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Abstract

Bacteriophages (phages) specifically infect bacteria and are the most abun-
dant biological entities on Earth. The constant exposure to phage infection
imposes a strong selective pressure on bacteria to develop viral resistance
strategies that promote prokaryotic survival. Thus, this parasite-host rela-
tionship results in an evolutionary arms race of adaptation and counter-
adaptation between the interacting partners. The evolutionary outcome is a
spectrum of remarkable strategies used by the bacteria and phages as they at-
tempt to coexist. These approaches include adsorption inhibition, injection
blocking, abortive infection, toxin-antitoxin, and CRISPR-Cas systems. In
this review, we highlight the diverse and complementary antiphage systems
in bacteria, as well as the evasion mechanisms used by phages to escape these
resistance strategies.
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INTRODUCTION

Bacteriophages: Early History

Bacteriophages (a term derived from the Greek words baktērion, meaning “rod,” and phagein,
meaning “to devour”), or phages, are ubiquitous parasitic viral entities that specifically infect
bacteria. Discovered by Frederick Twort and Félix d’Hérelle in 1915 and 1917, respectively,
phages are considered to be the most abundant biological entities, and the oldest viruses, on
Earth (1). d’Hérelle recognized the therapeutic potential of phages, and this recognition led
to the development of a phage preparation to treat dysentery in soldiers during World War
I (2). The use of phages as bactericidal agents, later termed phage therapy, was practiced for
several decades before the discovery of antibiotics (2). Due to the shift to antibiotics, phage
therapy was discontinued in the West; however, its usage continued in Eastern Europe. Soon
thereafter, research shifted to the use of phages as model genetic systems. Phage research led
to significant discoveries that collectively contributed to our fundamental understanding of the
central dogma of molecular biology and resulted in countless reagents that underpin modern
biotechnology (3). Today, phage research is undergoing another renaissance. Firstly, there is a
renewed interest in phage therapy, due to the inexorable rise of multidrug resistance in bacterial
pathogens. Secondly, phage and bacterial genomics have provided new insights and stimulated
research aimed at addressing the important ecological roles of phages and their impact on the
evolution and pathogenesis of bacteria. Finally, the study of phage resistance systems has continued
to provide tools for molecular biology, from restriction enzymes, phage display, and resistance
systems used to protect cultures in the dairy industry to the rapid recent emergence of the use of
adaptive immune systems for genome editing and related applications (4).

Phage-Bacterium Interactions

Microbes, such as bacteria and viruses, do not exist in isolation but shape intricate ecological
interaction webs (5). Such biological contacts can yield beneficial (win), detrimental (loss), or
negligible impacts on the species involved. Classic nonmutual interactions are parasitism and
predator-prey relationships, where one species benefits at the expense of the other (5). For host-
parasite systems, continuing adaptation is essential for a species to maintain its relative fitness.
In the Red Queen hypothesis, Leigh Van Valen (6) posited that every positive adaptation in an
organism causes a decline in fitness in those species with which it interacts. Such coevolutionary
interactions create the natural cycle of adaptation and counteradaptation of ecologically interacting
species, thereby driving rapid molecular evolution (6, 7). Nowhere is this dynamic arms race as
prevalent as in microbe-phage interactions. Phages in any given environment can be 10-fold more
abundant than bacteria (8). In addition, ∼1025 phage infections per second are thought to occur on
Earth, thereby imposing a strong selection pressure on bacteria and a resultant bacterial lysis and
turnover that impacts global nutrient cycling (9, 10). Furthermore, phage-mediated horizontal
gene transfer influences bacterial evolution, including the acquisition of virulence determinants in
human pathogens (11). As hosts of predatory viruses, bacteria have evolved numerous antiphage
mechanisms to ensure their survival (4, 12), and through coevolution, phages counteradapt and
develop strategies that bypass these defenses (13). In this review, we highlight the remarkable
spectrum of antiphage systems in bacteria that function at every stage of the phage infectious cycle
(Figure 1).
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Figure 1
The phage lytic life cycle and the bacterial antiphage systems. Bacteria possess a range of defense strategies that target various phases of
the phage life cycle.
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MICROBIAL ANTIPHAGE SYSTEMS

Adsorption and DNA Injection Inhibition

There are two antiphage systems known to target the start of the phage infection life cycle. In
the following section, we provide examples of known adsorption- and DNA injection–blocking
strategies in bacteria.

Adsorption inhibition. To initiate an infection, phage tails recognize specific cell-surface re-
ceptors, such as lipopolysaccharide (LPS), membrane proteins (such as porins), pili, or flagella. In
Escherichia coli phages like T4, irreversible attachment to the cell receptor induces a conformational
change in the phage baseplate leading to tail contraction and DNA injection (14). Adsorption in-
hibition is a mechanism in which bacteria alter or block these receptors to avoid phage attachment.
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expression of specific
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There are several known adsorption-blocking strategies in bacteria, such as mutating or mask-
ing phage receptors, production of extracellular matrix to occlude receptors, and exploitation of
competitive receptor inhibitors (12).

Some bacteria produce proteins that mask phage receptors. For example, outer-membrane
protein A (OmpA) serves as the entry receptor for many T-even-like E. coli phages (15). An outer-
membrane lipoprotein, TraT, encoded by the F plasmid interacts with OmpA and inhibits phage
attachment (16). As many receptors are nonessential, mutants arising in the population can survive
by avoiding phage binding. For example, point mutations, rearrangement, and insertions altering
the OmpA surface lead to phage resistance (17). Bacteria also produce extracellular polymers,
which act as physical barriers against harsh environments while also impeding phage attachment
(18, 19). Exopolysaccharides (EPSs) such as alginate and hyaluronan constitute bacterial capsules,
and plasmids encoding EPSs can be horizontally acquired and impart an adsorption-blocking phe-
notype (20). Finally, bacteria can produce small molecules that occupy the active sites of particular
receptors and interfere with phage attachment. In E. coli, FhuA is an iron transporter protein
and the receptor of phages T1 and T5. Microcin J25 (MccJ25) is a 21-amino-acid antimicrobial
peptide produced under nutrient limitation that binds to FhuA for transport into the cell. MccJ25
binding competitively blocks FhuA, preventing the initiation of T5 adsorption (21).

Phages can overcome adsorption-inhibiting defenses by modifying their tail fibers to recognize
new or altered receptors. For example, phage λ evolved to target a new receptor when expression
of its preferred receptor was suppressed. Phage λ binds to the LamB outer-membrane receptor of
E. coli using tail protein J, and mutations that decrease LamB expression reduce phage adsorption
(22). Decreased LamB expression led to mutations within the j gene, which enabled phage λ to
infect by binding another receptor, OmpF (22). Four nucleotide changes were required for the
altered receptor binding, and all mapped to the distal end of j, which is the domain involved in host-
receptor binding (22). Similarly, phages can adapt to recognize altered target receptors. T7 infects
E. coli K12 by binding LPS, which is a lipid embedded in the bacterial membrane with several
sugar moieties attached and presented at the cell surface (23). For attachment, T7 can recognize
the first glucose, the penultimate glucose, or the terminal heptose of LPS (24). The process of
T7 adsorption was recently visualized using cryo–electron tomography, which revealed a phage
“walk” in search of receptors (25). Mutations in genes involved in LPS biosynthesis resulted in
differing LPS structures and abrogated T7 adsorption. Following successive rounds of infection
of E. coli LPS mutants, a T7 variant was isolated that had evolved the ability to infect using the
wild-type or the mutant LPS structures. The T7 variant had mutant tail proteins that now enabled
infection of E. coli independently of LPS (24).

Phages can acquire EPS-hydrolyzing enzymes that enable penetration of the extracellular
matrix that can mask cellular receptors. These EPS-hydrolyzing enzymes can either reside within
the tail fibers for direct penetration of the polymeric barrier or be dispersed after phage burst to
aid infection of neighboring bacteria by new viral progeny (26). Phage H4489A has a hyaluronan
lyase attached to its tail fibers that degrades the capsule of Streptococcus pyogenes to assist phage
adsorption (27). Similarly, Klebsiella phages have tail-associated glycanases that depolymerize the
bacterial capsule layer to ease phage adsorption (28). Furthermore, phage PT-6 encodes a soluble
alginate lyase, which is liberated after burst and improves phage infection of Pseudomonas aeruginosa
(29).

Phase variation. Genes encoding surface components that act as phage receptors can be mutated
or deleted, leading to decreased susceptibility to phage attack. However, these mutations can be
detrimental, because many phage receptors play important cellular roles. In some cases, surface
proteins are subject to reversible or temporal expression known as phase variation (30). Phase
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variation is a heritable, but reversible, form of regulation that typically results in all-or-none
expression of specific genes. The result is reversible bacterial heterogeneity within the population.
Thus, some cells express a surface protein rendering them phage sensitive, whereas other bacteria
repress the protein and have reduced phage sensitivity. This can be viewed as a form of bet-hedging,
in which the generation of different phenotypes can be used to increase overall population fitness
by mitigating risk imposed through variable selective conditions (31).

One example of phase variation is seen in the control of the infectious cycle of pathogenic
Bordetella species, which utilize the two-component regulatory system BvgAS. Through a phos-
phorelay, BvgS, a transmembrane sensor kinase, together with its transcriptional regulator, BvgA,
couples environmental cues to the expression of surface proteins and other virulence factors. In
the virulent Bvg+ phase, characterized by high BvgAS activity, several adhesins, toxins, and Type
III secretion systems are expressed, which are important in pathogenesis (Figure 2a). In the Bvg−

phase, BvgAS is inactive, virulence genes are temporally suppressed, and motility genes are in-
duced (Figure 2a). Aside from temporal control of expression by BvgAS, phase variation of bvgS
can dictate the transition between Bvg− and Bvg+ phases (32). The bvgS gene contains a 6-bp
polycytosine tract that expands through slipped-strand mispairing, resulting in a BvgS frameshift,
which negatively affects expression of pertactin (Prn) (33). Phage BPP-1 recognizes Prn, which is
produced only during the Bvg+ phase. Thus, Bvg+ Bordetella cells are 106 times more susceptible
to BPP-1 infection than are Bvg− cells (Figure 2a) (34). However, phase variation of Prn does
not offer absolute BPP-1 protection because the phage still infects cultures of Bvg− cells, albeit
at a lower rate. These BPP-1 escape phages undergo a tropism switch, enabling either specific
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Figure 2
Dodging phage infection through phase variation. (a) Bordetella species have two phase variants determined
by the two-component regulatory system BvgAS. Pertactin is an outer-membrane protein expressed through
BvgAS, present only in Bvg+ phase variants and recognized by phage BPP-1. Bordetella Bvg− variants with
low BvgAS activity do not express pertactin and therefore are protected from phage BPP-1 infection. (b) The
Pgl system of Streptomyces coelicolor enables phage protection by supporting a normal lytic life cycle upon the
first infection. However, the progeny phage produced are modified such that they are ineffective in infecting
Pgl+ hosts and can only propagate in Pgl− variants. The Pgl methyltransferase (PglX) of S. coelicolor is
predicted to modify the phage DNA, marking it for degradation during subsequent infection. PglX is
phase-variably expressed through slipped-strand mispairing (SSM) of an 8-bp polyguanine tract within the
pglX gene.
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infectivity of Bvg− cells or broad infectivity in both Bvg+ and Bvg− cells. Comparison of BPP-1
with the escape phages revealed a mutational hotspot within a variable repeat (VR1) at the distal
end of mtd (major tropism determinant) that encodes the tail fiber. Nucleotide substitutions are
introduced to VR1 by a family of diversity-generating retroelements, which are genetic cassettes
that use site-specific and error-prone reverse transcription to diversify sequences and the proteins
they encode (35, 36). A template (TR1) homologous to VR1 acts as the intermediate transcript
for reverse transcription, during which adenine residues are substituted for other nucleotides (36).
Mutagenesis of VR1 in mtd results in tropism switching of BPP-1 that enables recognition of
new or altered receptors (35, 36). Bacteria can also use diversity-generating retroelements. In
Legionella pneumophila a repertoire of 1019 distinct LtdA lipoproteins can be generated through
diversity-generating retroelements (37), indicating another mechanism in bacteria to generate
receptor variants that might prevent phage adsorption.

A similar situation occurs in phage ICP1, which infects Vibrio cholerae by specifically bind-
ing the LPS O1 antigen. The phase variation of two genes (manA and wbeL), both important
for O1 antigen biosynthesis, enables phage ICP1 escape (38). Both biosynthetic genes contain
homopolymeric adenosine [poly(A)] tracts within their reading frames that are mutated through
slipped-strand mispairing (38). Phase variants defective in producing LPS (e.g., wbeL∗) are highly
resistant to ICP1 phage infection, but as a consequence, they are severely attenuated in virulence
(38). Similarly, phase variation of the glucosylation state of the O12 antigen in Salmonella Ty-
phimurium is mediated by the gtrABC1 cluster and enables transient resistance to phage SPC35.
The host receptor for SPC35 is BtuB, but the O12 antigen assists efficient binding (39).

DNA injection blocking. After phage attachment, in phages like T4, a needle within the phage
baseplate initiates penetration of the bacterial envelope (40). Phage hydrolytic proteins are re-
leased and locally digest the cell wall murein/peptidoglycan layer, easing DNA injection (41,
42). Injection-blocking superinfection exclusion (Sie) systems are commonly phage or prophage
encoded and block phage DNA entry, but their mechanisms are not well understood. The Sie
proteins (Imm and Sp) from T4 are membrane associated and stop phage DNA translocation
of other T-even phage infections (i.e., T2, T4, and T6) (43). Imm directly blocks DNA injec-
tion, whereas Sp inhibits phage-encoded lysozymes, blocking DNA translocation (43). Similarly,
in gram-positive bacteria, Sie2009 is a membrane protein of the P335-type temperate phages of
Lactococcus lactis that exclude members of 936-type phages. Sie2009 is predicted to interfere with
the release of phage DNA from the capsid by masking a membrane component that triggers
DNA translocation (44). In the Streptococcus thermophilus temperate phage TP-J34, the lipoprotein
LtpTP-J34 excludes 936-type phages (45), and escape phages display shorter tails due to mutations
within the tape measure protein gene, which is important for tail assembly, ion-channel formation,
and DNA passage into the cell (46). LtpTP-J34 is predicted to inhibit DNA injection by directly
interacting with, and blocking, tape measure protein entry into the bacterial membrane from the
phage tail tube. Thus, these exclusion systems protect bacteria from secondary infections by the
same, or closely related, phages.

Degrading Phage Nucleic Acids

Bacteria possess numerous nucleic acid degrading systems that enable protection from invad-
ing DNA. In the following sections, the restriction-modification and CRISPR-Cas systems are
described.
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The mechanisms for methylation and restriction for the four types of restriction-modification (RM) systems. (a) Type I RM systems are
composed of hsdRMS. HsdS is the specificity subunit that binds to an asymmetrical DNA sequence. Two HsdM subunits and one HsdS
subunit (HsdM2:HsdS) are required for methylation. For restriction, two complexes of HsdR2:HsdM2:HsdS bound to unmethylated
recognition sequences pull the DNA in a bidirectional manner, forming two loops for each complex (one complex shown). The DNA is
cleaved kilobases away from the recognition site following collision of the two complexes. (b) Type II RM methyltransferase (MTase)
and restriction endonuclease (REase) function separately and independently. A monomeric MTase recognizes a palindromic sequence
and methylates both strands of the DNA. A monomeric or homodimeric REase cuts precisely within or outside the unmethylated
palindromic sequence. (c) Type III RM systems are also composed of two components. The homodimeric MTase binds DNA and
methylates one strand. Two MTase2:REase2 complexes bound inversely at two adjacent unmethylated recognition sites pull DNA in a
unidirectional manner, forming one loop for each complex. The DNA is cleaved at a fixed location >20 bp away from the recognition
sites following collision of the two complexes (one complex shown). (d ) In Type IV RM systems, the REase recognizes methylated
DNA or other modifications (i.e., hydroxymethylcytosine and phosphorothioation) and cleaves DNA within or away from specific
sequences. Abbreviations: M, MTase; mod, MTase-encoding gene; R, REase; res, REase-encoding gene; S, specificity subunit.
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Restriction-modification systems. Following passage of phage DNA into the cell, host
functions may be redirected, and several phage genes are temporally regulated. Restriction-
modification (RM) systems are considered as the innate bacterial immune system against foreign
DNA. RM systems display two contrasting activities: (a) a methyltransferase (MTase) that mod-
ifies DNA bases of a specific sequence through the transfer of a methyl group to both strands
and (b) a restriction endonuclease (REase) that recognizes and cleaves the same DNA sequence if
nonmethylated (47). The methylated sequences are thus discriminated as self and are protected,
whereas nonmethylated foreign sequences are considered nonself and are degraded. Bacterial
genomes can contain multiple RM systems, and there are four families of RM systems classified by
their subunit composition, DNA sequence recognition, cleavage position, cofactor requirements,
and substrate specificity (Figure 3) (for a detailed review, see 47).

Phages have several antirestriction strategies to escape RM systems. Recognition sites within
the phage DNA can be substituted through point mutations to prevent or reduce the likelihood of
restriction by RM systems (47). However, bacteria can regain RM-mediated protection through
altering the sequence specificities of RM systems. For example, in L. lactis, recombination of two
hsdS genes facilitated the formation of chimeric HsdS subunits with altered RM specificities (48).
Phages can also acquire MTases that modify their own DNA to mimic that of the host (49). In a
remarkable example of molecular mimicry, phages can evolve proteins that are structural analogs
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of specific phage DNA sequences that then sequester restriction enzymes and thereby prevent
digestion of the viral genome. The Ocr protein is produced from the first gene expressed following
DNA injection of phage T7. Dimeric Ocr mimics DNA, and EcoKI MTase and REase enzymes
have a 50-fold greater binding affinity for Ocr than for the target DNA; thus, Ocr efficiently blocks
phage genome restriction (50, 51). In addition, phages can utilize other modified bases such as
uracil, hydroxymethyluracil, and hydroxymethylcytosine (hmC) to prevent recognition by RM
systems. For example, instead of cytosine, T4 incorporates 5-hmC into its DNA, which can be
further modified by glucosylation. Type IV REases are unlike the other RM Types in that they
cleave only modified DNA. The MrcBC (previously named Rgl system) of E. coli K12 limited
the population of T4 phages that contained hmC-substituted DNA (52). MrcBC recognizes two
hemimethylated dinucleotides separated by 40–3,000 bp, and cleavage occurs 30 bp from this site
(Figure 3) (53). Similarly, PvuRts1I restricts glucosylated 5-hmC DNA (54). Thus, these Type
IV RM systems play an important and additive role, enabling bacteria to be protected from heavily
modified phages that have escaped other RM systems.

RM systems can be regulated by phase variation such as the phage growth limiting (Pgl) system
of Streptomyces coelicolor (55). The Pgl phenotype is characterized by the ability of Pgl+ hosts to
support a lytic cycle of phage φC31. However, after the burst, progeny phage cannot infect a new
Pgl+ host but can propagate in Pgl− strains (Figure 2b) (56). Pgl is composed of two closely located
operons, pglWX and pglYZ, encoding proteins with poorly understood roles (57). It is proposed
that the Pgl proteins modify the phages released from the first lytic cycle and target them for re-
striction during the second round of infection. Mutations that result in Pgl− phenotypes arise with
frequencies of 10−3 to 10−4 per spore, and reversion occurs at similar frequencies (56, 58). Most
of the mutations can be mapped to the two pgl operons. PglX, a predicted adenine-specific DNA
MTase, is predicted to modify the phage DNA during replication in Pgl+ hosts, allowing φC31
to be detected by REase for cleavage and degradation. The expression of pglX is phase variable
through slipped-strand mispairing (56). An 8-bp polyguanine tract within pglX expands and con-
tracts during chromosomal replication and results in frameshifts and mistranslation of PglX. The
resulting cells cannot modify φC31, and the phage can therefore infect those bacteria effectively.

Bacterial Argonaute. Eukaryotic Argonaute proteins are known to bind and guide small RNAs to
complementary transcripts for gene silencing—a process known as RNA interference. Argonaute
homologs are abundant in archaeal and bacterial genomes (59). Recently, bacterial Argonaute
proteins were shown to act as a barrier for the uptake and propagation of foreign DNA. De-
spite structural similarity to eukaryotic homologs, bacterial Argonaute drives the DNA-directed
interference of foreign genetic elements (60–62). Argonaute of Thermus thermophilus (TtAgo)
binds to 5′-phosphorylated small DNA fragments (termed small interfering DNAs, or siDNAs),
which guide TtAgo to complementary DNA sequences and cause strand cleavage (60). Each
TtAgo:siDNA complex causes single-stranded DNA (ssDNA) cleavage. In contrast, Argonaute
from Rhodobacter sphaeroides (RsAgo) acquires RNA guides from mRNA, represses expression of
plasmid-encoded genes, and causes some plasmid degradation (62). The guides of both Argonautes
are overrepresented for plasmid sequences (60, 62). Because many phage resistance systems, like
RM and CRISPR-Cas systems (see below), also target plasmids, it is tempting to speculate that
Argonaute may also provide phage resistance in bacteria.

CRISPR-Cas systems. Clustered, regularly interspaced short palindromic repeats (CRISPRs)
and CRISPR-associated (Cas) proteins are widespread in bacteria and archaea and provide adap-
tive immunity against phages and other mobile genetic elements. The CRISPR arrays form the
genetic memory of past infections by incorporating short sequences derived from the invader
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genomes (Figure 4a). Resistance is conferred when small CRISPR RNAs (crRNAs), derived
from CRISPR array transcripts [precursor crRNAs (pre-crRNAs)], bind to complementary se-
quences (protospacers) in the invading genome, resulting in their subsequent degradation. For
recent in-depth reviews of CRISPR-Cas systems, see References 63–66.

Three steps lead to phage resistance, and the Cas proteins are important for all stages
(Figure 4a–c): (a) adaptation, during which new spacers are incorporated into the CRISPR array;
(b) crRNA biogenesis, whereby the CRISPR transcript is processed into short interfering crRNA
fragments; and (c) interference, during which the crRNAs aid the recognition and degradation
of the phage target. Currently, CRISPR-Cas systems are classified into three Types (Types I,
II, and III) (67). The Cas1 and Cas2 proteins are present in all systems and are required for
acquisition of immunity (67–69). Each CRISPR-Cas Type is further divided into subtypes (>11
total) possessing unique combinations of proteins (67). Despite the apparent diversity of the
systems, the overall mechanisms are similar and most systems target DNA (although the Type
III-B system targets RNA) (70).

In a key study, Barrangou et al. (71) demonstrated that upon phage challenge, S. thermophilus
developed resistance, which was accompanied by acquisition of new virus-derived spacers. Sub-
sequently, CRISPR-Cas adaptation was detected in other bacteria (reviewed in 72). The most
convincing evidence of the evolutionary and ecological importance of CRISPR-Cas systems was
provided by metagenomic studies of a variety of niches, which revealed rapid CRISPR evolution
during phage exposure (73, 74). The mechanisms by which phage sequences are integrated into
the CRISPRs are now becoming clear. In the E. coli Type I-E system, spacer uptake requires the
Cas1 and Cas2 nucleases, one repeat, and a short AT-rich region preceding the CRISPR array
(the leader) (69, 75). The presence of Cas1 and Cas2 in all types suggests mechanistic conservation
for CRISPR-Cas adaptation. New spacers are derived from coding and noncoding regions and
from either strand of the phage genome and are typically incorporated at the leader end of the
CRISPR array (Figure 4a) (76). In Type I and II systems, short sequences of 2–8 nt are adja-
cent to protospacer targets in the phage genomes; these are termed protospacer-adjacent motifs
(PAMs) (77). PAMs are important for spacer selection and for interference, but additional factors
can influence the efficiency of spacer acquisition (68, 69, 78, 79). CRISPR-Cas systems appear to
preferentially acquire DNA from phages and other mobile genetic elements instead of bacterial
chromosomal DNA (69), but the mechanism underlying this discrimination is unclear. When host
DNA is occasionally acquired, it can lead to cell suicide due to DNA damage from self-targeting
or can result in large-scale bacterial genomic deletions (80).

The guide crRNAs produced from the CRISPR transcript include both repeat- and spacer-
derived sequences (Figure 4b) (81, 82). The generation of crRNAs in Type I and III systems
typically requires the Cas6-family endoribonucleases (81–84), and most crRNAs have a 5′ repeat
handle of 8 nt (summarized in 85). In Type III-A systems, these 5′ handles engage in a base-pairing
self/nonself discrimination to avoid “autoimmune” targeting of the CRISPR array that produces
the crRNA (86). In contrast, in Type I systems, nontarget avoidance is provided by PAM detection
(87). Following crRNA generation in Type I systems, the endoribonucleases stay associated with
the 3′ end of the crRNA and form targeting complexes with additional Cas proteins (see below)
(Figure 4c) (81, 88–91). In Type III systems, Cas6 is not a part of the interference complex (70,
92–94). Moreover, the crRNA is further processed, resulting in removal of the 3′ repeat remnants
(70, 92–95).

Biogenesis of crRNAs in Type II systems is entirely different. First, trans-activating crRNAs
(tracrRNAs), encoded near the CRISPR, base-pair with the pre-crRNA repeats, and crRNAs are
generated by Cas9 and host RNase III (Figure 4b) (96). Cas9, guided by the crRNA-tracrRNA
hybrid, is then sufficient for interference by introducing double-strand breaks in the targeted
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Figure 4
The three different types of CRISPR-Cas systems and their mechanisms for phage interference.
CRISPR-based interference is divided into three sequential steps: (a) adaptation or the acquisition of
phage-derived spacers; (b) CRISPR and cas expression, CRISPR RNA (crRNA) biogenesis, and processing;
and (c) crRNA-directed interference. (a) The CRISPR array is composed of repeats (R) interspaced by
spacers (S) and a leader (L) sequence. Typically, near the CRISPR array is the cas operon. Part of the phage
DNA is incorporated as a spacer at the leader-proximal end of the CRISPR through the action of Cas
proteins. Type II CRISPR-Cas systems also possess a trans-activating crRNA (tracrRNA) that aids crRNA
processing and interference. (b) Once transcribed, the long precursor crRNA (pre-crRNA) is processed into
crRNA by Cas proteins and host RNase III (in the Type II systems). (c) The crRNA guides the Cas complex
to complementary sequences (protospacers) in the phage genome and elicits their degradation. In Type I
systems, Cas3 is required for degradation. Next to each protospacer is a protospacer-adjacent motif (PAM;
pink) important for spacer acquisition and interference.
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phage DNA (Figure 4c) (97, 98). A short seed sequence of ∼13 nt in the 3′ region of the crRNA
spacer is required for efficient target recognition and cleavage (98).

In contrast to Type II systems, interference by Type I and III systems requires the formation of a
multiprotein complex of the subtype-specific proteins (81, 88–94, 99). Strikingly, all Type I and III
complexes share a degree of structural homology, which includes a helical backbone that binds the
crRNA spacer portion as well as a large subunit putatively involved in target recognition (recently
reviewed in 100). In Type I-E systems, the large subunit protein Cse1 binds phage targets via
PAM recognition (101). Subsequently, the target invader DNA is incorporated into the targeting
complex via formation of an R-loop (99). In Type I systems, a short seed sequence (8–10 nt) at
the 5′ end of the spacer, complementary to the protospacer, is essential for target binding (89,
102). Once the phage DNA is bound, the displaced ssDNA strand leads to recruitment of Cas3, a
protein with nuclease and helicase activity that participates in subsequent DNA degradation (103).

One apparent Achilles’ heel of CRISPR-Cas immunity is that deletions and point mutations in
the protospacer or the PAM region of the targeted phage genome result in evasion of CRISPR-
Cas interference (76). However, some Type I CRISPR-Cas systems have a positive feedback
loop, termed priming, that allows the rapid uptake of additional spacers upon encounter with
an invader that has escaped interference via point mutation (68, 78, 104, 104a). The additional
spacers restore phage resistance, and acquisition of multiple spacers further reduces the probability
of evasion, because mutation of each target sequence is required (68, 78, 104, 104a). In contrast to
naive adaptation (described above), which utilizes Cas1 and Cas2, priming requires the presence of
crRNA and the complete set of Cas proteins (68, 104). Surprisingly, even with multiple mismatches
(up to 13) between the invader protospacer-PAM region and the priming spacer, rapid primed
spacer acquisition occurs, indicating that CRISPR-Cas immunity is more robust than previously
thought (105). Whether priming occurs in other CRISPR-Cas types and subtypes is currently
unknown (72).

Phages have evolved other strategies to avoid CRISPR-Cas immunity. Anti-CRISPR genes
were recently identified in temperate phages that infect P. aeruginosa (106). The infectivity of
CRISPR-sensitive phages was significantly increased in P. aeruginosa lysogens encoding anti-
CRISPR genes or in strains expressing any of the anti-CRISPR genes from a plasmid (106). Some
phages have acquired other potential anti-CRISPR genes during their evolution, including some
encoding regulatory proteins. Metagenomics revealed an H-NS homolog encoded by a virus
predicted to infect Candidatus Accumulibacter phosphatis. Based on a putative binding site, H-NS
was proposed to repress the CRISPR system(s) of the predicted host (107). In the E. coli Type I-E
system, expression of the CRISPR arrays and cas genes is repressed by the H-NS DNA-binding
protein (108, 109). Phages also appear to have hijacked CRISPR-Cas systems, potentially to
compete with other mobile elements. Clostridium difficile prophages contain CRISPR arrays (110),
and ICP1-related phages of V. cholerae O1 have recently been shown to contain Type I-F CRISPR-
Cas systems (111). Spacers in the CRISPR arrays matched a phage-inducible chromosomal island–
like element, which is excised upon phage infection and provides viral resistance through an
unknown mechanism. Indeed, for productive infection, the phage required the CRISPR-Cas
system and spacers targeting the island-like element host (111). In summary, the widespread
CRISPR-Cas systems provide a sophisticated resistance strategy against unwanted phage infection.
However, phages have also evolved ways to subvert these defenses (13).

Abortive Infection and Toxin-Antitoxin Systems

Bacteria can utilize cell suicide systems to abort phage propagation. The two known phage exclu-
sion systems in bacteria, namely abortive infection and toxin-antitoxin systems, are discussed in
the following sections.
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Abi: abortive infection

Abortive infection systems in Escherichia coli. Abortive infection (Abi) systems block phage
propagation at the expense of the infected bacterium. This phage exclusion strategy is broadly
categorized as a postinfection defense mechanism, interrupting various stages after DNA injection
(Figure 1). The infected bacterium does not survive, and few, if any, new phage progeny are
released, protecting the clonal bacterial population from viral infection. Therefore, Abis may be
considered an altruistic trait for the preservation of bacterial populations. Recent work has shown
that these suicide strategies are successful only in the presence of a spatial structure (112). Due
to the phenotypic definition of Abi systems, their mechanisms are varied and diverse, but some
common themes emerge. In general, Abis are dormant proteins that are activated by phages and
elicit cellular inhibition by interfering with essential metabolic processes.

The first Abi system discovered was rexAB, which is present in phage λ. Prophage-encoded
RexAB in the E. coli lysogen excludes T4rII-mutant phage (113, 114). The rII locus encodes RIIA
and RIIB, which allow circumvention of RexAB-mediated phage abortion. However, rII does not
confer complete protection because overexpression of rexAB leads to wild-type T4 exclusion (115).
RexA is an intracellular sensor that activates RexB, a membrane-anchored protein containing four
transmembrane helices (Figure 5a) (116). A protein-DNA complex, produced as an intermediate
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Figure 5
The mechanisms of phage abortive infection (Abi) systems. (a) RexAB is activated by a phage protein–DNA complex formed during
replication. RexB, once activated by RexA, forms an ion channel that depolarizes the bacterial membrane, causing cell death. (b) Lit
targets the translational machinery by cleaving elongation factor Tu (EF-Tu), stopping production of phage and host components. A
major capsid protein, Gol, activates Lit. (c) PrrC also targets the cell’s translational machinery. The phage-encoded Stp protein
inactivates the Type I restriction-modification system EcoPrrI, which inhibits PrrC activity. (d ) The abiD1 mRNA is unstable, and
AbiD1 is not translated during normal growth. A phage middle protein stabilizes abiD1 mRNA, therefore activating protein translation.
AbiD1 inhibits a phage-encoded RuvC-like nuclease that resolves branched DNA structures formed during phage DNA replication,
consequently impairing phage DNA maturation and packaging. (e) AbiZ acts with the phage-encoded holin and lysin to fast-track
cellular lysis before phage assembly. ( f ) ToxIN is a Type III toxin-antitoxin (TA)-Abi system, whereby an endoribonuclease toxin
ToxN is neutralized by the noncoding toxI RNA. ToxI is labile and might be preferentially degraded upon phage infection. Free ToxN
causes cytotoxicity and inhibits phage propagation by degrading phage and host RNA.
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of phage recombination and replication, activates RexA (Figure 5a) (116). Two RexA proteins
activate RexB, which forms an ion channel that depolarizes the bacterial membrane (116). The
decrease in intracellular ATP leads to bacterial death and consequent abortion of T4rII infection.
On the E. coli lambdoid prophage 933W, the stk gene is positioned similarly to rexAB. Stk is a
tyrosine kinase that inhibits phage HK97 infection. However, whether HK97 resistance is medi-
ated via an Abi mechanism is unclear. Phosphorylation of the Stk protein is activated by Orf41, a
protein analogous to the erf gene product of phage P22; the Erf recombinase is essential for phage
P22 growth on a rec− host (117). It is unknown how phosphorylation leads to phage protection.
Another E. coli Abi system is PifA, which excludes T7 by using an activity similar to that conferred
by RexB. The pifA gene is part of the F plasmid pifABC operon. PifA is the single gene responsi-
ble for T7 resistance, because an F plasmid without pifBC still aborted T7 (118). PifA binds the
cytoplasmic membrane and contains a predicted Walker-A/P-loop motif involved in ATP/GTP
binding (118). Activation of PifA requires the phage proteins Gp1.2 and Gp10 (119), and muta-
tions in gp1.2 or gp10 allow phage growth in cells containing the F plasmid (120). Activation of
PifA leads to leakage of ATP, through the loss of membrane integrity (121).

Lit and PrrC both achieve phage abortion by inhibiting translation. Lit is encoded by a de-
fective e14 prophage of E. coli K12 (122), and it possesses a zinc metalloprotease domain and
cleaves elongation factor Tu (EF-Tu) (Figure 5b) (123, 124). Lit is activated by the major capsid
protein Gp23 (or Gol peptide) (Figure 5b) (125). Likewise, prrC is carried on a cryptic element
in the E. coli CT196 chromosome, and it excludes T4 mutants deficient in rli (RNA ligase 1) or
pnk (polynucleotide kinase) (126, 127). PrrC is an endoribonuclease that cleaves tRNALys at its
anticodon loop (128) (Figure 5c). PrrC is directly inhibited by a Type I RM system EcoprrI (129).
A 26-amino-acid peptide called Stp (suppressor of the three-prime phosphate) is encoded by T4;
it inactivates EcoprrI and hence activates PrrC (Figure 5c) (130, 131). Cleavage of EF-Tu and
tRNALys stops translation of phage and host proteins, causing phage abortion.

Abortive infection systems in Lactococcus lactis. L. lactis, an important bacterium in the dairy
and fermentation industries, contains many Abis, which play a vital role for phage protection in
this genus (132). Currently, there are 23 classified lactococcal Abis, consisting of one to three
genes, and most of these are plasmid encoded and readily transferred by conjugation.

AbiD1, one of the most well characterized lactococcal Abi systems, excludes lactococcal
phage 936 and c2 families (133). The abiD1 mRNA is unstable and does not increase during
phage infection (134). Furthermore, translation of the abiD1 mRNA is inefficient owing to a
stem-loop structure within the translation initiation region, suggesting a trans-acting factor
might be required for activation (134). A middle protein of phage bIL66 (936 group), ORF1,
binds to the translation initiation region of abiD1 mRNA to stabilize and activate protein
translation (Figure 5d ) (134, 135). AbiD1 subsequently blocks the phage protein ORF3, a
RuvC-like endonuclease, that resolves branched DNA structures during phage DNA replication
(Figure 5d ) (136). The inhibition of ORF3 stops phage DNA maturation and packaging, resulting
in abortion of phage multiplication. Phages escape AbiD1 through spontaneous mutations in
their orf1 gene, which affect Orf1 in its ability to activate abiD1 mRNA translation (137).

Abi systems such as AbiA and AbiK provide immunity against the three broad families of
lactococcal phages (936, c2, and P335). AbiA and AbiK are 23% identical, which indicates that they
may be related (138, 139). AbiK contains a reverse-transcriptase motif that catalyzes long, random,
nontemplated nucleotide polymerization, analogous to terminal transferases (140); however, how
this leads to phage abortion is unclear. Phages escape AbiK through mutations in sak (sensitivity
to AbiK). Sak belongs to the RAD and Erf family of recombinases, which have ssDNA binding
properties (141, 142). These ssDNA-annealing proteins are involved in dsDNA break repair,
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which is important during DNA replication and for phage genome circularization following entry
to the cytoplasm (140). How Sak activates AbiK-mediated phage abortion is unclear.

A distinct Abi mechanism is conferred by AbiZ, which inhibits phage φ31 (P335 group) by
inducing premature lysis in response to phage infection. The accelerated killing is mediated by
the interaction of AbiZ with the phage-encoded holin and lysin proteins, leading to membrane
permeabilization (Figure 5e) (143). By fast-tracking bacterial lysis, the phages have insufficient
time to be completely assembled and therefore are unable to initiate further infection.

There is evidence that some Abis are toxic proteins that, upon activation or expression, cause
growth inhibition. AbiK, AbiN, and AbiO, when cloned into high-copy-number plasmids or under
foreign promoters, could not be maintained in Lactococcus (138, 144, 145). In addition, overexpres-
sion of AbiD1 and AbiB is toxic to both E. coli and L. lactis (132, 133). However, not all Abis
encode toxic proteins. For those Abis that are toxic, tight control is required to prevent premature
cell suicide in the absence of phage infection. Neutralization of toxic Abis can be achieved at
transcriptional, translational, and posttranslational levels. Although the transcription of most abi
genes examined appears constitutive, some are repressed by regulatory proteins. For example, a
helix-turn-helix protein Orf4 represses AbiK transcription, whereas AbiU2 downregulates AbiU1
(139, 146). Abi levels might be translationally limited because most contain codons for rare tRNAs
(132). The discovery of the ToxIN Abi system in Pectobacterium atrosepticum revealed that some
Abis are controlled at the posttranslational level by antidotes that specifically neutralize their toxic
Abis, forming functional TA systems (147).

Toxin-antitoxin systems. TA systems typically encode a toxin gene, which is preceded by an
antitoxin gene, and both are transcribed from a common promoter (148, 149). Toxins interfere with
diverse essential cellular processes such as translation (e.g., ToxN, MazF, RelE, HipA), replication
(e.g., CcdB, ParE) and cytoskeletal/cell wall formation (e.g., CbtA, PezT). Antitoxins neutralize
their cognate toxins in various ways and often regulate the cognate TA operon. TA systems
were first discovered on plasmids and enable plasmid maintenance by killing daughter cells that
lose the plasmid—a process termed postsegregational killing (PSK) (150, 151). “Addiction” to
these systems occurs because antitoxins generally have shorter half-lives than their toxin partners,
resulting in rapid turnover of the antitoxin unless it is continuously produced. The unequal stability
can exist due to molecular differences (e.g., RNA versus protein) (147), disordered protein folds
(152), and vulnerability to host proteases (153). The negative transcriptional autoregulation of
TA operons by antitoxins ensures a steady toxin:antitoxin equilibrium whenever antitoxin levels
decrease (154, 155). In response to particular stimuli, antitoxins are degraded, and the toxins are
liberated to act on their targets, causing either reversible bacteriostasis or cell death. However,
reversible bacteriostasis, if not neutralized within a window of time, can also lead to eventual cell
death; this phenomenon has been referred to as the point of no return (156).

To date, there are five known types of TA systems, classified by the mode of toxin repression
(for a recent review, see 157). Briefly, Type I encodes an antitoxic RNA that is antisense to, and
hybridizes with, the TA mRNA. Formation of the duplex dsRNA inhibits toxin translation and
promotes TA transcript degradation (158). Types II and III encode proteic (148) and untranslated
RNA antitoxins (147), respectively, that directly interact with their cognate toxins for inhibition.
Type IV antitoxins interact with toxin targets and catalyze opposing reactions to neutralize toxicity
(155, 159). The single Type V antitoxin characterized has a nuclease activity that selectively
degrades toxin transcripts (160).

Some TA systems can be activated in response to invading phages and provide phage
resistance through abortive infection (147, 155). Many phages hijack host transcription and
translation for phage replication. Thus, it was hypothesized that either the degradation of host
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DNA or the shutdown of host transcription limits TA synthesis, resulting in free toxin due to
faster turnover of the antitoxin (147, 161). The toxin could then induce cell death, with phage
multiplication disrupted as collateral damage. The best characterized system for TA-mediated
phage abortion is the plasmid-encoded Type III ToxIN system of P. atrosepticum (147, 162, 163).
The bicistronic toxIN locus encodes a cytotoxic endoribonuclease (ToxN), which is neutralized
by the repetitive noncoding ToxI RNA through the formation of a heterohexameric RNA:protein
complex (Figure 5f ) (147, 162). Once activated, ToxN cleaves cellular and phage RNA, stopping
phage production and inducing bacteriostasis. ToxIN provides high-level resistance against
various phages and is functional in different bacterial genera (147, 163). ToxIN homologs were
also identified bioinformatically in many bacteria, including Bacillus thuringiensis, Photorhabdus
luminescens, Ruminococcus torques, Coprococcus catus, and Eubacterium rectale, and some have been
shown to possess TA properties (147, 164, 165). Likewise, the ToxN homolog, AbiQ, also acts
as a TA system in Lactococcus for phage exclusion (166, 167). TA-acting Abi systems also exhibit
TA-related phenotypes such as plasmid maintenance (147, 155, 165). Therefore, these modules
likely play additional roles in bacteria aside from phage exclusion.

Intriguingly, P. atrosepticum φTE phage mutants can be isolated that evade ToxIN. Genome
analyses of wild-type and mutant phages revealed phage-encoded toxI pseudorepeats that were
expanded to mimic the host ToxI antitoxin to suppress ToxN activity and inhibit abortive infection
(168). In one instance, a φTE mutant phage incorporated the full-length toxI into its genome
through recombination, providing immunity to ToxN (168). Lactococcal phages can also escape
the related AbiQ system by acquiring mutations in genes involved in nucleic acid metabolism (169).
Thus, phages can utilize several mechanisms to counteract or prevent activation of phage-induced
abortive infection.

Other TA systems, such as RnlAB/LsoAB (Type II) and hok/sok (Type I), exclude T4dmd-
mutant and wild-type T4 phage infection, respectively (161, 170). RnlA and its homolog LsoA
are endoribonuclease toxins that are inhibited by direct interaction with their cognate antitoxins,
RnlB and LsoB (170). The RnlAB and LsoAB systems appear to act as an Abi system against
T4dmd phage mutants (170). RnlB and LsoB are rapidly degraded following T4 infection (170,
171). Wild-type T4 counteracts RnlA and LsoA to facilitate normal phage infection, because Dmd
acts as an antitoxin to directly inhibit RnlA or LsoA toxins (170). Dmd binds and blocks the C-
terminal domain of RnlA proposed to be responsible for RNA cleavage activity (172). Deletion of
the chromosomal mazEF locus, which encodes another Type II TA system, caused increased P1
infection (173). For the hok/sok and MazEF systems, it is not clear whether resistance is mediated
via an Abi cell-suicide mechanism. Nonetheless, inducing cell death for population-level phage
protection is a phenomenon reminiscent of Abi systems.

Given the interest in TA and Abi systems, novel approaches have assisted in identifying new
phage exclusion systems (155, 174, 175). Recently, the functional link between Abi and TA
systems was further investigated, using lactococcal Abi systems to discover new TA systems
(155). This approach led to the identification of the AbiE system as a widely disseminated
TA-acting Abi system in bacteria (155). AbiE of L. lactis aborted infection of the phage 936
family, preventing DNA packaging through an unknown mechanism (176). The toxin, AbiEii,
is a nucleotidyltransferase that catalyzes the addition of GTP to an unknown target to elicit
bacteriostasis (155). The antidote protein, AbiEi, represses transcription of the abiE operon by
binding to a conserved inverted repeat within the promoter and antagonizes preexisting toxin
without direct protein-protein interaction via a separable novel domain (155). Antitoxicity is
likely mediated at the substrate level (Type IV). The AbiE-related SanaTA system of Shewanella
was identified through shotgun sequencing, and this also acts as a TA system and protects E. coli
from T7 phage infection (175). Phage resistance required mutation of the T7 gene gp4.5, which
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encodes a protein that interacts with the Lon protease (175). Gp4.5 presumably blocks Lon,
preventing degradation of the antitoxin and suppressing activation of the TA system.

CONCLUSIONS

In their so-called arms race, bacteria and phages have developed diverse strategies to defend
themselves from each other. Bacteria possess antiphage systems that enable resistance to phage
infection or actively limit phage growth. The characterization of these defenses and their under-
lying mechanisms has contributed significantly to basic knowledge of molecular biology and to
our understanding of bacterial evolution.

Phage resistance systems in bacteria are normally studied individually, under controlled labo-
ratory conditions and using simple phage-host models. Because phages vastly outnumber bacteria
in any ecosystem, multiple antiphage systems likely act in conjunction to restrict a variety of
phages. A recent study showed that infection with multiple phages can reveal complex interaction
responses for the CRISPR-Cas system that were not observable when examining single phage-
host systems (177). Another recent study has shown CRISPR-Cas and RM systems are compatible
and together act to increase phage resistance in Streptococcus (178). In agreement, Abi systems in
Lactococcus often cluster with multiple phage resistance systems [e.g., pNP40 (176, 179)] and pro-
vide multilayered protection to hosts. Future studies with more heterogeneous models that test
the interactions between bacterial defense systems and phages are required to shed light on the
complexity of these immune systems and their likely action in nature.

Lastly, phages can rapidly adapt systems to subvert host defenses and can even use horizontal
gene transfer to reprogram a population of cells to resist other phages (168). In our quest to exploit
phages as antimicrobial agents for biocontrol or treatment of bacterial diseases, it is imperative to
elucidate the complex and dynamic evolutionary interplay between phages and their hosts. The
molecular mechanisms of many antiphage systems and phage escape strategies still remain elusive,
highlighting the need for further study of the interactive subtleties of phage-host relationships.

SUMMARY POINTS

1. The antagonistic relationship between bacteria and phages has led to the evolution of
incredibly diverse antiphage systems in bacteria and subsequent evasion strategies in
phages to overcome these defenses.

2. Bacteria possess resistance systems that target every stage of the phage infectious life
cycle.

3. Surface proteins of bacteria can be mutated, blocked, masked, or phase-variably expressed
to prevent phage attachment.

4. A diverse range of restriction-modification systems direct the degradation the nucleic
acids of invading phage genomes.

5. Bacterial Argonaute is a recently identified DNA-targeting system that might interfere
with phages.

6. CRISPR-Cas systems are highly adaptable immune systems in bacteria and archaea that
utilize small memory RNAs to guide protein complexes to phage genomes to elicit their
degradation.
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7. Abortive infection systems are postinfection modules activated in a virally infected bac-
terium that result in cell death, which limits viral propagation and spread through the
clonal bacterial population.

8. The study of phage-bacterium interactions has contributed significantly to our under-
standing of biology and has provided major advances in molecular biotechnology.

FUTURE ISSUES

1. Are phage resistance systems regulated (or triggered) in response to phage infection, and
if so, how?

2. Can Argonaute systems protect bacteria from phage infection?

3. How do CRISPR-Cas systems discriminate between host and phage genomes during
spacer acquisition? Also, how do CRISPR-Cas systems adapt to, and interfere with,
RNA phages?

4. What are the molecular mechanisms underlying the various abortive infection systems,
and are there commonalities?

5. Do any antiphage systems interact synergistically to reinforce a more robust immunity
against phage infection, or are they completely separate lines of defense?

6. How do the various phage resistance systems contribute to the phage-bacterium interplay
that occurs in complex ecosystems in natural environments?
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