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Abstract

Bacteria and their viruses (bacteriophages or phages) interact antagonisti-
cally and beneficially in polymicrobial communities such as the guts of an-
imals. These interactions are multifaceted and are influenced by environ-
mental conditions. In this review, we discuss phage-bacteria interactions as
they relate to the complex environment of the gut. Within the mammalian
and invertebrate guts, phages and bacteria engage in diverse interactions in-
cluding genetic coexistence through lysogeny, and phages directly modulate
microbiota composition and the immune system with consequences that are
becoming recognized as potential drivers of health and disease.With greater
depth of understanding of phage-bacteria interactions in the gut and the out-
comes, future phage therapies become possible.
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1. INTRODUCTION

Bacteriophages, or phages, are viruses that infect bacteria and are the most abundant and genet-
ically diverse biological entities on earth. Virtually all ecosystems that harbor bacteria contain
phages that shape the composition of bacterial communities (1, 2). Complex interactions between
phages, bacteria, and animal hosts are recognized as contributors to host-microbe interactions.
In this review we focus on three areas: (a) an overview of phage biology that sets the stage for
understanding phage-bacteria interactions studied in animals, (b) how phage-bacteria interactions
affect health and disease in the gut, and (c) what effect these interactions have on animal hosts
(Figure 1).
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Figure 1

Phage-bacteria interactions occur at the ecological and organismal levels in the gut and mucosal surfaces. (a) Abiotic and biotic factors,
such as intestinal niches and mucus, influence phage-bacteria interactions. (b) Phage-bacteria interactions are associated with human
disease and are being studied for their potential use as biomarkers and therapeutics. (c) Phages interact with bacteria in the guts and
mucosal surfaces of diverse invertebrates. Understanding the outcomes of these interactions on microbial community structure and
organismal biology is in its infancy.
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Phages are proposed as targeted therapeutics against multidrug-resistant bacteria and myriad
other applications, including gut microbiota composition engineering and nucleic acid editing of
bacteria in polymicrobial communities. The use of phages therapeutically should be considered
within the broader context of phage-bacteria interactions and how these interactions shape the
biology of phages, bacteria, and the animal hosts that harbor these microorganisms. A deeper
knowledge of how phages modulate gut bacteria will refine efforts to design targeted and effica-
cious phage therapies.

2. A PRIMER OF BACTERIOPHAGE-BACTERIA INTERACTIONS

2.1. Phage Replication Strategies

Phages are temperate or nontemperate. Temperate phages lysogenize their bacterial hosts by in-
tegrating into bacterial chromosomes as prophages or are maintained as extrachromosomal epi-
somes (3). Stably maintained chromosomal prophages are vertically transmitted in the host pop-
ulation. In response to host cell stress or other stimuli (4, 5), prophages are induced and enter the
lytic replication cycle, where infectious virions are released following cell lysis (Figure 2a) (6).

Some phages do not form stable lysogens and replicate strictly via the lytic cycle. Lytic non-
temperate phages (Figure 2b) are typically parasitic and are transmitted horizontally in the host
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Figure 2

Phage replication strategies. Phage lifestyles can be divided into four categories: (a) lytic and temperate, (b) lytic and nontemperate,
(c) chronic and nontemperate, and (d) chronic and temperate. All phages must adsorb to the bacterial surface and introduce their
genome into the cell. Nontemperate phages replicate and assemble new virions (panels b and c) while temperate phages (panels a and d)
may integrate into the bacterial chromosome as a prophage or be maintained as an episome. Early phage genes are expressed and
typically include proteins involved in phage genome replication, followed by late gene expression where phage structural proteins are
produced. Finally, phage virions are assembled and released via lysis (panels a and b) or by nonlytic extrusion (panels c and d).
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Phage-bacteria interactions within the intestine result in diverse ecological dynamics. (a) In Red Queen dynamics, the parasitic
relationship between phage and bacteria results in the development of bacterial phage resistance. Over time, phage evolve counter
resistance mechanisms allowing infection to continue. (b) In kill-the-winner dynamics, fast-growing and higher-density subpopulations
are more susceptible to phage infection than slower-growing and lower-density populations. Lytic phages will thus infect and lyse
higher-density subpopulations, ultimately restoring subpopulation density. (c) In piggyback-the-winner dynamics higher-density
subpopulations are more likely to be infected by phage and lysogenized. Lysogenized subpopulations resistant to superinfection can
then expand.

bacterial population. Some phages, such as filamentous inoviruses, do not require host cell lysis
to release infectious virions (7) and can establish chronic infections with continuous virion extru-
sion from the cell envelope (8, 9) (Figure 2c,d). Some inovirus species such as M13 do not form
stable lysogens (8, 10), while others such as CTXφ integrate into the bacterial chromosome as a
prophage (11).

2.2. Ecological Forces Shape Bacteriophage-Bacteria Interactions

Phage-bacteria interactions drive coevolution that shapes microbial ecology. The Red Queen hy-
pothesis when applied to phage-bacteria interactions supports parasitic relationships, character-
ized by cycles of bacterial resistance and phage counter resistance (12) (Figure 3a). Phage-bacteria
interactions are also explained by kill-the-winner dynamics (Figure 3b). This model is analogous
to the Lotka-Volterra equation describing predator-prey interactions (13). Kill-the-winner dy-
namics in the context of lytic nontemperate phages rely on bacterial population density. When
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host bacterial population densities are low, a phage interaction with a host is low, resulting in re-
duced infection. If the bacterial host population expands, the chances that a phage will encounter a
susceptible host increase.Higher infection rates slow bacterial population expansion.Thus, phages
can serve to stabilize bacterial community compositions by kill-the-winner infection biases that
prevent fast-growing bacterial species from taking over the community (Figure 3b). However,
when applied to virulent phages infecting diverse bacterial populations, kill-the-winner dynamics
can cause abrupt population collapse (14). In bacterial populations containing multiple species,
the dynamics of population expansion followed by abrupt collapse are cyclical for each species; so
long as bacterial growth rates are high, the overall population diversity is maintained (14). Few ex-
amples of kill-the-winner dynamics have been described within the human intestine, with notable
exceptions of phage-bacteria interactions in the infant intestine (15, 16).

Piggyback-the-winner dynamics describe ecological parameters that can be applied to temper-
ate phages in high-density microbial communities, as many ecological niches that harbor high-
density bacterial communities (the gut, coral reefs, soil) display lower-than-expected phage-to-
bacteria ratios (17). Reduced phage-to-bacteria ratios could be explained by temperate phages
entering lysogeny. The majority of bacteria in the intestine are lysogenized by at least one tem-
perate phage (18–21). Temperate phages protect their host from phage reinfection through a pro-
cess called superinfection exclusion (22). Lysogenic conversion can also confer a variety of fitness
advantages to the host bacterium (23). The piggyback-the-winner model postulates that high mi-
crobial densities favor lysogeny over lytic phage replication (Figure 3c).

3. BACTERIOPHAGE-BACTERIA INTERACTIONS OF THE
INTESTINAL MICROBIOTA

3.1. Factors that Influence Composition and Abundances

The primary method used to study intestinal phages is next-generation sequencing of virus-like
particles (VLPs) using Illumina short reads (24, 25).More recently, long-read sequencingmethods,
such asOxfordNanopore and PacBio SMRT, are being used to provide full-length phage genomes
from single reads and assess modifications such as DNA methylation patterns (26). A study of
intestinal phages using Oxford Nanopore sequencing demonstrated that this method can detect
known features of intestinal viral metagenomes (virome), such as highly abundant CrAss-phages,
and novel methylation marks that were previously undescribed (27). Studies have determined that
intestinal phages are largely composed of members of the Caudovirales, including theMyoviridae,
Siphoviridae, and Podoviridaemorphotypes, and the Petitvirales, represented by theMicroviridae (19,
28, 29). Individuals have unique repertoires of intestinal phages (28, 30, 31), containing only a few
shared core phages (21, 29). For instance, among 2,000 geographically dispersed viromes, 69% of
the viral populations were present in less than 0.5% of the samples and 0.38% of viral populations
were present in more than 20% of samples (31).

Factors affecting the composition of intestinal phages include diet, genetic factors, and disease
state (Figure 4).Dietary intervention reduces the variation of phages among unrelated individuals
and significantly alters virome composition compared to prediet (32). It is suggested that genetic
factors play a role in phage composition, as monozygotic twins have more similar viromes than
unrelated individuals (30, 33). An earlier study found that genetic relatedness did not lead to vi-
rome similarity (19), yet the results of this study were refuted in a more recent publication where
a larger cohort of human samples was used (30).

CrAss-phages, a family of intestinal phages, are the most abundant phages in human intestinal
viromes and are ubiquitous worldwide (34). CrAss-phages are more prevalent in industrialized
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Virome composition is unique among humans, with a few shared viruses that numerically dominate the virome. Factors affecting
virome composition are inflammation, genetics, diet, and maternal dissemination of the virome.

societies and are passed vertically from mother to child (35, 36). Different clades of CrAss-phages
exist in humans, with each person having unique CrAss-phage clusters (37). Young children can
have more than 1,400 different CrAss strains. CrAss-phages from similar geographic locations
cluster together according to genome sequence, suggesting localized transmission. CrAss-phages
may have evolved with humans because CrAss-like phages appear to be present in primates (37).
While the effects and role of CrAss-phages are still unclear, CrAss-phage abundance does not
correlate strongly with any diet, lifestyle, or health variable, suggesting these phages may not
have a strong effect on human health (37). In a meta-analysis of individual viromes, one CrAss-
phage population was found in 12% of samples analyzed from a variety of age groups worldwide
(31). This study suggested that CrAss-phage abundance peaks in adults and declines in the elderly.
Recently, evidence suggests that CrAss-phages infectBacteroidetes bacteria such asPorpyromonas sp.,
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Bacteroides thetaiotaomicron, and Bacteroides intestinalis (38–40). Bacteroides are dominant members
of the intestinal microbiota of humans who consume a Western diet, further supporting these
bacteria as a host for CrAss-phages (41).

The virome changes throughout all stages of human life (31, 42). Phage richness increases
during infancy (15, 33) [although studies have posited the opposite (16, 43)], decrease during ado-
lescence, reach high abundances during adulthood, and drop in abundance in the elderly. The
infant virome is temporal and increases in the abundance ofMicroviridae and Siphoviridae and de-
creases in Myoviridae over time (15, 16, 33, 44). The adult virome is characterized by high levels
of Podoviridae,Microviridae, and Siphoviridae. Podoviridae andMicroviridae abundance remains high
in the elderly.

Acquisition of phages in infants is thought to occur through bacterial-mediated dissemination
of prophages. Neonates are devoid of intestinal phages up to 4 days after birth and show signs
of phage intestinal occupation by one month postbirth, which indicates that intestinal phages are
acquired after birth (45). Lack of in utero intestinal phages reflects the paucity of bacterial hosts,
as the microbiota is widely considered to be acquired during and after birth (46). Factors such as
diet and birthing method influence phage composition of the infant intestine. Bacterial species
and their corresponding prophages are overabundant in breastfed infants compared to those fed
formula (45). In addition, phages from infant stool associate with the milk microbiota from their
corresponding mothers, and on average 30% of phages are present in both the infant stool and
maternalmilk (47). Spontaneous vaginal delivery of infants significantly increases intestinal virome
diversity of one-year-old infants, compared to similarly aged infants delivered via caesarian section
(48). The neonatal virome is mostly composed of temperate phages and becomes more virulent
as time progresses (49). Prophages isolated from the intestinal bacteria of neonates show high
similarity to phages of infants and have a strong positive correlation between a neonate’s intestinal
bacterial abundance and the abundance of that bacteria’s prophages in the virome (45). In contrast,
an inverse relationship between bacterial and phage richness and diversity in the infant gut has
been observed, suggesting a primarily lytic phage composition (16).

The ratio between lysogenic and lytic phages in the adult intestine is disputed, likely because
determining lysogeny in complex microbial samples is imprecise. Commonmethods for lysogenic
measurements include treating bacterial populations with prophage inducers, such asmitomycinC
or altering pH (50). However, a substantial number of intestinal bacteria resist cultivation and
these methods are not absolute. Many studies use sequence-based methods to detect lysogeny
(18, 28, 49). Several studies have found that when using the genomes of previously described
phages as references (that account for a minority of phages detected in a complex virome) to
identify intestinal phages, lysogenic phages dominate (19, 51). However, if database-independent
methods are used for de novo identification of intestinal phages, lytic phages are more abundant
(28). A study that utilized reporter strains found that the majority of intestinal phages that infect
Escherichia coli are temperate, with the temperate phages having narrow host ranges and the vir-
ulent phages having broader host ranges (20, 52). A lack of temporal variability (<2.5 years) in
intestinal phage diversity supports the rationale that phages are continually released from lysog-
enized bacteria (18, 19). A seminal study that sequenced intestinal viromes from ten individuals
found that temperate phages dominated the virome of only one subject (28). Lysogenic phages
have been shown to transition to the lytic state in the intestine. An Enterococcus faecalis prophage
and genetically linked chromosomal island produce lytic phage particles that facilitate E. faecalis
colonization of the mouse intestine (53). During mouse intestinal colonization Roseburia intesti-
nalis prophages gain mutations in the cro antirepressor, immunity region, and other variable genes,
producing hypervirulent lytic phages (54). This results in destruction of the R. intestinalis popu-
lation, and phage-resistant bacteria survive. These studies demonstrate the highly variable nature
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of phage-bacteria interactions and the evolving perception of lytic-lysogenic dichotomy in the
intestine.

3.2. Bacteriophage-Bacteria Interactions in the Mammalian Intestine

Coevolution of bacteria and phages occurs in the intestine, and these interactions shape both
communities (55). Phages and their host bacteria evolve rapidly in culture, suggesting that the
intestine is an ideal environment for phage evolution (56). Common intestinal bacteria, includ-
ing bifidobacteria, contain variable phage resistance and infection genes (57–59), suggesting that
intestinal bacteria are targets of predation and evolve to avoid phage infection (55). Intestinal
bacteria frequently contain clustered regularly interspaced short palindromic repeats (CRISPR)
spacers that align to phages, demonstrating that intestinal bacteria are actively evolving against
phage infection (21).

Evidence of phage-induced genetic changes in intestinal bacteria is emerging. Studies focus-
ing on E. coli and E. faecalis populations in the mouse intestine, following phage challenge, showed
that phage-resistant bacteria can be recovered with mutations in phage receptors (60–62). Vib-
rio cholerae isolated from human stool carrying virulent phages were resistant to phage infection,
indicating that bacterial adaptation that overcomes phage infection occurs in the intestine (63).
All sequenced V. cholerae strains were isogenic except for mutations in the outer-membrane porin
phage receptor, suggesting that phage predation selects for variants that can resist phage infection
in the intestine. Bacterial adaptation to phages can also be transient. B. thetaiotaomicron regulates
capsule polysaccharide expression through phase variation and downregulates the expression of
capsule genes required for phage infection in the presence of phage, supporting phage-host coex-
istence (64).

Phage-bacteria coevolution occurs in the mammalian intestine.Mice colonized with E. coli and
an E. coli–targeting phage resulted in loss of phage virulence over time due to bacterial resistance,
and the phages regained infectivity following the acquisition of compensatory mutations (60).
Phages gained new host ranges in the mouse intestine following continuous exposure to noncog-
nate host cells (65). In this study,mice were orally inoculated with phages and both phage-sensitive
and insensitive bacteria. Over time, these phages gained the ability to infect the phage-insensitive
bacterium.A third intermediate host was required to reproduce these results in culture, suggesting
that an endogenous intermediate host was present in the mouse intestine to aid in phage genome
evolution and altered host range. Finally, longitudinal studies in humans have shown that genetic
variation occurs over time in the healthy human virome, suggesting that phages evolve to selective
pressures such as bacterial host density and CRISPR spacer acquisition (18).

The administration of phages to a defined intestinal microbiota in gnotobiotic mice has
demonstrated that phages regulate microbial populations in the intestine. Gnotobiotic mice col-
onized with intestinal bacteria and administered VLPs from healthy human donors experienced
a community-wide decrease in bacterial abundance (66). In separate research, gnotobiotic mice
with defined microbial communities were treated with known lytic phages, which led to the loss of
both phage-targeted and nontargeted bacteria (67). This suggests that phage predation can affect
nonhost bacterial species. Furthermore, bacterial communities from young nonstunted children
are modulated by phage communities from young stunted children (49). Bacteria isolated from
young nonstunted children underwent a significant compositional change after treatment with
phages from young stunted children, compared to a heat-killed phage treatment.

Phages actively transduce DNA in the intestine. Resident intestinal phages transduce E. coli
in the mouse intestine (68). These acquired prophages transduce advantageous genes that aid
in bacterial metabolism. Phage transduction can spread virulence factors, such as the Shiga
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toxin–encoding prophages of E. coli (69). Shiga toxin–encoding prophages lysogenize new E. coli
hosts in the mouse intestine at a frequency of approximately 1:2,000 cells. Additionally, host
inflammation promotes temperate phage transfer in Salmonella enterica serovar Typhimurium (S.
Tm) and the spread of virulence genes (70). Mice infected with a donor S. Tm strain carrying an
antibiotic-tagged prophage and a prophage-less recipient resulted in lysogenized recipient cells.
Avirulent S. Tm donor strains, and thus a lack of intestinal inflammation, reduced temperate phage
acquisition by recipients. Vaccination of mice before S. Tm colonization prevented lysogenic
conversion, demonstrating that the host response increased prophage transfer to recipients.While
these studies were the first to demonstrate that transduction and prophage acquisition occur in
the intestine, more recently bioinformatics have been developed to monitor community-wide
transduction and prophage excision events, showing that several modes of transduction including
generalized and specialized transduction occur in the mouse intestine (71).

Intestinal cues such as bile salts, mucins, and intestinal spatial localization influence phage-
bacteria interactions, indicating that the intestinal environment influences predator-prey relation-
ships between phages and bacteria (72, 73). Phages and their host bacteria occupy different niches
in the mouse intestine. Phage abundances relative to their target bacterium are higher in the in-
testinal lumen compared to the mucosa, indicating that the mucosa may serve as a hideaway for
bacteria to escape phage predation, promoting phage-bacteria coexistence in the intestine (74).
Phage infection efficiency of intestinal E. coli depends on the physical location of this interaction
in the intestine, where E. coli cells are more permissive to phage infection in the ileum compared
to the colon and phages multiply to a lesser degree in the cecum compared to the ileum or colon
(75, 76). Other studies have shown that predatory phages fail to effectively eliminate pathogenic
intestinal bacteria in the absence of phage-resistant bacteria, suggesting that phage-sensitive bac-
teria reside in niches in the intestine that are inaccessible by phages (73, 77). Bile salts can pre-
vent adsorption and infection of a variety of E. coli phages (78–80). Finally, the production of the
V. cholerae phage receptor, toxin coregulated pilus, is associated with proximity to the ileal epithe-
lium, indicating that phage receptor expression is location dependent in the intestine (81).

Intestinal phages have an affinity for mucus and bind to a variety of mucosal surfaces in both
vertebrates and invertebrates, which may play a role in the biogeography of phage predation (82).
Phage adherence to the mucosa is suggested to protect these surfaces from bacterial invasion.
Phage adherence to mucus is mediated by the immunoglobulin (Ig)-like domain capsid protein
Hoc. This observation led to the proposed bacteriophage adherence to mucus (BAM) model,
where mucus collects virulent phages as a defense against bacteria (82).Whether the BAMmodel
applies to the intestinal mucosal surface in vivo remains to be determined. An in vitro intestinal
epithelial model showed that Ig-like domain-containing phages and phages lacking the Ig-like
domains are retained in mucus, but the presence of an Ig-like domain in the phage capsid more
effectively reduced bacterial burden at the mucosa by slowing phage diffusion through the mu-
cus and increasing phage-bacteria interactions (83). However, computational modeling suggests
that the rate of phage and E. coli interactions in mucus is also dependent on E. coli motility (84).
An alternative explanation is that mucins alter the bacterial host’s physiology to enhance phage
infectivity because mucins can alter bacterial growth and increase phage production (85).

3.3. Phages and Intestinal Diseases

While our understanding of what constitutes a healthy microbial gut community is unclear,
recent studies have identified differences in the phage community composition during intestinal
disease. Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn’s disease
(CD), are influenced by the composition of the microbiota in the intestine. An observational study
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suggested that phage communities might also be involved in IBD (86). Using UC and CD patient
cohorts, stool VLPs were isolated and metagenomic sequencing was performed to compare IBD
to non-IBD individuals.Consistent with other studies,Caudovirales andMicroviridaewere themost
abundant viral taxa detected in all three cohorts. Individuals with IBD harbored increased richness
and abundances of Caudovirales and decreased abundances of Microviridae, indicating disease is
associated with an expansion of Caudovirales phages. Phages identified to be uniquely associated
with CDwere closely related to Lactobacillus,Clostridium,Enterococcus, and Streptococcus phages, and
these were not observed in individuals with UC, highlighting that specific phages associate with
distinct diseases (86). In a related study, VLPs isolated from the rectal mucosa of 91 UC subjects
were compared to VLPs isolated from 76 healthy controls (87). Similarly, an expansion of the or-
der Caudovirales was observed in individuals with UC, including an enrichment in Escherichia and
other Enterobacteriaceae phages. In contrast, while an overall increase in abundance of Caudovirales
was observed, a decrease in the richness and diversity ofCaudoviraleswas seen in the mucosa of UC
patients, indicating that a specific subset of Caudovirales was expanding in these patients. In mice
experiencing intestinal colitis, phages similar to those found in CD and UC patients dominate,
suggesting colitic mice may serve as a useful tool for studying human IBD as it relates to phage
composition (88). Finally, changes in phages were also seen in the more common intestinal dis-
order irritable bowel syndrome (89), demonstrating some commonalities in phage communities
associated with intestinal disease. Using a database-independent method, Clooney and colleagues
(90) found that in contrast to previous studies, there was no significant difference in viral richness
during IBD. Instead, increased Caudovirales richness in individuals with IBD was seen only when
the data were restricted to analyzing phages belonging to Caudovirales. While a healthy intestinal
virome is dominated by a stable core of virulent phages, increased temperate phage abundances
were linked to disease (90). Improvement of methods to characterize and identify phages from
the microbiota will continue to refine our understanding of the changes that occur during IBD.

Fecal microbiota transplant (FMT) is emerging as a mechanism to restore healthy microbial
communities and has proven clinically successful for the treatment of Clostridioides difficile infec-
tion.FMT for IBDhas begun to be trialed to restore poormicrobial diversity frequently associated
with disease severity in both CD and UC patients. Several recent studies have demonstrated clin-
ical success of FMT in patients with UC (91, 92). FMT increases microbial diversity in recipients
irrespective of the clinical response, and it remains unclear if diversity or specific bacterial taxa are
responsible for the clinical efficacy (91). A study published in 2017 (93) examined the efficacy of
sterile fecal filtrate devoid of bacteria but retaining small particles such as phages and metabolites
for treating C. difficile infection. Transfer of this filtrate to five individuals with C. difficile infection
restored normal stool habits and removed the C. difficile infection in all five individuals. Virome
analysis supported the presence of phages, thus suggesting that phages within FMTs can protect
from intestinal disease. To determine whether phages are associated with successful FMT in UC
patients, we examined differences in the intestinal phage community of individuals with UC that
did or did not have successful clinical outcomes from FMT (94). Patients that had a successful
clinical response to FMT had a lower relative abundance of Caudovirales bacteriophages at the
time of transplant compared to patients that did not respond to therapy. Furthermore, the relative
abundance of Caudovirales in nonresponders increased after FMT while no change was observed
in responders.These data suggest thatCaudovirales abundance might be indicative of FMT failure.

Stunting, a growth impairment that occurs in children under the age of five and is associated
withmalnutrition and/or environmental stress, has been associatedwith changes in themicrobiota.
In a recent study, Khan Mirzaei and colleagues (49) isolated and characterized phage communi-
ties in young children from Bangladesh. In these children, the Siphoviridae morphotype (within
the Caudovirales order) dominated the phage sequencing reads from both stunted and nonstunted
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groups. However, stunted children had significantly increased reads assigned to Myoviridae and
Microviridae. At the species level, Bacillus phages were the most abundant, indicating that an ex-
pansion in these phages is associated with stunting.

3.4. Functional Effects of the Virome During Disease

The majority of literature focused on phage communities in intestinal disease is observational;
however, within the past few years researchers have performed functional analyses to demonstrate
that phages themselves can influence disease. While it has long been speculated that phages can
stimulate immune responses, most of these data have been garnered in vitro, whereby immune
cells are incubated with phages, making it unclear whether phages could modulate immunity at
the organismal level.Moreover, because phages are isolated from bacteria, phage preparations can
contain bacterially derived antigens and must be highly purified to ensure effects on immune cells
are truly in response to phages. Recently, highly purified E. coli phages were orally administered
to germ-free mice, and phages alone were sufficient to induce T cell numbers to the same levels
as those seen in specific pathogen-free (SPF) animals that possessed a complex microbiota (94). In
vitro experiments confirmed that this effect occurred by dendritic cell–mediated phagocytosis of
phages and presentation of phage antigens to activate T cells (94). Phage-mediated stimulation of
immunity was dependent on Toll-like receptor 9 (TLR9) signaling by phage DNA (94). Another
study demonstrated that the filamentous Pf phage that infects Pseudomonas aeruginosa can prevent
phagocytosis and suppress tumor necrosis factor-α secretion dependent on TLR3 (95).These data
demonstrate that phages can enhance and suppress host immunity through distinct mechanisms.
As there are multiple receptors both outside and inside the cell that might detect phages, future
studies are warranted to better understand this specificity. This could be particularly relevant in
early development, as the neonatal intestine is being seeded by microorganisms, including phages,
making it possible that phage stimulation could influence early immune system priming.

As discussed earlier,Caudovirales phages have been observed to expand in individuals with IBD.
It is unclear whether this expansion has any consequences for this intestinal disease. To address
this, SPF animals that did not harbor E. coli species, but contained an otherwise complex and nor-
mal microbiota, were orally treated with a cocktail of three Caudovirales phages that specifically
targeted E. coli (94). Because the host targets of these phages were absent in these mice, this sim-
ulated an expansion of free Caudovirales phages that did not disrupt the commensal microbiota,
mimicking the expansion of these phages in humans with IBD. Animals orally administered the
phage cocktail were subsequently induced for IBD. Animals with the expanded phages developed
worsened disease characterized by increased weight loss, enhanced inflammation, and greater ep-
ithelial damage when compared to untreated animals (94). Increased disease induced by phages
was dependent on phage activation through TLR9, suggesting that the expanded population of
phages detected in individuals with IBD may play a detrimental role during disease.

3.5. Harnessing Bacteriophages Therapeutically

Antibiotics have often been used to ameliorate IBD as well as treat intestinal infections. How-
ever, as antibiotics also kill the beneficial organisms in the body, the use of phage therapy for
intestinal diseases would provide a more targeted approach to kill unwanted organisms, although
recent reports show that some phage-bacteria interactions can have off-target effects (67, 96).This
was recently tested in two distinct animal models. Genotoxin-producing adherent invasive E. coli
(AIEC) is associated with both IBD and colorectal cancer (CRC) in humans and has been shown
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to increase tumor burden and number in a mouse model (97, 98). To determine whether phage
therapy would be successful in a mouse model of CRC, a cocktail of three phages that specifically
target AIEC was continuously administrated to animals that develop CRC due to a genetic muta-
tion in the adenomatous polyposis coli (APC) gene (94).While a one-time dose was not sufficient
to ameliorate disease, continuous treatment with this phage cocktail significantly reduced tumor
burden and number, demonstrating for the first time that phage therapy could be successfully em-
ployed to treat CRC (94). A similar approach was used in a mouse model of alcoholic liver disease
(99). The investigators observed that E. faecalis residing in the intestine secretes an exotoxin that
causes hepatocyte death and liver injury. The abundance of intestinal E. faecalis is significantly
higher in individuals with alcoholic liver disease. Treatment of animals with phages significantly
reduced E. faecalis intestinal colonization and exotoxin production, which ameliorated liver injury.
Thus, microbiota editing using phages provides a personalized approached to treat a multitude of
disorders.

In addition to phages directly amplifying immune responses as discussed above, two recent
studies have identified ways to utilize immune responses against phages as potential treatments
for disease. The P. aeruginosa Pf phage promotes biofilm formation and enhances virulence of
this bacterium. Immunization of animals with a Pf phage protein protected against P. aeruginosa
wound infections (95). Immunized animals cleared the bacterial infection faster and developed
milder disease. The cytotoxic T lymphocyte response to a prophage element, called TMP, found
within the bacterium Enterococcus hirae is cross-reactive with tumor-associated antigens (100).
T cell responses to E. hirae are associated with a positive clinical outcome in cancer patients,
suggesting that commensal-specific T cell responses can contribute to antitumor immunity (100).
The specific epitopes recognized by T cells and whether they can be harnessed to improve antitu-
mor therapy are unclear. Interestingly, administration of bacterial strains engineered to express the
prophage TMP epitope improved immune therapy in mice (100). In renal and lung patients, the
presence of the prophage in stools and TMP cross-reactive antigens in tumors correlates
with the benefit of PD-1 blockade (100). Thus, commensal-specific T cells can cross-react with
tumor antigens and can be harnessed to improve cancer immunotherapy. Given that the intestinal
microbiota contain numerous prophages, amplifying or vaccinating with phage antigens might be
novel strategies for therapeutic intervention of intestinal disease.

4. BEYOND THE VERTEBRATE INTESTINE:
BACTERIOPHAGE-BACTERIA INTERACTIONS
IN ARTHROPODS AND OTHER NONVERTEBRATES

Arthropods are the largest group of terrestrial animals.Like vertebrates, arthropods displaymyriad
relationships with bacteria (101).While many studies describe the functional diversity of bacterial
communities in arthropods, the role of phages in arthropod microbiotas remains understudied. In
this section, we discuss known and potential interactions between phages and bacteria in the guts
of nonvertebrate hosts.

Roughly half of insects and other arthropods are infected byWolbachia, a maternally transmitted
endosymbiont (102–104). In some cases,Wolbachia are reproductive parasites, causing cytoplasmic
incompatibility (CI) between sperm and egg, feminization, and male killing in a variety of arthro-
pod species (105). In contrast to other obligate endosymbiotic bacteria, theWolbachia genome con-
tains a high level of mobile genetic elements, including the temperate phageWO, which is widely
distributed amongWolbachia (106). PhageWO encodes ankyrin repeat domain proteins (107) that
facilitate tripartite phage-bacteria-arthropod interactions (108, 109). Two ankyrin genes encoded
by prophage WO (pk1 and pk2) are correlated with feminization and CI in different arthropod
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hosts (110, 111), and several other phage WO-encoded ankyrin domain-containing proteins are
thought to interact with the arthropod host (109). Phage WO also encodes the nonankyrin genes
cifA and cifB, which are responsible for causing CI inDrosophila melanogaster (112). CI is rescued if
females are infected with the same strain ofWolbachia, which has the effect of driving CI-inducing
Wolbachia, and thus phage WO, into host arthropod populations (113, 114).Wolbachia have been
reported to be present in the midguts of various insect species (115); however, specific interactions
betweenWolbachia, phage WO, and the arthropod gut microbiota have not been described.

Compared to the vertebrate gut, arthropod guts contain relatively few microbial species (101).
However, some arthropods harbor complex gut communities. For example, termites rely on gut
symbionts for cellulose digestion and nutrient acquisition (116). Some termite lineages possess
a purely prokaryotic gut microbiota, while other more primitive lineages digest cellulose with
the help of a cellulolytic protist (117). Meta-analysis of the termite gut microbiota reveals phages
are represented including several Caudovirales andMicroviridae phages, and phages that infect en-
dosymbiotic bacteria residingwithin the symbiotic protist (118, 119).Phages have been detected in
other insect endosymbionts including Sodalis glossinidius from the tsetse fly gut (120),Proteus,Prov-
idencia, and Morganella symbionts in parasitoid wasps (Nasonia) (121), and gut bacteria in honey
bees (Apis mellifera) (122).The presence of phages that infect endosymbionts throughout the strat-
ified levels of the arthropod gut microbiota suggests phages play underappreciated roles in several
aspects of arthropod biology.

Phages infect pathogenic bacteria transmitted by blood-feeding arthropod vectors. For exam-
ple, Ixodes scapularis, the blacklegged deer tick, transmits numerous pathogens, including Lyme
disease, the most common vector-borne disease in the Northern Hemisphere (123). Borrelia (Bor-
reliella) burgdorferi, the bacterium that causes Lyme disease, has a complex genome that includes
32-kb circular plasmid (cp32) prophages (124). In B. burgdorferi, cp32 prophages undergo lytic
replication where they are packaged into infectious virions designated φBB-1 (125, 126). cp32
prophages are likely induced during a blood meal because cp32 genes are transcriptionally ac-
tive in the presence of blood and increased temperature (127). Putative φBB-1 structural genes
are highly conserved and have not decayed among cp32 isoforms across the Borrelia genus (124),
suggesting that lytic replication of φBB-1 occurs frequently during the natural tick-vertebrate
life cycle. The cp32 prophages encode bacterial surface proteins that play critical roles in the B.
burgdorferi arthropod-vertebrate life cycle (124, 128). What role if any cp32 prophages or φBB-1
virions play in the vertebrate host is not clear.

In addition to arthropod hosts, phages are important components of the microbiota in other
invertebrate mucosal communities. Sponges harbor a complex but stable microbiota analogous to
the gut microbiota of higher animals. Sponge bacterial symbionts are vertically transmitted and
play critical roles in nutrient acquisition (129, 130). Filter-feeding sponges process several thou-
sand liters of seawater each day (131). Because phages are abundant in seawater, sponges and their
bacterial symbionts are exposed to billions of phages every day, and phage-defense mechanisms
are enriched in sponge symbiont genomes (132, 133). A recent study found that phages that in-
fect commensal bacteria in sponges encode the ankyrin repeat–containing protein ANKp. Phage-
encoded ANKp suppresses inflammatory cytokine production and phagocytic bacterial uptake by
the sponge immune system, which may facilitate sponge-commensal bacteria-phage coexistence
(134). The mechanism underlying how ANKp suppresses host immunity is not known; however,
the ankyrin repeat domain present in ANKp likely facilitates interactions with the animal host.

5. CONCLUSION

Knowledge of the interplay between bacteria and their phages has progressed greatly in recent
years. This field has described numerous ways both bacteria and phages participate in a perpetual
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arms race to coexist. In the gut environment, where phage-bacteria interactions are affected by
abiotic and biotic factors (i.e., spatial niches and mucus) and environmental conditions such as diet
and host genetics, the interactions of bacteria and phages have broad implications for organismal
gut biology. Perturbation of phage populations affects diverse biological systems ranging from
disease states in humans to prophage-driven life cycle progression in blood-feeding ticks. Further
research on all fronts to identify new features of phage-bacteria interactions in the gut will likely
lead to more informed technologies for manipulating the microbiota. Additionally, new insights
into how phage-bacteria and phage-animal interactions modulate health and disease will continue
to place phages at the forefront of host-microbe interactions and next-generation therapeutics in
the gut for years to come.
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