon nuclear pore entry. This conclusion was mainly based on indirect detection of the
capsid by a fluorescent fusion of the CA-binding host protein CypA. These experiments revealed
strong labeling of cytosolic subviral complexes by the CypA fusion with loss of the fluorescent
signal at the nuclear pore, suggesting uncoating at this site (86, 94). Given that CA detection was
indirect, however, an alternative interpretation would be CypA displacement from CA, especially
considering that the CA-binding nucleoporin (Nup) Nup358 also contains a Cyp domain, which
may compete for binding to the Cyp-binding loop in CA (see Section 5).

Immunofluorescence studies from many laboratories reported the complete or largely com-
plete absence of CA from subviral HIV-1 complexes inside the nucleus in most cell types (29,
82, 83), suggesting uncoating to be associated with nuclear entry. Some cell type-dependent dif-
ferences were reported regarding the presence of nuclear CA. No or very weak CA signals were
detected on nuclear complexes in T cell lines (83), while HeLa-based cells showed low but vary-
ing amounts of nuclear CA (29, 82, 95). This was different in monocyte-derived macrophages
(MDMs), where we (81-83) and others (96-98) detected strong nuclear CA signals approaching
the signal intensity of the bona fide HIV-1 capsid stained in parallel. These results argued for cell
type—dependent differences in nuclear import and uncoating and suggested that capsid-derived
structures retaining much of the CA content may enter the nucleus without nuclear envelope
breakdown, at least in MDM.

4. RECENT EVIDENCE FOR NUCLEAR ENTRY OF CAPSID-LIKE
STRUCTURES

4.1. Nuclear HIV-1 Subviral Complexes Largely Retain the CA Content
of the Incoming Capsid

Recent studies from several groups employing immunofluorescence with different extraction pro-
tocols (81, 95-97, 99), incorporation of labeled CA into the capsid (62, 85, 100), and CLEM of
subviral complexes at different subcellular localizations (89, 99, 100) suggested that capsid-encased
complexes can indeed enter the nucleus without prior uncoating in all cell types analyzed. The
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strongest evidence against nuclear capsids or capsid-derived structures with high CA content came
from (#) immunofluorescence studies described in the previous section and (b) the dimensions of
the HIV-1 capsid exceeding the reported size limit of the nuclear pore. New evidence challenged
these prior conclusions and is discussed in this and the following section.

Lack of antibody detection of nuclear CA may be caused not only by disassembly of the cap-
sid but also by loss of or shielding of antigenic epitopes. Interestingly, studies detecting a strong
CA signal on nuclear HIV-1 complexes generally applied harsh extraction conditions or partial
digestion prior to antibody detection. Chin et al. (95) subjected their samples to partial protease di-
gestion prior to antibody detection and observed CA on nuclear complexes. Furthermore, the click
reaction for detection of 5-ethynyl-2’-deoxyuridine (EdU)-labeled HIV-1 DNA requires copper
catalysis, which strongly extracts cells (101). This technique was mostly applied in nondividing
MDM and also yielded clear nuclear CA signals (81-83, 96-98, 102). Thus, weak and apparently
cell type-dependent nuclear CA signals could be caused by inaccessibility of antigenic epitopes
during standard immunofluorescence analyses rather than by loss of the capsid shell.

This conclusion was supported by experiments addressing the nuclear host protein cleavage
and polyadenylation specificity factor 6 (CPSF6), which specifically binds the hexameric CA lat-
tice (99). Nuclear HIV-1 complexes were found to be strongly decorated with CPSF6 (81, 83, 95,
103, 104), and cytoplasmic expression of truncated or mutated CPSF6 blocked HIV-1 prior to
nuclear import of the replication complex (105). Given the specificity of CPSF6 for the assem-
bled capsid lattice, these results indicated CA-dependent recruitment of CPSF6 to an—at least
partially—assembled CA lattice on nuclear subviral complexes. CPSF6 binding to the HIV-1 sub-
viral complex can be abolished by mutations in CA targeting the CPSF6 binding site (81, 83, 95,
103, 104) (Figure 1e) or by the small molecule inhibitor PF74 (99), competitively binding the
same hydrophobic pocket (106-108) and displacing CPSF6 (99). Treatment of infected cells with
PF74 after nuclear entry of the subviral complex reconstituted immunodetection of CA with sig-
nals similar to bona fide capsids, directly showing that lack of immunodetection of CA on nuclear
HIV-1 complexes was due to epitope shielding by CPSF6 (99). Accordingly, Dharan et al. (109)
employed a system to transiently block passage of the subviral complex through nuclear pores and
observed that PF74 retained anti-HIV-1 activity even after reverting the import block. Further-
more, biochemical analysis of fractionated cell extracts corroborated the existence of an at least
partially intact CA lattice inside the nucleus (110).

Similar conclusions were derived from studies with directly labeled CA variants. Burdick et al.
(85) used a GFP-labeled CA variant that gives rise to infectious HIV-1 when complemented with
an excess of wild-type CA. These authors observed fluorescent subviral particles approaching the
nuclear envelope and entering the nucleus, with clear detection of nuclear signals for the GFP-CA
fusion until shortly before integration (85). Importantly, they also provided direct evidence that
these nuclear complexes gave rise to productive infection of the respective cell and thus constituted
functional HIV-1 replication complexes. Engineering an HIV-1 variant carrying a click-labeled
non-natural amino acid in CA by genetic code expansion allowed a more quantitative analysis of
the CA content of HIV-1 complexes at different subcellular localizations (100). Strong CA signals
similar to those of bona fide capsids were detected in the nucleus of HeLa-based and T cell lines as
well as in primary CD4" T cells, even at conditions where CA was undetectable by antibody stain-
ing (100). Thus, CA remains associated with nuclear HIV-1 subviral complexes in all cell types
analyzed, and the reported variable results were probably due to epitope shielding by host proteins.
While the described results clearly indicated that CA is largely retained on nuclear HIV-1 com-
plexes, they do not provide information on whether this represents a regular HIV-1 capsid lattice,
a remodeled capsid-like structure, or remaining CA hexamers (stabilized by, for example, CPSF6
binding). Addressing this question requires ultrastructural analysis of the respective complexes.
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4.2. Nuclear Pores Are Sufficiently Large to Accommodate Morphologically
Intact HIV-1 Capsids

Recent CLEM and electron tomography (ET) analysis of high-pressure frozen and freeze-
substituted Sup-T1 T cells infected with HIV-1 revealed cone-shaped capsids comprising
electron-dense nucleoprotein adjacent to the nuclear envelope and partially entering nuclear pores
with their narrow ends first (89) (Figure 2). Morphologically intact capsids were also observed
deep inside intact nuclear pores, with the octameric NPC assembly surrounding the viral capsid
in the central channel (89). The presence of apparently intact capsids inside nuclear pores was
confirmed by focused ion beam (FIB) milling and cryo-electron tomography (cryo-ET) of native
flash-frozen cells (89). Sub-tomogram averaging revealed that the regular capsid lattice was at least
partially retained. A full lattice could not be detected, but the dense cellular environment did not
allow achievement of the same high resolution as for the isolated mature virion.

Capsid-related structures were also detected inside the nucleus of infected cells using CLEM
and ET (89, 99, 100). They sometimes closely resembled intact conical capsids with electron-
dense nucleoprotein inside, while others appeared broken and often tubular and had lost the

Nucleus e Nucleic acid
complexes

\I(

Cytosol

s

Capsids

Host genome
Provirus SPADs

Nuclear
. speckle

Chromatin
loops

Figure 2

Post-entry steps of HIV-1 early replication. After cytosolic entry, reverse transcription of the HIV-1 RNA genome into cDNA

is initiated within the protected environment of the capsid shell. The capsid utilizes M'Ts and associated motors to reach and dock

to NPCs. Subsequent interactions of the CA lattice with NPC components and the nuclear host factor CPSF6 mediate translocation of
the capsid through the NPC, retaining its cone-shaped morphology. CPSF6 then mediates accumulation of capsids in nuclear speckles,
where plus-strand synthesis of the viral double-stranded cDNA is likely completed. Physical disruption of the capsid releases the
completed cDNA for integration into the host cell genome, located in the vicinity of the uncoating site. Remnants of the broken capsid
are not part of the cDNA complex and remain as distinct structures in the nucleus for prolonged times after uncoating. Black, white, and
red arrowheads indicate the capsid, MT cross section, and NPC, respectively. Abbreviations: CA, capsid protein; cDNA, complementary
DNA; CPSF6, cleavage and polyadenylation specificity factor 6; HIV-1, human immunodeficiency virus type 1; IN, integrase;

MT, microtubule; NPC, nuclear pore complex; RT, reverse transcriptase; SPAD, speckle-associated domain. Electron micrographs
iand ii adapted from Reference 89 (CC BY-NC-ND 4.0), and electron micrograph iv adapted from Reference 99 (CC BY 4.0).
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electron-dense structure inside. Both apparently intact and broken empty structures were also
detected upon CLEM and ET of cells infected with the click-labeled CA variant, obtained by
genetic code expansion (100). We interpret the broken structures as ruptured capsid remnants
after nuclear uncoating, as discussed in Section 7.

Strong evidence for nuclear import of CA-associated subviral complexes came from live-cell
imaging of HIV-1 containing a GFP-CA fusion protein, which showed nuclear entry of the GFP
signal without cell division (85). This is consistent with experiments in HeLa-based cells carrying
fluorescent lamin that were blocked for cell division. Analysis of the history of cells displaying
nuclear CA complexes confirmed that these cells had not undergone nuclear envelope breakdown;
thus, nuclear subviral complexes had entered through intact nuclear pores (99).

How do these morphologically intact-appearing capsid-like structures gain access to the nu-
cleus given the described size restrictions? This question was solved by cryo-ET of FIB-milled
HIV-1 infected and uninfected T cell lines and primary CD4" T cells. Compared to isolated
nuclear pores, the central channel of nuclear pores in situ was found to be wider with an inner
ring diameter of ~64 nm (89). This is consistent with a recent report describing a flexible width
of the central channel of yeast nuclear pores. This report suggested that the NPC scaffold is
mechanosensitive and its diameter is regulated by membrane tension (111). The wider diame-
ter and flexibility of the NPC were additionally confirmed in human cells (112). Isolated nuclear
pores may thus represent the collapsed status, while the pores in intact T cells represent a dilated
state due to the nuclear envelope tension. No significant difference was observed in average pore
diameter between infected and uninfected T cells (89), arguing that the dilated state is not induced
by the virus. The observation of dilated nuclear pores in intact T cells showed that the complete
capsid with a maximum diameter of ~60 nm can be accommodated in the central channel and
thus explain the presence of morphologically intact capsids and capsid-like structures in the nu-
cleus of nondividing cells. This leaves several questions that we address in the following sections:
What is the molecular mechanism of capsid nuclear import? What is the temporal and functional
relationship between reverse transcription, nuclear import, and capsid uncoating? And what are
the nature, molecular mechanism, and site of the uncoating event?

5. A MODEL FOR NUCLEAR IMPORT OF THE HIV-1 CAPSID

The evolution of the defined and elaborate capsid structure that needs to assemble within the con-
fined and crowded environment of the mature virion suggests that the conical shape may convey
some selective advantage. We propose that transport of the HIV-1 capsid toward and through the
nuclear pore is governed by a handover model, which provides a theoretical rationale for the dis-
tinct capsid architecture (Figure 3). This model assumes sequential binding of several host factors
to the capsid lattice promoting its nuclear import. The same hydrophobic binding cleft within the
capsid lattice (Figure 1b,d,e) has been shown to interact with cytosolic, nuclear, and NPC proteins
(106-108, 113). Consecutive and competitive binding of these host proteins may thus direct the
capsid to the nucleus; displacement may occur due to higher affinity and/or higher local concen-
tration of the competing factor. The narrow end of the cone may facilitate threading the capsid
into the central channel, while the exposure of additional Nup binding sites on the capsid lattice
may drive translocation toward the nucleus when the increasingly wider parts of the cone enter
into the channel.

In the cytosol, the incoming capsid encounters two host proteins that recognize distinct
structural features. The coat protein complex II component Sec24C was recently shown to bind
the hydrophobic cleft via a phenylalanine-glycine (FG) motif (Figure 1e), enhancing HIV-1
capsid stability; its depletion affects post-entry stages of the virus (113). FG motifs mediate weak
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Proposed model of HIV-1 nuclear import. () Docking. Having arrived at the NPC, M'T-associated capsids are directed toward the
central channel via interaction with Nup358, the major component of cytosolic NPC filaments. Nup358 interacts with the capsid
lattice and recognizes CA pentamers to move and orient the narrow end toward the NPC and into the dense hydrophobic meshwork of
FG-Nups in the central channel. (4) NPC channel penetration. During this process cytosolic host factors (including CypA and Sec24C
stabilizing the capsid) may be displaced from the capsid by Nup358 and FG repeats, respectively. Sequential binding of FG repeats
immerses the capsid in the unstructured hydrogel-like liquid phase within the NPC channel. Subsequently, the narrow end is exposed
to the nuclear basket region, where it interacts with Nup153 followed by CPSF6. (¢) Translocation to the nucleoplasm. The final step of
capsid nuclear import is mediated by interaction of the hexameric lattice with Nup153 and CPSF6, pulling the capsid out of the channel
and blocking retrograde movement. Finally, a (potentially stabilizing) CPSF6 coat decorates the capsid surface, releasing the capsid into
the nucleoplasm and directing it to the site of integration. The scheme was created using cryo-EM density maps of hexameric and
pentameric CA units (EMD-3465) (12) and cryo-EM density maps of the NPC (EMD-11967) (89). HIV-1 capsid cone model courtesy
of Simone Mattei. Abbreviations: CA, capsid protein; CPSF6, cleavage and polyadenylation specificity factor 6; CR, cytoplasmic ring;
cryo-EM, cryo-electron microscopy; CypA, cyclophilin A; FG, phenylalanine-glycine; HIV-1, human immunodeficiency virus type 1;
IR, inner ring; M'T, microtubule; NE, nuclear envelope; NPC, nuclear pore complex; NR, nuclear ring; Nup, nucleoporin.

inter- and intramolecular interactions within intrinsically unstructured FG domains and thereby
form the permeability barrier within the central channel of the NPC (see below). The cytosolic
protein CypA can interact with the Cyp-binding loop on the capsid surface (114) (Figure 15,4).
Upon arrival at the nuclear envelope, cytoplasmic filaments of Nup358 may serve as a landing
platform for the capsid (115, 116). Nup358 contains a cyclophilin homology domain, which can
bind to the CA Cyp-binding loop (115), as well as FG repeats (present on many Nups) that may
interact with the hydrophobic binding cleft. Accordingly, there could be handover of capsids from
the cytosolic binding proteins to the cytoplasmic face of the NPC, thereby docking the capsid at
the nuclear pore. The observed loss of fluorescently labeled CypA from incoming capsids at the
nuclear membrane (86, 94) agrees with the proposed CypA displacement by a competing factor
(e.g., Nup358) at this site. ET of HIV-1 capsids at the cytosolic side of the NPC showed that
almost all structures detected were oriented with the narrow end pointing toward and entering
into the pore (89). Due to the buckminsterfullerene architecture of the cone, the narrow end
displays a higher local concentration of curvature-inducing pentamers (Figure 14), which were
suggested to represent preferential binding sites for CypA (117). Preferential interaction of
Nup358 with this region could serve to orient the capsid tip toward the NPC, thereby threading
the large structure into the narrow channel.

The central NPC channel is not empty but filled with a dense hydrophobic meshwork of
intrinsically unstructured FG domains of various Nups (118). It has been proposed that canon-
ical nuclear import involves rapid and selective immersion of the cargo into this unstructured
(gel-like) phase (119, 120); the interaction of cargo with the FG meshwork is mediated by the
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nuclear import machinery (35). We suggest that the mature HIV-1 capsid lattice with its many
FG-binding hydrophobic clefts can act as a multivalent nuclear import factor in a similar way,
promoting its own translocation. The HIV-1 capsid may thus not need additional nuclear import
factors but may in fact be the nuclear import factor. CA and CA hexamers have been shown by
biochemical and structural analyses to interact with FG Nups localized at the cytoplasmic face
(Nup88 and Nup214), in the inner channel (Nup62, Nup98, Nup107), and at the nuclear basket
(Nupl153) (107, 108, 121-125). Once the capsid enters the nuclear pore with its pointed end,
sequential binding of FG motifs from central channel and nucleoplasmic Nups to the capsid may
drive its immersion into the hydrophobic mesh, similar to canonical nuclear import. Due to the
cone shape, the number of exposed hexamers available for FG binding increases from the narrow
to the broad end. Thus, an avidity gradient caused by capsid architecture, as well as possibly
different affinities of differently located Nups, could provide directionality of the transport.
Multivalent binding may overcome the energy barrier to drive translocation of the large structure
through the dense protein meshwork (Figure 3). The frequent observation of capsids adjacent to
the cytoplasmic side or entering the NPC, but rarely inside the central channel (89), indicates that
full immersion into the hydrogel-like liquid phase may be rate limiting for capsid nuclear import.

Binding of FG repeats from the nuclear basket protein Nup153 to the capsid lattice (Figure 1e)
would then terminate translocation and stall the capsid at the nucleoplasmic side of the pore
(Figure 3b,). In the canonical nuclear import pathway, the importin-bound cargo is released
from Nupl53 by the GTP-bound Ras-related nuclear protein, to enable cargo penetration into
the nucleoplasm (35). If the HIV-1 capsid serves as an import factor in a similar way, it would
require an analogous release factor. This could be the nuclear protein CPSF6, which comprises
an FG motif that binds to the same hydrophobic cleft as Nup153 (Figure 1e) and could thus
displace bound Nups. CPSF6 forms large clusters on HIV-1 capsids in the nucleus, and its deple-
tion or the introduction of mutations in CA that interfere with CPSF6 binding arrests incoming
capsids at or close to the nuclear pore (81, 83, 85). Initiation of CPSF6 clustering on the incom-
ing capsid tip at the nucleoplasmic side of the pore, as observed by stimulated emission depletion
nanoscopy (81, 83), could not only displace Nup153 in a final handover step but also prevent ret-
rograde movement of the capsid into the inner channel. Additional nuclear factors may contribute
to release of the capsid from the NPC central channel since CPSF6 knockdown or mutation of
CPSF6 binding residues in CA resulted in accumulation of capsid-like structures directly adjacent
to the nucleoplasmic side of nuclear pores; these structures apparently had left the central channel
but failed to be released further into the nucleoplasm (89). CPSF6 clustering not only serves to
release the capsid from the nuclear basket but also directs the capsid-encased subviral complex
to nuclear speckles (97, 98, 104), where integration of the viral DNA into the host cell genome
occurs (98, 103, 126). Clusters of complete and broken capsid-like structures were often observed
by CLEM (99, 100), supporting directed nucleoplasmic trafficking (97, 99, 100). Transportin 1,
which has been suggested to bind the CA Cyp-binding loop (87), may also contribute to capsid
nuclear import conceivably displacing the Nup358 Cyp homology domain, but this has not been
investigated in detail.

In conclusion, we propose the intact capsid to be the elusive nuclear import factor for the HIV-
1 replication complex. The described model suggests a testable pathway for capsid nuclear import
and provides a mechanistic explanation for the evolution of the cone-shaped capsid.

6. RECENT EVIDENCE FOR NUCLEAR REVERSE TRANSCRIPTION

Itis generally agreed that initiation of reverse transcription from the tRNA primer occurs already
during HIV-1 formation but is then stalled due to lack of dNTPs and continues once the subviral
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complex becomes exposed to the ANTP pool in the cytosol of the newly infected cell (127). While
it was initially assumed that the capsid shell must disintegrate to allow access of the RT'C to dN'TPs
after cell entry, the described recent evidence indicates that AIN'TPs may enter the intact capsid
through the R18 pore (75).

Whether reverse transcription is also completed in the cytosol has been more difficult to de-
termine. Through use of imaging-based approaches instead of 2-LTR formation as a readout for
RTC/PIC nuclear import, it was demonstrated that reverse transcription is not a prerequisite for
nuclear entry of subviral complexes (81, 84, 86, 102). Initial indication that reverse transcription
may be completed inside the nucleus came from experiments using incorporation of EdU into
newly synthesized HIV-1 cDNA in MDM. Subviral particles containing fluorescently labeled IN
exhibited higher EdU intensities inside the nucleus compared to cytoplasmic ones (102). Fur-
ther evidence for nuclear completion of reverse transcription was derived from inhibitor time-
of-addition experiments showing that HIV-1 remains sensitive to RT inhibition beyond nuclear
import of subviral complexes (85, 98, 109). Experiments that artificially blocked import through
nuclear pores strongly supported this conclusion (109). Releasing nuclear particles from RT inhi-
bition allowed them to resume synthesis of infectious, EdU-containing cDNA (97), and interme-
diate reverse transcription products were detected in the nuclear fraction upon cell fractionation of
infected cells (110). Dharan et al. (109) directly confirmed nuclear reverse transcription by strand-
specific hybridization showing that only minus-strand DNA was detected in the cytoplasm, while
both minus- and plus-strand DNA were found inside the nucleus (109). The same conclusion
was reached employing a fluorescent marker that is specifically recruited to a sequence motif in-
troduced into the viral genome (the ANCHOR system) (99). Binding of this reporter is dsDNA
specific, indicating a late product of reverse transcription. A positive signal was observed only on
nuclear HIV-1 complexes. Furthermore, nuclear complexes negative for ANCHOR exhibited a
twofold lower EdU signal compared to those positive for the signal, again indicating that reverse
transcription continues in the nucleus (99). Accordingly, the traditional understanding of RTC
that is converted in the cytosol into a (capsid-free) PIC comprising the complete cDNA needs to
be revised in light of the described studies.

It is surprising that the central observation of nuclear reverse transcription was only made
about 30 years after the first characterization of the RT'C. This was most likely caused by the
experimental systems used in earlier studies: Cytoplasmic complexes were shown to be integration
competent but appeared to be devoid of RT by Western blot (18). They did contain enzymatic
RT activity (19), however, and may thus have completed reverse transcription during the reaction.
Furthermore, almost all earlier studies used 2-L'T'R circles as a surrogate marker for nuclear import
because their formation requires nuclear factors. However, they also require complete reverse
transcription and access of ligase to the cDNA. We suggest that 2-I'TR circles do not directly
monitor nuclear entry but rather the nuclear presence of complete HIV-1 cDNA that is no longer
protected inside the capsid.

It is currently not clear why reverse transcription is not completed in cytosolic subviral com-
plexes, given sufficient ANTP concentration in the cytosol of most cells and the potential of INTP
access to the replication complex through the R18 pore (75, 77). This could be due to nuclear im-
port being faster than reverse transcription. Alternatively, reverse transcription may be stalled by
space limitations in the closed environment of the viral capsid, given that b-DNA requires a larger
volume than the corresponding, highly branched RNA. This possibility and its consequences for
genome uncoating are discussed in Section 7.2. Finally, potential inhibitory cytosolic factors (e.g.,
blocking the R18 pore), reverse transcription promoting nuclear factors, or cis-acting elements in
the viral genome may also be involved, and exploring the regulation of reverse transcription will
be an important subject of future studies.
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7. WHAT IS THE NATURE OF THE NUCLEAR UNCOATING EVENT?
7.1. Uncoating by Physical Rupture of the Capsid Lattice

The molecular mechanism of uncoating could involve either cooperative disassembly of the capsid
into individual subunits or breaking of the capsid lattice, thereby creating an opening for genome
release. The first model was supported by the observed instability of biochemically isolated HIV-1
capsids in vitro (17-20, 24-26), but rapid capsid dissociation was later explained by lack of IP6
as discussed above (73, 74); addition of IP6 during preparation allowed isolation of stable cone-
shaped HIV-1 capsids (128). Enhanced capsid stability due to IP6 in the cytosol does not rule out
capsid dissociation as the mechanism of uncoating, however. A cooperative disassembly model
was supported by the observation that a GFP-CA fusion protein used to label HIV-1 capsids in
infected cells was completely lost shortly before chromosomal integration (85). However, the
same study also revealed rapid loss of the GFP-CA signal upon addition of PF74. This compound
displaces CPSF6 from nuclear subviral complexes but actually revealed the previously shielded
underlying CA in immunofluorescence experiments rather than dissolving it (see Section 4.1) (99).
Furthermore, broken capsid-like structures were visualized by negative-stain EM and cryo-ET
upon addition of the related GS-CA1 inhibitor targeting the same CA region (128). GFP-CA is
incorporated in substoichiometric amounts into the viral particle and could be lost more rapidly
from the subviral complex than wild-type CA due to less stable association with the capsid lattice.
However, this does not explain the concomitant loss of CPSF6 from nuclear subviral structures
in another study by some of the same authors (62), which suggests disassembly of the capsid
lattice.

Evidence for capsid rupture rather than cooperative disassembly as an uncoating pathway
mostly came from CLEM and ET of cells infected with a virus carrying a fluorescent replica-
tion protein and/or the ANCHOR system for detection of accessible HIV-1 cDNA (89, 99, 100).
In these studies, ruptured capsid-reminiscent structures and incomplete capsids, lacking internal
electron density, were commonly found at nuclear positions that were identified by the fluores-
cent replication protein (Figure 4c); lack of internal density indicated that they may represent
remnants of the capsid shell after genome uncoating (89, 99). Similar broken structures had been
reported previously upon endogenous reverse transcription in vitro in isolated HIV-1 cores (128)
(Figure 4b). Nuclear capsid rupture with subsequent dissociation of the genome from the broken
structure was further supported by fluorescence imaging of infected cells, showing spatial sepa-
ration of specific viral DNA signals from the bulk of replication proteins in the nucleus at later
time points after infection (81, 82, 96-99). Through use of the ANCHOR system, separation of
viral dsDNA from a fluorescent marker protein identifying the capsid remnant could be directly
observed by live imaging (99, 129).

Taken together, the available evidence indicates completion of HIV-1 reverse transcription
in the nucleus, concomitant with or followed by breach of capsid integrity and physical separa-
tion from the genome with associated factors. The observation of broken capsid remnants argues
against cooperative disassembly, while rapid loss of fluorescent GFP-CA and CPSF6 suggests the
opposite, and further studies are needed to resolve this question.

7.2. What Are the Trigger and Mechanism of HIV-1 Genome Uncoating?

A link between reverse transcription and uncoating dynamics was already suggested by early anal-
yses studying the effect of CA mutations and RT inhibition on the outcome of infection (27-33).
More recent experiments in MDM revealed that increasing the intracellular ANTP pool by de-
pletion of the deoxynucleoside triphosphohydrolase SAM domain and HD domain-containing
protein 1 enhanced the rate of reverse transcription (96, 102) and led to faster separation between
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Figure 4

A model for the mechanism of nuclear uncoating. (#) Scheme. Reverse transcription is finished inside the nucleus, likely within nuclear
speckles. The spatial demand of the newly synthesized dsDNA may induce cracking of the capsid. Protruding cDNA loops can become
exposed to the nuclear environment. Chromatinization and/or other nuclear factors likely facilitate complete rupturing of the lattice to
allow full uncoating of the integration-competent dsDNA. The viral genome is then integrated within SPADs of the chromatin in close
proximity to the uncoating site. (b) In vitro reconstitution experiments. Efficient endogenous reverse transcription was induced in
isolated cores by addition of dN'TPs in the presence of IP6. As a result, an opening with an emanating polynucleotide loop was
visualized using cryo-electron tomography. Z sections (/eft) and a 3D rendering (right) of the hexamer and loop arrangement are shown.
The hexamers are color coded by cross correlation determined through subtomogram averaging from high (green) to low (red)
correlations. Panel & adapted from Reference 128 with permission. (¢) Visualization of capsid-like structures inside the nucleus of
infected cells using correlative light and electron microscopy and electron tomographic analysis. Reconstructed electron tomograms
were correlated to a position positive for both a fluorescently tagged IN fusion protein and newly synthesized HIV-1 dsDNA exposed
to the ANCHOR system. A cluster of conically shaped structures (black arrowheads) was observed. While some structures displayed
internal electron density indicating the presence of the nucleic acid complex (top left subpanel), another lacked internal density but was
connected to a dense structure protruding from the narrow end (bottom left subpanel, white arrowheads), consistent in appearance with
chromatinized DNA. The left subpanels show different cross sections, and the right subpanel shows a 3D rendering of the same
position. Panel ¢ adapted from Reference 99 (CC BY 4.0). (d) Isolated IP6-stabilized capsids were subjected to endogenous reverse
transcription reactions and analyzed using atomic force microscopy. The top left subpanel shows a representative capsid prior to INTP
addition, while the other subpanels display capsids with smaller ruptures (yellow boxes) and large openings (bottom right subpanel) 5 h after
induction of endogenous reverse transcription. Panel d adapted from Reference 77 (CC BY 4.0). Abbreviations: cDNA, complementary
DNA; CPSF6, cleavage and polyadenylation specificity factor 6; dNTP, deoxynucleoside triphosphate; dsSDNA, double-stranded DNA;
IN, integrase; IP6, inositol hexakisphosphate; RT, reverse transcriptase; SPAD, speckle-associated domain.

EdU and CA signals inside the nucleus (96), implicating progression of reverse transcription in
genome uncoating. Theoretically, increased spatial demand of the viral dSsSDNA compared to the
single-stranded RNA (ssRINA) genome may breach capsid integrity by mechanical force. Such
a cDNA confinement-induced uncoating model was proposed by Rouzina & Bruinsma (130).
dsDNA is a relatively rigid polymer with a persistence length p of ~50 nm (131), while ssRNA
has a p of ~1 nm (132). Estimating the radius of gyration Rg (133) as a measure for the volume
requirement for the ideal polymer (nucleotide string without secondary structure) with a contour
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length L of ~0.5 nm per nucleotide with
Re= (L'p"

results for a genome of 10,000 bases (or base pairs) in an Rg of ~70 nm for ssRNA and ~500 nm for
dsDNA. This difference together with the extensive branching of ssRINA (134) may explain how
two 10 kb ssRINA molecules fit into a single HIV-1 capsid with minimal confinement free energy
costs, while the product of reverse transcription may not. Fitting unbranched and uncondensed b-
DNA of this size into the available space of the HIV-1 capsid would most likely exert a disruptive
outward force that could cause rupture of the capsid lattice. However, the in silico model (130) also
predicts that compaction of HIV-1 nucleic acids by the viral nucleocapsid (INC) protein, present
within the core at high concentration, strongly alleviates outward forces acting on the capsid shell,
and NC-mediated condensation of DNA into a tightly packed globule has been demonstrated in
vitro (135). The limit of dsSDNA length that can be accommodated within the HIV-1 capsid under
authentic conditions is currently not known.

The genome size compatible with HIV-1 replication is limited, and larger artificial insertions
result in loss of infectivity or subsequent deletions during replication. Whether premature dis-
ruption of the capsid could play a role in the replication defect caused by increased genome size is
unknown, as the defect may already occur at the packaging and assembly step. However, lentivi-
ral vectors packaging RNA much smaller than 10,000 nucleotides have been shown to efficiently
transduce cells and are thus capable of genome uncoating and integration. This was generally
observed under steady-state conditions, however, and a potential effect of genome length on the
kinetics and efficiency of genome uncoating has not been investigated so far. Accordingly, the
influence of genome size on uncoating, together with the NC-mediated compaction, will be an
important aspect of further studies.

Experimental support for capsid rupture and genome uncoating by separation, as well as for
the confinement-driven uncoating hypothesis, was recently provided by the elegant in vitro study
by Christensen et al. (128). These authors isolated HIV-1 capsids from purified virions in the
presence of IP6 and performed endogenous reverse transcription in vitro by addition of dNTPs
followed by cryo-ET (128). Strikingly, newly synthesized cDNA remained associated with incom-
plete capsid-like structures with different degrees of opening, and DNA-like loops often emanated
from small openings in the lattice (128) (Figure 45). These structures were reminiscent of subviral
structures observed in the nucleus of infected cells by CLEM and ET (89, 99) (Figure 4¢), in which
electron-dense elongated structures protruded from the opening of an empty capsid-like object.
Such elongated objects were also found separated from the viral proteins at later time points after
infection and colocalized with the ANCHOR marker, indicating that they comprise viral dssSDNA
(99). In the cellular context, the structures presumed to represent dsSDNA were more electron
dense compared to the respective structures resulting from endogenous reverse transcription in
vitro. The former structures resembled chromatinized DNA, and we hypothesize that full uncoat-
ing of the genome may require chromatinization of emerging DNA and possibly other nuclear
factors. Rapid chromatinization has been observed for retroviral genomes when they become ac-
cessible in the nucleus of the infected cell (136-139). Integration of the products of endogenous
reverse transcription using isolated HIV-1 capsids required the presence of nuclear extracts in
addition (128), and it will be interesting to analyze whether full uncoating and (partial) chroma-
tinization may occur in this case.

Atomic force microscopy (AFM) on isolated HIV-1 capsids undergoing endogenous reverse
transcription supports the confinement-driven uncoating hypothesis (30, 77, 140, 141). In the
presence of IP6, multiple stiffness peaks together with morphological changes of the capsid were
observed and were interpreted as strand transfer events during reverse transcription (141). At later
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time points, ruptured capsid structures were visualized by AFM (30, 77) (Figure 4d), similar to
the findings from ET (89, 99, 100, 128). From these results, it was concluded that cDNA synthe-
sis inside the capsid exerts a detectable outward force and that the capsid has some flexibility to
accommodate this spatially demanding process but will eventually break.

While these results indicate a role of cDNA completion in capsid rupture and genome un-
coating in the nucleus, other factors may contribute as well. Conceivably, passage of the large
capsid through the central NPC channel may lead to physical damage, with subsequent stabi-
lization through CPSF6 coating. This may render the structure more sensitive for rupture upon
cDNA completion in the nucleus. Alternatively, the capsid may encounter uncoating factors upon
reaching its destination in or near nuclear speckles.

8. CONCLUSION, SYNTHESIS, AND THERAPEUTIC EXPLOITATION

Taken together, the described studies indicate that the cytosolic post-fusion capsid engages with
microtubule-associated proteins, transporting it toward the nuclear region. Reverse transcription
commences during cytosolic trafficking but does not achieve completion before nuclear entry.
Morphologically complete capsids enter nuclear pores with their narrow end first and can translo-
cate through the central channel of dilated pores. Once reaching the nuclear basket, the capsid
lattice interacts with CPSF6, transporting the complex to nuclear speckles, where genome uncoat-
ing and integration occur. The mechanism of capsid rupture and genome uncoating is currently
not known, but it may involve the completion of cDNA synthesis. In conclusion, the HIV-1 capsid
appears to be the central orchestrator of early post-entry replication (142). This involves at least
five important roles:

1. Facilitating cytoplasmic transport processes: The capsid serves as a cytosolic transport mod-
ule to direct the subviral post-fusion complex from the plasma membrane to the nuclear
envelope. This employs microtubule-mediated transport by tethering kinesin and dynein
molecular motors via specific recruitment of adapter proteins to the hexameric capsid lattice.

2. Protecting the viral replication machinery: The closed capsid shell prevents degradation of
nucleic acid by cellular nucleases and innate immune activation by DNA sensors that would
result in cell death and induction of an antiviral state.

3. Enabling efficient reverse transcription: Confinement of the replication complex within the
capsid supports reverse transcription by preventing the loss of replication factors and by
potentially concentrating dNTPs through the R18 pore. The closed environment further
facilitates efficient strand transfer and recombination.

4. Serving as unusual nuclear import receptor: The hexameric lattice of the capsid may consti-
tute a multimeric nuclear import receptor, engaging various Nups through its interaction
surfaces. Capsid size appears to be at the upper limit even of dilated nuclear pores, and
evolution of the conical shape may be essential for import of such large cargo; it could fa-
cilitate threading the capsid into the central channel and may provide an avidity gradient
for immersion into the gel-like transmission barrier.

5. Facilitating nucleoplasmic transport to specific subnuclear regions: Coating the capsid lat-
tice with CPSF6 upon nuclear entry leads to targeting of the subviral structure to nuclear
speckles, where genome uncoating and integration occur. Clustering of multiple subviral
structures at these speckles suggests common trafficking routes with HIV-1 genome inte-
gration commonly occurring in transcriptionally active speckle-associated domains.

CA has long been considered a good target for inhibitor development but mainly based on the
important role of the CA domain in assembly of the immature virus. The described newer results
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indicate, however, that CA has a second essential function in the early phase of replication, and
CA-directed inhibitors may thus block HIV-1 replication prior to genome integration. Accord-
ingly, several recently developed CA-targeting inhibitors have been shown to interfere with HIV-1
early replication, commonly targeting the FG-repeat binding pocket that is essential for host fac-
tor interaction (143-145). This includes compounds PF74 (146), GS-CAL1 (147), and most notably
GS-6207 (lenacapavir) (148, 149), the latter currently in clinical phase II/III trials. Lenacapavir is
active in the low nanomolar range and can serve as a long-acting drug requiring administration
only every few months (148). All three compounds contain a central phenyl ring superimposing
with the F residue of FG repeats in host factor binding peptides and compete for the respective
FG repeat factors. Accordingly, they affect nuclear import and consequently nuclear completion
of reverse transcription, thereby blocking HIV-1 replication before integration can occur. Small-
molecule leads targeting the central R18 pore could also be developed, e.g., on the basis of hex-
acarboxybenzene, which can block ANTP import and reverse transcription (75). Similarly, small
molecules may be envisaged that could displace IP6 or by themselves have a propulsive effect on
the R18 pore, thereby leading to premature disassembly of the capsid. Clearly, given the multi-
ple nonredundant roles of the capsid in HIV-1 replication, most importantly in the early phase,
interfering with capsid integrity or interaction with host components is an ideal target for novel
antivirals.

1. What is the molecular mechanism of nuclear import of the human immunodeficiency
virus type 1 (HIV-1) capsid—can the handover model be confirmed?

2. Are there common trafficking routes and destination pathways for the HIV-1 subviral
complex?

3. What is the trigger for HIV-1 genome nuclear uncoating—does completion of reverse
transcription play a role?

4. How is the HIV-1 genome released from the ruptured capsid—is there a role for chro-
matinization or other nuclear factors?

5. What distinguishes integration into transcriptionally active versus silent sites—can this
information be useful for eventually overcoming latency?
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