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Abstract

In visual search tasks, observers look for targets among distractors. In the
lab, this often takes the form of multiple searches for a simple shape that
may or may not be present among other items scattered at random on a
computer screen (e.g., Find a red T among other letters that are either black
or red.). In the real world, observers may search for multiple classes of target
in complex scenes that occur only once (e.g., As I emerge from the subway,
can I find lunch, my friend, and a street sign in the scene before me?). This
article reviews work on how search is guided intelligently. I ask how serial
and parallel processes collaborate in visual search, describe the distinction
between search templates in working memory and target templates in long-
term memory, and consider how searches are terminated.
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1. INTRODUCTION

The crowd at Reykjavik airport was impressive, and somewhere in the view in front of memight be
my wife.Determining whether or not she was in my current field of view was a visual search task. If
we had an all-seeing eye, then search would be unnecessary.The image contained the information;
either my wife was present or she was not. However, while we can see something at all locations
in the visual field, it should be obvious that we cannot immediately identify everything in a scene.
Our capacity is limited in a manner that makes search necessary. Some of those limits have to
do with the structure of the visual system. For instance, the retina and visual nervous system are
structured so that we have high-resolution vision only in the small foveal region at the point of
fixation. Beyond those basic visual limitations, there are capacity limits that are computational.
Even a limited version of an all-seeing eye that could process everything, everywhere in the visual
field, would require an implausibly large brain (Tsotsos 2011, improving on Neisser 1967).

A substantial body of current research strives to understand how human searchers cope with
these limits on the ability to perceive the world and to find what they are looking for. Classic
laboratory tasks have asked observers to search for a target in an array of distractors scattered at
random on an otherwise blank computer screen. Those tasks have taught us a great deal, although
one theme in this review is the need to begin using tasks that are closer to those in real-world
search.

This review concentrates on four topics: how visual search is guided, how serial and parallel
processes collaborate in visual search, search templates and working memory (WM), and search
termination and tasks beyond laboratory search.

2. HOW IS VISUAL SEARCH GUIDED?

2.1. Classic Visual Search

Tasks relying on classic search for a target among some number of distractors have been popular
in vision research since the 1970s (Egeth 1977, Wolfe 1998a). These tasks eliminate the compli-
cations produced by real scenes.Much of classic visual search research has been done with stimuli
that are deliberately made large enough and spaced widely enough that acuity and crowding lim-
its do not constrain the task. However, these tasks can still show clear evidence for capacity limits
and the need to search. An example, taken from Wolfe & Myers (2010), is shown in Figure 1a,b.
Observers are looking for plastic among stone surfaces. Display set sizes of only one, two, three,
or four large patches were presented to observers, each in a different quadrant of the visual field.
These surface materials are easily recognized. Material properties turn out to be identifiable in a
short fraction of a second (Sharan et al. 2014). Nevertheless, the response time (RT; equivalently
referred to as the reaction time) increases roughly linearly with the number of patches shown.
Moreover, the slope of the RT × set size function is approximately twice as great when the tar-
get is absent than when it is present. If capacity is not limited, then the time required to make a
response should be nearly independent of the number of items in the search array. This is what
happens for simple feature searches, as is shown in Figure 1c,d (Wolfe et al. 2010b). Note that the
set sizes are much larger in this case. Nevertheless, the ability to find a red target among green
distractors does not depend on the number of green items (but see Lleras et al. 2020).

The slope of the RT × set size function is a measure of the rate of processing of items. Con-
sider the search shown in Figure 1a,b, in which RT increases by 35 ms for each additional item
on target-present trials and by 81 ms/item on target-absent trials. One way to think about such
searches is to conceive of them as serial, self-terminating searches (Sternberg 1966). Each item is
examined in turn until the target is found or the search is abandoned. On average, such a search
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Figure 1

Classic visual search experiments. (a) Identifying plastic is easy even if defining plastic is hard. (b) Search for plastic requires an
apparently serial search (data taken fromWolfe & Meyers 2010). (c) The red item pops out among green distractors. (d) In a search task,
response time would be roughly independent of the number of green items in the display (data taken from Wolfe et al. 2010b).
(e) Search for the T is more efficient if you know that the T is green. ( f ) This guidance by color is seen in the shallower slope of the
response time × set size function for search for green Ts, as opposed to search for any T (hypothetical data; see Egeth et al. 1984).

will end after (N + 1)/2 items have been examined on target-present trials. If the target-absent
trials were truly exhaustive, then all N items would need to be examined exactly once (search ter-
mination is more complex than this and is discussed below) (Chun & Wolfe 1996, Cousineau &
Shiffrin 2004,Moran et al. 2013,Wolfe 2012). In this view, the target-absent slopes will be approx-
imately twice the target-present slopes. The true cost per item would be twice the target-present
slope. For the data shown, a simple serial model would argue that observers were processing items
at a rate of 1/(0.035 × 2) = ∼14 items per second. The same analysis would propose that all of
the colored squares were being processed simultaneously (given slopes near 0 ms/item). Thus, the
processing could be said to occur in parallel. Note that slopes would be much steeper if it were
necessary to fixate on each item in turn.Voluntary saccadic eye movements occur at a rate of about
3–4 per second, translating to RT × set size slopes of 250–333 ms/item for target-absent trials and
approximately half that for target-present trials.

In most real-world search tasks, initial parallel processing of the search display can be used to
guide the subsequent deployment of attention. For example, in Figure 1e, if you search for the
letter T, then you will need to attend to each item until you stumble on the target. However, if
you know that the T is green, then it should be intuitively clear that you will only (or, at least,
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preferentially) attend to the green items (Egeth et al. 1984). Your search for a letter will be guided
by the orthogonal information about its color. As a consequence, although there are 21 items in
the display, the effective set size (Neider & Zelinsky 2008) will be 7, the number of green items.
The slope of the RT × set size function for a search for the green T will be approximately one-
third of the slope of the function when color is unknown (Figure 1f ). The idea of guidance was
present in the attention literature from at least the 1950s (Egeth et al. 1984, Green & Anderson
1956, Hoffman 1979). It was at the heart of the guided search (GS) model of Wolfe et al. (1989)
that argued that differences in the efficiency of search tasks could be explained by differences in
the amount of guidance; more guidance would lead to more efficient search. Multiple versions of
GS have been developed (Wolfe 1994, 2007;Wolfe &Gancarz 1996;Wolfe et al. 1989, 2015),with
the GS 2.0 (GS2) version being the best known. The idea of guidance is now generally accepted
and is a part of virtually all models of search. Thus, taking the example in Figure 1e, it is hard to
imagine a model that would not devote more processing resources to green items if the target was
known to be green.

2.2. Guidance and the Nature of Guiding Features

What guides attention in visual search? Our understanding of how attention is guided has evolved.
Classic GS and other models concerned themselves with guidance by basic features like color
and motion. Attention could be guided to features of the target and, to a lesser extent, away from
features of the distractors (Gaspelin &Vecera 2019).Other forms of guidance are discussed below.
In this section, I briefly review feature guidance.

A limited set of features are available to guide attention. These include uncontroversial prop-
erties like color, size, and motion, as well as less obvious properties like lighting direction (Adams
2008, Enns &Rensink 1990) or axis of rotation (Schill et al. 2020).The list of the one to two dozen
guiding features is reviewed elsewhere (Wolfe 2014; Wolfe & Horowitz 2004, 2017). In this re-
view, I focus on what we have learned about feature guidance in recent years. Feature guidance
is derived from the basic sensory input that gives rise to the perception of attributes like color
or orientation. However, guidance appears to be a specific abstraction from that input [below, I
argue that this abstraction is the search template (Olivers et al. 2011)]. Thus, for example, small
differences in orientation (e.g., 0° from 5°) may be easily discriminated if items are scrutinized, but
a 0° target will not pop out in a display of 5° distractors. The orientation difference would need
to be larger before it would summon attention (Foster & Ward 1991). Moreover, guiding signals
appear to be categorical. For example, it is easier to search for oriented lines if they are uniquely
steep or shallow (Wolfe et al. 1992). More recently, other aspects of feature guidance have been
described. In a series of experiments, Stefanie Becker (2010; Becker et al. 2020) demonstrated that
guidance is often usefully described as a relationship between targets and distractors, rather than
as an absolute target value. Thus, observers might be more likely to define a target as the reddest
item in a display, rather than as a specific red color. The orange target could be defined as the
reddest item in one context but might be searched for as the yellowest item in another context.
Another way to think about this is to imagine a boundary in feature space that puts targets on one
side and distractors on the other. When targets and distractors are linearly separable in this way,
search is efficient. When targets are flanked in the feature space by distractors (e.g., 0° among
±20° distractors), search is inefficient (Bauer et al. 1996,Wolfe et al. 1992).When a target is close
to distractors in feature space (e.g., a bluish-green among greenish-blue distractors), attention will
be guided by an internal representation or target template that is not centered on the actual target
feature. Instead, the template will be centered a bit further from the distractors to avoidmistakenly
categorizing a distractor as a target (Yu & Geng 2019). In signal detection terms, this is roughly
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like moving the decision criterion to a more conservative position to avoid false alarm (false pos-
itive) errors. The precise nature of the feature guidance is probably hidden from the searchers.
They look for ripe blueberries without necessarily realizing that this involves setting a criterion in
color space for items that will attract attention and then using another criterion to decide about
the precise status of an attended berry.

Guidance by shape is, perhaps, the greatest puzzle in feature guidance. There are several basic
features that are related to the shape of an object. These include closure, line termination, curva-
ture, topology (holes), and aspect ratio (for a review, see Wolfe 2018). Unlike features like color
and motion, it is not clear if it makes sense to talk about these aspects of shape as independent
features. A new way forward might arise out of the remarkable progress in training deep learning
algorithms to identify objects (e.g., Kriegeskorte 2015). At a high level in a deep learning network,
an object or category (e.g., cat) might be defined by a high-dimensional vector.While that vector
can be used to identify a cat, it probably does not guide attention toward candidate cats (but see
Miconi et al. 2016). It could be that some other, coarser representation, derived from the same
network, might be the basis for guidance by shape (analogous to coarse guidance by orientation,
described above), but this hypothesis awaits experimental test.

2.3. Scene Guidance

Classic models of search, like feature integration theory and S → GS, focus on the features of
the target. Work over the past 25 years has made it clear that feature guidance is only part of
the story. Indeed, for many tasks, feature guidance may not be the most important force that
constrains the deployment of attention. That role would go to scene guidance. Classic feature
guidance is guidance to locations or objects that appear to have target features. Scene guidance
is guidance to locations that are more likely to contain a target, regardless of whether that target
and/or its features are present. That is, as in Figure 2, search for a pillow will be directed to the
top end of the bed, whether or not there is any preattentive feature evidence for the presence of a
pillow.

Scene guidance is not a new idea (Biederman et al. 1973, Kingsley 1932), but it has taken on
greater prominence in research on visual search, in part because it has become practical to use
scenes as stimuli, rather than only random arrays of items.

Working out how scene content and structure guide attention is a project in its fairly early
stages. Analogous to Itti et al.’s (1998) salience map,Henderson &Hayes (2017, 2018) have devel-
opedmeaningmaps that show how themeaningfulness of a scene varies over the scene.Henderson
& Ferreira (2004) and Vo &Wolfe (2013) argue that scenes, like language, have a grammar. That
grammar is concerned with scene semantics (Is an object meaningful in this location in this scene?)
and scene syntax (Where is it structurally plausible for an object to be? For instance, toasters do not
float) (Vo &Henderson 2009). In a toaster search, attention would be guided toward places where
toasters are physically plausible (e.g., horizontal surfaces) and away from places where toasters,
while possible, are semantically improbable (e.g., the floor, under the table). Given the relative in-
efficiency of search for arbitrary, realistic objects in arrays (Vickery et al. 2005) and scenes (Wolfe
et al. 2011a), it seems likely that scene guidance is doing the largest portion of attentional guidance
in many real-world searches.

Scene guidance and feature guidance work together. In Figure 3, if you look for people, you
will quickly find the man in the middle of the image. You may be slower to see the exact copy
of his image, pasted on the path at the bottom. You guided your attention to objects or features
that could plausibly be human, and the man at the bottom is the wrong size. He is only the wrong
size, however, because the structure of the scene makes it so (Eckstein et al. 2017, Wolfe 2017).

www.annualreviews.org • Visual Search 543



Figure 2

Scene guidance: where observers look when told to look for a pillow. Figure reproduced with permission
from Sage Boettcher and Melissa Vo, copyright 2019.

Figure 3

The interaction of scene and feature. The observer is asked to look for people.
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Guidancemechanisms also know something about the structure of objects. For example, it is easier
to find a red object with a yellow part than a red and yellow object, even if both items have the
same number of red and yellow pixels (Wolfe et al. 1994, Vul et al. 2020).

In any scene search lasting for more than a fraction of a second, it seems evident that the na-
ture of scene guidance will evolve during search.When a scene is first encountered, scene guidance
(like feature guidance) appears coarse. Work on search for humans shows rapid, broad guidance
toward the ground plane, for example (Ehinger et al. 2009). This is probably evident in Figure 3.
Castelhano and colleagues (Castelhano & Heaven 2011, Castelhano & Henderson 2007, Pereira
& Castelhano 2014) find that a very brief preview can bias subsequent search to relatively coarse
regions of a scene.Moreover, this scene guidance only pertains to objects in scenes, not to objects
pasted on top of scenes (Pereira & Castelhano 2019). This coarse initial stage of guidance is con-
sistent with evidence that extremely brief exposure to a scene is enough to extract its gist, giving
access to its rough structure and content (Greene & Oliva 2009, Oliva 2005, Oliva & Torralba
2001). As time progresses, more detailed information about a scene and its contents will develop,
and search can then be guided by that information. Thus, in search for the pillow in Figure 2, at-
tention is guided by the location of the bed (an anchor object; Boettcher et al. 2018).That guidance
presumably requires the identification of the bed, which, in turn, probably requires deployment of
attention to that bed. Even feature guidance takes some time to fully develop (Lleras et al. 2020,
Palmer et al. 2019), although it remains reasonable to think of feature guidance as being based on
the output of a fast, preattentive process. Scene guidance, by contrast, seems to be a process that
evolves from initial information about the spatial envelope of the scene (Oliva & Torralba 2001)
to guidance based on richer scene understanding and informed by attention to objects in the
scene.

Another important difference between scene guidance and feature guidance is that much if not
all scene guidance must be learned. The genes may code for a set of basic guiding features like
color and size, but they do not code for the pillow–bed relationship. Contextual cueing (Chun &
Jiang 1998) can be thought of as a very basic version of scene guidance in which repeated exposure
to the same random arrays of stimuli leads to the learning of the association of a random array
with a target location. This type of guidance appears to be largely implicit, even in situations
where real-world stimuli are used ( Jiang et al. 2014). Experts in specialized search tasks like those
in radiology speak of a gestalt stage in processing when an initial assessment of the image guides
attention to likely locations of a clinical finding (Nodine & Mello-Thoms 2019). This form of
guidance is clearly learned. Moreover, it is reasonable to consider this a form of scene search,
since radiologists certainly make use of the learned structure of the image as a whole and do not
rely exclusively on their identification of specific features or objects.

2.4. Guidance by Search History

In a standard search experiment, and, one may suppose, in a string of searches in the world, per-
formance on one search is influenced by performance on previous searches. The “priming of pop-
out” phenomenon, described by Maljkovic & Nakayama (1994), is an important early example.
Observers saw displays of red among green or green among red items. They needed to report
the precise shape of the color singleton in the display. Maljkovic & Nakayama found that, even
though the search for the color target is trivially easy, observers were faster if the preceding target
was the same color as the current target. The effect was quite automatic. For instance, it did not
matter if the observer knew the next color. This priming was based on the color of the previ-
ous target. The result has been replicated and extended to multiple dimensions (Hillstrom 2000,
Kristjansson 2006). Priming is not a simple effect. For instance, priming effects for conjunction
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stimuli can be longer lasting than single-feature priming of pop-out (Kruijne & Meeter 2015).
Priming may be tied to episodic memory representations (Huang et al. 2004; see also Brascamp
et al. 2011). Distractor properties can also be primed (Lamy et al. 2013), although the effects are
smaller than those for targets (Wolfe et al. 2003).

For the purposes of this review, the important point is that finding something on one trial
appears to guide attention toward subsequent instances of that target. Originally, Wolfe et al.
(2003) argued that priming was a form of top-down guidance. The logic was that there were two
forms of guidance. Bottom-up guidance came from the stimulus, and top-down guidance came
from the observer. Since priming was a form of memory, it was internal to the observer and, thus,
top down. More recently, Awh and colleagues (2012) have argued that this confuses two forms of
guidance that should be considered to be distinct. There is top-down, volitional guidance to what
you are looking for, which is distinct from the automatic effects of history that occur whether you
are looking or not. Theeuwes (2018) argues that much of what passes for top-down guidance is
driven by priming by targets. Even if one might not go that far (Ásgeirsson & Kristjánsson 2019),
it seems correct that the recent history of search guides subsequent search.

2.5. Guidance by Value

A fifth form of guidance is related to, but probably distinct from, guidance by history. Attention
is guided to features that have been associated with reward (Anderson et al. 2011). The effects of
value can be quite automatic and can act against the interests of the observer (Hickey et al. 2010).
Effects of value can be seen in monkeys (Ghazizadeh et al. 2016). The effects can be distinguished
from the effects of just seeing and responding to a feature repeatedly, as in priming studies (Kim
& Anderson 2018), so it probably makes sense to see value as a separate modulator of attentional
priority. The roles of reward and value have been extensively reviewed by Failing & Theeuwes
(2017).

2.6. Building a Priority Map

To briefly summarize, attention appears to be guided by at least five factors: bottom-up salience,
top-down feature guidance, scene guidance, history, and value (Wolfe & Horowitz 2017). All of
these forces may guide attention at anymoment; however, selective attention generally has a single
focus (for the debate on splitting attention, see Cave et al. 2010, Jans et al. 2010). Accordingly,
the multiple sources of guidance need to be combined with some final common path. This is
often imagined as a priority map consisting of some weighted average of all forms of guidance
(Fecteau & Munoz 2006, Serences & Yantis 2006). The term salience or saliency map should be
reserved for bottom-up, stimulus-driven guidance (Koch & Ullman 1985, Li 2002), although this
terminological distinction is not always clear.

The basic ideas behind the operation of a priority map were established in the early discussions
of saliencymaps (Itti &Koch 2001). Information is pooled, and when it is time to deploy attention,
a winner-take-all process directs attention to the point of highest activation in the map. This is
not the only possibility. For instance, one could propose that attention is directed by one feature
map without pooling information across maps. Chan &Hayward (2009) argue that it is possible to
respond based on activity in an orientation map or a color map without the need to combine those
signals into a priority map. Their dual-route account (Chan & Hayward 2014) acknowledges the
combination of signals but does not require that combination. Buetti et al. (2019) provide evidence
that the combination of signals does occur.They performed simple pop-out searches for color and
shape targets.When the target was defined by both color and shape,RTswere faster than responses
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to either feature alone.This indicates that combining features makes a bigger signal, driving faster
responding.

The idea of a weighted average is particularly clearly articulated in the dimensional weighting
theory of Müller and his group (Liesefeld & Müller 2019). As the name suggests, it puts partic-
ular emphasis on modulating the contribution of different dimensions like color and orientation,
although, within a dimension like color, one can guide toward a specific feature like red. There
appears to be a weaker but real ability to unweight or inhibit distractor features (Cunningham
& Egeth 2016, Lamy et al. 2008, Neumann & DeSchepper 1991). It is likely that most of the
weight-setting is implicit, based on priming or selection history effects. For a particularly fervid
argument on this point, see Theeuwes (2013). This may be more relevant in a long series of trials
in the lab than it is during a one-off search in the world. There needs to be some way to guide
your search for bananas at the store without having to be primed by immediately preceding banana
searches.

Attentional capture (Yantis 1993), for example, by abrupt-onset stimuli ( Jonides&Yantis 1988),
refers to situations where attention is summoned to a stimulus or location in spite of and, some-
times, in opposition to the observer’s intentions. The phenomenon suggests that activity in the
priority map is unlabeled, in the sense that attention can be captured by the wrong signal if that
signal is incorporated into the priority map. For instance, in singleton mode, attention gets di-
rected to any salient item, regardless of what makes it salient (Bacon & Egeth 1994), although
this capture of attention by any oddball depends on the nature of the search task ( Jung et al.
2019). Similarly, while the weighting system is flexible, it is probably impossible to set the bottom-
up, stimulus-driven salience weight to zero. The classic statement of this principle comes from
Sully (1892, p. 146), who said that “One would like to know the fortunate (or unfortunate) man
who could receive a box on the ear and not attend to it,” meaning that any irrelevant stimulus, if
strong enough, will attract attention. Many of the more modern debates over the conditions of
attentional capture can be seen as arguments over the strength of the blow to the metaphorical
ear.

3. HOW DO SERIAL AND PARALLEL PROCESSES COLLABORATE
IN VISUAL SEARCH?

3.1. Overt and Covert Attention: Eye Movements, Eccentricity,
and the Functional Visual Field

Attention and eye movements are closely related. However, they can be readily dissociated. It is
possible to look at one location while paying attention to another (Helmholtz 1924). It is often
useful to refer to overt deployments of the eyes and covert deployments of attention. (Posner
1980). Under most circumstances, covert attention is deployed to the target of the next saccade
before the saccade arrives at that location (Kowler et al. 1995). Perhaps the strongest effort to
link attention to movements of the eyes is Rizzolatti et al.’s (1987) premotor theory, which holds
that deployment of attention is just a weaker manifestation of the signals that direct action toward
a location. Premotor theory is probably too strong (Belopolsky & Theeuwes 2012), but there is
no doubt that eye movements and attention are closely linked in visual search (Hoffman 1996)
even in cases in which search can be accomplished similarly with and without eye movements, i.e.,
when the items are big enough to avoid eccentricity and crowding effects (Klein & Farrell 1989,
Zelinsky & Sheinberg 1997).

Under most real-world conditions, the effects of eccentricity and crowding cannot be avoided
(Rosenholtz 2011,Rosenholtz et al. 2012), and as a result, overt eye movements and covert deploy-
ments of attention should be seen as participating in a complex, interactive dance during search.

www.annualreviews.org • Visual Search 547



The precise details are unclear because we cannot track covert attention as effectively as we can
track the eyes. Under normal conditions, observers will fixate on 3–4 items every second. How-
ever, in a search like the search for a T among Ls in Figure 1e, f, the RT × set size functions
indicate that those items are being processed at a rate of 20–40 items/s (details of mapping from
slopes to rate depend on assumptions about memory in search; see below).

These numbers show that observers are processing approximately 5–10 items per fixation.How
one understands the difference between the rate of eye movements and the rate of item processing
in search is at the heart of most theoretical arguments in visual search today. At one extreme is
the view that the eyes move to a new fixation every few hundred ms, and that covert attention is
then serially deployed to 5–10 items before the eyes move elsewhere. This was the original GS
position. Alternatively, attention might move to a location, permitting parallel processing of all
items within a functional visual field (FVF) or useful field of view (UFOV) surrounding that point
of fixation [there are many versions of this view, but they are well captured by Hulleman &Olivers
(2017)]. In the strongest version of this FVF view, the difference in efficiency of, say, the search
for a T and the search for a green T in Figure 1e, f is not a difference in guidance but a difference
in the size of the FVF.

These models sound dramatically different, but they actually may be two ways of looking at
the same dance of overt eye movements and covert attention. Once we leave the realm of large,
widely spaced items on a computer screen, any GS-style model needs to incorporate the idea of
an FVF. This is illustrated in Figure 4 and described in the caption.

Upon fixation at some point, covert deployments of attention are going to be directed to rec-
ognizable items, given the current fixation. These items will fall within some FVF. Outside of the
FVF, acuity and/or crowding will render the target unrecognizable. Each covert deployment will
start a decision process (Is this a T or an L?) that can be modeled as diffusion of information
toward a decision bound (Ratcliff 1978, Ratcliff & McKoon 2008). The covert deployments will
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Figure 4

The dance of overt eye movements and covert attention. 1© The observer fixates at some point. 2© Within a
functional visual field, shown by the blue shaded area, 3© they make covert deployments of attention (green
arrows). 4© Each attentional selection starts a diffusion process, designed to identify the selected item as a T
or an L. In this case, all processes reach the L decision bound. 5© Having failed to find a target, the eyes are
redeployed to a new spot (purple arrow), surrounded by a new functional visual field. Again, covert
deployments of attention are made. 6© This time, one of those items accumulates the information required
to reach the decision boundary identifying it as a T.
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occur every 50 ms or so. However, even the most dramatically fast object recognition processes
take longer than that (Thorpe et al. 1996, VanRullen & Thorpe 2001). It follows that individ-
ual diffusion processes would overlap in time, making the recognition aspect of search into an
asynchronous diffusion process. After 200–300 ms, the eyes are redeployed, and covert selection
continues within a new FVF. In this case, the target is identified, and search ends.

Wolfe (2003) uses the analogy of a carwash to describe this asynchronous diffusion process.
Cars go in one at a time, in series, but they are being processed in parallel in the sense that several
cars are being washed at the same time. An experiment that looked at the contents of the diffuser
at one instant in time would see the parallel processing of items within an FVF. The only real
difference between this serial, covert attention account and a parallel FVF account is whether items
within the FVF begin their diffusions synchronously or asynchronously.Given the lamentable lack
of a covert attention tracker,mentioned above, and a welter of free parameters (e.g., diffusion rates
for items as a function of eccentricity), these models are probably empirically indistinguishable.

3.2. Varieties of Models of Visual Search

Even if it is hard to distinguish between different models of search, this does not mean that there
is just one model of search operating under a range of names. Numerous approaches put different
emphasis on factors like the role of eye movements or peripheral visual processing. Each model
raises issues that can inform the development of the next generation of models.

Treisman & Gelade’s (1980) seminal feature integration model (FIT) was built on the two-
stage, preattentive–attentive architecture of Neisser (1967). Responding to the neurophysiology
of the day,Treisman&Gelade envisioned the preattentive processing of simple features in parallel
across the visual field. Binding those features into a recognizable object required serial deployment
of attention (Treisman 1996, von der Malsburg 1981). Kristjánsson & Egeth (2020) recently re-
viewed the work that provided the grounding for the FIT. GS, in its original formulation, simply
added the idea that basic, parallel feature information could be used to help deploy serial atten-
tion in an intelligent manner (Figure 1e, f ). Other models can also be seen as variants of the FIT.
The dimensional weighting model of Hermann Müller and colleagues (Liesefeld & Müller 2019,
Müller et al. 1995, Rangelov et al. 2011) is quite like GS in giving an important role to feature
guidance. Different features might have different potential to guide attention in a given task. In
a search for a red, vertical target, it would not make much sense to guide attention based on ir-
relevant motion or size information. The dimensional weighting model emphasizes the need to
weight the output of feature processors to get an intelligent guiding signal. Moreover, the model
emphasizes the differences between switching from one feature to another within a dimension
(red to green) compared to between dimensions (red/color to big/size). The same group has also
developed the competitive GS model (Moran et al. 2013, 2015), which improves upon the me-
chanics of earlier GS models, especially by improving on the treatment of quitting rules, i.e.,
when an observer stops searching (discussed below). Several other more quantitative versions of
GS-style models have been developed (Hubner 2001), with the integrative model of visual search
of Schwarz & Miller (2016) being a recent, notable example.

Rensink’s (2000) triadic architecture ties FIT-style search architecture more closely to con-
scious visual experience, adding the question of what we see to the problem of how we find what
we are looking for. His parallel front-end stage carves the scene into proto-objects that can be
selected by his version of a second, limited-capacity stage. Importantly, he adds a separate non-
selective pathway, not subject to attentional limits, that produces some visual experience at all
locations in the visual field. These ideas about nonselective gist processing are important in sub-
sequent models like more recent versions of GS (Wolfe et al. 2011b).
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Computational salience models, with their roots in the path-breaking work of Koch &Ullman
(1985) and Itti & Koch (2000), can be quite similar in spirit to GS, albeit with stronger ties to the
underlying neurophysiology. A set of early-vision features, often modeled on neurophysiological
data, are used to derive a saliency map that, in turn, directs attention and/or the eyes.Traditionally,
such models have typically been more concerned with the bottom-up, stimulus-driven aspects of
attention than with top-down, user-driven aspects. That is, they were modeling what aspects of
the world captured attention with less emphasis on how observers got their attention to targets
of interest to them. Computationally, modelers were not denying the existence of top-down fac-
tors. Initially, their models were just solving other problems. John Tsotsos (2011; Tsotsos et al.
1995) was relatively early in incorporating top-down processing into his computational models,
and such factors are now part of standard models in the computational saliency map tradition
(Hamker 2004, Navalpakkam & Itti 2006). Moreover, researchers like Tsotsos moved away from
the FIT-style model to models much more concerned with how attention could modulate a net-
work of neural connections to cause the right answer to emerge at the top of a pyramid of pro-
cessing (Tsotsos 2011). For more on this topic, see Frintrop et al.’s (2010) excellent review and the
2015 special issue of Vision Research (Tsotsos et al. 2015).

Some models, like Zelinsky’s (2008) Target Acquisition Model, place much more emphasis on
modeling the overt deployments of the eyes than themore elusive covert deployments of attention.
The data that lead to the conclusion that multiple items can be processed with each fixation also
lead to models that propose that search progresses by the sequential analysis of clumps of items
within an FVF, centered around the current point of fixation. Often, the assumption is that this
analysis is parallel over the FVF. A notable example of such a model is that of Hulleman &Olivers
(2017). They proclaim “the impending demise of the item in visual search” because they replace
search by item with search by FVF clump. More recently, Liesefeld & Müller (2020) have argued
that both processes—item by item and FVF clump processing—can be used to find targets in
search.

The nature of the FVF that can be processed with each fixation takes a central role in models
of search like those of Ruth Rosenholtz and her colleagues (2012). Rosenholtz argues that the
inefficiency of searches like classic searches for a T among Ls is driven less by attentional capacity
limits and more by limits imposed by crowding and image degradation in peripheral vision. These
visual factors mean that a T that is present in the image may not be present in the representation
in the early visual system or may be distorted to resemble a distracting L. Other aspects of the
statistics of the scene can remain intact and can support good scene perception even if search for
specific items in the scene is inefficient (Zhang et al. 2015).

From models that propose parallel processing of clumps of items, it is a conceptually short
step to fully parallel models of search (Palmer 1995, Palmer & McLean 1995, Palmer et al. 2000,
Verghese 2001). In these models, all items are processed by either a limited- or an unlimited-
capacity parallel processor, andmuch of the empirical work is devoted to determining the rule that
allows the observer to determine if there is a target present and where it might be (e.g., Baldassi &
Verghese 2002). In practice, the fully parallel models have usually been applied to simple displays
of a few items. If such a model were to be scaled up to deal with complex scenes, then it seems
likely that it would become a model of the FVF, clump-processing variety; no one would propose
that a fully parallel model could work over the whole visual field without eye movements. For
example, a model like that of Najemnik & Geisler (2009) might combine parallel processing with
the constraints imposed by eccentricity.

This section merely outlines the classes of attention models and notes the theoretical consid-
erations that they raise. For a more extended discussion, the reader might consult the relevant
chapters in the Oxford Handbook of Attention (Nobre & Kastner 2014).
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4. SEARCH TEMPLATES AND WORKING MEMORY

A visual search presupposes that something is being searched for. The internal representation of
the goal of search is often known as the search template (Gunseli et al. 2014), although every-
one understands that this is a metaphor and that a search template does not look like the target
in any literal sense. Several terms are used interchangeably, often in the same paper; these terms
include search template (Rajsic et al. 2017), target template (Bravo & Farid 2016), memory tem-
plate (Kristjánsson et al. 2018), and attentional template (Yu & Geng 2019). The jargon confuses
two types of template that should be kept distinct. First, “visual search is thought to be guided
by an active visual working memory (VWM) representation of the task-relevant features, referred
to as the search template” (van Loon et al. 2017). Second, “during visual search, observers hold
in mind a search template, which they match against the stimulus” (Bravo & Farid 2014, p. 32).
These are not the same role and, in all probability, not the same internal representation. The first
template is involved in guiding attention to likely targets and is only fairly coarsely mapped to the
target (Anderson 2014, Kerzel 2019). Once the attention is directed to an item, it can be precisely
matched to a template (this can be called the target template). A comparison to the target tem-
plate, not guidance by the features of the guiding template, makes it possible to know that this
gray tabby cat is similar to but not the same as your gray tabby cat.

The guiding and target templates are not the same template. The guiding template is thought
to reside inWM (Olivers et al. 2011).Many experiments show that changing the contents ofWM
can bias the guidance of attention (Beck et al. 2011, Dowd &Mitroff 2013, Soto et al. 2005). The
idea that the templates are maintained in WM goes back at least to neurophysiological work in
the 1990s (Desimone & Duncan 1995). However, while it seems clear that WM serves an impor-
tant role in search, it is reasonably clear that the target template resides elsewhere. The clearest
evidence on this point comes from work on hybrid search (Wolfe 2012). In hybrid search, ob-
servers look for any of several targets. In experiments using photographs of objects as targets,
observers have no difficulty searching for as many as 100 distinct targets at the same time (or
even more; Cunningham & Wolfe 2014). Since the capacity of WM is approximately four items
(Cowan 2001), no model of WM would propose that 100 target templates could be in residence
in WM at the same time. It could be that target templates shuttle in and out of WM. If that were
the case, then we might expect to see qualitatively different performance for hybrid searches with
fewer than four items in the memory set and those with the larger memory sets that would require
this shuttling. Moreover, we might expect response time to be a linear function of the memory
set size. Instead, response time in hybrid search seems to be a smooth, logarithmic function of
the memory set size (Wolfe 2012). Moreover, Drew et al. (2015) found that loading WM did not
impact hybrid search performance, although a hybrid search did seem to reduce WM capacity by
approximately one item.

It seems more plausible to propose that target templates reside in long-term memory (LTM),
specifically, in activated long-term memory (Cowan 1995), a partition of LTM that is relevant
to the current task. After all, the typical block of search trials and real-world search operate over
longer times than those proposed forWM representations, so it is reasonable to assume that some
representation of the goal of the search resides in some aspect of LTM. The guiding templates in
WM are “representations of the features that distinguish targets from nontarget objects” (Grubert
& Eimer 2018, p. 9527). It might be better to call this a “guiding representation” (Wolfe 2007,
p. 100; underlining in original), but we are probably stuck with the term template, so perhaps the
field can be persuaded to use guiding template or search template for a coarseWM representation
that guides search and target template for the LTM representation of the precise goal of the search.
The interaction of these types of templates can be seen in categorical hybrid search. Cunningham
& Wolfe (2014) had observers memorize several animal images. They then had observers search
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for those targets among distractors that could be other animals or letters. By manipulating the
numbers of animals and letters in the visual display, they could show that the observers guided
attention to the animals—using some set of animal features in aWM guiding template—and then
matched those animals against the specific target templates in LTM.

5. SEARCH TERMINATION AND TASKS BEYOND
LABORATORY SEARCH

One of the more vexing problems in search is the question of search termination.When is it time
to quit the current search task? The original feature integration account assumed that parallel
pop-out tasks could be thought of as a single two-alternative forced-choice decision: Either the
target was present or it was not. For search tasks that the FIT considered to be serial and self-
terminating, search ended when the target was found or when all distractors were examined and
rejected. Thus, absent trials were imagined to be serial exhaustive searches (or almost exhaustive,
given that some miss errors would be made when observers quit before finding the target). GS
complicated this picture by having the parallel guidance mechanism eliminate some distractors
without serial examination, so GS2 proposed that search ended when the target was found or
when all distractors having activation or priority above some threshold had been examined. That
activation threshold was set adaptively. It became higher when an observer missed a target and
lower after a correct response (Chun & Wolfe 1996). GS2 also proposed that “some very long
searches are terminated when the. . .observer. . .concludes that it rarely takes this long to find a
target” (Wolfe 1994, p. 210).

A key assumption of this class ofmodel is that rejected distractors or regions aremarked in some
fashion so that they are not attended again. Inhibition of return (IOR) has been a popular proposed
mechanism for this marking (Klein 1988) even though IOR is merely a bias against returning to an
attended location, not an absolute prohibition (Klein & MacInnes 1999). However, Horowitz &
Wolfe (1998, 2001, 2003) challenged this idea in a series of experiments fromwhich they concluded
that “visual search has no memory” (Horowitz &Wolfe 1998)—meaning no memory for rejected
distractors. In one set of experiments, they used a dynamic search display where they randomly
replotted all of the items every 110 ms. They found that the slope of the RT × set size function
was the same in this dynamic search as it was in an equivalent static search (Horowitz & Wolfe
1998).Perfectmemory for rejected distractors would have predicted twice the slope in the dynamic
case, where no memory can be used. Subsequent research has pointed out that dynamic search
conditions are not identical to static search conditions. Observers could adopt different strategies
in the two situations. If items are truly reappearing in random locations, then observers could
just sit at one location and wait for the target to appear (von Muhlenen et al. 2003). Although
Horowitz & Wolfe (1998) tried to thwart a sit-and-wait strategy, observers might still have been
moving attention around the display less widely in dynamic search. Shi et al. (2020) replicated the
dynamic search results but focused on the relationship between target-present and -absent slopes.
In static search, the absent:present ratio is typically near (or a bit more than) 2:1 (seeWolfe 1998b,
figure 2). Shi et al. found that this ratio was consistently near 1:1 for dynamic search, arguing for
different strategies in the two conditions. It may well be that observers are answering different
questions in the two cases. In a static search, the question might be, “Shall I quit, because I have
looked at more or less everything that needs to be looked at?” In dynamic search, that question
does not make sense, and the right question might be, “Have I searched long enough that it is
unlikely I would have missed the target?”

Horowitz & Wolfe (2001) used methods other than dynamic search to argue for a failure to
keep track of rejected distractors, but others have found evidence for some, albeit fairly limited,
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memory (Dickinson & Zelinsky 2005, McCarley et al. 2003). Of course, in extended search tasks
over longer time scales (e.g., searching the house for your keys), there must be some memory for
where you have looked, but it seems safe to argue that search is not terminated by checking when
all relevant items have been marked as rejected because observers do not keep reliable track of
what distractors have been rejected.

The search termination question becomes more complicated when the family of search tasks
expands beyond the search for a single target among discrete distractors.These laboratory tasks do
not capture the richness of real-world searches, including socially important artificial search tasks
like those in radiology or security screening. For instance, what happens if the number of targets
is unknown? In radiology, the phenomenon of satisfaction of search (SoS) describes a situation in
which finding one target makes it less likely that an observer will find a second target (Nodine
et al. 1992, Tuddenham 1962). The original thought was that SoS was caused by early search
termination, but that turns out to be incorrect (Berbaum et al. 1991). A body of research shows
that there are multiple causes (Berbaum et al. 2019, Cain et al. 2013), possibly including early
termination.

More generally, search tasks in areas such asmedical image perception, airport security (Mitroff
et al. 2014,Wolfe et al. 2013), and driving (Robbins & Chapman 2018) are different from labora-
tory studies of search for one target that is present on 50% of trials (for recent reviews of medical
image perception, see Williams & Drew 2019,Wolfe 2016,Wolfe et al. 2018,Wu &Wolfe 2019;
most notably, see Samei & Krupinski 2018).

When the number of targets becomes large, search tasks become foraging tasks, as, for exam-
ple, when you are picking berries. You are performing a search task for each berry, but the more
interesting question in foraging becomes, “When is it time to move to the next berry bush?” The
animal literature on foraging provides rules for patch leaving, like the marginal value theorem
(MVT; Charnov 1976). These can be seen as variants of search termination rules. They predict
that foragers should leave some targets behind as the rate of collection drops and the next patch,
bush, or display seems more promising. Humans roughly follow these optimal foraging predic-
tions (Wolfe 2013), although one can imagine times when it would be important to find every
target (e.g., cancer metastases) and where an MVT-style strategy would not be good.

Tasks like cancer and airport screening raise a different issue: target prevalence. Laboratory
search tasks tend to have targets present on 50% of trials (sometimes 100% if the task is to localize
the target). Screening tasks, by contrast, have very low prevalence (e.g., 3–5 cancers per 1,000
breast cancer screening cases; Jackson et al. 2012). Low prevalence causes observers to miss targets
that they would have found in a higher-prevalence context (Wolfe et al. 2005), even in true clinical
settings (Evans et al. 2013). Observers do tend to quit more quickly in low-prevalence search, but
the main driver of the prevalence effect is a criterion shift: Observers become more reluctant to
identify an ambiguous item as a target (for a review, see Horowitz 2017).

Can a generalized quitting model apply across these different types of search tasks? Perhaps we
can formulate quitting across tasks as a negative answer to the question, “Is continuing to search
this stimulus a good use of my time?” Thus, a basic quitting model could be a quitting signal that
rises toward a threshold as a function of time or of successive deployments of attention. This is
roughly equivalent to a collapsing decision bound that terminates the search early, typically with a
target-absent response. In the quitting signal version, search ends when the target is found, when
enough targets are found, or when the quitting signal reaches a quitting threshold. This is the rule
that was implemented byWolfe & VanWert (2010). But how is that quitting threshold set? There
are some complications. Chun &Wolfe (1996) proposed an adaptive rule where observers search
longer after making an error and for a shorter period after correctly quitting, and versions of this
idea have been part of GS ever since (see also Shi et al. 2020). Simply searching for approximately
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Nms or searching through approximately N items will not work, even in a standard search exper-
iment, if the set size is varied. The quitting time on a trial must vary with the set size on that trial.
Interestingly, RT× set size functions and error rates look substantially the same whether different
set sizes are mixed or run as separate blocks (Wolfe et al. 2010a). Thus, it seems that the quitting
threshold on a given trial is based on a rapid assessment of the stimuli present on that trial. You
cannot search through some percentage of the items if you do not have some notion of how many
items are present. Roughly equivalently, you cannot know how long to search if you do not have
some ideas about the stimulus that is being searched.

This initial assessment of the nature of the search array must be done very quickly given that
RTs for simple target-absent trials can be just a few hundred ms long, including the motor re-
sponse time. Thus, the first step in setting a quitting threshold probably involves assessing the gist
of the scene via the nonselective pathway, mentioned above. A glance will give an observer some
idea of how long to search before giving up on the hunt for granola at the hotel breakfast buf-
fet. Importantly, this assessment and the setting of that initial quitting threshold do not require
experience with a block of practice trials. After all, although lab experiments may involve hun-
dreds of essentially similar trials, many real-world searches are unique, one-time events. If there
are multiple searches, then observers can adaptively refine quitting thresholds based on feedback
about errors (Chun & Wolfe 1996), target prevalence (Wolfe & Van Wert 2010), and developing
expertise (Brams et al. 2019). Moreover, observers probably adjust quitting thresholds within a
single search based on an evolving assessment of the current stimulus. This is nicely captured in
the competitive GS model of Moran et al. (2013). They model the probability of quitting at each
step in a search as P(quit) =Wquit/(Wquit + �(stimuli)), whereWquit is a quitting signal that grows
on each step, and �(stimuli) is some assessment of the likelihood that a target could be present
(Moran’s et al.’s definition is more precise.) Early in a search, P(quit) will be dominated by the
stimulus. As time goes on,Wquit will push P(quit) toward 1.0.

If we assume that the stimulus signal is bigger when a target is present (even if that target
has not been found; see, for example, Evans et al. 2013), then this formulation can help explain
a curious mystery of search termination. If we look at RT distributions, then we can compare
the mean quitting time to the target-present distribution. One would expect that the percentage
of target-present RTs falling above that target-absent mean would be roughly the percentage of
miss errors. In fact, the percentage of target-present RTs above the target-absent mean is much
greater than the miss error rate (Wolfe et al. 2010b, figure 5). One possibility, captured by the
Moran et al. (2013) model, is that a larger stimulus signal on target-present trials keeps observers
searching longer when there is, in fact, a target to be found. This topic deserves further research.

6. CONCLUSIONS

Writing a review of visual search is daunting. For an apparently narrow topic, the literature is very
large, and the demands of space have resulted in the omission of many topics.Whole reviews could
be and have beenwritten about the underlying neurophysiology (e.g.,Treue 2014), andmuchmore
could be written about topics that were only glancingly discussed, like attentional capture. This
review tries to emphasize areas with significant potential for future progress. A noncomprehensive
list of research topics would include:

1. Guidance, notably, scene guidance. Scene guidance does a great deal of work in the real
world. It is not entirely clear how that is accomplished.

2. Search templates and the internal workings of search.There is work to be done if we want to
understand how an intention to find the cat is translated into target templates and guiding
templates that allow you to perform the task.
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3. Search termination. Do different tasks use versions of the same termination strategy, or do
we need to figure out different rules for each task?

4. Use-inspired search tasks. We are only at the beginning of drawing research projects from
real-world search problems. Most of what we have studied to date has involved real-world
tasks that conveniently mimic the repetitive structure of trial-based lab paradigms. For prac-
tical reasons, we know very little about search tasks that evolve over minutes, hours, or days.
We also know little about one-shot search tasks. For example, when you are searching for
a place to eat in Campo de Fiore in Rome, you are not going to do that hundreds of times.
How do you get it right (or right enough) the first time? (The answer, by the way, is to eat
at Roscioli’s.)

The questions will not run out before it is time for the next review.
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