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Abstract

Face perception relies on computations carried out in face-selective cortical
areas. These areas have been intensively investigated for two decades, and
this work has been guided by an influential neural model suggested by Haxby
and colleagues in 2000. Here, we review new findings about face-selective
areas that suggest the need for modifications and additions to the Haxby
model. We suggest a revised framework based on (a) evidence for multiple
routes from early visual areas into the face-processing system, (b) information
about the temporal characteristics of these areas, (c) indications that the
fusiform face area contributes to the perception of changeable aspects of
faces, (d ) the greatly elevated responses to dynamic compared with static
faces in dorsal face-selective brain areas, and (e) the identification of three
new anterior face-selective areas. Together, these findings lead us to suggest
that face perception depends on two separate pathways: a ventral stream that
represents form information and a dorsal stream driven by motion and form
information.
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INTRODUCTION

From a brief glance at a face, we are able to effortlessly assess a person’s identity, emotional state,
attentional focus, sex, age, physical attractiveness, and several other characteristics. The apparent
ease of face perception however belies the computationally challenging nature of the task.
The neurocognitive mechanisms underlying our impressive abilities have received extensive re-
search attention for more than 40 years. This work has shown that face perception depends on the
coordinated activity of a network of neural mechanisms that respond preferentially to faces. Fifteen
years ago, Haxby and colleagues (2000) proposed an influential neural model that has fruitfully
guided research on face processing. In this review, we reevaluate this prominent neural model in
light of more recent findings. To provide context, we first discuss some general points about face
processing and the face-selective brain regions. Next, we describe Haxby and colleagues’ (2000)
neural model of face processing and discuss recent findings that suggest modifications or additions
to this model. Finally, we sketch out a new neurocognitive framework for face perception.

CENTRAL ISSUES IN FACE PERCEPTION

The Face-Specificity Hypothesis

Our review focuses on the functional roles of brain regions that show a much stronger response
to faces than to other object categories in functional magnetic resonance imaging (fMRI) studies.
We focus on these face-selective areas because their strong response to faces suggests they are key
to understanding the neural basis of face perception. In addition, converging evidence suggests
that face perception depends on different processes than those underlying other types of object
perception (for an extended review, see Duchaine & Yovel 2008), and the existence of face-selective
areas provides a likely neural locus for such processes.

The earliest suggestions that face processing relies on different mechanisms than other types
of object recognition were prompted by reports that brain damage could selectively impair or
spare face perception (Ellis & Florence 1990, Hoff & Pötzl 1937). More rigorous demonstrations
of face-selective impairments in prosopagnosia, as well as the existence of object agnosia without
prosopagnosia, have buttressed these claims (Busigny et al. 2010, 2014; Duchaine et al. 2006;
Moscovitch et al. 1997; Rezlescu et al. 2012; Sergent & Signoret 1992). The first evidence for
face specificity in the normal brain came from Yin’s (1969) demonstration that turning faces
upside down led to a greater decrement in performance than did inversion of other objects. Later
behavioral experiments indicated this difference involves a more holistic representation than that
used for object recognition (Tanaka & Farah 1993, Young et al. 1987).

The face-selective neurons first reported by Charles Gross and colleagues (Desimone et al.
1984, Gross et al. 1972) and further explored by Rolls, Perrett, and others (Perrett et al. 1982,
Rolls 1984) are striking evidence for face-selective mechanisms in the nonhuman primate brain.
Beginning in the 1990s, neuroimaging studies demonstrated that regions in the occipital and tem-
poral lobes in humans and in the superior temporal sulcus of the macaque show especially strong
responses to faces (Kanwisher et al. 1997, McCarthy et al. 1997, Tsao et al. 2003). By combining
fMRI and single-cell recordings, Tsao et al. (2006) revealed that 97% of the neurons located within
an fMRI-defined face-selective area in the macaque brain are selective for faces. Similar percentages
have been found in other face-selective areas in the macaque (Freiwald & Tsao 2010), suggest-
ing macaque face patches are composed almost entirely of face-selective neurons (but see Bell
et al. 2011). Causal evidence for the face specificity of these face-selective areas has been provided
by stimulation studies. Transcranial magnetic stimulation (TMS) of the right occipital face area
(OFA), which resides in a region close to the surface of the brain, typically disrupts face perception,
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whereas TMS of neighboring regions does not (Pitcher et al. 2007, 2009; but see Pitcher et al.
2012). Similarly, intracranial stimulation of the right OFA ( Jonas et al. 2014) and face-selective re-
gions of the right fusiform gyrus ( Jonas et al. 2015, Rangarajan et al. 2014) appears to selectively dis-
rupt face perception, although the effect on nonface perception has not been compared rigorously.

Right-Hemisphere Dominance of Face Perception

Face-selective areas are found in both the right and the left hemispheres, but the right-hemisphere
areas are more important for face processing than the left-hemisphere areas (Rossion 2014).
Superior behavioral performance in the left hemifield has been reported repeatedly (Levine et al.
1988, Sergent & Bindra 1981). In addition, face-selective areas in the right hemisphere are usually
larger than those in the left hemisphere (Bukowski et al. 2013), as are face-selective event-related
potentials over the right hemisphere (Bentin et al. 1996, Eimer 2011). The prosopagnosia literature
indicates strong dominance of the right hemisphere. Unilateral lesions to the right occipital and
temporal lobes are a common cause of face-perception deficits (Barton et al. 2002, Busigny et al.
2010, Dalrymple et al. 2011, De Renzi et al. 1994, Sergent & Signoret 1992, Wada & Yamamoto
2001), whereas prosopagnosia following unilateral lesions to the left hemisphere has been reported
in only five patients, four of whom were left-handed (Barton 2008, Eimer & McCarthy 1999,
Mattson et al. 2000, Tzavaras et al. 1973). Intracranial stimulation of face-selective fusiform regions
in the right and left hemispheres has recently provided further evidence for right-hemisphere
dominance (Rangarajan et al. 2014). Stimulation of the right hemisphere led to distorted face
perception, whereas stimulation of the left hemisphere produced only general visual effects (e.g.,
perceptions of phosphenes or color changes). Intriguingly, face areas in macaques do not show
right-hemisphere lateralization (Tsao et al. 2008), and stimulation of left-hemisphere face cells in
these animals can affect face perception (Afraz et al. 2006, 2015).

The Bruce & Young Model

Bruce & Young (1986) proposed a comprehensive cognitive model concerned with face identity
and other aspects of face processing, such as expression and lip reading, as well as with the role
of semantic information in face processing. Their model was primarily based on evidence from
neuropsychological and cognitive studies. As shown in Figure 1, the model includes processing
units that work both in series and in parallel. Processing begins with the generation of a view-
centered representation of the face, which is then used as input to separate processes specialized for
particular tasks. Expression and lip movements are analyzed by two separate processes, regardless
of whether the face is familiar or unfamiliar. Representations of face structure are compared
with stored face-recognition units (FRUs), and a match between a given representation and a
stored FRU results in the activation of semantic information about the person and, finally, their
name. Recognition of a familiar face is based on a structural code involving an abstract facial
representation that allows for recognition across changes in pose, expression, and illumination.
In contrast, recognition of an unfamiliar face primarily uses pictorial codes based on information
from a static image of the face and is said to depend on a different processing route that involves
a module called directed visual processing.

One central prediction of this model is that identity and expression are processed independently.
This division was motivated by findings that prosopagnosic individuals can recognize facial ex-
pressions but not the identity of a familiar person and by data from normal individuals indicating
that judgments of facial expressions do not depend on face familiarity. However, questions about
these findings, together with new results, led Bruce,Young, and others (Calder & Young 2005,
Young & Bruce 2011) to suggest that identity and expression may not be processed independently.
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Figure 1
The Bruce & Young (1986) model of face processing.

The Bruce & Young (1986) model did not address the neuroanatomical basis for their cognitive
model because the model was proposed when monkey electrophysiology and human and monkey
lesion studies were the only sources of information about the neural basis of cognitive function
(Young & Bruce 2011). Since the mid-1990s, however, hundreds of neuroimaging studies have
dramatically increased our knowledge of the neuroanatomy underlying face processing. The next
sections are devoted to introducing concepts that are central to these studies and to describing
and evaluating today’s leading model, proposed by Haxby et al. (2000), which integrated early
cognitive and neural findings.

BACKGROUND ON FACE-SELECTIVE AREAS

Face-Selective Areas: Definition

Kanwisher et al. (1997) were the first to define face-selective brain areas as regions showing a
significantly higher response to faces than to nonface objects (see also McCarthy et al. 1997).
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Their pioneering study described a method for testing the selectivity and functional profile of
a face-selective area. The method begins with a functional localizer in which faces and nonface
objects are presented. Clusters of voxels that show a significantly higher response to faces than
to the nonface objects are defined as face-selective areas. This process is done in each brain
individually because the precise locations of face-selective areas vary among individuals. Group
analysis is not preferable for defining a face-selective area, because group-defined areas include
only the face-selective voxels that overlap across individuals, and thus many face-selective voxels
in each individual are outside the region of overlap and not further analyzed (Heller et al. 2007).
Once the face-selective area has been defined, the profile of its response to different types of
visual stimuli is assessed using data from a different set of stimulus presentations to determine its
selectivity in an independent manner (see also Baker et al. 2007a).

Face-Selective Areas: Locations

Kanwisher et al. (1997) used this method to reveal a cluster of face-selective voxels in the fusiform
gyrus, which they referred to as “Area FF,” although this area has since become known as the
fusiform face area (FFA). The strong response to faces in the FFA however does not demonstrate
that this area is specialized for face processing per se. To address alternative interpretations,
Kanwisher and colleagues provided evidence that the FFA showed higher responses to intact faces
than to scrambled faces, to faces than to houses, and to faces than to hands. The strong response to
a wide variety of faces presented from different views, including two-tone faces, suggested that the
area is indeed selective to faces, not simply to low-level visual information present in face images.

Soon after the initial report of the FFA, two other face-selective areas were found. The inferior
occipital gyrus contains the OFA (Haxby et al. 1999, Gauthier et al. 2000), and the posterior part
of the superior temporal sulcus houses another face-selective area (pSTS-FA) (Kanwisher et al.
1997, Hoffman & Haxby 2000) (Figure 2). More recent studies have revealed additional face-
selective areas in more anterior parts of the brain (Figure 2). These additional areas are found
in the anterior temporal lobe (ATL-FA) (Rajimehr et al. 2009, Tsao et al. 2008), the anterior

a   Dorsal b   Ventral 

OFA

FFAOFA ATL-FA

pSTS-FA

aSTS-FA

IFG-FA

Figure 2
Face-selective areas. The six face-selective areas are shown in two views of the right hemisphere of a typical participant. (a) The dorsal
face-selective areas: the posterior superior temporal sulcus face area (pSTS-FA), the anterior superior temporal sulcus face area
(aSTS-FA), and inferior frontal gyrus face area (IFG-FA). (b) The ventral face-selective areas: the occipital face area (OFA), the
fusiform face area (FFA), and the anterior temporal lobe face area (ATL-FA).
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superior temporal sulcus (aSTS-FA) (Pitcher et al. 2011), and the inferior frontal gyrus (IFG-FA)
(Fox et al. 2009, Chan & Downing 2011, Axelrod & Yovel 2013), and we discuss these areas in
more detail below.

Do Face-Selective Areas Contribute to Other Types of Object Recognition?

The issue of whether face-selective areas are devoted solely to the processing of faces has been
debated extensively (Tarr & Gauthier 2000, Kanwisher 2010, Haxby et al. 2001, McKone et al.
2007). One alternative to the face-specificity account is motivated by the response these areas
show to nonfaces. Evidence for the representation of nonfaces in the FFA comes from studies
showing above-chance decoding of the basic-level categories of nonface objects (e.g., cat, car)
when the pattern of the voxels is analyzed (Haxby et al. 2001; but see Spiridon & Kanwisher
2002, O’Toole et al. 2005) and from functional magnetic resonance-adaptation (fMR-A) studies
that reveal adaptation to nonfaces in the FFA (Dricot et al. 2008, Schiltz & Rossion 2006). The
presence of information about a nonface stimulus in a face-selective area does not mean that
the detected information contributes to the recognition of that stimulus, however. Face-selective
deficits in patients with lesions to face-selective areas (Busigny et al. 2010, Rezlescu et al. 2012)
and transcranial magnetic stimulation studies targeting face-selective regions (Pitcher et al. 2009,
2012) suggest that these areas make little or no contribution to recognition of nonface stimuli,
although this issue needs further exploration, and the study of it will benefit from intracranial
disruption techniques ( Jonas et al. 2014, Rangarajan et al. 2014). A second issue to consider is the
limited spatial resolution of fMRI. Each voxel contains between 500,000 and 1 million neurons.
Thus, it is very likely that some neurons in an fMRI-defined face-selective area will not be face-
selective, and methods such as fMR-A that may be sensitive to subvoxel neural responses may also
reflect the activity of nonface-selective voxels (Grill-Spector & Malach 2001).

Another alternative to the face-specific account proposes that these areas are not specialized
for faces per se but for categories for which an observer has great expertise. The neural version of
the expertise hypothesis proposes that the FFA (and presumably the other face-selective areas) are
specialized for representing stimulus classes with which people have extensive experience (Gauthier
et al. 1999). Several studies reported increased responses in the FFA to objects of expertise in
experts (Gauthier et al. 1999, 2000; Xu 2005), but many other studies have found no increase in
the response of the FFA to such objects (Brants et al. 2011, Grill-Spector et al. 2004, Op de Beeck
et al. 2006, Yue et al. 2006). Importantly, when responses to objects of expertise are elevated, the
effects are not limited to face-selective cortex; rather, they are also found in other brain regions
involved in object representation (Gauthier et al. 2000, Op de Beeck et al. 2006, Yue et al. 2006).
These broad effects are consistent with accounts proposing that increased responses for objects of
expertise result from increased attention (Harel et al. 2010). Further evidence inconsistent with
the expertise account comes from neuropsychological cases showing a dissociation between faces
and objects of expertise (Sergent & Signoret 1992, Moscovitch et al. 1997, Duchaine et al. 2006,
Susilo et al. 2013, Rezlescu et al. 2014). More generally, the existence of brain areas that respond
selectively to human bodies (Downing et al. 2001), places (Epstein & Kanwisher 1998), and words
(Cohen et al. 2000, Baker et al. 2007b), as well as that of other face-selective areas, raises the issue
of why the expertise debate has focused solely on the FFA.

HAXBY AND COLLEAGUES’ MODEL OF FACE PROCESSING

In 2000, Haxby and colleagues (Haxby et al. 2000, Haxby & Gobbini 2011) proposed what has
become an extremely influential neurocognitive model of face processing. The model was primarily
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Figure 3
The model of face processing proposed by Haxby and colleagues (2000). The inferior occipital gyrus corresponds to the occipital face
area (OFA), the lateral fusiform gyrus to the fusiform face area (FFA), and superior temporal sulcus to the posterior superior temporal
sulcus face area (pSTS-FA).

based on findings from human neuroimaging and monkey neurophysiology studies, and elements
of it were motivated by the Bruce & Young face model. Although the model was proposed when
neuroimaging studies of face processing were in their early stages, it has provided an extensive and
valuable framework that has dominated the field and inspired numerous studies that have tested
its predictions.

As Figure 3 shows, the Haxby model proposes that the face-processing system includes a core
system, which consists of the OFA, the FFA, and the pSTS-FA, that carries out the visual analysis
of faces. The OFA engages in early stages of face processing, which were not clearly defined. The
OFA then sends its output to the FFA, where invariant aspects of faces such as identity and gender
are represented. The OFA also provides input to the pSTS-FA, which represents changeable
aspects of faces that are important for social communication, such as expression, eye-gaze, and lip
movements. Back connections provide a means for recurrent processing.

The model further suggests that faces or information obtained from them is also processed by
what they referred to as the extended face network. These areas are not dedicated to the processing
of visual information; rather, they are connected to the core areas, and each extracts a different type
of information from faces. Areas linked to the pSTS-FA include the intraparietal sulcus, which
directs attention in accordance with gaze direction; the auditory cortex, which is involved with
speech perception; and the amygdala and limbic system, which process emotional information
from faces. The model also suggests that an area in the anterior temporal cortex is involved in the
processing of semantic information of familiar faces and is linked to the FFA.

MAJOR FINDINGS SUGGESTING REVISIONS TO THE HAXBY MODEL

In this section, we review findings published since the Haxby model was proposed, along with the
implications of these findings for our understanding of the face-selective areas. After reviewing
the literature, we suggest a revised framework for face perception and mention some of the many
issues that need to be addressed. Because we focus on the role of the face-selective areas in face
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Figure 4
Schematic showing the intact and lesioned face-selective areas in four patients (PS, Sorger et al. 2007; R-IOT1 and B-OT/AT1,
Dalrymple et al. 2011; DF, Steeves et al. 2006). Despite the absence of the right occipital face area (OFA), more anterior face-selective
areas are present. The preservation of face-selective areas despite bilateral loss of the OFA in patient DF is especially strong evidence
that the OFA is not the only entry point for the face network.

perception, our review is not concerned with many of the areas and functions of the extended
system in the Haxby model.

Multiple Pathways into the Face-Processing Network

Haxby and colleagues (2000) tentatively suggested that the OFA is the entry point for information
in the face-processing network, but results from several patients indicate that multiple pathways
into the face system exist. For example, patient PS acquired prosopagnosia following bilateral
brain damage that destroyed her right OFA, left FFA, and part of her right anterior temporal lobe
(Rossion et al. 2003, Sorger et al. 2007). Despite the absence of a right OFA, PS continues to
exhibit a right FFA and a right pSTS-FA that are comparable to these areas in normal participants
in both size and face-selectivity (Figure 4) (Sorger et al. 2007). Hence, some face information
is able to reach the face network in the hemisphere that is missing the OFA. Further evidence
that multiple pathways convey face representations into the network is provided by three other
patients with lesions to the right OFA and the right FFA who nevertheless show normal face-
selectivity in the right pSTS-FA (Figure 4) (Dalrymple et al. 2011, Yang et al. 2015). However,
the OFA could still be the gateway to the network if face information in these patients reaches
the right-hemisphere face areas by way of the left OFA. Findings from patient DF, a well-studied
visual form agnosic (Milner & Goodale 1995), decisively addressed this issue. DF does not exhibit

400 Duchaine · Yovel



VS01CH16-Duchaine ARI 31 October 2015 12:55

DTI: diffusion tensor
imaging

an OFA in either hemisphere, and her lesions appear to overlap the typical locations of the OFA.
Notably, she still shows bilateral FFAs and pSTS-FAs (Figure 4) (Steeves et al. 2006).

These findings indicate that pathways directly connect early visual cortex with multiple face-
selective regions. Rossion (Rossion et al. 2003, Rossion 2014) has even suggested reversing the
OFA/FFA hierarchy: Information may be first processed by the FFA, then relayed to the OFA. The
best evidence for this arrangement comes from patient NS, who suffered a lesion that destroyed the
right fusiform regions where the right FFA is normally found. Even though the inferior occipital
gyrus, which typically houses the right OFA, appeared to be intact in NS, she failed to exhibit a
right OFA when examined with fMRI (Delvenne et al. 2004, Rossion 2008).

Studies examining the anatomical and functional connectivity between face-selective areas
provide further support for the notion that multiple pathways into the face-processing network
exist. Gschwind et al. (2012) were the first to report a fiber tracking study based on diffusion tensor
imaging (DTI) between the face-selective areas. Their results suggested strong connections
between the OFA and FFA, but they found no evidence for connections between either of these
areas and the pSTS-FA. Furthermore, they found that early visual areas had direct connections
with the FFA, although these connections were weaker than those between the early visual
areas and the OFA. Similar findings were reported by Pyles et al. (2013). These findings are
consistent with functional connectivity studies that examined the correlations between activations
in face-selective areas during a face localizer or during rest. For example, Avidan et al. (2014)
reported strong correlations between the time courses of OFA and FFA activation and much lower
correlations between activation of these areas and of the pSTS-FA (see also Davies-Thompson
& Andrews 2012, Fairhall & Ishai 2007).

Timing of Activity in Face-Selective Regions

The timing of neural activation in the face-selective areas has been studied with simultaneous
electroencephalogram (EEG)-fMRI as well as TMS studies, and these results suggest hierarchical
processing from the occipital to the temporal face-selective areas. In a simultaneous EEG-fMRI
experiment, Sadeh et al. (2010) took advantage of the reliable individual differences in the magni-
tude of face selectivity (i.e., the difference between the response to faces and nonfaces) to examine
the correlation between face-selective measures obtained with the two methods. They found that
face selectivity in the OFA was correlated with face selectivity measured with EEG at 110 ms after
stimulus onset, but not with face selectivity measured at 170 ms after stimulus onset (Figure 5).
In contrast, face selectivity in the FFA and pSTS-FA were strongly correlated with face selectivity
measured with EEG at 170 ms but not at 110 ms. Thus, these results indicate that the response
in the OFA precedes those in the FFA and pSTS-FA by approximately 60 ms.

The second set of revealing findings are made possible by the remarkable temporal resolution
of TMS. In two early studies (Pitcher et al. 2007, 2008), behavioral performance was selectively
disrupted when paired-pulse TMS was delivered to the OFA 60 and 100 ms after stimulus onset,
suggesting that the OFA processes facial information within a discrete, early time window. To
more precisely identify the period in which the OFA contributes to face processing, a later
study used pulse pairs that were separated by only 10 ms (Pitcher et al. 2012). As Figure 5
shows, TMS at 100/110 ms disrupted performance, whereas TMS at the neighboring time
windows had no effect. This finding fits nicely with the EEG-fMRI correlations described in
the previous paragraph, which found a strong correlation between face selectivity in the OFA
and face selectivity measured with EEG at 110 ms after stimulus onset (Sadeh et al. 2010).
An earlier time window was also implicated by disruption following pulses at 50/60 ms after
stimulus onset. Unlike the 100/110 ms disruption, this effect was not face selective (Pitcher et al.
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Figure 5
Temporal characteristics of face-selective areas. (a) Correlations between the magnitude of face selectivity in the occipital face area
(OFA) and fusiform face area (FFA) with the magnitude of face-selectivity measured with event-related potentials (ERPs) at latencies
ranging from 100 to 184 ms after stimulus onset (Sadeh et al. 2010). Face-selectivity in the OFA, but not the FFA, is highly correlated
with the ERP face-selectivity at 110–120 ms, whereas face selectivity in the FFA, but not the OFA, is highly correlated with the ERP
face-selectivity at 150–180 ms. Findings for the posterior superior temporal sulcus face area (pSTS-FA) are not shown here, but were
similar to FFA. (b) Paired-pulse transcranial magnetic stimulation (TMS) to the right OFA disrupts face discrimination when delivered
at 100–110 ms, but not when delivered at neighboring time windows (Pitcher et al. 2012). Note the correspondence between the
functional magnetic resonance imaging (fMRI)-ERP results and the TMS results.

2012). A recent study delivered pulses separated by 40 ms to the pSTS-FA and OFA during an
expression-discrimination task (Pitcher et al. 2014). Pairs at 60/100 ms disrupted performance
in both areas, but 100/140 ms pairs affected performance only in the pSTS-FA. These results
indicate that the pSTS-FA begins processing face information at a time window roughly similar
to the OFA, but it also contributes to face processing later than the OFA does.

Consistent with findings in humans, single-unit recording studies also reveal evidence for
hierarchical processing by showing earlier latencies in posterior face patches than in anterior
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patches. Recent work in macaques has compared the timing of multiple face patches using the
same set of stimuli (Freiwald & Tsao 2010). Recordings were made in four areas: the middle
fundus (MF), middle lateral (ML), anterior lateral (AL), and anterior medial (AM) areas. These
areas showed qualitatively different responses to face view and face identity. The more posterior
areas, MF and ML, responded to specific views and were broadly tuned to identity. Cells in AL
tended to respond to mirror-symmetric views and were more narrowly tuned to identity than
MF and ML cells were. Neurons in AM were even more narrowly tuned to identity and exhibited
nearly complete viewpoint invariance. The profiles of these patches indicate that the ventral stream
progressively codes a viewpoint-invariant representation of face identity. Despite having different
representational properties, these areas show similar temporal characteristics. Activity began only
slightly earlier in the posterior areas than in the anterior areas (average onset times occurred at 88,
104, and 124 ms ML/MF, AL, and AM, respectively), the timing of their peak responses differed
by only 19 ms (average times were 126, 133, and 145 ms for ML/MF, AL, and AM, respectively),
and spiking was nearly complete in all three areas by 400 ms (Freiwald & Tsao 2010). Analysis of
the responses in AL and AM found that both areas showed peak view-invariant identity selectivity
at approximately 335 ms. The synchronicity of the peak responses and the substantial temporal
difference between the peak responses and the peak identity selectivities in these patches suggest
recurrent processing. Slightly earlier latencies with a similar pattern were found in a recent study
(Issa & DiCarlo 2012). Issa & DiCarlo (2012) also made recordings in the posterior lateral (PL)
area, the most posterior patch. PL had the shortest latency of all (median latencies were 74, 79,
and 80 ms for PL, MF, and AL/AM, respectively).

The Fusiform Face Area May Contribute to Perception
of Changeable Aspects

In the Haxby model, the FFA is involved in the processing of invariant information, including face
identity, but it plays little role in the processing of changeable face aspects such as expression and
gaze. Since the Haxby model was proposed, the contribution of the FFA to identity recognition
has received further support from neuropsychology (Barton et al. 2002, Wada & Yamamoto 2001)
and experiments using fMR-A (Gilaie-Dotan & Malach 2007, Rotshtein et al. 2005, Winston et al.
2003, Yovel & Kanwisher 2005). fMR-A studies can determine the extent to which the represen-
tation of face identity is view specific or view invariant by comparing the response of the FFA to
two same-identity/same-view faces with the response to two same-identity/different-view faces. A
higher response to same-identity/different-view faces indicates that these faces are represented as
different faces, suggesting that the representation of identity is view specific rather than view invari-
ant. Studies that have used this method indicate that the FFA codes a view-specific representation
of face shape (Davies-Thompson et al. 2009, Ewbank & Andrews 2008, Xu & Biederman 2010).

Although the results discussed above provide strong evidence that the FFA plays a role in face
identity computations, several studies that have been conducted since the Haxby model was pro-
posed have indicated that the FFA may also be involved in expression processing (for a review, see
Calder 2011, Bernstein & Yovel 2015). The FFA responds strongly to facial expression both when it
is attended and when it is unattended (Ganel et al. 2005), and its response is modulated by the inten-
sity of the facial expression (Surguladze et al. 2003, Winston et al. 2003). This area is also sensitive
to differences in facial expressions across faces, as measured with fMR-A (Fox et al. 2009, Kadosh
et al. 2010, Xu & Biederman 2010). In addition, poor expression recognition in a patient with brain
damage that destroyed the right FFA but spared the right OFA and right pSTS-FA suggests that
FFA representations contribute to expression recognition, at least for static faces (Dalrymple et al.
2011). Although these results indicate that both the FFA and the pSTS-FA play a role in expres-
sion processing, these two areas may extract different types of information about facial expression.
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Evidence for this distinction comes from a study by Said et al. (2011), who presented observers
with computer-generated faces that differed from an average face in two ways. In one dimension,
the faces varied in expression, whereas in the other, they varied in terms of typicality relative
to the average face shape, without varying in expression. The FFA was sensitive to deviations
from the average face along both dimensions. In contrast, the pSTS-FA was sensitive only to faces
that differ in expression, not to face typicality per se. These findings suggest that the response
of the FFA to facial expression may reflect a broad sensitivity to shape information, whereas the
pSTS-FA may be responsive only to face shapes that convey emotional information.

The Dorsal Face-Selective Areas Show Much Stronger Responses
to Dynamic Faces than to Static Faces

Most fMRI and behavioral studies of face processing used static faces, so little is known about how
dynamic faces are processed. However, recent studies that use videos of moving faces suggest that
the ventral and dorsal face pathways substantially differ in their sensitivity to dynamic information
(see also O’Toole et al. 2002). In contrast to the OFA and the FFA, which showed modest increases
in response to dynamic compared with static stimuli, the response of the right STS-FA to dynamic
faces was almost twice that to static faces (Fox et al. 2009). Dynamic faces also differentially
affected cluster size. Whereas the OFA and the FFA tended to be approximately twice as large
when localized with dynamic versus static stimuli, the pSTS-FA was five times larger. Importantly,
increased face selectivity in the pSTS-FA primarily resulted from its much stronger response to
dynamic faces, whereas the FFA and OFA had similar responses to dynamic and static faces but
lower responses to dynamic versus to static objects (Fox et al. 2009).

Similar findings were reported in a later study that also used a dynamic localizer to identify
face-selective areas and that then examined the selectivity for dynamic and static images with an
independent data set (Pitcher et al. 2011). Consistent with the results reported by Fox et al. (2009),
the response to dynamic faces was only slightly higher than the response to static faces in the OFA
and FFA, whereas the response of the pSTS-FA was significantly larger for dynamic faces than for
static faces (Figure 6). In addition, the dynamic localizers in the studies by Pitcher et al. (2011)
and Fox et al. (2009) revealed additional face-selective areas in the anterior STS (aSTS-FA) and
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Responses to dynamic and static faces in five face-selective areas. (Pitcher et al. 2011). Error bars indicate the standard error of the
difference between the responses to dynamic and static faces.
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inferior frontal gyrus (IFG-FA) (see below), and the relative responses to dynamic and static faces
seen in these areas were similar to those seen in the pSTS-FA. These studies suggest that the dorsal
face-selective areas are specifically tuned to face motion, a finding consistent with results from
previous studies showing that this area plays a role in biological motion (Grossman et al. 2000, Puce
et al. 1998), whereas the FFA and OFA extract similar information from dynamic and static faces.

Further evidence for a static versus dynamic dissociation between the pSTS-FA and the ventral
face pathways has been recently reported in a combined TMS-fMRI study (Pitcher et al. 2014).
Participants underwent face localizer scans prior to and after offline delivery of TMS to the right
OFA or the right pSTS-FA. TMS to the OFA decreased the pSTS-FA response to static faces
but did not affect its response to dynamic faces. In contrast, stimulation of the pSTS-FA lessened
its response to dynamic faces but did not affect its response to static faces. These findings suggest
that dynamic facial information is processed primarily by a dorsal pathway along the STS.

Additional Face-Selective Areas in the Temporal and Frontal Lobes

The three core face-selective areas featured in the Haxby model have received extensive research
attention. In recent years, however, additional areas that show face selectivity comparable to that
of the core areas have been reported.

A face-selective area in the anterior temporal lobe. Positron emission tomography (PET)
studies that reported an area responsive to faces in the anterior temporal lobe (ATL) (Sergent
et al. 1992), as well as those that reported prosopagnosia resulting from lesions to the ATL (Barton
et al. 2002, Busigny et al. 2014), suggested the existence of a critical area for face processing in
the ATL. Localizing and investigating such an area with fMRI is challenging, owing to the low
signal-to-noise ratio in this part of the brain. The few studies that did find a face-selective area
in the ATL found it in only about half of their subjects, and found that the volume of the area
was relatively small (Nasr & Tootell 2012, Pinsk et al. 2009, Rajimehr et al. 2009, Tsao et al.
2008). However, several recent studies revealed an anterior temporal face-selective area in the
right hemisphere in nearly all of their participants. These studies have done so using localizers
involving familiar and emotional faces (Avidan et al. 2014); coronal scanning (Axelrod & Yovel
2013); and dynamic, emotional faces (Yang et al. 2015).

Yang et al. (2015) found that the right ATL-FA showed a weaker response to pairs of different
images of the same celebrity (e.g., two different images of Natalie Portman) than to pairs showing
different celebrities (e.g., Natalie Portman and Uma Thurman). In contrast, the FFA and all of the
other face-selective areas responded similarly to pairs showing different images of same identity
and to pairs showing different identities. Further support for the role of the ATL-FA in identity
processing comes from human fMRI studies that have used multivoxel pattern analysis (MVPA)
to decode face identity across different face appearances (Anzellotti et al. 2013), although it is not
clear whether the clusters reported in some papers were actually face selective (Goesaert & Op
de Beeck 2013, Kriegeskorte et al. 2007, Nestor et al. 2011). In contrast, a recent study, which
localized the ATL face-selective area in all participants, did not reveal identity decoding of famous
faces in the face-selective area of the ATL but did find evidence of above-chance decoding in the
FFA (Axelrod & Yovel 2015). Thus, more research on the ATL-FA needs to be done in order to
shed light on its role in face recognition and on its relationship with its probable monkey homolog,
the macaque anterior medial (AM) area (Tsao et al. 2008, Yovel & Freiwald 2013). Dubois et al.
(2015) recently provided evidence suggesting that the distribution of identity-selective neurons in
the ATL-FA may play a role in the inconsistent conclusions drawn from studies using different
methods. They recorded from view-independent, identity-specific neurons in macaque anterior
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face patches but were unable to decode identity in these regions using fMRI-based MVPA. Analysis
of the location of the neurons showed that they were weakly clustered by identity, making MVPA
an ineffective method for probing whether the macaque anterior patches contain identity-specific
neurons. In contrast, a lack of clustering by identity would not be expected to affect the sensitivity
of studies measuring fMR-A.

Face-selective area in the anterior superior temporal sulcus. A face-selective area in the
anterior STS (aSTS-FA) has been described in one study that used a static localizer (Pinsk et al.
2009) and in two studies that used a dynamic localizer (Fox et al. 2009, Pitcher et al. 2011). It is not
surprising this area has rarely been identified with localizers using static images of faces and objects
because its response to static faces in one study was as low as its response to objects (Pitcher et al.
2011). Despite its weak response to static faces, however, an adaptation experiment and an MVPA
study using static faces found that an area close to the aSTS-FA codes the direction of eye gaze
(Calder et al. 2007, Carlin et al. 2011). The gaze findings were consistent with the results of studies
that recorded from neurons in macaque aSTS that were responsive to particular gaze directions
(Perrett et al. 1985). The strong response of both the anterior and posterior STS to dynamic faces
suggests that previous studies investigating STS activity in response to static faces might have
produced a limited and maybe even inaccurate view of its role in face processing. Finally, a recent
study showed overlap between the response to faces and voices in the STS, suggesting that it may
carry a multimodal representations of people (Watson et al. 2014).

Prefrontal face areas. The first reports of face-selective neural responses in the prefrontal cortex
were published in a single-unit recording study in monkeys (Ó Scalaidhe et al. 1997). Similar to
face-selective neurons in IT, these neurons showed little response to objects or to scrambled faces,
but did appear to show face-selective responses when monkeys were not performing a working
memory task. The authors concluded that these responses were stimulus dependent, not task de-
pendent. About a decade later, neuroimaging studies of the macaque brain revealed three face areas
in the prefrontal cortex (Tsao et al. 2008). However, a systematic investigation of the selectivity
profile of the neurons located within these fMRI-defined face areas has not yet been reported.

Face-selective activation in the lateral prefrontal cortex in humans has been reported in several
articles (Chan & Downing 2011, Rajimehr et al. 2009; for review, see Chan 2013). Pitcher et al.
(2011) and Fox et al. (2009) found that the prefrontal face area could be identified in a larger
number of subjects using a dynamic face localizer rather than a static one, suggesting that this area
may be associated with the network that processes dynamic faces in the STS. Further evidence for a
frontal contribution to human face processing comes from the demonstration that direct electrical
stimulation of the right anterior lateral prefrontal cortex in a patient produced face-specific visual
hallucinations and illusions (Vignal et al. 2000), as well as from the selective deficit for fearful face
recognition that the same patient exhibited following resection of right anterior lateral prefrontal
cortex (Marinkovic et al. 2000). Despite these findings, only one study has attempted to study the
functional profile of the anterior lateral prefrontal cortex in a systematic way. Chan & Downing
(2011) have found that unlike the FFA, the IFG-FA showed a higher response to eyes alone and
a lower response to faces without eyes than to faces with eyes. They therefore speculated that
the IFG-FA may be associated with the processing of gaze information and possibly with eye
movements, given its proximity to the frontal eye fields.

Face-selective subdivisions of the fusiform gyrus. Weiner & Grill-Spector (2012) have sug-
gested that the FFA is not a single area but instead contains two separate regions (see also Engell &
McCarthy 2013, Kietzmann et al. 2012, Pinsk et al. 2009). One region is in the posterior fusiform
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Figure 7
Revised framework for the roles and connections between face-selective areas. The ventral face-processing
pathway consists of the occipital face area (OFA), the fusiform face area (FFA), and the anterior temporal
lobe face area (ATL-FA), whereas the dorsal face-processing pathway comprises the posterior superior
temporal sulcus face area (pSTS-FA), the anterior superior temporal sulcus face area (aSTS-FA), and the
inferior frontal gyrus face area (IFG-FA).

gyrus (pFus), and the other is in the middle fusiform gyrus (mFus). These areas are separated by
10–15 mm, and a body-selective area lies between them (Weiner & Grill-Spector 2012). It is not
clear whether these two areas have different functional roles in face processing. Notably, most
studies conducted so far have treated the FFA as one area and, when two areas are found, either
lump the two areas together or report on only one of them. A third, more anterior face-selective
area located in the fusiform gyrus between mFus and the ATL-FA was reported by Rossion et al.
(2012). Signal dropoff makes this a challenging area to identify using fMRI, but intracerebral
recordings in a patient indicate that the region is highly selective for faces ( Jonas et al. 2015),
and intracranial stimulation of it severely disrupted the patient’s ability to recognize famous faces
( Jonas et al. 2015).

A REVISED NEURAL FRAMEWORK FOR FACE PROCESSING

Taken together, the findings discussed above suggest that a revised neural framework for face
processing is needed [see Collins & Olson (2014) for a related framework]. Figure 7 illustrates this
framework, which consists of three extensively studied regions, the OFA, the FFA, and the pSTS-
FA, and three more recently identified areas, the ATL-FA, aSTS-FA, and IFG-FA. Connectivity
studies (Ethofer et al. 2011, Pyles et al. 2013) and studies showing the functional responses of
these areas to dynamic and static faces (Fox et al. 2009, Pitcher et al. 2011) suggest that they can
be divided into two separate but interacting pathways (Pitcher et al. 2014, Turk-Browne et al.
2010). The ventral pathway includes the OFA, FFA, and ATL-FA, whereas the dorsal pathway
consists of the pSTS-FA, aSTS-FA, and IFG-FA.

Ventral Stream Face-Selective Areas

In the framework we have sketched out, ventral stream areas preferentially represent form infor-
mation, providing the primary means to represent invariant features such as identity, sex, and age,
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but also contributing to facial expression recognition. The OFA is the most posterior ventral area
and represents face information starting approximately 100 ms after stimulus onset, only slightly
before the other face-selective areas (Pitcher et al. 2007, Sadeh et al. 2010). OFA neurons have
small receptive fields (Hemond et al. 2007, Schwarzlose et al. 2008); represent face parts in a
view-specific manner (Pitcher et al. 2007); and are not sensitive to faces with poorly defined face
parts, such as Mooney faces (Rossion et al. 2011). The OFA is tightly linked to the FFA and is
connected to the ATL-FA, but the nature of its connections to the pSTS-FA and to other dorsal
stream areas remains unclear (Gschwind et al. 2012, Pitcher et al. 2014, Pyles et al. 2013).

Multiple face-selective areas are present in the fusiform gyrus ( Jonas et al. 2015, Weiner &
Grill-Spector 2012). In our framework, these areas receive input not only from the OFA but also
from early visual areas (Steeves et al. 2006), beginning approximately 100 ms after stimulus onset
(Parvizi et al. 2012) and showing maximum face-selectivity approximately 170 ms after onset (Sadeh
et al. 2010). The FFAs contain representations, which have larger receptive fields (Hemond et al.
2007, Rossion et al. 2011) and are more holistically integrated (Axelrod & Yovel 2010; Harris &
Aguirre 2008, 2010; Rossion et al. 2011; Schiltz & Rossion 2006) than representations in the OFA.
In contrast to the OFA, which is view specific, the FFA representations are mirror-symmetric,
consistent with its higher location in the hierarchy (Axelrod & Yovel 2012, Kietzmann et al. 2012).
The FFA represents information used for computing face identity (Gilaie-Dotan & Malach 2007,
Grill-Spector et al. 2004, Hoffman & Haxby 2000, Rotshtein et al. 2005, Winston et al. 2003,
Yovel & Kanwisher 2005), and its general role in representing form information also contributes to
the recognition of facial expressions (Dalrymple et al. 2011, Fox et al. 2009, Furl et al. 2007, Ganel
et al. 2005, Ishai et al. 2004, Kadosh et al. 2010, Vuilleumier et al. 2001, Xu & Biederman 2010).

The ATL-FA is the most anterior area in the ventral stream and appears to receive form
information from both the OFA and the FFA (Gschwind et al. 2012, Pyles et al. 2013). Little is
known about the functional role of the ATL-FA, but our framework tentatively proposes that it
contains relatively image-invariant representations of face identity (Anzellotti et al. 2013, Yang
et al. 2015; for a review, see Collins & Olson 2014). Such a role would fit well with findings from
its likely macaque homolog, AM, which codes identity across a wide range of views (Freiwald &
Tsao 2010). Activity in the ATL-FA begins shortly after the onset of activity in the OFA and FFA
(Marinkovic et al. 2000), and representations of face identity and possibly other invariant aspects
are sharpened over the course of several hundred milliseconds through recurrent processing with
the OFA and FFA.

In summary, the ventral face pathway processes faces in a hierarchical manner, starting with
parallel interactive processing of view-dependent representation in the OFA and view-symmetric
representation in the FFA. These processing streams roughly correspond to the early stages of
the Bruce & Young (1986) model. Notably, the FFA does not appear to represent face familiarity
and therefore probably is not the neural locus of the face-recognition units in the Bruce &
Young (1986) model. Image invariance in the ATL-FA suggests that this area is the most likely
locus for the face-recognition units used to recognize familiar faces. Invariance in the ATL
is also consistent with a large body of behavioral findings showing that the representation of
familiar faces does not vary with changes in pose and illumination, whereas the representation
of unfamiliar faces is more view selective (Burton 2013). The ATL-FA may also integrate visual
representations with semantic representations.

Dorsal Stream Face-Selective Areas

The dorsal stream in our framework comprises the pSTS-FA, the aSTS-FA, and the IFG-FA.
These areas show a much stronger response to dynamic faces than to static faces, and this character-
istic fits well with their role in representing aspects of faces that change rapidly such as expression,
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gaze, and mouth movements (Haxby et al. 2000). However, this property may not exclude it from
responding to identity information conveyed by dynamic faces (O’Toole et al. 2002).

The pSTS-FA receives motion and form information from early visual areas (Dalrymple et al.
2011, Steeves et al. 2006). Based on EEG-fMRI correlational data, activity in pSTS-FA begins
to respond at approximately the same time as the FFA and peaks at a similar point, 170 ms
after stimulus onset (Sadeh et al. 2010). In a functional connectivity study, Davies-Thompson
& Andrews (2012) reported strong connections between the STS and IFG, consistent with DTI
results reported by Ethofer and colleagues (2011). Although these studies were done without face
localizers, and thus may have recorded from areas outside the face-selective areas, recordings
in IFG found somewhat later responses, with latencies of approximately 150 ms and peaks at
approximately 250 ms after stimulus onset (Marinkovic et al. 2000). MT+/V5, which represents
motion in early visual cortex, may be an important source of this information, although we note
that perception of biological motion, which also relies on regions in the STS (Grossman et al.
2000), is not affected by disruptions in MT+/V5 (Grossman et al. 2005, Vaina et al. 1990). Future
investigation is needed to obtain a greater understanding of the connectivity between the pSTS-FA
and MT, the aSTS-FA, and the IFG-FA, as is more detailed examination of the functional roles
these areas play in face processing. Finally, the recently reported sensitivity of the STS to both
dynamic faces and human voices suggests that this area may be the locus of multimodal processing
of person-related information (Watson et al. 2014).

In conclusion, we suggest that the network of face-selective areas can be divided into two
streams: a ventral stream, which extracts form information from faces, and a dorsal stream, which
is specialized for processing dynamic information from faces. The ventral stream represents the
structure and surface properties of a face in the posterior face-selective areas and matches these
representations with stored representations of familiar faces in the anterior temporal face-selective
area. The dorsal stream plays a role in ongoing social interactions, which require the extraction of
constantly changing information from moving faces (Haxby et al. 2000). We hope future research
will benefit from this framework. Below we list some of the issues most in need of investigation
to advance our understanding of the neural basis of face processing.

FUTURE ISSUES

1. We still have much to learn about the functional roles of and interactions among face-
selective areas, particularly the anterior areas.

2. Given that in real life we primarily encounter moving faces, more studies are needed that
explore face processing with dynamic faces.

3. What is the relationship between human face areas and macaque face patches? The
identification of homologies would be a major step forward because it would provide a
tighter link between human areas and the revealing single-cell findings in macaque face
patches.

4. Are particular types of face-processing deficits associated with damage or developmental
abnormalities in specific face-selective areas?

5. Do subdivisions within face-selective areas exist that support representation of specific
invariant and changeable aspects of face perception such as identification, sex, age, gaze,
or expression, among others?

6. What are the functional roles of face-selective areas in the left hemisphere?
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