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Abstract

Deformed wing virus (DWV) has become the most well-known, widespread,
and intensively studied insect pathogen in the world. Although DWYV was
previously present in honeybee populations, the arrival and global spread
of a new vector, the ectoparasitic mite Varroa destructor, has dramatically
altered DWV epidemiology. DWV is now the most prevalent virus in
honeybees, with a minimum average of 55% of colonies/apiaries infected
across 32 countries. Additionally, DWV has been detected in 65 arthropod
species spanning eight insect orders and three orders of Arachnida. Here,
we describe the significant progress that has been made in elucidating the
capsid structure of the virus, understanding its ever-expanding host range,
and tracking the constantly evolving DWV genome and formation of
recombinants. The construction of molecular clones, working with DWV
in cell lines, and the development of immunohistochemistry methods will
all help the community to move forward. Identifying the tissues in which
DWYV variants are replicating and understanding the impact of DWV in
non-honeybee hosts are major new goals.
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GENERAL INTRODUCTION

Deformed wing virus (DWV) has transformed from a largely unknown, minor pathogen of hon-
eybees to the most well-known, widespread, and intensively studied insect pathogen in the world.
This dramatic rise in DWV’ prevalence and infamy is solely down to its association with the
Varroa mite (Varroa destructor), an ectoparasite and also, devastatingly, an efficient virus vector
between honeybees (Apis mellifera) (1-6). This introduction of a new DWV transmission route—
i.e., inoculation directly into the hemolymph during mite feeding—has been closely associated
with the death of millions of honeybee colonies and has changed the entire viral landscape of
honeybees (7-9) and other associated insects (10, 11). This three-way association between the
honeybee (host), mite (vector), and DWYV (pathogen) has generated thousands of studies, created
numerous research teams, and even turned many beekeepers into pseudo-virologists. Due to hon-
eybees’ both importance and ease of manipulation, this tripartite system continues to develop into
an excellent insect-host-viral pathogen model system. This review focuses predominantly on the
major advances made since 2010, since studies prior to this are well covered by the reviews of de
Miranda & Genersch (12) and Genersch & Aubert (13). The key advances covered in this review
are in DWV’s worldwide prevalence, virion structure, genetic variants and recombination, trans-
mission, host range, and impact on host, as well as future directions. For recent reviews on other
bee-associated viruses, see (14); for reviews on the Varroa mite and host immunity against DWV,
see (15) and (16), respectively, since all these topics lie beyond the scope of this review.

BRIEF HISTORY OF DEFORMED WING VIRUS DISCOVERY
AND CURRENT PREVALENCE

DWYV was the last virus to be isolated from honeybees by the legendary Bill Bailey and Brenda Ball
at the Rothamsted Research Centre in the United Kingdom. Between them, they identified the
majority of honeybee-associated viral pathogens and laid a strong foundation for all subsequent
work. In 1982 they discovered a virus isolated from dead Japanese honeybees that was serologically
related to Egypt bee virus (EBV). This Japanese isolate of EBV was later named DWV, owing to
the deformed wings of the bee from which the virus was isolated (17) (Figure 1). Subsequently,
three more colonies from Belize, the United Kingdom, and South Africa all died suddenly with
high loads of DWV (18); it therefore appeared that DWV was a rare pathogen that was very occa-
sionally associated with the death of a honeybee colony. It was another 10 years before DWV was
detected again, this time in dead Varroa-infested colonies in the United Kingdom (19). Initially
people were skeptical about the role of DWV in the death of Varroa-infested colonies, since the
well-established dogma was that deformed bees and colony death were caused by hemolymph ex-
traction by the feeding mites. As the availability of molecular technologies increased, many coun-
tries around the world conducted prevalence surveys (Table 1) of the main honeybee-associated
viruses, including DWYV, facilitated by a standardized set of methods and primers for studying
all bee-associated viruses (20). Many studies indicated that DWV was consistently (20 out of
24 studies) the most prevalent viral pathogen detected in honeybees (Table 1), with a world-
wide prevalence (based on data from 32 countries) of approximately 55% of colonies/apiaries in-
fected, although this figure may be higher, as prevalence levels vary with the detection sensitivity
().

In every location presented in Table 1, the Varroa mite had already become well established
within honeybee populations, and in the vast majority of countries colonies died if beekeepers did
not control their mite populations (21). However, in a small number of locations such as Uganda
(22), Australia (23), and the Canadian island of Newfoundland (24), the Varroa mite has not yet
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Figure 1

(#) A normal-looking asymptomatic honeybee that hosts an adult female Varroa destructor mite, the oval, brown object seen on her
abdomen between her wings. (5) A newly emerged bee showing the deformed wings typically associated with symptomatic deformed
wing virus. Photos courtesy of Ethel Villalobos.

become established. Correspondingly, DWV either has not been detected or is seen only at low
levels at the threshold of molecular detection capability.

This close association between DWV and the Varroa mite has long been understood in general
terms (25), but recent research by Wilfert et al. (9), who used molecular evolutionary tools to
track the spread of DWV around the world, elucidated the tight link between the global spread
of the Varroa mite (26) and the corresponding spread of DWV. Decreasing molecular costs now
enable researchers to analyze increasing sample sizes, and some are extracting RNA from only the
heads of bees, as this helps cut down processing times. Although Boncristiani et al. (27) found that
chemicals within the large compound eyes of bees can inhibit polymerase chain reactions (PCRs)
and false negatives can be generated if noncolumn-based RNA extraction methods are used, this
can easily be avoided by using column-based extraction kits or adding a column-based purification
step (27).

THE STRUCTURE OF DEFORMED WING VIRUS

DWYV is a member of the Iflaviridae family within the Picornavirales order. Like all Iflaviruses,
DWYV exists as a nonenveloped icosahedral virion about 30 nm in diameter, which contains one
copy of a single-stranded positive-sensed RNA genome. The ~10-kb genome contains a single
open reading frame, which encodes a 2,893 -amino acid polyprotein (28) that is post-translationally
processed, and an extended 1.1-kb 5'-proximal UTR containing an internal ribosome entry site.
The 3’ end terminates with a poly-A tail (29). The structural proteins (VP1-VP4) are located at
the N-terminal (5') end, while the nonstructural proteins, involved in replication and polyprotein
processing, are present at the C-terminal (3) region. This protein order is strictly conserved within
the Iflaviruses (30) (Figure 2).

Since de Miranda & Genersch’s review (12), the major advance in DWV research has been in
our understanding of the capsid structure. Sinchez-Eugenia et al. (31) showed using the Triatoma
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Table 1 The prevalence (%) of DWYV in colonies (or apiaries if the data were pooled) from 32 countries, followed by

the sample size (n), whether DWV was the most prevalent RNA virus detected (where more than one virus had been

studied), and the source reference

Was DWV the most prevalent
Country Prevalence Sample size (n) RNA virus detected? Reference(s)
Europe
Austria 91% 131 Y 25
Belgium 69% 164 Y 126
Bulgaria 10% 50 Y 127
Croatia 95% 82 Y 128
France 84% 90 Y 129
97% 36 Y 130
Germany 20% 1,104 Y 66
Poland 76% 1,000 Y 131
Serbia 76% 55 Y 132
74% 150 Y 133
Spain 15% 456 N/A 134
10% 10 N 135
19% 438 N 136
Switzerland 74% 337 Y 137
United Kingdom 100% 250 N/A 8
36% 34 N/A 10
100% 34 138
Asia
China 94% 34 Y 139
90% 17 Y 140
74% 46 N/A 141
Japan 84% 65 Y 90
Vietnam 75% 1 N 141
Americas
Chile 2% 60 Y 142
Mexico 80% 5 Y 143
United States 100% Unknown Y 144
75-95% 79-170 Y 68
Middle East
Traq 27% 30 N/A 145
Israel 23% 71 Y 146
Jordan 45% 60 N/A 145
Lebanon 68% 13 N/A 145
Palestine 37% 25 N/A 145
Syria 77% 35 N/A 145
Yemen 38% 16 N/A 145
Africa
Algeria 40% 40 N/A 147
Egypt 20% 20 N/A 145
Kenya 50% 32 Y 148
Libya 20% 15 N/A 145
(Continued)
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Table 1 (Continued)

Was DWV the most prevalent
Country Prevalence Sample size (n) RINA virus detected? Reference(s)

Morocco 45% 21 N/A 145
South Africa 13% 31 N 149
Sudan 0% 4 N/A 145
Tunisia 34% 56 N/A 150

17% 32 N/A 145
Average ~55%

Abbreviations: DWV, deformed wing virus; N, no; N/A, not applicable; NY, yes.

virus, a virus within the same order as DWV (Picornavirales), that during cell entry the capsid un-
dergoes a conformational change, and the VP4 region may function by being inserted directly into
cell membranes prior to viral insertion. Further insight into DWV structure was then provided
by two independent teams, Skubnik et al. (32) and Organtini et al. (33), who used cryo-electron
microscopy and X-ray crystallography to determine the structure of the DWV virion down to a
resolution of 3-4 A. They confirmed that the DWV virion is constructed from the VP1, VP2,
and VP3 subunits and arranged into a capsid with a pseudo-T3 icosahedral symmetry. They also
showed how this three-dimensional structure changed under different pH conditions, particu-
larly the p-domains, which are protruding globular extensions of the capsid proteins that may
act as catalytic sites to enable viral entry into the host cell. Organtini et al. (33) showed that the
procapsid (immature capsid prior to RNA genome insertion) and RNA-containing capsid both
shared the same conformation, whereas putative entry intermediates, or A particles, and empty
capsids that remain after genome release had undergone a conformational transformation. Both
studies showed that these changes occurred in the p-domains, but the order of events remains
controversial (Figure 3).

A further finding from these studies was that the viral genome interacts with the VP3 protein
close to the fivefold icosahedral axis, an interaction that could contribute to stability or assembly
of the mature virion, and additionally this fivefold vertex may be the location of genome escape.
Although the study by Skubnik etal. (32) showed that variations in pH could trigger changes in the
p-domain structure, the levels used were not physiologically realistic; thus, it remains unknown
which factor or combinations of factors, such as heat, receptor interactions, or pH, may trigger
genome release. The only major recent advance in the understanding of the genome sequence,
which was already annotated by 2010, was by Lamp et al. (34), who constructed molecular clones
and showed that the UTR at the 5" end was longer than previously thought, with 21 nucleotides
missing compared to the typical DWV genome sequence.

5'UTR '_F 3'UTR
O

RE< Lp | VP3 VP1 VP2 | Helicase 3C RdRp == AAAAAAAA'

VP4

VPg

Figure 2

The basic structure of the DWV genome. The IRES in the 5" untranslated region may initiate translation of
the polyprotein. Arrows indicate some of the key recombination regions (52, 53). Abbreviations: DWV,
deformed wing virus; IRES, internal ribosome entry site; Lp, leader protein; RdRp, RNA-dependent RNA
polymerase; VPg, viral protein genome-linked. Figure adapted from Reference 34.
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Images showing the proposed conformational change that occurs during genome release according the work published in Reference 33
showing that the genome packages into an open structure to produce the infectious virus. After interacting with host cells, the open
form changes to the closed conformation during genome release. However, the structural changes involving genome packaging and
release are controversial, since the model in Reference 32 suggested that the closed form of the capsid is used for packaging the genome
and the virus changes to an open form for RNA release. Figure reproduced courtesy of Susan Hafenstein and Lindsey Organtini.
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THE DEFORMED WING VIRUS COMPLEX

One of the key advances in the field of DWV research in the last decade is the discovery made by
two independent teams, Martin et al. (7) and Ryabov et al. (8), who, by using a part of the RNA-
dependent RNA polymerase gene, identified that DWV persists naturally as a covert swarm of
DWYV variants. However, when these diverse strains were transmitted horizontally by the Varroa
mite, the diversity was vastly decreased to a near-clonal DWV population, the A strain (7). At the
colony level, this occurred over a period of 2-3 years and corresponded with an increase in virus
load and eventual death of the honeybee colony (7). Ryabov et al. (8) later demonstrated that this
loss of diversity did not occur in the mite but in the developing bee into which DWV had been
injected and occurred within days in an individual bee pupa. Ryabov et al. (8) also showed that
oral acquisition of DWV did not affect the low viral load or diverse nature of DWV. As the loss
of strain diversity occurred in the bee pupae and not in the mites, this suggests that the mites
are just transmitting the reduced diversity rather than generating it. Amazingly, a parallel loss of
strain diversity occurred in DWV detected in the social wasp Vespula pensylvanica from Hawaii
(35). Although wasps are not parasitized by Varroa, they are an active honeybee predator; thus, the
variant sharing between Vespula and Apis suggests that these wasps can acquire DWV directly or
indirectly from honeybees.

The existence of multiple strains and the capability to infect several species are common fea-
tures of viral infections and influence many viral processes, including replication, transmission,
and the induction of disease. DWYV is no different, although it may be many years until the full
impact and evolution of strain diversity in DWV are realized. Ever since Lanzi et al. (28) first
sequenced the full DWV genome, the amount of available sequence data has increased rapidly.
These data have revealed that DWV is a viral complex comprising at least three distinct geno-
types or master variants—types A, B, and C (7, 36, 37)—with significant variation often being
present around each genotype (Figure 4). The original DWV genotype (28) is now known as the
DWV type-A master variant, which includes most previous DWV sequences and Kakugo virus
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a SBV b

| DWV-C DWV-A | DWV-B | DWV-C
DWV-B DWV-A 95.2 89.5
08 DWV-B 84.4 89.1
0.69 0.09 DWV-C 79.1 78.9
DWV-A

Figure 4

(@) Bayesian phylogeny using a conserved amino acid sequence encoding for the RdRp region for the three
DWYV master variants (A, B, and C) along with SBV, another member of the Iflaviridae family. Bayesian
support values are shown on the nodes with bars indicating the number of nucleotide substitutions per site.
() Percentage identity matrix of DWV variant amino acid (upper right) and nucleotide alignments (bold lower
left) between the three master variants (A, B, and C) based on de novo assembly of whole genomes.
Abbreviations: DWYV, deformed wing virus; RdRp, RNA-dependent RNA polymerase; SBV, Sacbrood virus.
Figure adapted with permission from Reference 36.

(38). Owing to the phylogenetic clustering of the virus sequences and the frequently occurring
homologous recombination, the DWYV species complex has now been extended to include Varroa
destructor virus-1 (VDV-1) (39), which is now taxonomically assigned as part of the type-B clade
and the most recently discovered type-C master variant (36). The situation regarding nomencla-
ture and VDV-1 has been further complicated by the discovery of three new RINA viruses detected
in the Varroa mite, which have been named VDV-2, VDV-3 (40), and VDV-4 (41). These three
newly described viruses both lie well outside the DWV clade and as far as we know are restricted
to Varroa, in contrast to VDV-1, which lies within the DWV group and is commonly found in
both honeybees and Varroa mites. The differences and phylogenic relationship between the three
types of DWV are given in Figure 4.

The majority of virologists in the field now accept this nomenclature, and Kevill et al. (42)
have designed an assay with specific primers to distinguish between these three variants. Using
molecular clock estimations, Mordecai et al. (36) predicted that type C diverged from the other
master variants ~319 years ago, whereas types A and B disassociated from each other more recently
around 181 years ago (Figure 4).

Furthermore, Lamp et al. (34) showed using molecular clones that most of the 5-UTR was
highly conserved between all DWV strains. However, when comparing the 5'-terminal stretch in
their DWV-A 1414 clone to other DWV master sequences, they found 10 nucleotides missing
from Kakugo virus (DWV-A) and at least 21 nucleotides missing from both DWV-A and DWV-B
genomes, while the DWV-C was 14 nucleotides shorter compared with the DWV-A 1414 clone.
Currently, the significance of these differences remains unclear.

We are now discovering that competition is occurring within the host between the three master
variants, whose dynamic evolution continues to change the viral landscape of entire countries. For
example, in 2010 a DWV survey of honeybees across the United States found DWV type B in
only 3% of colonies, whereas in 2016 it had increased to 65% of colonies (43). When type B and
type A are coinjected into adult bees, type B outcompetes type A (44); this could be linked to the
landscape-scale changes that are being observed (45). Since its discovery, DWV type C remains
elusive, only occasionally being detected in honeybees (42); however, a recent study by De Souza
et al. (46) found type C to be present and often the dominant variant in all sampled colonies of
the stingless bee Melipona subnitida from Brazil, suggesting different host species may vary in their
susceptibility to the different DWV variants.
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One of the key challenges for future research programs is to continue to track the evolving
DWV landscape and understand the impacts that each of these and any new emerging master
variants have on the various insect hosts.

RECOMBINATION

As individual hosts are commonly coinfected with multiple viral strains (47), recombination is ex-
pected to occur. Recombination in DWV was first studied by both Moore et al. (48) and Zioni
et al. (49) in bees in the United Kingdom and Israel, respectively. Both groups found a similar
recombinant comprising the DWYV type-B structural region with the type-A nonstructural re-
gion, but a range of recombinant forms containing a number of recombination breakpoints have
now been discovered (Figure 2). In a later study of the same UK population, Ryabov et al. (8)
also found the B/A recombinant to dominate. This recombinant has a recombination junction
within the helicase gene and consisted of a DWV-A, 5" UTR, and nonstructural region with the
DWV-B capsid-encoding region and 3’ UTR. Wang et al. (50) found a similar recombinant (5'-
DWV-A/DWV-B/-DWV-A-3') along with the full-length DWV-B strain to be the most prevalent
forms of DWV in their study in Oxford, United Kingdom. Natsopoulou et al. (51) and Corn-
man et al. (52) both independently confirmed the presence of DWV recombination hotspots in
the 5 UTR (many) and within the conserved helicase gene (few), as previously discovered (48,
50). Dalmon et al. (53) went on to identify nine recombination breakpoints (Figure 2), identi-
fying four positions that showed evidence of positive selection. Three of these were in the pu-
tative leader protein, and one was in the Helicase gene, suggesting these regions are important
in the evolution of DWV. However, even though we now know recombinants to be widespread,
it appears from a recent study by Chejanovsky et al. (54), who found only full-length DWV-A
in Florida, that full-length types A and B may more commonly dominate samples rather than
recombinants.

ACTIVATORS AND LOCATION OF DEFORMED WING
VIRUS REPLICATION IN HONEYBEES AND MITES

Honeybees

Under natural (Varroa mite—free) conditions, DWV infections are rare, and when present, viral
loads are often at the limit of detection capability. As such, there are no available data concerning
tissue localization since the majority of studies using these mite-free populations use whole indi-
viduals or pooled bees to maximize the chances of detecting viruses (e.g., 23, 55). Furthermore,
we do not have any idea what changes a covert-persistent infection into an overt infection that
goes on to kill a honeybee colony, since these events are very infrequent and have been recorded
in only a few studies (18, 7, 24). Understanding how and why DWV changes from a covert- to
a persistent- or acute-overt infection under natural conditions will be a major challenge for the
future, especially since honeybee populations that are infected with DWV but remain free from
Varroa mites are a scarce resource.

To mimic the effects of mite feeding, Annoscia et al. (56) experimentally removed increasing
volumes of hemolymph from well-developed honeybee pupae and found this resulted in increas-
ing DWV viral loads. In addition, Zhang & Han (57) suggested that an injection of a toxic protein
by the Varroa mite into developing pupae during feeding caused DWV loads to increase and subse-
quently cause the development of deformed wings in the adults. However, both of these attractive
ideas cannot explain why Varroa mites that have been feeding on honeybees covertly infected with
DWYV on the remote Brazilian island of Fernando de Noronha have not caused DWV to become
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an overt infection during the past 30 years (55), since the mites are both removing hemolymph
and potentially injecting toxic proteins. Furthermore, the idea of mite feeding activating DWV
has been a popular one (16), although clear empirical support has remained scarce. This may
be because it is difficult to obtain truly noninfected mites and bees to study, and it is not possi-
ble to test for viral loads of live bees and mites prior to exposure to one another. It is, however,
much more feasible to investigate interactions when bees are already infected with overt-persistent
DWV. As such, when infection is already present, many factors have been associated with increas-
ing the DWV loads in the honeybee population, such as cold stress and colony strength (58);
diet, with higher DWV levels in sugar-fed bees relative to pollen-fed bees (59); and exposure to
neonicotinoid pesticides, which negatively modulates NF-kB activation and helps promote DWV
proliferation (60).

In general, DWV studies and surveys have used RNA extracted from either whole bee or mite
samples or, more recently, just the bee heads. The various strains (i.e., DWV-A and DWV-B, and
recombinants thereof) can be detected in all parts of the bees’ body (27, 38, 49, 61-63). Using
immunohistochemistry, Lamp et al. (34) showed DWV-A replicated in the head, thorax, and ab-
domen of bee pupae. Using the DWV-VP1 antigen, they found DWV-A in the ocular cells, central
nervous system, and glandular systems in the head; in the connective tissue cells and glands of the
thorax; but not in the muscles of the thorax or hemocytes (34), whereas Gisder et al. (64) found
both DWV-A and DWV-B within the thorax and heads of artificially injected adult bees, although
the proportion of the DWV-A in the head was significantly lower than that of DWV-B. Then us-
ing fluorescence in situ hybridization (FISH), they confirmed DWV-B in the brain tissue but not
DWV-A. Yue et al. (65) found that vertically transmitted DWV was typically lacking from the
heads of the bees but present in the thorax and abdomen. Genersch et al. (66) found that when
DWYV diagnosis was restricted to using the presence of DWV in the honeybees’ head, colony losses
in Germany could be significantly related to DWV infection, which makes sense given what we
know about Varroa-transmitted DWV being the most important for bee and colony health. Stud-
ies are now starting to look at tissue tropism in bees (34, 64) using methods such as FISH, but
these methods now need to be applied to mites.

Mites

Although it is well established that there is a strong correlation between the DWYV load in mites
and the corresponding honeybee pupa they feed on (67-69), there still is a lack of compelling
evidence regarding whether DWV replication occurs in mites. This is important from an evo-
lutionary standpoint since mites and honeybees belong to two very different branches of the
arthropods, so any virus able to successfully maintain fitness in such diverse hosts must harbor a
range of generalist traits. Gisder et al. (70) used negative-strand reverse transcription polymerase
chain reaction (RT-PCR) to suggest that DWV replicated in mites collected from deformed bees
but could not detect any negative-strand DWV RNA from mites collected from asymptomatic
(overt-persistent) bees. Campbell et al. (71) then constructed a ¢cDNA library from the brain
(synganglia) of female Varroa mites and detected contigs coding for the DWV-B strain and a B-A
DWYV recombinant; however, they subsequently failed to detect any negative-strand DWV in
any of the mite tissues assayed. Santillin-Galicia et al. (72), however, found DWV to be present
only in the mite’s gut, in structures assumed to be fecal pellets. Erban et al. (73) subsequently
demonstrated the absence of nonstructural proteins and a high abundance of structural proteins
in Varroa, suggesting that DWYV proteins accumulated in the gut after feeding and not because of
viral replication within the mite.

The confusion lies in the fact that when Varroa start to feed on the developing pupa, they
normally have very low DWV loads relative to those leaving with the fully developed honeybee
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12 days later (74). This increase in DWV load could be a result of viral replication within the
mite or instead simply arise from the mite obtaining increasingly higher doses of DWV from the
pupa, which the mites feed upon regularly. Current methods to detect negative strands of DWV
can generate false positives through either self-priming of positive-strand RNA during reverse
transcription or random priming by, for example, tRNAs. To try to overcome this nonspecific
binding, newer tagged RT-PCR methods use biotinylated primers combined with streptavidin-
coated beads (75). However, concerns remain when using whole individuals regarding potential
contamination from the contents of the gut. We urgently need methods such as FISH probes, im-
munohistochemical techniques, or use of small interfering RINAs that detect an antiviral response
(76) to separate true infections from those present in the gut contents.

TRANSMISSION ROUTES

DWYV can be naturally transmitted via drones during mating by infecting the queen’s ovaries and
spermatheca (77, 78), consequently enhancing the vertical transmission route of DWV via the
queens’ eggs (65). Amiri et al. (78) have shown that DWV appears to adhere to the surface of eggs
(transovum) rather than transmit within the eggs (intracellular). This may suggest that the queens’
role in DWV vectoring may not be as high as is theoretically possible (79). Furthermore, within
the bee colony DWV can be transmitted to the larvae via the food that is produced by work-
ers (70); however, Mockel et al. (62) demonstrated that when 1 x 107 or greater DWV genome
equivalents were fed to adult bees, only covert infections developed, whereas an injected dosage of
only 80 DWYV equivalents was sufficient to induce an overt infection and caused damaged wings
in 30% of the emerging pupa (62). This supports the well-established fact that the major hor-
izontal transmission route of DWV is by the Varroa mite (1, 72), although uncertainty remains
regarding whether viral transmission is a passive mechanical process that occurs during feeding
or is helped by possible viral replication within the mites’ glands or tissues (see the section titled
Mites). In addition, since the Varroa mites’ host range is restricted to only a small number of hon-
eybee species, the finding by Mazzei et al. (63) that DWV extracted from pollen remains viable has
opened up another horizontal transmission route via flowers (80). Although this route is expected
to be relatively minor in terms of impact to honeybees, it has helped to explain how DWV could
be transmitted to other species with which bees share floral resources.

HOST RANGE OF DEFORMED WING VIRUS

For many invertebrates, infection by multiple RNA viruses is likely to be the norm rather than the
exception (81, 82), as their evolutionary history is characterized by both host switching and codi-
vergence. Genetic relatedness and the geographical proximity of host species likely play important
roles in the host range of viruses. This has been demonstrated for DWV by phylogenetic analyses
carried out by Zhang et al. (83), who suggested that DWV might have moved from A. mellifera to
Apis florea and Apis dorsata. In 2006, Genersch et al. (84) discovered DWV in bumblebees (Borz-
bus tervestris and Bombus pascuorum), and since then numerous surveys have brought to light the
generalist nature of DWV. To date DWV has been detected in at least 64 species spanning eight
orders, extending outside insects to encompass the Arachnida, resulting in a very wide host range
for a single viral pathogen (Table 2; Supplemental Table 1). Furthermore, it appears that the
prevalence of DWV in arthropods associated with a honeybee hive can be worryingly high; Levitt
et al. (85) found DWYV was the most prevalent viral pathogen among the 29 arthropod species
associated with honeybee hives, with 59% of individuals testing positive. Further studies (45, 86,
87) also found DWV to be the most prevalent honeybee-associated viral pathogen among the
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Table 2 The range and number of species in which DWYV has been detected. See
Supplemental Table 1 for more details on individual species and the Supplemental References

ORDER or Common name (family/genus)
HYMENOPTERA 48 spp.
Honeybees (Apis) 4 spp.

Bumblebees (Bombus) 11 spp.

Solitary bees (Apidae) 21 spp.

Stingless bees (Apidae) 3 spp.

Ants (Formicidae) 2 spp.

Social wasps (Vespidae) 7 spp.

Solitary wasps (Vespidae) 1 sp.

HEMIPTERA (True Bugs) 1 sp.
COLEOPTERA (Beetles) 3 spp.

DIPTERA (Flies) 3 spp.

LEPIDOPTERA (Butterflies and Moths) 3 spp.
DERMAPTERA (Earwigs) 1 sp.
BLATTODEA (Cockroach) 1 sp.
ARACHNIDA (Spiders and Harvestman) 4 spp.

Abbreviation: DWYV, deformed wing virus.

arthropod community. However, reports on prevalence within the broader insect community are
inconsistent. For instance, Evison et al. (88) found DWV in the bumblebee species B. tervistris and
B. pascuorum and the wasp species Vespula vulgaris but not in another 13 species (125 individuals)
of bumblebees or wasps tested. Studies using larger sample sizes are needed to better understand
DWYV prevalence in different hosts. Since the majority of these studies have detected DWV using
RT-PCR with primers originally designed using DWYV variants infecting honeybee hosts, there
may be genetically diverse DWV variants infecting non-Apis hosts that are being missed. Any
unrecognized genetic diversity will emerge as more next-generation sequencing (NGS) studies
are performed. Detection of DWV replicative intermediates using negative-strand PCR is used
to indicate active replication in many species; false positives could be an issue here (see the sec-
tion titled Mites), although negative strands of other honeybee-associated RNA viruses are rarely
detected in non-honeybee hosts.

IMPACTS ON THEIR HONEYBEE HOSTS

Due to honeybees’ global importance, the association between DWV and the Varros mite—and its
resulting impact on honeybees—has been the main focus of recent research in the field. Relative
to other RNA viral pathogens that infect honeybees (89), DWV can be classified as having low
virulence, since overt-acute infections are rare and now overt-chronic infections are common.
This low virulence increases the probability of transmission since the adult bees become long-
term reservoirs of the pathogen. As previously stated, when Varroa is absent, DWV persists at low
prevalence and load and only very rarely causes the death of a honeybee colony. This also appears
to be the situation in Varroa’s original host, the eastern honeybee Apis cerana, where DWV loads
are consistently low (41, 90-92), as are the Varroa levels.

Unlike other honeybee-associated RNA viral pathogens such as slow paralysis virus (SPV) that
can kill infected pupae within 3-4 days (72), it DWV is injected either artificially or via Varroa, its
main effect on the host is to reduce the life span of adults. This occurs in both adults that become
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infected by Varroa as pupae (93) and adults that become infected after emergence (94, 95). The
avirulence of DWV toward honeybee pupae has long been known (88) and is supported by new
studies that artificially injected either DWV-A (96) or DWV-A and/or DWV-B (97) and found
almost 0% or 18% pupae mortality, respectively, despite high DWV loads being present in the
surviving pupae. However, Gisder et al. (64) found the mortality of injected pupae after 10 days was
~65% for DWV-B and ~35% for DWV-A. Khongphinitbunjong et al. (98) showed that another
ectoparasitic mite (Tiopilaelaps mercedesae), whose natural host is the giant honeybee (4. dorsata),
can also transmit DWV and likewise reduces the infected adults’ longevity and emergence weight.
This reduction in honeybee life span on its own is sufficient to cause a colony to die during the
overwintering period in temperate zones (93, 99). This prediction has since been supported by
several studies; for example, Budge et al. (100) found that only DWV was able to negatively affect
colony strength in a predictable manner; colonies testing positive for DWV were likely to have
fewer combs of bees or brood. Gauthier et al. (101) conducted a large survey of honeybee queens
and found that DWV infections had little impact on the health and functional status of the queen,
although DWV-infected queens with the deformed wing phenotype do exist (102). This may be
linked to the finding that Varroa mites rarely invade brood cells containing developing queen
pupae (103), so they can become infected by DWV only via an oral route or during feeding by a
phoretic mite.

The other challenging issue is the link between DWV and the development of deformed wings.
The appearance of honeybees with deformed wings has long been used by beekeepers as an in-
dicator of DWYV in their colony; this rule of thumb was supported by Dainat & Neumann (104),
who found that the number of deformed bees in the colony was a predictive marker of winter
colony losses. It must be noted, however, that on rare occasions deformed wings are caused by
other, nonpathogen factors, such as the pupa receiving insufficient fluids during development (1).
Bees that develop deformed wings die within a few days after emergence and contribute nothing
to the colony. When pupae were injected with DWV at various doses from 1 x 10? to 1 x 107
genome copies, very high proportions (83-100%) developed deformed wings (62, 97), suggesting
that DWV is the causative agent of the deformed-wing syndrome. Zhang & Han (57) on the other
hand, showed that the injection of a toxic protein by Varroa into the pupae also caused the develop-
ment of deformed wings. Nevertheless, the vast majority of Varroa-infested, DWV-infected pupae
do not go on to develop deformed wings (105). Furthermore, deformed wings can occur in ap-
parently healthy Varroa-free colonies (1, 106). Finally, a dead Varroa-free colony containing high
loads of DWV (i.e., detectable by ELISA, so greater than ~1 x 107 particles) was observed with
no deformed bees present (S.J. Martin, unpublished observations). Using NGS data, Brettell et al.
(105) found a greater difference in DWV sequences between colonies than between overt-acute
(deformed) and overt-persistent (nondeformed) bees from the same colony, ruling out the idea
that a particular DWV strain or variant was linked with wing deformity. The same conclusion was
made by a study that artificially injected either DWV-A or DWV-B into developing pupae (97). A
common feature of deformed bees is that they typically have a higher viral load than asymptomatic
(overt-persistent) bees, even when these overt-persistently infected bees were parasitized by Var-
roa (105). This led to the idea that deformed wings are caused by only the subset of V7704 mites in
which DWV is replicating (70), although this idea remains to be supported by direct evidence (see
the section titled Mites) and similarly high DWV titers have been detected in both asymptomatic
bees and those with deformed wings (97).

While honeybees are frequently coinfected with a number of microbial pathogens (107), syn-
ergistic or antagonistic effects between these are largely not well understood. Any such effects may
be related to several factors, including competition for host resources or the weakening of host
immunity by a primary pathogen resulting in increased susceptibility to a secondary pathogen.
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Nosema is a gut parasite that causes damage to the mid-gut epithelial ventricular cells and actively
suppresses the honeybees’ immune response; both of these effects could increase the virulence of
viral pathogens within the bee. Despite this, several studies have found either no or weakly neg-
ative correlations between DWV and Nosema (108-110). However, Zheng et al. (111) identified
a synergy between the two pathogens that was affected by both dose and nutrition, showing the
relationship between Noserza and DWYV to be more complex than initially thought.

The effects of DWV infection on honeybee behavior were first shown by Fujiyuki et al. (38),
who linked the presence of DWV (Kakugo virus) in their brains to increased aggression, yet
a subsequent study (112) found DWV was not related to aggressiveness in honeybees. More
recently, Gisder et al (64) showed using artificial inoculation that cognitive capacity (learning
performance and memory retention) was reduced when injected with DWV-B but not when
injected with DWV-A. Baracchi et al. (113) found DWV affected the putative recognition
compounds (cuticular hydrocarbons) on the surface of newly emerged workers that had been
infested by Varroa as pupae that could potentially be used by other bees to identify and remove
them from the colony, although this behavior has yet to be demonstrated. Finally, Benaets et al.
(95) found DWYV caused workers to forage prematurely.

IMPACT ON NON-HONEYBEE HOSTS

One of the key questions concerning DWV is what is its impact on other species, especially pol-
linators that may be particularly vulnerable due to their sharing of foraging networks with hon-
eybees (114). Due to the nature of beekeeping operations, both 4. mellifera and Bombus sp. bees
are often kept in higher densities than would naturally be expected, leading to increased contact
with other arthropods in the environment. It has been suggested that this can lead to increased
cross-species transmission of honeybee-associated pathogens into wild insect populations (115-
117). Also, worryingly, it is becoming clear that the presence of Varroa is having an indirect effect
on DWV prevalence in other species of bees and wasps (11). While much research into non-Apis
DWYV hosts infers cross-species transmission, it has also been demonstrated experimentally from
honeybees to both bumblebees (B. terrestris) (10) and the more phylogenetically distant small hive
beetle (Aethina tumida) (118). Thus far, information regarding the degree to which DWV can be
pathogenic to non-honeybee hosts is severely lacking, with studies until now having been limited
to Bombus spp. Genersch et al. (84) identified DWV in B. tervestris and B. pascuorum with deformed
wings, suggesting that this particular pathology is not limited to honeybee hosts, although this is
yet to be experimentally tested. Additionally, studies by Fiirst et al. (10) and Graystock et al. (119)
found that DWYV leads to reduced longevity in B. terrestris individuals, similar to in honeybees
(93), with the additional finding that DWYV causes bumblebees’ sugar sensitivity to decrease (119).

It is known that a number of generalist RINA viruses originally described as honeybee viruses
are also able to cause pathogenicity in other insect species, so the original hosts may not have
been honeybees (120). Manley et al. (121) showed that another bee-associated RNA virus, SPV,
reduced the longevity of the bumblebee B. terrestris under starvation conditions; Meeus et al. (122)
demonstrated that another two honeybee-associated viral pathogens, Kashmir bee virus and Israeli
acute paralysis virus, both affect offspring production in B. terrestris colonies. Furthermore, in fire
ants (Solenopsis invicta), Hsu et al. (123) showed that Solenopsis invicta virus 1 affected foraging
efficiency and altered the food preferences of the ants.

FUTURE DIRECTIONS AND UNANSWERED QUESTIONS

While DWV research has come a long way in the last decade, the virus remains a considerable
problem for honeybees, with a number of questions still unanswered. For example, why does the
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effect of DWV on longevity remain proportional to the expected longevity for that time of the
year, as first shown by Martin (93)? Further gaps remain in our understanding of the evolution
of the DWV complex and intracellular competition. The use of cell lines is now beginning. In
combination with the development of molecular clones (e.g., 34), this will undoubtedly provide an
important tool for understanding how DWV infects cells and how competition between genotypes
and recombinants occurs in both natural and laboratory systems. These techniques and reagents
will also open up the possibility of developing possible antiviral agents. The ubiquitous nature
of DWV has resulted in contamination and subsequent persistence in cell lines, which is a major
problem that needs to be overcome (124).

Given what we are learning about the vast host range, there is much research needed into
whether and how DWYV (and other honeybee-associated viruses) may be affecting non-Apis
arthropods (125). It is of particular importance to determine the limits of host susceptibility, un-
derstand the frequency and mechanisms behind inter- and intraspecies transmission between non-
Apis arthropods, and identify potential pathogenicity, as any effects on nonmanaged insects would
likely not become apparent in all but extreme cases.
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