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Abstract

Since its discovery in 1976, Ebola virus (EBOV) has caused numerous out-
breaks of fatal hemorrhagic disease in Africa. The biggest outbreak on record
is the 2013-2016 epidemic in west Africa with almost 30,000 cases and over
11,000 fatalities, devastatingly affecting Guinea, Liberia, and Sierra Leone.
The epidemic highlighted the need for licensed drugs or vaccines to quickly
combat the disease. While at the beginning of the epidemic no licensed
countermeasures were available, several experimental drugs with preclini-
cal efficacy were accelerated into human clinical trials and used to treat pa-
tients with Ebola virus disease (EVD) toward the end of the epidemic. In
the same manner, vaccines with preclinical efficacy were administered pri-
marily to known contacts of EVD patients on clinical trial protocols using
a ring-vaccination strategy. In this review, we describe the pathogenesis of
EBOV and summarize the current status of EBOV vaccine development and
treatment of EVD.
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INTRODUCTION

Ebola virus (EBOV) is the most prominent member of the Filoviridae, a family of enveloped
viruses with a single-stranded, negative-sense RINA genome of approximately 19 kb (1). The
genome encodes seven distinct genes from which at least nine proteins are expressed: nucleo-
protein (NP), polymerase cofactor (VP35), matrix protein (VP40), glycoprotein (GP), soluble GP
(sGP), small soluble GP (ssGP), transcription activator (VP30), minor matrix protein (VP24), and
RNA-dependent RNA polymerase (L) (Figure 1). The GP gene transcription results in three
different mRNAs leading to the expression of full-length GP (cleaved by furin into GP1 and
GP2), sGP (delta peptide cleaved off by furin), and ssGP. The Filoviridae is divided into three
genera: Ebolavirus, Marburgvirus, and Cuevavirus (1). Five distinct species are known in the genus
Ebolavirus: Zaire ebolavirus, Sudan ebolavirus, Tui forest ebolavirus, Bundibugyo ebolavirus, and Reston
ebolavirus, represented by EBOV, Sudan virus (SUDV), Tai forest virus, Bundibugyo virus (BDBV),
and Reston virus, respectively (2). In the last decade, EBOV, SUDV, and BDBV have caused Ebola
virus disease (EVD) outbreaks with increased frequency and case fatality rates from 30% to 90%
in central and west Africa (3). Recently, a new ebolavirus, Bombali virus (BOMYV) in the proposed
new species Bombali ebolavirus, was discovered in bats in Sierra Leone (4) and has also been found
in bats in Kenya (5). Similarly, Mengla virus (MLAV) was identified in fruit bats in China (6). It
is not known whether these viruses cause disease in humans or nonhuman primates (NHPs), as
only sequence information is available, and no virus has been isolated thus far. In contrast, the
genus Marburgvirus contains only one known species, Marburg marburgvirus, consisting of Mar-
burg virus (MARV) and Ravn virus. Likewise, the genus Cuevavirus has one species with one known
virus named Lloviu virus. Similar to BOMV and MLAV, only sequence information is available,
and no virus has been isolated from infected bat samples in Europe (7, 8).
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Figure 1

Electron micrograph and schematic of the EBOV particle and genome. EBOV particles (blue) on the surface of an infected cell are
shown. Abbreviations: EBOV, Ebola virus; GP, glycoprotein; sGP, soluble glycoprotein; ssGP, small soluble glycoprotein; VP, virion
protein.
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EBOV causes severe hemorrhagic fever in humans and NHPs, with human case fatality rates of
up to 90% (1). The first outbreak of EVD occurred in the Republic of Zaire [now the Democratic
Republic of the Congo (DRC)] and southern Sudan in 1976. From these independent outbreaks,
two distinct viruses, EBOV and SUDV, were identified (9, 10). In 2008 from human isolates col-
lected during an outbreak in Uganda, another human-pathogenic ebolavirus, BDBV, was identified
(11). EBOV, SUDV, and BDBV have been responsible for numerous small, self-limiting outbreaks
in central Africa, with maximum case numbers in the hundreds (12). However, the 2013-2016
EBOV epidemic in west Africa, which originated in Guinea and spread to Liberia and Sierra
Leone, resulted in 11,323 fatalities among at least 28,646 cases (13, 14). The epidemic acceler-
ated efforts to develop antiviral strategies, and some experimental therapeutic and vaccine candi-
dates were evaluated in clinical trials. During this epidemic, several experimental drugs also were
used for the treatment of EVD patients (13). Furthermore, the two preclinically most-promising
vaccine candidates, vesicular stomatitis virus (VSV)-EBOV and chimpanzee adenovirus (chAd)-
EBOV, were deployed toward the end of the epidemic in phase 3 clinical trials with the hope of
interrupting human transmission chains using a ring-vaccination approach (15, 16). But even af-
ter these efforts, no effective treatment for EVD is commercially available. However, China and
Russia were the first to license an EBOV vaccine in 2018 (17).

This review describes the pathogenesis of EBOV infection in humans and animal models and
covers the current state of development of therapeutics and vaccines.

EBOLA VIRUS PATHOGENESIS
Ebola Virus Disease in Humans

Infection of human index cases starting EBOV outbreaks is mainly linked to spillover events oc-
curring during hunting wildlife, exposure to animal carcasses found in the forest, or contact with
the putative virus reservoir, bats. These initial infections result in subsequent human-to-human
transmissions, which account for 99% of all human EVD cases (18). Symptoms of EVD in hu-
mans normally occur after an incubation period of 2-21 days (19-21). There are typically three
phases of illness; it starts with a few days of nonspecific fever, headache, and myalgia, followed by
a gastrointestinal phase in which diarrhea and vomiting, abdominal discomfort, and dehydration
are prominent (Figure 2). In the advanced and final stage of disease, liver and kidney function
decline, often causing severe metabolic compromise, convulsion, shock, and death due to mucosal
bleeding, bloody diarrhea, and multi-organ failure within 16 days after the first symptoms ap-
pear (19, 21, 22). EBOV initially replicates in antigen-presenting cells, such as macrophages and
dendritic cells (DCs) (23). However, the virus can infect many cell types, including macrophages,
monocytes, DCs, Kupffer cells, fibroblasts, hepatocytes, and cells of adrenal gland tissue as well
as endothelial and epithelial cells, which may all contribute to the increase in viremia over time
(23, 24). Cell dysfunction and death caused by EBOV have been hypothesized to play an impor-
tant role in the signs and symptoms of EVD, such as failure of the immune system to respond
adequately to the infection or decreased production of clotting factors (21). Furthermore, several
immunological mechanisms are involved in the pathogenesis of EBOV infection, including inhi-
bition of type I interferon (IFN) responses, deregulation of the cytokine/chemokine network, and
the functional impairment of DCs and natural killer (NK) cells.

The type I IFN family is a multigene cytokine family that encodes 13 partially homologous
IFN-o subtypes, a single IFN-(3, and several poorly defined single gene products in humans (25).
Type I IFNs have diverse effects on innate and adaptive immune cells for host defense against
virus infections (25). Early IFN-« production during infection correlates with survival in both
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Figure 2

Ebola virus disease pathogenesis. The parts and functions of the human body affected during the first and
second phases of the disease are highlighted.

mice and humans infected with ebolaviruses (26, 27). However, EBOV counteracts the protective
effects of IFN-o and IFN-B (28, 29). EBOV infection of peripheral blood mononuclear cells fails
to induce type I IFNs and inhibits IFN-« production induced by double-stranded RNA (dsRNA)
(30). The EBOV VP35 suppresses IFN-f production via multiple inhibitory effects that include
disruption of the RIG-1 pathway and inhibition of activation of IFN-inducible dsSRNA and Dicer-
dependent protein kinase R (31-33). Furthermore, EBOV VP24 disrupts both type I IFN-« and
IFN-B)and type I IFN signaling by inhibiting the dimerization of phosphorylated STAT proteins
and, therefore, blocks transcription of antiviral genes (34). Thus, EBOV has evolved to counteract
the host immune response, resulting in an advantageous environment for replication and progeny
virus production.

While early cytokine responses are correlated with survival from EVD, at a later stage of dis-
ease, EBOV infection induces hypersecretion of numerous cytokines (interleukins IL-13, IL-1RA,
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IL-6,1L-8IL-10,IL-15,and IL-16 and TNF-«), chemokines, and growth factors (MIP-1o, MIP-
1B, MCP-1, M-CSF, MIF, IP-10, GRO-«, and eotaxin) (30, 35). A 5- to 1,000-fold increase of
these proinflammatory mediators compared to their normal range can be measured during EBOV
infection, creating a so-called cytokine storm (36). The dysregulated inflammatory response is as-
sociated with organ failure, sepsis syndrome, and ultimately death. However, if an infected person
can mount a controlled inflammatory response early after infection that is able to control virus
replication and spread, adaptive immune responses will be initiated and can lead to survival of the
infected individual (36).

Several inflammatory mediators are induced within the first hour following EBOV exposure
even prior to viral gene expression, suggesting a direct role for the GP in inducing an initial in-
flammatory response (35). Additionally, during EBOV infection, a significant amount of EBOV
GP is shed from infected cells in a soluble form due to cleavage by the cellular metallopro-
tease TACE (TNFw-converting enzyme) (37). This shed GP is released from virus-infected cells
and activates noninfected DCs and macrophages, contributing to the massive release of pro- and
anti-inflammatory cytokines affecting organ function including vascular permeability (38). As the
disease progresses, abnormal production of selected lymphokines and cytokines induces several
pathological disorders including apoptosis of bystander lymphocytes, tissue damage, and loss of
vascular integrity, which likely contribute to virus-induced sepsis and shock. Furthermore, the
abnormal systemic inflammation of the small blood vessels may progress to an active process of
fibrin deposition, platelet aggregation, coagulopathy, and liposomal release from stagnant leuko-
cytes inside the vascular system (39, 40).

DCs, which are the initial target cells of EBOV (23), are also an important mediator of innate
and adaptive immunity. However, EBOV proteins VP24 and VP35 promote aberrant expression
of cytokines and chemokines and, therefore, impair the differentiation of DCs (41). By blocking
DC maturation, EBOV inhibits the activation of lymphocytes including NK cells and, therefore,
eliminates the immune cell subsets that could mount an antiviral response. Furthermore, EBOV-
infected DCs fail to produce cytokines themselves, including type I IFNs, and are unable to mature
correctly and, therefore, are unable to induce proper B cell, NK cell, and T cell responses that
could control EBOV replication (42, 43). In fact, during EBOV infection, the populations of NK
cells and other lymphocytes decrease in humans (30). In fatal human cases of filovirus infection,
the downstream effects of antigen-presenting cell dysfunction are measurable and correlate with
a marked lack of adaptive immunity, likely contributing to the fatal outcome (44).

Ebola Virus Disease in Animal Models

The continued development of EBOV countermeasures depends heavily on animal models that
recapitulate the disease observed in humans. A variety of animal models of EBOV infection have
been used for basic research, characterization of pathogenesis, and development of antivirals and
vaccines. Antiviral and vaccine candidates are often first evaluated in one or more small-animal
models (screening models) such as mice, guinea pigs, and hamsters (45-48) because they permit
preclinical evaluation and have predictive value for testing in NHPs and, therefore, help to con-
serve precious NHP resources. Ferrets have more recently been used as models for EBOV disease,
but limited availability of reagents has hampered the thorough characterization of disease in these
animals thus far (49, 50). Since NHPs offer the most accurate recapitulation of human EVD, these
animals are considered the gold-standard filovirus animal model and are used for all confirmatory
testing (51).

Mice are the most commonly used animal model in the EBOV field for many reasons: They are
easy to handle in the Animal Biosafety Level 4 laboratory, there are a lot of tools for analyses of host
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responses, and transgenic and knockout strains are readily available for research. However, wild-
type EBOV (WT-EBOV) isolates do not cause clinical signs of disease in adult immunocompetent
mice (52, 53). Therefore, to study disease, investigators have used immunodeficient mouse strains
mainly lacking a proper type I IFN system, such as STAT1~/~ or interferon o/f-receptor™~ mice
or severe combined immunodeficient (SCID) mice. These immunodeficient mice are very suscep-
tible to infection with WT-EBOV, as a low dose is sufficient to cause predominantly lethal disease
within 1 week after infection (52). Interestingly, the virus replicates mainly in the liver and spleen,
the key tissues of EBOV infection in NHPs and humans (52). Furthermore, these studies demon-
strate that the type I IFN response plays a key role in the susceptibility to EBOV infection of mice
(52,54, 55). However, SCID mice remain healthy for approximately 14 days following WT-EBOV
infection but then develop gradual, progressive weight loss along with reduced activity and even-
tually succumb on days 20-25 postinfection (52). While these mice can be used to rapidly test the
efficacy of candidate countermeasures against a new outbreak isolate, the immunocompromised
status of these animals has disadvantages (e.g., the mice do not mount normal immune responses
to vaccines).

To establish an EBOV mouse model showing disease in immunocompetent mice, researchers
sequentially passaged WT-EBOV nine times in progressively older suckling mice (56). The re-
sulting mouse-adapted EBOV (MA-EBOV) is lethal for commonly used adult immunocompetent
mouse strains [e.g., Balb/c, CD-1 (ICR), and C57BL/6 mice]. Intraperitoneal (IP) inoculation with
1 or 100 plaque-forming units results in uniform lethality and approximates 30 or 3,000 times the
median lethal dose (LDsy), respectively (56). Moreover, despite not causing disease, WIT-EBOV
can replicate in the liver and spleen of adult immunocompetent mice. However, replication was
~1,000-fold lower compared to the MA-EBOV under the same conditions. This observation sug-
gests that both viruses share the same initial target cells (56). In addition, MA-EBOV-infected
mice exhibit widespread lymphocyte apoptosis, which is a hallmark of EVD in humans (57-59).
Interestingly, MA-EBOV infection does not cause disease in immunocompetent mice when the
virus is administered by the intramuscular (IM) or subcutaneous (SC) route; only IP inoculation
of the virus results in uniform disease and lethality (56). Compared to WT-EBOV, MA-EBOV ac-
quired eight mutations in the coding and noncoding regions of the virus genome, with amino acid
changes occurring in the GP, VP24, VP35, NP, and L genes (60). Determinants of virulence in
mice include coding mutations in NP and VP24 (60). Overall, the mouse model of EBOV infection
demonstrates high viremia and viral loads in the spleen, liver, and other tissues (52, 61). In addi-
tion, lymphopenia, kidney dysfunction, and liver damage result in high serum concentrations of
aspartate aminotransferase and alanine aminotransferase, observations that correlate with disease
progression in humans (52, 59, 61, 62). However, commonly used mouse models exhibit little to
no other hallmarks of EBOV infection in humans such as coagulopathy, tissue fibrin deposition,
disseminated intravascular coagulation (DIC), or the characteristic maculopapular to petechial
rash. The model is primarily used to determine the efficacy of countermeasures prior to further
evaluation in NHPs. However, some countermeasures with demonstrated efficacy in mice do not
protect NHPs from lethal disease, highlighting the limited predictive value of the mouse model
for efficacy studies using NHPs (48).

Guinea pigs also are widely used for EBOV research. Inoculation of guinea pigs with WT-
EBOV results in a mild febrile illness with partial lethal outcome (63). Since WT-EBOV infection
of guinea pigs causes only a mild illness with partial lethality, WT-EBOV also was serially passaged
through liver and spleen samples to select guinea pig-adapted EBOV (GPA-EBOV) (47). The
adaptation enhanced the virulence in guinea pigs, reflecting the pathomorphological changes of
the infection until it resulted in uniform lethality (64). Like MA-EBOV, GPA-EBOV acquired
mutations in VP24 sufficient to cause lethal disease in these animals (65). Infection of guinea pigs
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with GPA-EBOV results in fever, thrombocytopenia, and increased fibrin deposition until day 5.
However, fibrin depositions, DIC, and a maculopapular rash are not regularly observed in this
model (47, 66-68). Furthermore, despite the severe lymphopenia during GPA-EBOV infection,
lymphocyte bystander apoptosis, which is an important feature of infection in mice and NHPs,
generally does not occur in guinea pigs. However, the guinea pig model has a better predictive
value regarding countermeasure efficacy studies in NHPs compared to mice (69-72).

Similar to mice and guinea pigs, adult Syrian golden hamsters also are resistant to WT-EBOV
infection. However, a hamster model for EBOV was developed by inoculating hamsters IP with
MA-EBOV (73). MA-EBOV replication was systemic, with high virus titers detected in the blood,
spleen, liver, kidney, heart, lung, and brain. MA-EBOV-infected hamsters developed signs of se-
vere disease, such as ruffled fur and decreased activity, beginning on day 3 postinoculation, and
all animals died within five days postinoculation. Importantly, this is the only small-animal model
of EVD that exhibits severe coagulopathy. Coagulopathy is preceded by an initial abnormal in-
crease in fibrinogen concentration, representing the acute-phase response to infection. Due to
the presence of rash and induction of cytokines/chemokines, the Syrian hamster recapitulates
hallmark signs of EVD better than guinea pigs. However, this model is still not widely used in the
EBOV research community despite its higher predictive value for countermeasure efficacy testing
in NHPs due to limitations in available reagents.

The domestic ferret was established as an EBOV animal model even though these animals are
more difficult to handle in the maximum containment laboratory compared to rodents. While
there are only limited reagents available to study pathogenesis and immune responses in fer-
rets, these animals have the advantage that they develop disease after inoculation [intransal (IIN)
and IM] with WT-EBOV (49, 50). Important manifestations of EVD in NHPs occur in ferrets,
including petechial rash, reticulated pallor of the liver, splenomegaly, hemorrhaging at the py-
loric/duodenal junction and in lymph nodes, thrombocytopenia, and elevated liver enzyme levels
(49, 50). Following EBOV infection, these animals develop terminal disease, resulting in similar
transcriptomic profiles when compared to NHPs and humans (74), providing further validation
of this model.

NHPs such as marmosets, cynomolgus macaques, rhesus macaques, African green monkeys,
and hamadryas baboons are preferred for studies of EBOV infection, since these animals are sus-
ceptible to infection with WT-EBOV and display disease attributes and pathology similar to those
seen in humans with EVD (75). However, mainly macaques are used due to their relative ease of
acquisition, handling, and sampling. As in humans, EBOV spreads from the initial infection site
via monocytes/macrophages and DCs to regional lymph nodes and to the liver and spleen through
the blood stream (23). Furthermore, EBOV antigen is detected in Kupffer cells and cells lining
the sinusoids in the liver during the early stages of infection, followed by antigen detection mainly
in hepatocytes during later stages (76). EBOV activates DCs by upregulating expression of tumor
necrosis factor—related apoptosis-inducing ligand, which is expressed on DCs and mediates their
cytotoxic activity (23). Inoculation of NHPs with EBOV can result in body temperatures above
40°C and pyrexia, which usually persist throughout the course of the disease and which end in a
decrease in body temperature at the terminal stage of disease followed by death within 5-8 days
postinoculation (77, 78). Furthermore, increases in liver enzyme levels and the proinflammatory
cytokines IL-6, TNF-«, and IFN-y have been detected (23). Additionally, NHPs develop throm-
bocytopenia, neutrophilia, and DIC, which is characterized by prolonged coagulation times, de-
creased protein C levels, increased fibrin degradation products (D-dimers), and increased tissue
factor expression (23, 79, 80). Petechial skin rashes appear on the head, limbs, chest, and abdomen
4-7 days postinoculation in macaques and baboons but not in African green monkeys (81). In
African green monkeys, fibrin thrombosis is generalized in all visceral organs, while in baboons,
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hemorrhages were prominent in visceral organs, most notably in the liver and spleen (80, 82).
While both cynomolgus and rhesus macaques are equally susceptible to EBOV infection, the dis-
ease course is slightly delayed in rhesus macaques, resulting in an extended treatment window of
~1-2 days. Therefore, cynomolgus macaques are most often used for vaccine studies, whereas
rhesus macaques are more frequently used for evaluation of therapeutics (83).

VACCINE DEVELOPMENT
Vaccine Platforms and Preclinical Efficacy

Vaccination is considered a primary strategy for infectious disease control in humans. Therefore,
it is no surprise that the first attempts to develop an EBOV vaccine started shortly after the dis-
covery of the virus in the late 1970s (84, 85). The first vaccine to be developed against EBOV
was inactivated virus, which protects guinea pigs from lethal disease (86). Since then, the preclini-
cal development of a variety of different vaccines against EBOV commenced and included DNA,
virus-like particles (VLPs), recombinant viral vectors, and recombinant proteins (87). The efficacy
of each vaccine candidate has been evaluated in rodents or NHPs, with several approaches con-
ferring 100% protection against lethal EVD (87). There are eight vaccine candidates currently
in human clinical trials. These vaccines all target the EBOV GP but differ in the predominant
immune response they elicit, the antigen delivery system, and the side-effect profile (Table 1). In
the following text, we elaborate about the most successful vaccine candidates.

The first DNA vaccine for EBOV was developed using plasmid encoding sGP and GP, which
elicited humoral and T cell responses (88). DNA vaccines have several advantages relative to live-
attenuated vaccines. They are safe to use and easy to produce, the DNA itself induces immune-
stimulatory responses, and the host-cell protein synthesis allows for endogenous presentation
of the desired antigen. The first successful immunization strategy using a DNA vaccine against
EBOV was described in 1998 and showed that 100% of mice were protected from lethal EBOV
challenge when given four doses of a DNA vaccine encoding either EBOV GP or EBOV NP
(89). DNA vaccination with optimized antigen expression resulted in 83% protective efficacy in
NHPs (90). However, a combination of a DNA prime together with an adenovirus boost, both en-
coding EBOV GP, showed 100% protective efficacy in NHPs (91). An updated EBOV GP-based
DNA vaccination approach resulted in uniform protection when three doses were administered
to NHPs (92). Preliminary data from a human trial using this DNA vaccination strategy against
EBOV reported desirable safety profiles, and vaccinees developed adequate levels of immune re-
sponses after the two to three doses, underlining the need for at least one booster to achieve
protective immunity (93).

Ebola VLPs, which are morphologically similar to infectious EBOV particles, have also been
explored as vaccine candidates. They are produced by coexpression of EBOV GP and VP40 in
transfected cells; the EBOV NP also can be present in these preparations but is not required for
protective efficacy. GP and VP40 undergo self-assembly, and the resultant VLPs bud from trans-
fected cells. VLP vaccination results in enhanced stimulation of NK cells, which play a crucial role
in innate immune protection against lethal EBOV infection (94). In addition, VLP vaccination
triggers host responses through Toll-like receptor and type I IFN signaling, leading to initiation
of early innate protective immune responses (95). In rodent models, VLPs consisting of VP40 and
GP were 100% protective against lethal EBOV infection (96-98). Furthermore, vaccination with
these VLPs in combination with the RIBI adjuvant induced EBOV GP-specific antibodies and
strong T cell responses, and all vaccinated NHPs survived lethal EBOV challenge without clinical
signs (99). Another more elaborate subunit vaccine candidate is the replication-deficient EBOV
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Table 1 Vaccine platforms in clinical trials

Vaccine
platform Vaccine class Immunogen(s) Pro(s) Con(s) Clinical trial(s)
Protein Subunit GP Safety Production can be Phase 1
difficult and
expensive
DNA DNA GP, NP Safety, flexible Effective Phase 1
platform, low cost administration
requires
electroporation
technology; requires
boost vaccination
for immunogenicity
Ad26 Replication-deficient GP Safety, low preexisting | Requires boost Ad26/cAd3; phase
virus expressing immunity to vector vaccination 1
EBOV protein Ad26/MVA;
phases 1, 2,3
Ad5 Replication-deficient GP Safety, induced the Preexisting immunity Ad5; phases 1,2
virus expressing strong cellular and to vector, requires Ad5/VSV; phases
EBOV protein humoral immunity boost vaccination 1,2,4
chAd3 Replication-deficient GP Safety, low preexisting | Requires boost chAd3; phases 1, 2
virus expressing immunity to vector vaccination chAd3/MVA;
EBOV protein phase 1
MVA Replication-deficient GP, NP Safety Immunogenicity: Ad26/MVA;
virus expressing requires heterotypic phases 1, 2,3
filovirus protein pairing for vaccine chAd3/MVA;
efficacy phase 1
A% Replication-competent | GP Single vaccination is Some safety concerns Phases 1, 2,3
virus expressing highly immunogenic
EBOV protein and fast acting
HPIV3 Replication-competent | GP Intranasal Preexisting immunity Phase 1

virus expressing
EBOV protein

administration may
elicit more robust
mucosal immunity

to vector

Abbreviations: Ad, adenovirus; chAd, chimpanzee adenovirus; EBOV, Ebola virus; GP, glycoprotein; HPIV3, Human parainfluenza virus 3; MVA, modified

vaccinia Ankara; NP, nucleoprotein; VSV, vesicular stomatitis virus.

lacking the VP30 gene (EBOVAVP30). This virus can be propagated only in VP30-expressing
cell lines, is genetically stable, and very closely resembles EBOV (100). Inoculation of mice with
EBOVAVP30 resulted in robust EBOV GP-specific antibody and EBOV NP-specific T cell re-
sponses, and all animals survived lethal challenge with MA-EBOV. A follow-up study showed that
guinea pigs immunized twice with EBOVAVP30 were protected from lethal challenge with GPA-
EBOV (101). Most importantly, immunization with one or two doses of EBOVAVP30 protected
NHPs against lethal infection with EBOV (102), suggesting that EBOVAVP30 is an effective
EBOV vaccine. Indeed, this vaccine platform is currently moving toward a human phase 1 clinical

trial (103).

Viruses that are generally not associated with human disease have been engineered as antigen-
delivery vehicles and have become increasingly popular because of their capacity to induce
strong cell-mediated immune responses. The antigens encoded by these recombinant viruses are
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expressed and processed intracellularly from infected cells. The most advanced EBOV vaccines
in preclinical development are viral vectors encoding EBOV GP. These vectors can be either
replication competent or replication deficient. A replicon system based on Venezuelan equine en-
cephalitis virus (VEEV) is effective against EBOV challenge. VEEV replicons expressing EBOV
GP protect guinea pigs and mice from lethal EVD (104). In addition, a single IM vaccination
with VEEV replicon particles expressing SUDV GP combined with VEEV replicon particles ex-
pressing EBOV GP resulted in complete protection against lethal challenge with either SUDV
or EBOV in NHPs (105). However, we are not aware of any plans to test this vaccine in human
clinical trials.

Adenoviruses are nonenveloped, double-stranded DNA viruses that are capable of infecting
many mammalian species. Human adenovirus serotype 1, serotype 2, and serotype 5 (Ad5) are
common and cause mild upper respiratory tract infections. Replication-deficient human Ad5 has
been used as a vaccine platform for EBOV and other pathogens (106). Ad5 is easy to manipulate,
replicates to high titers, and induces strong cellular and humoral immunity against the encoded
antigen. Replication-deficient recombinant Ad5 used alone as a high-dose vaccine or as a boost
vaccine following a DNA prime showed 100% protective efficacy in NHPs against lethal EBOV
challenge (91, 107). However, because Ad5 is a common human pathogen, preexisting immunity
diminishes the efficacy of Ad5 vaccines and limits their human use. To circumvent this problem, an
alternative strategy was developed using other Ad serotypes that rarely circulate in humans (e.g.,
Ad26 and Ad35). In addition, a chAd vector with a low human seroprevalence has been explored.
Studies using NHPs demonstrated 75% efficacy of a single dose of Ad26-EBOV vaccination
against lethal EBOV challenge and 100% efficacy when this vector was used with an Ad35-EBOV
boost (108). A single dose of recombinant chAd3 expressing EBOV GP protected 100% of NHPs
against lethal EBOV challenge 5 weeks after vaccination. However, the protection decreased to
50% when animals were challenged 10 months postvaccination (109). To improve the durability of
protection, a chAd3-EBOV prime was boosted with a modified vaccinia Ankara (MVA) vector en-
coding the EBOV GP (MVA-BN Filo) 8 weeks later. This combination protected all animals when
challenged 10 months after the last vaccination (109). The MVA-EBOV vector expressing GP is
not uniformly protective on its own (109), but it is currently in human clinical trials in combination
with different Ad vectors (110). The MVA platform has been optimized by expression of EBOV
VP40 as a second antigen in addition to GP. This vector is uniformly protective in macaques af-
ter a single-dose vaccination (111). Several human clinical trials with Ad and MVA are currently
ongoing.

Promising vaccine candidates have been developed based on replication-competent viral vec-
tors. A VSV-based EBOV vaccine is among the leading EBOV vaccine candidates. VSV is a mem-
ber of the Rhabdoviridae family and causes disease in livestock and other animals. It is highly re-
stricted by the human interferon response and generally does not cause any or only very mild
disease in humans (112). Recombinant VSV-based vaccines induce strong innate and humoral im-
mune responses, are easily propagated in cell culture, and undergo little if any genetic recombina-
tion or reassortment (113). The recombinant VSV-EBOV vaccine (also known as rVSV-ZEBOV)
was engineered by replacing the VSV-G coding sequence in the wild-type VSV genome with a
sequence encoding EBOV GP. This chimeric virus displays no neuropathogenicity compared with
wild-type VSV (114) while still replicating efficiently in cells (115). The protective efficacy of the
VSV-EBOV vaccine against lethal EBOV challenge has been extensively analyzed in rodents (15).
In NHPs, VSV-EBOV conferred protection against IM and aerosol EBOV challenge 4 weeks after
vaccination, and protection was afforded with various routes of vaccination (IN, IM, or oral) (116—
118). Moreover, VSV-EBOV conferred 100% protection in NHPs when administered within
1 week of lethal EBOV challenge (119). These data are intriguing, as they suggest that the vaccine
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can be used as an emergency vaccine, which was shown to be successful during the end of the
epidemic in Guinea (detailed in the section title Vaccines in Human Clinical Trials).

Recombinant rabies virus (RABV), which belongs to the same family as VSV, also has been
developed as an EBOV vaccine. A single immunization with a replication-competent recom-
binant RABV expressing EBOV GP conferred partial protection in mice against lethal EBOV
challenge. Complete protection of NHPs was achieved by two immunizations with this vaccine
candidate (120, 121). However, a replication-deficient or an inactivated version of this vaccine can-
didate provided 50% protection (121). The inactivated RABV vaccine vector was improved using
a codon-optimized antigen, resulting in higher-titer neutralizing antibody levels and 100% pro-
tection against lethal EBOV challenge when applied with adjuvant (122). The vaccine is moving
toward human clinical trials.

In addition to rhabdovirus-based viral vectors, recombinant paramyxovirus-based vectors have
been developed as EBOV vaccine candidates. Human parainfluenza virus 3 (HPIV-3) belongs to
the genus Respirovirus in the Paramyxoviridae, a family of single-stranded, negative-sense RNA
viruses that are being investigated as vaccine vectors. Multiple GPs can be inserted into the
HPIV-3 genome (123). Single-dose immunization of recombinant HPIV-3 expressing EBOV GP
alone or GP and NP together protected guinea pigs against lethal EBOV challenge (124). Addi-
tional studies showed that a single immunization with a construct expressing only the EBOV GP
was moderately immunogenic and protected 88% of NHPs against EBOV challenge. A two-dose
immunization protocol using the same vaccine was highly immunogenic, and all NHPs survived
lethal challenge (125). Mucosal (IN/intratracheal) administration of the HPIV-3-EBOV GP vac-
cine also elicited robust immune responses and provided protection from disease after IM EBOV
challenge in NHPs (126).

Vaccines in Human Clinical Trials

The development of EBOV vaccines started in 1977, shortly after the discovery of EBOV, and
continued with renewed force after 2001 when more funding became available to engineer coun-
termeasures against pathogens with bioterrorism potential. Despite these efforts, most of the vac-
cine candidates remained in the preclinical stage, as there was limited interest from pharmaceutical
companies and other institutions to license such products with only a few thousand human EVD
cases since 1976. Only four EBOV phase 1 vaccine trials had been conducted evaluating either
the DNA or the rAd5-based vaccines in the United States, and all of them were conducted by
the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of
Health (NTH) (127-130). This situation changed with the 2013-2016 EBOV epidemic in west
Africa when clinical trials for EBOV vaccines were accelerated, resulting in more than 60 clinical
trials registered on https://Clinical Trials.gov or the Pan African Clinical Trials Registry (131).
Most trials analyzed safety, immunogenicity, and efficacy of chAd3, Ad5, DNA, HPIV3, subunit,
chAd3 combined with MVA-BN Filo, Ad26-EBOV combined with MVA-BN Filo, VSV-EBOV,
or VSV-EBOV combined with Ad5-EBOV vaccine candidates (Figure 3). Ad26-EBOV combined
with MVA-BN Filo, VSV-EBOV, and VSV-EBOV combined with Ad5-EBOV were assessed in
phase 1-3 clinical trials (Table 1).

Seven phase 1 clinical trials using a prime-boost regimen with a combination of the Ad26-
EBOV and MVA-BN Filo vaccines are either ongoing or completed in different countries, includ-
ing the United States, United Kingdom, and several African countries (https://ClinicalTrials.
gov; NCT02325050, NCT02313077, NCT02376400, NCT02891980, NCT02376426,
NCT02376426,NCT02860650). In one phase 1 trial with healthy volunteers, immunization with
Ad26-EBOV or MVA-BN Filo (NCT02313077) did not result in any serious vaccine-related
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Figure 3

Vaccines and therapeutics in human clinical trials against Ebola virus disease. Vaccine and therapeutic
approaches with preclinical efficacy undergoing human clinical trials are shown. Abbreviations: Ad,
adenovirus; GP, glycoprotein; HPTV3, human parainfluenza virus 3; MVA, modified vaccinia Ankara; VSV,
vesicular stomatitis virus.

adverse events. The observed safety profiles were acceptable, and durable cellular and humoral
immune responses were measured up to 8 months after vaccination (132). In addition, stable
immune responses to the vaccine candidate were observed after 1 year. All vaccines maintained
EBOV GP-specific antibody responses, and 60% to 83 % of the trial participants showed vaccine-
induced T cell responses at that time (133). Furthermore, four phase 2 random, observer-blind,
placebo-controlled, parallel-group, multicenter trials using the same prime-boost regimen in
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healthy adults, children, elderly participants, and human immunodeficiency virus (HIV)-positive
adults also are ongoing or completed in the United States, France, and several African coun-
tries (NCT02564523, NCT02598388, NCT02416453, NCT02876328). Further assessment
of the safety and immunogenicity including durability of the Ad26-EBOV vaccination regimes
is either ongoing or was completed in the United States (NCT02661464, NCT02543567,
NCT02543268), and a large phase 2/3 trial is in progress in Sierra Leone (NCT 02509494, Pan
African Clinical Trials Registry No. PACTR201506001147964). Results of these trials have not
been reported as of this writing.

GamEvac-Combi, the combination vaccine of VSV-EBOV and Ad5-EBOV, was developed in
Russia. One open-label, dose-escalation phase 1/2 clinical trial in 84 healthy adults of both sexes
between 18 and 55 years was conducted in Russia (134). This vaccine candidate induced EBOV
GP-specific antibodies in 95% of the volunteers, and neutralizing antibodies were detected in
93.1%. Furthermore, CD4+4 and CD8+ T cells were detected in 82.8% and 58.6% of partic-
ipants, respectively (134). This trial was registered with https://grls.rosminzdrav.ru (No. 495)
and http://zakupki.gov.ru (No. 0373100043215000055). A more recent trial tested the immuno-
genicity of a lyophilized vaccine (NCT03333538). The GamEvac-Combi vaccine approach is now
licensed in Russia. However, there are limited preclinical data for this vaccine approach, and only
one phase 1/2 clinical data set has been published. The vaccine is being tested in an ongoing phase
4 clinical trial in Guinea and Russia (NCT03072030).

Since the EBOV epidemic, numerous human clinical trials with VSV-EBOV are ongoing or
have been completed in North America, Europe, and Africa (15, 110), and still others are planned.
Ten phase 1 clinical trials of VSV-EBOV were conducted to evaluate the safety and immunogenic-
ity of the vaccine as well as to identify doses and regimes that may be evaluated further in phase 2/3
clinical trials (NCT02269423, NCT02280408, NCT02283099, NCT02374385, NCT 02287480,
NCT02296983, NCT02314923, PACTR201411000919191, NCT 02718469, NCT02933931)
(135-142). Following this work, five phase 2 trials using the VSV-EBOV vaccine candidate in
healthy adults, HIV-positive adults, and adults at risk for EBOV infection are also ongoing or
were completed in the United States, Canada, Liberia, Sierra Leone, and Guinea (NCT02344407,
NCT02378753,NCT02788227, NCT02876328, NCT03031912) (143).In 2015, three phase 2/3
or 3 clinical trials were conducted. The first phase 3 trial was an open-label, cluster-randomized,
ring-vaccination phase 3 trial in Guinea to assess the efficacy of the VSV-EBOV vaccine adminis-
tered IM for the prevention of EVD during the epidemic with the goal to interrupt human trans-
mission chains (PACTR201503001057193) (144, 145). In the first clinical trial, 80 serious adverse
events were identified, of which two were judged to be related to vaccination (one febrile reaction
and one anaphylaxis) and one possibly unrelated (influenza-like illness). All three individuals re-
covered without sequelae. The second trial was an open-label, individually randomized, controlled
phase 2/3 trial conducted in Sierra Leone (NCT02378753, PACTR201502001037220) (146). The
third study was a randomized, double-blind, multicenter phase 3 clinical trial in the United States,
Spain, and Canada (NCT02503202) (147). These clinical trials support the use of VSV-EBOV as
an emergency vaccine in individuals at risk for EVD, including health-care workers, first respon-
ders, direct contacts of confirmed EVD cases, and contacts of such contacts. An interventional,
single-arm, open-label, nonrandomized, phase 3b study has been conducted in Uganda and the
DRC to accumulate additional data about the safety and effectiveness of one dose of VSV-EBOV
against EVD (NCT03161366). In the DRC during the May-July 2018 EBOV outbreak, contacts
of confirmed EVD patients received the vaccine in a ring-vaccination approach. During the on-
going largest outbreak in North Kivu of the DRC, VSV-EBOV is the only vaccine being used and
has been administered to over 93,000 individuals, again with the goal to break human-to-human
transmission chains (148).

www.annualreviews.org o Ebola Virus: Pathogenesis and Countermeasures

447


https://grls.rosminzdrav.ru
http://zakupki.gov.ru

THERAPEUTIC INTERVENTION STRATEGIES

Since there are no effective, commercially available treatments for EVD, care for those with this
disease relies on basic supportive treatment such as fluid and electrolyte replacement, oral antibi-
otics and antimalaria treatment, and control of pain and other symptoms. However, even early
on after the discovery of EBOV, convalescent plasma was used to treat infected patients with dis-
putable efficacy. The plasma is obtained from survivors and contains polyclonal antibodies tar-
geting EBOV. During the EBOV outbreak in Kikwit in 1995, eight persons were treated with
convalescent plasma. However, from the study it is not clear whether the treatment contributed
to the survival of seven of the treated individuals, as other factors might have contributed (149).
During the west African EBOV epidemic, this potential treatment was revisited. Convalescent
plasma was evaluated in human clinical trials for its safety and efficacy for the treatment of EVD
patients, but a beneficial effect on survival was not observed (150, 151). There are many unknowns
regarding this treatment, including the timing of when to collect the plasma, the amount of IgG
reactive with EBOV, and the titer of neutralizing antibodies in the plasma. In addition, there is the
risk of serum-sickness reactions, which reduces the feasibility of this approach.

In 2014, the World Health Organization (WHO) issued a document on the categorization and
prioritization of drugs for consideration for testing or use in patients infected with EBOV, which
has been frequently updated since then (152). There are five different drug categories described in
the document, most importantly category A drugs that are being evaluated in clinical trials in west
Africa (Table 2). This category includes the four most promising treatment approaches: ZMapp,
favipiravir, TKM-100802 (TKM-Ebola), and IFNs (Figure 2).

Monoclonal antibody (MAb) therapy is now commonly used to treat EVD after an individual
becomes infected, as the antibody targets the virus and inhibits replication at early stages of virus
entry into host cells. Several neutralizing MAbs protect rodents from EBOV infection, although
early studies found that the single neutralizing MAb KZ52 failed to protect NHPs from lethal dis-
ease (153). Single MAD therapy with MAb114 demonstrated 100% preclinical efficacy in NHPs
(154, 155) and is currently being tested in a clinical trial protocol in the DRC (NCT03719586).
Beginning in 2012, several studies demonstrated partial to complete efficacy of antibody treat-
ment in NHPs using MAb cocktails or purified polyclonal IgG (156-158). In particular, a combi-
nation of three humanized EBOV GP-specific MAbs called ZMapp demonstrated a high level of
protection in NHPs when given as late as 3-5 days after lethal challenge (72). During the 2013-
2016 epidemic, ZMapp was given to EVD patients on a compassionate-use basis, and most of the

Table 2 Therapeutics in clinical trials

Therapeutic Characteristic Target viral protein Route Clinical trial

ZMapp Cocktail of three humanized | EBOV GP Intravenous infusion Phases 1, 2,3
monoclonal antibodies

Favipiravir (T705) Nucleic acid analog RNA-dependent RNA Oral Phase 2

polymerase
TKM-100802 Small interfering RNAs EBOV polymerase L, Intravenous infusion Phase 1
(TKM-Ebola) VP24, and VP35

BCX4430 (galidesivir) Nucleic acid analog Viral RNA polymerase Intramuscular injection Phase 1

GS-5734 (remdesivir) Noucleic acid analog Viral RNA polymerase Intravenous infusion Phases 2, 3

AVI-6002 Combination of antisense EBOV VP24 and VP35 Intravenous infusion Phase 1
phosphorodiamidate
morpholino oligomers

Abbreviations: EBOV, Ebola virus; GP, glycoprotein.
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patients survived without showing serious adverse events following three doses of the antibody
combination (159). In March 2015, a phase 1a open-label trial was launched to evaluate the safety
and pharmacokinetics of ZMapp in healthy human adults (NCT02389192). This product is mov-
ing toward licensure and is currently being used in the DRC on a multidrug clinical trial protocol
(NCT03719586). While ZMapp is an attractive therapeutic option against EVD, it is expensive
to produce, which is problematic in Africa where health-care funds are limited. It is possible that
new strategies for MAb production and delivery will expand the utility of ZMapp and similar
preparations.

Another therapeutic approach with efficacy against EVD is the purine nucleic acid analog,
favipiravir (T-705), which is a broad-spectrum antiviral agent that is licensed in Japan and cur-
rently in phase 3 clinical trials in the United States for the treatment of influenza (160). While
favipiravir protects mice from lethal EBOV infection (161), no survival benefit was observed in
NHPs in two studies using once or twice daily oral treatment during EBOV infection. However,
the treated NHPs showed extended time to death and reduced viral RINA loads, suggesting an an-
tiviral effect of favipiravir against EBOV (162). During the epidemic, favipiravir was the only drug
meeting three important criteria required for human trials: an antiviral effect in animal models,
a good safety profile in humans, and a large supply of the drug readily available for human use.
By meeting these criteria, favipiravir was quickly moved into a noncomparative proof-of-concept
trial, in which all patients received favipiravir along with standardized care (163). In 2014, favipi-
ravir was given to 39 patients with EVD admitted to the Sierra Leone—China Friendship Hospital.
Patients with confirmed EVD were treated with either WHO-recommended supportive therapy
(control group) or WHO-recommended supportive therapy and favipiravir. There was a benefit of
favipiravir treatment in long-term survival, but the results were not statistically significant (164).
Several other nucleic acid analogs, including BCX4430 and remdesivir (GS-5734), also have been
evaluated in preclinical studies for the treatment of EVD (165, 166) and were assessed in human
clinical trials during the epidemic (NCT02319772). Remdesivir currently is being used in a human
trial protocol in the DRC (NCT03719586). These inhibitors are less expensive per dose. However,
they can lead to adverse effects after administration, which may outweigh the antiviral benefits.

Small interfering RNAs (siRNAs) efficiently inhibit EBOV replication in vitro (69). There-
fore, Tekmira Pharmaceuticals Corp. (now Arbutus Biopharma) developed TKM-Ebola, which is
a combination of siRNAs targeting expression of three EBOV proteins, the polymerase L, VP24,
and VP35. TKM-Ebola demonstrated efficacy against EBOV in NHPs (70, 167) and was admin-
istered to two adult patients under a compassionate-use agreement in combination with extensive
supportive care and convalescent plasma. The two patients survived despite severe disease-related
clinical and biological alterations (168). However, a phase 1 clinical trial demonstrated severe
dose-related side effects, including dizziness, chest tightness, and tachycardia. These side effects
occurred even when the dose was decreased, and clinical development of this drug was stopped
(152). Another nucleic acid-based drug, AVI-6002, is a combination of antisense phosphorodiami-
date morpholino oligomers targeting expression of VP24 and VP35. In 2011, a phase 1 clinical
trial showed that AVI-6002 was well tolerated by healthy human volunteers (169). There is no
information about further clinical development of this treatment approach.

IFN-a and - are type I IFNs, a family of cytokines with antiviral, antiproliferative, and other
immunoregulatory properties (25). EBOV infection is associated with several alterations in the
host immune response, including downregulation of type I IFN and massive lymphocyte apopto-
sis (28, 29). Therefore, it was postulated that IFN administration would help control the infection
and attenuate the associated unregulated inflammatory host responses. Two studies were con-
ducted to evaluate the efficacy of IFN monotherapy against EBOV infection in NHPs. The results
showed that IFN monotherapy as a postexposure regimen had no overall effect on outcome but
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appeared to prolong time to death (170, 171). However, when combined with an antibody mixture,
Ad-vectored IFN-« was efficacious in NHPs (172). In fact, nine patients with EVD were treated
with IFN-B-1a in Guinea (173). Within 2 days following confirmation of EVD, IFN-f-1a was
administered SC to patients daily for 17 days. The survival rate was increased from 19% (receiving
supportive care only) to 67% (receiving supportive care plus IFN-[3-1a), demonstrating a benefi-
cial effect of the drug (173). However, the limited data gathered in studies of NHPs and humans
do not offer much support for IFNs as monotherapy against EVD.

CONCLUSION AND PERSPECTIVE

Opver 40 years after the first appearance of EBOV in Yambuku, DRC, the country is facing its
largest EBOV outbreak with over 1,000 cases and >50% case fatality rate (148). In the past,
outbreaks of EVD in the DRC were managed well, resulting in rapid containment of EBOV,
as demonstrated during the May 2018 outbreak in Bikoro, DRC (174). However, the ongoing
outbreak is located in an area of civil unrest, hampering national and international humanitar-
ian efforts to contain and end the outbreak. While we learned much about EVD and potential
vaccines and treatments during the epidemic in west Africa, there are still no licensed products
available in Europe and the Americas. Only Russia and China have licensed an EBOV vaccine
(20). Therefore, what can be done to improve the situation in the DRC beyond political stabil-
ity? There have been over 93,000 people vaccinated with VSV-EBOV (148) with the intention to
interrupt human transmission chains. In addition, three therapeutics are being tested in a clini-
cal trial protocol (NCT03719586) to treat EVD patients. Will the use of countermeasures on a
compassionate-use basis continue in future outbreaks, or can we hope to have the VSV-EBOV
vaccine licensed soon together with ZMapp and other therapeutics? While Africa may not be the
most appealing market for pharmaceutical companies, EBOV can appear in other countries, which
was observed during the west African epidemic, highlighting the need for globally available vac-
cines and therapeutics. Governments in endemic countries should consider stockpiling products
to control outbreaks before they spread and become a huge humanitarian and economic burden.
Such an approach also should appeal to pharmaceutical companies and might speed up licensure
of vaccines and therapeutics currently administered under compassionate-use agreements.

EBOV is not the only reemerging pathogen with epidemic potential; Lassa virus (LASV), Mid-
dle East respiratory syndrome virus, and Crimean Congo hemorrhagic fever virus (CCHFV) ex-
hibit expanding endemic areas and frequent introductions into the human population. Can the
situation with EBOV serve as proof of principle for coping with other hemorrhagic fever out-
breaks? We think so, at least for the closely related MARYV, as the human-to-human transmission
mechanism is the same. However, LASV and CCHFV spread via different routes, and lessons
learned from the EBOV response might not apply to these pathogens. Nonetheless, a common
theme emerges regarding unlicensed therapeutics and vaccines; it would be beneficial to have
compassionate-use agreements in place in countries at risk for epidemics of these viruses. Sev-
eral vaccine and therapeutic approaches use the same platforms for a variety of viruses, including
those mentioned, and have demonstrated efficacy in preclinical studies. It would help immensely
if standard protocols for known emerging virus outbreaks could be put in place to enable more
rapid deployment of countermeasures to limit the spread of these deadly diseases.
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