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Abstract

The first mobile camera phone was sold only 20 years ago, when taking
pictures with one’s phone was an oddity, and sharing pictures online was
unheard of. Today, the smartphone is more camera than phone. How did
this happen? This transformation was enabled by advances in computational
photography—the science and engineering of making great images from
small-form-factor, mobile cameras. Modern algorithmic and computing ad-
vances, including machine learning, have changed the rules of photography,
bringing to it new modes of capture, postprocessing, storage, and sharing. In
this review,we give a brief history of mobile computational photography and
describe some of the key technological components, including burst photog-
raphy, noise reduction, and super-resolution. At each step, we can draw naive
parallels to the human visual system.
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1. INTRODUCTION AND HISTORICAL OVERVIEW

Modern digital photography has a fascinating and nuanced history (Figure 1), punctuated by
important advances in both camera sensor technology and algorithms that operate on the cap-
tured signals. In this review, we concentrate on the most recent two decades of intense and rapid
progress in computational photography. More specifically, we provide an excursion through mo-
bile computational photography, where computational photography has had the largest impact on
the daily lives of people across the globe. From news to social media, digital photographs (now
overwhelmingly captured on mobile devices) have fundamentally transformed how we capture
and remember our world. Indeed, it is not an exaggeration to say that the smartphone (and its
camera in particular) has changed the world (see Figure 2).

The era of analog (film) photography saw its golden age from the 1930s onward, when giants
of the craft, like Ansel Adams, practiced their art of “making a photograph” (Adams 1935) by
hand in their custom dark rooms. Remarkably, innovations by Adams and others, such as the
dodge and burn technique for high-dynamic-range photography, have persisted in digital and
computational photography to this day, albeit in much more formal, algorithmic incarnations.
Analog film thus dominated the scene for nearly 50 years but was largely discontinued in 2005,
when standalone point-and-shoot digital cameras became dominant and before cellphones had
good imaging capabilities.

The first commercial digital cameras appeared in the early 1990s. In 1992, the first digital
single-lens reflex (DSLR) cameras entered themarket, but they were prohibitively expensive, cost-
ing upwards of $20,000. Unsurprisingly, these early devices failed to capture a large market share.
The introduction of complementary metal oxide semiconductor (CMOS) image sensors in 1993
facilitated the development of what became known as camera on a chip. This revolutionary sensor
would enable far less expensive devices to be built with proportionally better power efficiency.
Yet the technical difficulties in replacing the existing standard of the time (charge-coupled device
arrays) were significant. These included noisier pixels and a rolling (rather than global) shutter in
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Figure 1

An incomplete timeline of photographic innovations in the past four decades. Abbreviations: CMOS, complementary metal oxide
semiconductor; dpi, dots per inch; SLR, single-lens reflex.
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Figure 2

The crowds at Saint Peter’s Square in Vatican City in 2005 and 2013. Photographs by Luca Bruno/AP,
Michael Sohn/AP.

the cheaper CMOS sensors. Because of these technical difficulties, it would take another 10 years
before CMOS systems would enable mass production of mobile and digital cameras.

In the early 2000s, the dominant digital devices for photography were single-lens reflex (SLR)
and digital point-and-shoot cameras. Today, 20 years later, the prices of these two camera types
are roughly in the same proportion as they were then, while the quality of each has significantly
improved—meaning that both technologies now present a much better value for the user. In
standalone cameras, somewhat surprisingly, this improvement is largely due to better sensors and
optics and, to a much lesser degree, to technical advances in software. Even today, standalone cam-
eras still have relatively naive software pipelines.Meanwhile, algorithmic and software innovations
have thrived in mobile devices.Why this is the case is an interesting question.While many factors
have contributed to this dichotomy—hardware advances on the standalone cameras versus soft-
ware advances on mobile platforms enabled by significant computing power—one thing remains
clear: The requirements imposed by the sleek industrial design and consequent form factors in
mobile smartphones have severely limited what can be done with imaging hardware. As a result,
the best possible hardware on mobile devices is still often bettered by complementary develop-
ment and close integration of algorithmic software solutions. In some ways, the situation is not
altogether dissimilar to the development of vision in nature. The evolution of the physical form
of the eye has had to contend with physical constraints that limit the size, shape, and sensitivity of
light gathering in our vision system. In tandem and complementary fashion, the visual cortex has
developed the computational machinery to interpolate, interpret, and expand the limits imposed
by the physical shape of our eyes—our visual hardware.

The introduction of the iPhone in 2007 was a watershed moment in the evolution of mobile
devices and changed the course of both phone and camera technology. Looking back at the early
devices, the layperson may conclude that the camera was immediately transformed to become the
high-utility application that we know today. This was in fact not the case. What was reinvented
for the better at the time were the display and user interface, but not necessarily the camera;
indeed, the two-megapixel camera on the first iPhone was far inferior to just about any existing
point-and-shoot camera of comparable price at the time.

The year 2010 was pivotal for the mobile camera. A transition to both 4G wireless and 300
dots per inch displays enabled users to finally appreciate their photographs on the screens of their
own mobile devices. Indeed, users felt that their phone screens were not only rich enough for the
consumption of their own photos, but also sufficient to make photo sharing worthwhile. Mean-
while, significantly faster wireless network speeds meant that individuals could share their photos
almost instantaneously (see Figure 3). Once viewing and sharing had been improved by leaps and
bounds, it became imperative for mobile manufacturers to significantly improve the quality of the
captured photos as well. Thus began an emphasis on improved light collection, better dynamic
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The year 2010 saw the convergence of two important trends: improved displays and increased wireless
speed. These forces conspired to make mobile photography the dominant mode of imaging in the ensuing
decade. The speed of 0.01 seconds is expected from 5G, although it has not yet been delivered in practice.
Abbreviations: dpi, dots per inch; Mbps, megabits per second.

range, and higher resolution for camera phones so that consumers could use their phones as cam-
eras and communication devices. The added bonus was that users would no longer have to carry
both a phone and a camera—they could rely on their smartphone as a multipurpose device.

To achieve this ambitious goal meant overcoming a large number of limitations—challenges
that have kept the computational photography community busy for the past decade. In the next
section, we begin by highlighting some of the main limitations of the mobile imaging platform
as compared to standalone devices, and we go on in the rest of the article to review how these
challenges have been met in research and practice.

2. THE MOBILE CAMERA: HARDWARE AND ITS LIMITATIONS

Ideally, a smartphone camera would offer photographic performance on par with a DSLR (or at
least a compact point-and-shoot) camera. However, the smartphone camera has several notable
disadvantages due to constraints placed on its form factor for it to be integrated into the phone’s
thin profile.Figure 4 shows a smartphone with integrated cameras next to a typical DSLR camera.

Pros
Sensor
+ Large
+ 12–14 bits per pixel
Optics
+ Wide zoom range
+ Adjustable aperture

Cons
– Low computing power
– High cost

Cons
Sensor
– Tiny
– 10 bits per pixel
Optics
– Limited zoom
– Fixed aperture

Pros
+ High computing power
+ Low cost

M O B I L E  P H O N E  C A M E R A D S L R / M I R R O R L E S S  C A M E R A

36 × 24 mm5 × 4 mm

Figure 4

The pros and cons of a smartphone compared to a digital single-lens reflex (DSLR) camera. The most
notable differences are the larger sensor and optics available on a DSLR camera. Surprisingly, however, a
high-end smartphone has significantly more computing power than most DSLR cameras.
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The physical camera sensor and associated lens optics of the smartphone camera are significantly
smaller and less flexible than those of a DSLR camera. Yet, while the smartphone’s physical hard-
ware is limited, the smartphones have access to much more computing power than is available on
a DSLR camera. To draw a rough but stark contrast between the two platforms, a mobile camera’s
small aperture limits light collection by two orders of magnitude as compared to a typical DSLR
camera. Meanwhile, the same mobile device houses roughly two orders of magnitude more com-
puting power. The trade-off of additional computing for more sophisticated imaging hardware is
thus inevitable.

In this section, we briefly summarize several key limitations of the mobile phone camera as
compared to a DSLR camera.

2.1. Sensor Size and Limited Aperture

The most obvious limitations of a smartphone camera are the size of its sensor and the compact-
ness of its optics. Modern smartphone sensors are roughly 5 × 4 mm in size, while many DSLR
cameras still use full-size 36 × 24 mm sensors. In addition to a small sensor size, the optics of the
mobile phone camera are significantly smaller and less adjustable compared to a typical lens used
on a DSLR camera. In addition, most mobile cameras use a compact lens array that has a fixed
aperture. The focal length is also limited, leading many phone makers to include two or more
cameras with different focal lengths, each serving a different purpose (main, zoom, wide, etc.)

2.2. Noise and Limited Dynamic Range

Image noise can be defined as random unwanted variations of the intensity level of image pixels. In
addition to random fluctuations due to thermal agitation in electronics, there exists a permanent,
unavoidable source of noise due to the discrete nature of light (photon shot noise).

With its smaller aperture and sensor size, for a given exposure time, a smartphone is able to
capture at best a small fraction of the amount of light that would be captured by a DSLR camera.
A smaller sensor also means that even less light hits the surface of the sensor when capturing an
image. As a result, smartphone cameras often need to apply a nontrivial multiplicative gain to
the recorded signal. This gain is controlled by the ISO setting—a higher ISO number implies
an increase in the gain factor, which amplifies the sensor noise. Consequently, the smartphone
camera images produced at the sensor are markedly more noisy than images captured with DSLR
sensors.

Another notable difference between DSLR and smartphone cameras is the dynamic range of
the sensor, which is defined as the ratio between the full well capacity of a pixel’s photodiode at
maximum gain and its noise (read noise). In practice, this defines the brightest and darkest parts
of the scene that can be captured without clipping or saturation. The dynamic range is directly
correlated to the pixel size. A DSLR pixel’s photodiode is roughly 4 microns in width, while a
smartphone sensor is closer to 1.5 microns or less. This means that pixels of a smartphone sensor
have a much smaller well capacity, and therefore, the maximum amount of electrical current that
they can capture at each photodiode is reduced.As a result, whereas aDSLR camera can effectively
encode anywhere between 4,096 (12 bits) and 16,384 (14 bits) tones per pixel, a typical smartphone
camera sensor is limited to 1,024 (10 bits) tonal values per pixel.

2.3. Limited Depth of Field

The depth of field (DoF) defines the region in the image of the scene where objects appear sharp.
The DoF can be controlled by the camera’s focal length and aperture. The wider is the aperture,
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A typical camera sensor with a color filter array layout (Bayer pattern) is shown. A cross-section of the sensor is shown along with an
example of the spectral sensitivities of the color filters. Left panel adapted from Colin M.L. Burnett/Wikimedia Commons (https://
commons.wikimedia.org/wiki/File:-Bayer_pattern_on_sensor.svg) (CC BY-SA 3.0).

the shallower is the DoF. In photography, especially when imaging human subjects for portraits,
it is often desirable to have a narrow DoF to focus on the subject’s face while blurring out the
background. The small aperture used on a mobile camera exhibits little DoF blur. In addition,
smartphone cameras have fixed apertures that do not allow for DoF adjustment at capture time.
To overcome this limitation, most smartphones now provide a synthetic DoF blur referred to as
digital bokeh (see Section 4.3).

2.4. Limited Zoom

As noted above, in response to consumer demands, smartphone design has trended toward ultra-
thin form factors. This design trend imposes severe limitations on the thickness (or z-height) of
the smartphone’s camera module, limiting the effective focal length, which in turn limits the cam-
era module’s optical zoom capability. To overcome this z-height limitation, modern smartphone
manufacturers typically feature multiple camera modules with different effective focal lengths and
fields of view, enabling zoom capabilities ranging from ultrawide to telephoto zoom.The z-height
form factor restriction has spurred a so-called thinnovation (a portmanteau of thin and innovation)
in optical design, with manufacturers exploring folded optics in an effort to increase the optical
path and effective focal length beyond the physical z-height limits of the device.

2.5. Color Subsampling

Finally, a key limitation for both smartphones and most DSLR cameras is that the sensors have
only a single color filter associated with each pixel’s photodiode,1 as shown in Figure 5. This is
analogous to how the human eye’s cone cells are categorized by their sensitivity to either short-
wavelength, medium-wavelength, or long-wavelength light. Of course, for any camera, the ulti-
mate goal is three color values per pixel. As a result, an interpolation process (called demoasicing)
is required to convert the sensor’s subsampled color image to one with a three-channel [red, green,
and blue (RGB)] value at each pixel. In addition, the RGB color filters used on the camera sensor
do not correspond to the perceptual-based CIE XYZ matching functions ( Jiang et al. 2013). As

1Exceptions do exist, including sensors developed by Foveon and others, although these are not in common
use.
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a result, the ability to produce correct colorimetric measurements is often limited and related to
the color filters used.

3. THE CAMERA IMAGING PIPELINE

In this section, we provide an overview of the steps applied by a digital camera to process the
image recorded by the sensor and produce the final image that represents a high-quality, visually
pleasing photo. These processing steps are applied in sequence and thus form a pipeline where
the image pixel values are transformed step by step to produce the final image. Camera systems
have a dedicated chip, referred to as an image signal processor (ISP), that performs this processing
pipeline in a matter of milliseconds for each image.

We first describe the basic sensor design, followed by a description of a typical single-image
camera pipeline. Single-image pipelines are still common on DSLR devices and are sometimes
used by mobile phone cameras under good lighting conditions. We then describe multiframe
(or burst mode) pipelines that capture and fuse multiple images per photo, more typically used
in mobile cameras. Recent advances in multiframe imaging have been instrumental in helping
mobile phone cameras overcome many of the limitations described in the previous section.

3.1. Camera Sensor

A camera sensor comprises a 2D grid of photodiodes. A photodiode is a semiconductor device
that converts photons (light radiation) into electrical charge. A single photodiode typically
corresponds to a single image pixel. To produce a color image, color filters are placed over the
photodiodes. These color filters roughly correspond to the long, medium, and short cone cells
found in the retina. The typical arrangement of this color filter array (CFA) is often called a Bayer
pattern, named after Bryce Bayer, who proposed this design at Kodak in 1975 (Bayer 1975). The
CFA appears as a mosaic of color tiles laid on top of the sensor, as shown in Figure 5. A key
process in the camera pipeline is to demosaic the CFA array by interpolating a RGB value for each
pixel based on the surrounding RGB colors. It is important to note that the spectral sensitivities
of the red, green, and blue color filters are specific to a particular sensor’s make and model.
Because of this, a crucial step in the camera imaging pipeline is to convert these sensor-specific
RGB values to a device-independent perceptual color space, such as CIE 1931 XYZ. An image
captured directly from a sensor that is still in its mosaiced format is called a Bayer image or Bayer
frame.

3.2. The Camera Pipeline

Figure 6 shows a diagram of a typical camera imaging pipeline that would be implemented by an
ISP. Depending on the ISP design, the routines shown may appear in a slightly different order.
Many of the routines described would represent proprietary algorithms specific to a particular ISP
manufacturer. Two different camera manufacturers may use the same ISP hardware but can tune
and modify the ISP’s parameters and algorithms to produce images with a photographic quality
unique to their respective devices. This section provides a description of each of the processing
steps outlined in Figure 6.

3.2.1. Sensor frame acquisition. When the Bayer image from the camera’s sensor is captured
and passed to the ISP, the ISO gain factor is adjusted at capture time depending on the scene
brightness, desired shutter speed, and aperture. The sensor Bayer frame is considered an unpro-
cessed image and is commonly referred to as a raw image. As shown in Figure 5, the Bayer frame
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(Top) A standard single-frame camera pipeline. (Bottom) The extension to multiframe (or burst) imaging used by most modern
smartphone cameras. Abbreviation: sRGB, standard RGB. Image sensor ISO gain images adapted from Colin M.L. Burnett (CC BY-SA
3.0). Photos adapted from Wronski et al. (2019) (open access).

has a single RGB value per pixel location. These raw RGB values are not in a perceptual color
space but are specific to the color filter array’s spectral sensitivities.

3.2.2. Raw-image preprocessing. The raw sensor image is normalized such that its values
range from 0 to 1. Many cameras provide a BlackLevel parameter that represents the lowest pixel
value produced by the sensor. Interestingly, this deviates from 0 due to sensor error. For example,
a sensor that is exposed to no light should report a value of 0 for its output, but instead, it outputs
a small positive value called the BlackLevel. This BlackLevel is subtracted off the raw image. The
BlackLevel is often image specific and related to other camera settings, including ISO and gain.
An additional WhiteLevel (maximum value) can also be specified. If nothing is provided, the min
and max values of all intensities in the image are used to normalize the image between 0 and 1
after the BlackLevel adjustment has been applied.

The preprocessing stage also corrects any defective pixels on the sensor. A defect pixel mask is
precalibrated in the factory and marks locations that have malfunctioning photodiodes. Defective
pixels can be photodiodes that always report a high value (a hot pixel) or pixels that output no
value (a dead pixel). Defective pixel values are interpolated using their neighbors.

Finally, lens-shading (or flat-field) correction is applied to correct the effects of uneven light
hitting the sensor. The role of lens-shading correction is shown in Figure 7. The figure shows the
result of capturing a flat illumination field before lens-shading correction. The amount of light
hitting the sensor falls off radially toward the edges.The necessary radial correction is represented
as a lens-shading correction mask that is applied by the ISP to correct the effects from the nonuni-
form fallout. The lens-shading mask is precalibrated by the manufacturer and is adjusted slightly
per frame to accommodate different brightness levels, gain factors, and the estimated scene illu-
mination used for white balance (described below).
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Light entering the camera does not fall evenly across the sensor. This creates an undesired vignetting effect. Lens-shading correction is
used to adjust the recorded values on the sensor to have a uniform response. Figure adapted from Karaimer & Brown (2016).

3.2.3. Bayer demosaicing. A demosaicing algorithm is applied to convert the single-channel
raw image to a three-channel full-size RGB image.Demosaicing is performed by interpolating the
missing values in the Bayer pattern based on neighboring values in the CFA. Figure 8 shows an
example of the demosaicing process. In this example, a zoomed photodiode with a red color filter
is shown. This pixel’s green and blue color values need to be estimated. These missing pixel values
are estimated by interpolating the missing green pixel using the neighboring green values. A per-
pixel weight mask is computed based on the red pixel’s similarity to neighboring red pixels. The
use of this weight mask in the interpolation helps to avoid blurring around scene edges. Figure 8
illustrates a simplistic and generic approach; most demosaicing algorithms are proprietary meth-
ods that often also perform highlight clipping, sharpening, and some initial denoising (Longere
et al. 2002).2
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Figure 8

A common approach to image demosiacing. Shown is a red pixel and its neighboring Bayer pixels. The missing green and blue pixel
values need to be estimated. These missing values are interpolated from the neighboring pixels. A weight mask based on the red pixel’s
similarity to its neighbors is computed to guide this interpolation. This weighted interpolation helps to avoid blurring across scene
edges. Shown is the interpolation of the missing green pixel value. Raw-Bayer image at left adapted from Cmglee/Wikimedia
Commons (https://commons.wikimedia.org/wiki/File:Colorful_ spring_garden_Bayer.png) (CC BY-SA 3.0).

2The astute reader will note that this demosaicing step is effectively interpolating two out of three colors at
every pixel in the output image. The naive consumer may be shocked to learn that two-thirds of their image
is made up.
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White balance is applied to the image to mimic the human visual system’s ability to perform color constancy. An auto-white-balance
(AWB) algorithm estimates the sensor’s response to the scene illumination. The raw RGB values of the image are then scaled based on
the estimated illumination.

3.2.4. White balance. White balance is performed to mimic the human visual system (HVS)’s
ability to perform chromatic adaptation to the scene illumination.White balance is often referred
to as computational color constancy to denote the connection to theHVS.White balance requires
an estimate of the sensor’s RGB color filter response to the scene illumination. This response
can be precalibrated in the factory by recording the sensor’s response to spectra of common
illuminations (e.g., sunlight and incandescent and fluorescent lighting). These precalibrated
settings then become part of the camera’s white-balance preset, which a user can select. A more
common alternative is to rely on the camera’s auto-white-balance (AWB) algorithm, which
estimates the sensor’s R, G, B response to the illumination directly from the captured image.
Illumination estimation is a well-studied topic in computer vision and image processing, with a
wide range of solutions (Barron & Tsai 2017, Buchsbaum 1980, Cheng et al. 2014, 2015, Gehler
et al. 2008, Hu et al. 2017, Van De Weijer et al. 2007). Figure 9 illustrates the white-balance
procedure.

Once the sensor’s RGB values of the scene illumination have been obtained, either by a preset
or by the AWB feature, the image is modified (i.e., white balanced) by dividing all pixels for each
color channel by the RGB illumination value.This is similar to the well-known diagonal von Kries
color adaption transform (Ramanath&Drew 2014).The vonKries model is based on the response
of the eye’s short, medium, and long cone cells, while white balance uses the sensor’s RGB color
filter responses.

3.2.5. Color space transform. After white balance is applied, the image is still in the sensor-
specific RGB color space. The color space transform step is performed to convert the image from
the sensor’s raw-RGB color space to a device-independent perceptual color space derived directly
from the CIE 1931 XYZ color space. Most cameras use the wide-gamut ProPhoto RGB color
space (Süsstrunk et al. 1999). ProPhoto is able to represent 90% of colors visible to the average
human observer.

3.2.6. Color manipulation. Once the image is in a perceptual color space, cameras apply pro-
prietary color manipulation to enhance the visual aesthetics of the image. For DSLR devices, this
enhancement can be linked to different picture styles or photo-finishing modes that the user can
select, such as vivid, landscape, portrait, and standard. Such color manipulation is often imple-
mented as a 3D lookup table (LUT) that is used to map the input ProPhoto RGB values to new
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Photo-finishing is used to enhance the aesthetic quality of an image. (a) Cameras often have multiple picture styles. (b) The color
manipulation is often performed as a combination of a 3D lookup table (LUT) to modify the RGB colors and a 1D lookup table to
adjust the image’s tonal values. 3D LUT image adapted from Karaimer & Brown (2016).

RGB values based on a desired manipulation. Figure 10 shows an example. A 1D LUT tone map
(discussed in the next section) is also part of this photo-finishing manipulation.

Additional color manipulation may be performed on a smaller set of select colors used to en-
hance skin tones. Establishing the 3D LUT can be a time-consuming process and is often per-
formed by a group of golden-eye experts who tune the ISP algorithms and tables to produce
a particular photographic aesthetic often associated with a particular camera. Note that camera
manufacturers may even sell the same camera with different color manipulation parameters based
on the preferences of users in different geographical locations. For example, cameras sold in Asia
and South America often have a slightly more vivid look than those sold in European and North
American markets.

3.2.7. Tone mapping. A tone map is a 1D LUT that is applied per color channel to adjust the
tonal values of the image. Figure 10 shows an example. Tone mapping serves two purposes. First,
combined with color manipulation, it adjusts the image’s aesthetic appeal, often by increasing the
contrast. Second, the final output image is usually only 8 to 10 bits per channel (i.e., 256 or 1,024
tonal values), while the raw-RGB sensor represents a pixel’s digital value using 10–14 bits (i.e.,
1,024 up to 16,384 tonal values). As a result, it is necessary to compress the tonal values from
the wider tonal range to a tighter range via tone mapping. This adjustment is reminiscent of the
human eye’s adaptation to scene brightness (Land 1974).Figure 11 shows a typical 1D LUT used
for tone mapping.

3.2.8. Noise reduction. Applying noise reduction algorithms is a key step to improving the vi-
sual quality of the image. A delicate balance must be struck in removing image noise while avoid-
ing the suppression of fine-detail image content. Too-aggressive denoising may give the image a
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Figure 11

An example of a global tone map applied to a high-dynamic-range (HDR) image and local tone maps that vary spatially based on the
image content. Photos adapted from Afifi et al. (2019).

blurred appearance. Too little image denoising may result in visual noise being dominant and dis-
tracting in the final image. Given the importance of denoising, there is a large body of literature
on this problem, which we discuss in detail in Section 3.4.1. Denoising algorithms often consider
multiple factors, including the captured image’s ISO gain level and exposure settings. While we
show noise reduction applied after the color space transform and photo-finishing, some ISPs ap-
ply noise reduction before photo-finishing, or both before and after. Indeed, ISPs often provide
denoising algorithms that can be tuned by camera makers to taste.

3.2.9. Output color space conversion. At this stage in the camera pipeline, the image’s RGB
values are in a wide-gamut ProPhoto color space. However, modern display devices can only pro-
duce a rather limited range of colors. As a result, the image is converted to a display-referred (or
output-referred) color space intended for consumer display devices with a narrow color gamut.
Themost common color space is the standard RGB (sRGB),which is also the standard forHDTV.
Other color spaces, such as AdobeRGB and Display-P3, are sometimes used. The output color
space conversion includes a tone-mapping operator as part of its color space definition. This final
tone-mapping operator is referred to as a gamma encoding. The name comes from the Greek let-
ter used in the formula to model the nonlinear tone curve. The purpose of the gamma encoding
is to code the digital values of the image into a perceptually uniform domain (Poynton 2012). The
gamma values used for sRGB and Display-P3 closely follow Stevens’s power law coefficients for
perceived brightness (Stevens 1961).

3.2.10. Image resizing. The image can be resized based on the user preferences or target output
device (e.g., if the camera is used in a previewmodewith a viewfinder). Image resizing is not limited
to image downsizing and can be employed to upsample a cropped region in the captured image
to a larger size to provide a digital zoom. More details of this operation appear in Section 4.2.2.

3.2.11. JPEG compression and metadata. The image is finally compressed, typically with
the JPEG compression standard, and saved. Additional information, such as capture time, GPS
location, and exposure setting, can be saved with the image as metadata.

3.3. Modern Multiframe (Burst) Pipeline

The advancement of smartphone displays and networking capabilities in 2010, together with
the emergence of image-sharing services like Instagram and Pinterest, resulted in users taking
many more photographs with their smartphones and sharing them more broadly. Seeing their
photographs mixed alongside professionally produced content for the first time, users began
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Burst photography used in most mobile imaging pipelines consists of four major steps. In the first, a burst of frames is captured based
on an exposure schedule defining the total number of frames to capture as well as the exposure time for each individual frame. This
defines the total exposure time for the burst. In the second, frames in the burst are spatially aligned. In the third, the aligned frames are
merged into a single output frame. The fourth step, enhancement, encapsulates all postprocessing steps after the merge step, including
color manipulation, tone mapping, and noise reduction. Figure adapted from Wronski et al. (2019) (open access).

demanding higher quality from their smartphone cameras. This increased demand for higher
quality spurred innovation in the industry. Smartphone manufacturers began utilizing the
additional computing power of the smartphone by incorporating computational photography
techniques in an effort to overcome the limitations enforced by the smartphone’s physical form
and to bridge the quality gap relative to dedicated camera devices, like DSLR cameras.

Over the course of the past decade, themodern smartphone camera pipeline has evolved around
the concept of capturing andmergingmultiple frames (known as burst processing) to generate im-
ages of greater quality than is possible through the capture of a single image alone. This approach
has a comparatively long history in the computational photography research domain, where mul-
tiframe processes have been proposed for denoising (Godard et al. 2018, Mildenhall et al. 2018,
Telleen et al. 2007), joint demosaicing and denoising (Gharbi et al. 2016, Tan et al. 2017), joint
demosaicing and super-resolution (Farsiu et al. 2006), and high-dynamic-range imaging (Debevec
&Malik 1997,Mertens et al. 2007). Recent years have seen the incorporation of multiframe tech-
niques like these into the default photography mode of smartphone cameras aimed at synthesizing
higher-resolution sensors with larger pixels and higher bit depth.

To implement burst processing, smartphones can incorporate a strategy of continuous capture,
where, on launching the camera, frames are continuously captured and stored into a ring buffer.3

In this mode, known as zero shutter lag (ZSL), when the shutter is pressed, the buffer of frames
is passed to the camera processing pipeline for merging. The merge process selects a single frame
from the burst close to the shutter press as a base frame and aligns and merges information from
surrounding frames to improve image quality. Two critical factors in this process are the correct
exposure of captured frames to ensure adequate light capture with minimal motion blur and accu-
ratemotion alignment between frames. In this way, the processing pipeline aims to loosely emulate
our own ability to annul image motion by adaptation of our spatiotemporal receptive fields (Burr
et al. 1986). The general structure shown in Figure 12 illustrates the modern burst processing
pipeline used in many mobile cameras, consisting of exposure control, frame alignment, merging,
and postmerge image enhancement components. We explore these components below.

3A ring buffer stores a sequence of frames in order and has the property that, when it is full and a subsequent
new frame is captured, the new frame overwrites the oldest frame in the buffer, keeping a constant number of
frames in memory.
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3.3.1. Exposure control. Collecting sufficient light through accurate exposure is critical for
controlling image noise, blur, and dynamic range for high-quality photography (Hasinoff et al.
2010). The signal-to-noise ratio varies proportionally to the exposure time, so for shadow regions
or dimly lit scenes, it is important to set the exposure high enough to suppress noise and capture
sufficient image detail. However, setting the exposure too high can cause the captured light to
exceed the image sensor’s pixel well capacity, resulting in saturated (or blown-out) image details.

Exposure can be adjusted through the combination of three camera settings: the aperture, the
ISO (sensor gain or effective sensor sensitivity), and the shutter speed (exposure time). However,
given that most smartphones have a fixed aperture, exposure control is typically limited to ad-
justment of the sensor gain and exposure time. Some smartphone cameras do provide manual
control over the exposure, but most target the nonexpert user and instead control the exposure
automatically.

Approaches to estimating the correct exposure time for a single captured image often use mea-
surements such as the distance between the maximum and minimum luminance, as well as the
average luminance in the scene (Sampat et al. 1999). In a smartphone’s burst processing pipeline,
however, exposure control is more complex, since the captured image is generated by merging
multiple frames. For burst processing, the camera must define a schedule of exposure times for a
burst of captured frames to achieve an overall total exposure time for themerged output frame (see
Figure 12). For example, a total exposure time of 300 ms could be achieved through a schedule
of five frames, each with an exposure time of 60 ms. Similarly, in a burst processing pipeline im-
plementing high-dynamic-range (HDR) through bracketing, the exposure schedule might define
a schedule of short, medium, and long exposures. Exposure control for burst processing there-
fore needs to take into consideration not only the available light in the scene but also the merge
processing and how it impacts the overall exposure.

Another factor that greatly impacts exposure control is camera shake (e.g., due to being hand-
held), which can introduce motion blur. To enable longer exposure times, modern smartphone
cameras incorporate an optical image stabilizer (OIS), which actively counteracts camera shake.
However, this often does not completely remove the motion and does not help in the case of
(local) subject motion, which is also a source of motion blur. Adapting the exposure schedule in
accordance with motion observed in the scene is a common approach used to reduce the impact
of motion blur. In Section 4.1, we further examine exposure control and more severe limitations
in the case of low-light photography.

3.3.2. Alignment. Generating high-quality, artifact-free images through burst processing relies
on robust and accurate spatial alignment of frames in the captured burst. This alignment process
must account for not only global camera motion (residual motion not compensated for by the
OIS) but also local motion in the scene. There is a long history of frame alignment techniques
in the research literature, from early variational methods that solve the global alignment problem
using assumptions of brightness constancy and spatial smoothness (Horn & Schunck 1981) to
multiscale approaches solving for both global and local motion (Bruhn et al. 2005).

Given the omnipresent convenience of the smartphone, photography has been made possible
in the most extreme of conditions. As a result, accurate alignment can be challenging, particularly
in underexposed or low-light scenes, where noise can dominate the signal. Similarly, overexposed
scenes can introduce clipping or motion blur, making alignment difficult or impossible due to the
loss of image detail. Even with optimal exposure, complex nonrigid motion, lighting changes, and
occlusions can make alignment challenging.

Although state-of-the-art multiscale deep learning methods can achieve accurate frame align-
ment in challenging conditions (Sun et al. 2018), they are currently beyond the computational
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capabilities of many smartphones. As a result, burst processing on a smartphone is greatly limited
by the accuracy of the alignment process. The exposure schedule must be defined so as to facilitate
accurate alignment, and themergemethodmust in turn be designed to be robust tomisalignments
to avoid jarring artifacts in the merged output (also known as fusion artifacts). Commonmerge ar-
tifacts due to misalignments include ghosting and zipper artifacts, often observed along the edges
of moving objects in a captured scene.

3.3.3. Merge. Once accurately aligned, the smartphone’s burst processing pipeline must reduce
the multiple captured frames to a single output frame. In static scenes and in the absence of camera
shake, a simple averaging of frames of the same exposure will reduce noise proportionally to the
square root of the total number of merged frames. However, few scenarios arise in real-world
photography where such a simple merging strategy could be effectively applied. In addition, such
a simple merge strategy underutilizes the burst processing approach, which, as mentioned above,
can also facilitate increasing dynamic range and resolution. In this section, we describe a merge
method aimed at reducing noise and increasing dynamic range called HDR+ (Hasinoff et al.
2016); in Section 4.2, we describe a generalization of the method aimed at increasing resolution
as well.

HDR+ was one of the earliest burst processing approaches that saw mass commercial distri-
bution, featured in the native camera app of Google’s Nexus and Pixel smartphones. Aimed at
reducing noise and increasing dynamic range, the HDR+ method employs a robust multiframe
merge process operating on 2–8 frames, achieving interactive end-to-end processing rates. To re-
duce the impact of motion blur and to avoid pixel saturation,HDR+ defines an exposure schedule
to deliberately underexpose the captured frames in a ZSL buffer. Bypassing the smartphone’s stan-
dard (single-frame) ISP, the merge pipeline operates on the raw-Bayer frames directly from the
camera’s sensor, enabling the merge process to benefit from higher bit-depth accuracy and sim-
plifying the modeling of noise in the pipeline.

Given a reference frame close (in time) to the shutter press, the HDR+ pipeline successively
aligns and merges alternative frames in the burst in a pair-wise manner. The merging of frame
content operates on tiles and is implemented in the frequency domain. For each pair of reference
and alternate tiles, a new tile is linearly interpolated between them (per frequency) and averaged
with the reference tile to generate the merged tile output. Given that the merge strategy is ap-
plied per frequency, the merging achieved per tile can be partial. The interpolation weight is
defined as a function of the measured difference between the aligned tile pairs and the expected
(i.e., modeled) noise. For very large measured differences (e.g., possibly due to misalignment), the
interpolated output tends toward the reference tile, whereas for differences much less than the ex-
pected noise, the interpolated output tends toward the alternate tile. By adapting in this way, the
merging process provides some robustness to misalignment and degrades gracefully to outputting
the reference frame only in cases where misalignment occurs across the entire burst.

The final output of the merge process is a Bayer frame with higher bit depth and overall SNR,
which is then passed to a postmerge enhancement stage, including demosaicing, color correction,
and photo-finishing.Of particular importance among these postmerge processes is spatial denois-
ing. As a consequence of the tile-wise and partial merging of frames, the resulting merged frame
can have spatially varying noise strength, which must be adequately handled by the postmerge
denoising process.

3.4. Photo-Finishing: Denoising, Tone Mapping, and Sharpening

While significantly improved quality results from merging multiple frames, it is nevertheless the
case that, just as in the single-frame pipeline, several additional photo-finishing operations are still
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required to give the final picture the desired aesthetic qualities of a pleasing photograph. These
steps (denoising, tone mapping, and sharpening) are some of the core technologies of traditional
image processing and have been studied extensively over the several decades preceding the ad-
vent of what we now call computational photography. However, with the heightened demands of
new sensors on smaller devices, the development of these (single-image) enhancement techniques
too has been accelerated in recent years. Indeed, the multiframe approach may require aspects
of photo-finishing to be tailored for the multiframe merged output. As discussed in Section 2,
denoising is an operation of great importance in the pipeline (whether single or multiframe), and
thus we begin by describing this operation in some detail.

3.4.1. Denoising. As should be clear from the discussion above, filtering an image is a fun-
damental operation throughout the computational photography pipeline. The most widely used
canonical filtering operation is one that smooths an image or, more specifically, removes or atten-
uates the effect of noise.

The basic design and analysis of image denoising operations have informed a very large part of
the image processing literature (Lebrun et al. 2012, Milanfar 2013, Takeda et al. 2006, 2007), and
the resulting techniques have often quickly spread or been generalized to address a wider range
of restoration and reconstruction problems in imaging.

Over the past five decades, many approaches have been tried, starting with the simplest av-
eraging filters and moving to filters that adapt somewhat better (but still rather empirically) to
the content of the given image. With shrinking device sizes, and the rise in the number of pix-
els per unit area of the sensor, modern mobile cameras have become increasingly prone to noise.
The manufacturers of these devices, therefore, depend heavily on image denoising algorithms to
reduce the spurious effects of noise.

Only in the past decade or so (and concomitant with the broad proliferation of mobile de-
vices) has a great leap forward in denoising performance been realized (Chatterjee & Milanfar
2010). This recent progress was ignited by patch-based methods (Buades et al. 2005, Efros &
Leung 1999). This generation of algorithms exploits both local and nonlocal redundancies or
self-similarities in the image. The now-commonplace procedure is to measure and make use of
affinities (or similarities) between a given pixel or patch of interest and other pixels or patches in
the given image. These similarities are then used in a filtering (e.g., data-dependent weighted-
averaging) context to give higher weights to contributions from more similar data values and to
properly discount data points that are less similar.

The bilateral filter (Tomasi &Manduchi 1998) was developed with this idea in mind, as were its
spiritually close predecessors like the Susan filter (Smith & Brady 1997). More recent extensions
of these ideas include the work of Dabov et al. (2007), Buades et al. (2005), Takeda et al. (2006),
and Zoran & Weiss (2011), and other generalizations described by Milanfar (2013).

The general construction of many denoising filters begins by specifying a (symmetric positive
semidefinite) kernel ki j (y) = K (yi, y j ) ≥ 0, from which the coefficients of the adaptive filter are
constructed. In this case, y denotes the noisy image, and yi and yj denote pixel values at locations
i and j, respectively.4

4In practice, it is commonplace to compute the kernel not on the original noisy y, but on a prefiltered version of
it, processed with some basic smoothing, with the intent of weakening the dependence of the filter coefficients
on noise.
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Specifically, we have

wi j = ki j∑n
i=1 ki j

.

Each pixel of the denoised image ŷ is then given by

ŷ j =
n∑
i=1

wi j yi,

where the coefficients [a1j, . . . , anj] describe the relative contribution of the input (noisy) pixels to
the output pixels, with the constraint that they sum to one:

n∑
i=1

ai j = 1.

Below, we concretely highlight a few such kernels that lead to popular denoising or smoothing
filters. These filters are commonly used in the computational photography, imaging, computer
vision, and graphics literature for many purposes.

3.4.2. Classical Gaussian filters. Measuring (only) the spatial distance between two pixels lo-
cated at (2D) spatial positions xi and xj , the classical Gaussian kernel is

ki j = exp
(−‖xi − xj‖2

h2

)
.

Such kernels lead to the classical and well-worn Gaussian filters that apply the same weights re-
gardless of the underlying pixels.

3.4.3. The bilateral filter. The bilateral filter takes into account both the spatial and the data-
wise distances between two samples, in separable fashion, per Tomasi & Manduchi (1998) and
Elad (2002):

ki j = exp
(−‖xi − xj‖2

h2x

)
exp

(
−(yi − y j )2

h2y

)
= exp

{
−‖xi − xj‖2

h2x
+ −(yi − y j )2

h2y

}
.

As can be observed in the exponent on the right-hand side, the similarity metric is a weighted
Euclidean distance between the vectors (xi, yi ) and (xj , y j ). This approach has several advantages.
Namely, while the kernel is easy to construct, and computationally simple to calculate, it yields
useful local adaptivity to the pixels.

3.4.4. Nonlocal means. The nonlocal means algorithm, originally proposed by Buades et al.
(2005), is a generalization of the bilateral filter in which the data-dependent distance term (see the
equation in the previous section) is measured block-wise instead of point-wise:

ki j = exp
(−‖xi − xj‖2

h2x

)
exp

(
−‖yi − y j‖2

h2y

)
,

where yi and y j refer to patches (subsets of pixels) in y.
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3.4.5. Locally adaptive regression kernel. The key idea behind this kernel is to robustly mea-
sure the local structure of data by making use of an estimate of the local geodesic distance between
nearby samples (Takeda et al. 2007):

ki j = exp
{−(xi − xj )TQi j (xi − xj )

}
,

whereQi j = Q(yi, y j ) is the covariance matrix of the gradient of sample values estimated from the
given pixels, yielding an approximation of local geodesic distance in the exponent.The dependence
ofQi j on the given data means that the denoiser is highly nonlinear and shift varying. This kernel
is closely related to, but somewhat more general than, the Beltrami kernel of Spira et al. (2007)
and the coherence-enhancing diffusion approach of Weickert (1999).

More recently, methods based on deep convolutional neural networks (CNNs) have become
dominant in terms of the quality of the overall results with respect to well-established quantitative
metrics (Burger et al. 2012, Meinhardt et al. 2017). Supervised deep-learning-based methods are
currently the state of the art (for example, Burger et al. 2012, Chen et al. 2015, D. Liu et al. 2018,
P. Liu et al. 2018,Mao et al. 2016, Remez et al. 2018, Tai et al. 2017,Wang et al. 2015, Zhang et al.
2017,K. Zhang et al. 2018, Y. Zhang et al. 2018).However, these CNN-based approaches have yet
to become practical (especially in mobile devices) due not only to heavy computation and memory
demands, but also to their tendency to sometimes also produce artifacts that are unrealistic with
respect to more qualitative perceptual measures.

Finally, it is worth noting that, as denoising methods have evolved from traditional signal- or
image-processing approaches to deep neural networks (DNNs), there has been an increasing need
for training sets comprised of images that accurately represent noise found on small sensors used
in camera phones. The recent DND (Plötz & Roth 2017) and SSID data sets (Abdelhamed et al.
2018) provide images captured directly from such devices for use in DNN training. Both data sets
have shown that training using real images versus those synthesized from existing noise models
provides improved performance. This indicates the need for better noise models in the literature
that are able to capture the true characteristics of small camera sensors.

3.4.6. Tone mapping. As discussed in Section 3.2, tone mapping is applied as part of the photo-
finishing routines in both single-frame and multiframe camera pipelines. Tone mapping manipu-
lates the intensity levels, or tones, in the image. Assume that the variable r represents the intensity
levels for one of the color channels (RGB) that will be enhanced. Assume also that the image in-
tensity values have been normalized such that they lie on the interval [0, 1]. A tone map can be
expressed as follows:

s = T (r),

where function T produces a new intensity level s for every input level r (i.e., it maps input tones to
output tones). Tone mapping is applied either globally or locally. A global tone map, often referred
to as a tone curve, is applied to all pixels’ intensity values in the image irrespective of the pixel’s
spatial location. A global tone map is constrained to satisfy the following conditions: (a) T(r) is
single-valued and monotonically increasing, and (b) 0 ≤ T(r) ≤ 1.

Because images have discrete intensity values, a global T(r) can be implemented as a 1D LUT.
A global tone map can be applied to each color channel, or a separate tone map can be designed
per color channel. In addition, tone maps can be customized depending on the mode of imaging.
For example, in burst mode for low-light imaging, a tone map can be adjusted to impart a night
scene’s look and feel. This can be done using a tone map that maintains strong contrast with dark
shadows and strong highlights (Levoy & Pritch 2018).
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Local tonemapping adjusts intensity values in a spatially varyingmanner, inspired by theHVS’s
sensitivity to local contrast. Local tone mapping methods, often referred to as tone operators,
examine a spatial neighborhood about a pixel to adjust the intensity value (Ahn et al. 2013,Banterle
et al. 2017, Cerda et al. 2018, Ma et al. 2015, Paris et al. 2011, Reinhard et al. 2002). As a result,
the single-valued and monotonicity constraints are not always enforced, as is done in global tone
mapping. For example, in the case of burst imaging for HDR, intensity values from the multiple
images can be combined in a manner that darkens or lightens regions to enhance the image’s visual
quality. Most methods decompose the input image into a base layer and one or more detail layers.
The detail layers are adjusted based on local contrast, while a global tone map modifies the base
layer. Figure 11 shows an HDR image that has been processed using both global and local tone
mapping.

3.4.7. Sharpening. Image sharpness is one of the most important attributes that defines the
visual quality of a photograph. Every image processing pipeline has a dedicated component to
mitigate the blurriness in the captured image. Although there are several methods that try to
quantify the sharpness of a digital image, there is no clear definition that perfectly correlates with
the quality perceived by our visual system.Thismakes it particularly difficult to develop algorithms
and properly adjust their parameters in such a way that they produce appealing visual results in
the universe of use cases and introduce minimal artifacts.

Image blur can be observed when the camera’s focus is not correctly adjusted, when the objects
in the scene appear at different depths, or when the relative motion between the camera and
the scene is faster than the shutter speed (motion blur, camera shake). Even when a photograph is
perfectly shot, there are unavoidable physical limitations that introduce blur. Light diffraction due
to the finite lens aperture, integration of the light in the sensor, and other possible lens aberrations
introduce blur, leading to a loss of details. Additionally, other components of the image processing
pipeline itself, particularly demosaicing and denoising, introduce blur.

A powerful yet simple model of blur is to assume that the blurry image is formed by the local
average of nearby pixels of a latent unknown sharp image that we would like to estimate. This
local average acts as a low-pass filter attenuating the high-frequency image content, introducing
blur. This can be formally stated as a convolution operation—that is,

v[i, j] =
∑
k,l

h[k, l ] u[i− k, j − l ],

where v is the blurry image that we want to enhance, u is the ideal sharp image that we do not
have access to, and h models the typically unknown blur filter.

There are two conceptually different approaches to removing image blur and increasing ap-
parent sharpness. Sharpening algorithms seek to directly boost high- and mid-frequency content
(e.g., image details, image edges) without explicitly modeling the blurring process. These meth-
ods are sometimes also known as edge enhancement algorithms since they mainly increase edge
contrast. In contrast, deconvolution methods try to explicitly model the blurring process by es-
timating a blur kernel h and then trying to invert it. In practice, there are an infinite number of
possible combinations of u and h that can lead to the same image v, which implies that recovering
u from v is an ill-posed problem. One of the infinite possible solutions is indeed the no-blur ex-
planation: u = v, and h is the trivial kernel that maintains the image unaltered. This implies that
the degradation model is not sufficient to disentangle the blur h and the image u from the input
image v, and more information about h and/or u (prior) is needed.

Most blind deconvolution methods proceed in two steps: A blur kernel is first estimated,
and then, using the estimated kernel, a nonblind deconvolution step is applied. These methods
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Figure 13

Example of deblurring a mildly blurry image using Polyblur. Images adapted from Delbracio et al. (2020). The estimated blur kernel is
shown on the top right in the right panel.

generally combine natural image priors (i.e., what characteristics does a natural sharp image
have) and assumptions about the blur kernel (e.g., maximum size) to cast the blind deconvolution
problem as one of variational optimization (El-Henawy et al. 2014, Fergus et al. 2006, Levin et al.
2009). In the specific case of deblurring slightly blurry images, we can proceed in a more direct
way by filtering the image with an estimate of the blur and thus avoid using costly optimization
procedures (Delbracio et al. 2020, Hosseini & Plataniotis 2019). Figure 13 shows an example
using Polyblur (Delbracio et al. 2020), which efficiently removes blur by estimating the blur and
combining multiple applications of the estimated blur to approximate its inverse.

One of the most popular and simplest sharpening algorithms is unsharp masking. First, a copy
of the given image is further blurred to remove high-frequency image details. This new image is
subtracted from the original to create a residual image that contains only image details. Finally, a
fraction of this residual image is added back to the original, which results in boosting of the high-
frequency details. This procedure has its roots in analog photography, where a blurry positive
image is combined with the original negative to create a new, more contrasted photograph. A
typical digital implementation of unsharp masking is by using a Gaussian blur,

uunsharp = u + κ (u −Gσu),

where Gσ is the Gaussian blur operator having strength σ . The parameter κ and the amount of
blur σ should be empirically set.

At a very broad level, the HVS behaves similarly to unsharp masking and the Laplace op-
erator (Ratliff 1965). The center-surround receptive fields present in the eye have both exci-
tatory (center) and inhibitory (surrounding) regions. This leads our visual system to enhance
changes in contrast (e.g., edge detection) by exciting and inhibiting regions in a way similar
to the action of the Laplace operator. In fact, one manifestation of this phenomenon is the
well-known Mach bands illusion, where the contrast between edges is exaggerated by the HVS
(Figure 14).

There are different variants of this high-frequency boosting principle. Kovásznay & Joseph
(1955) introduced the idea that a mildly blurred image could be deblurred by subtracting a small
amount of its Laplacian:

û = u − κ�u.

In fact, this method is closely related to unsharp masking, where the residual mask u −Gσu is
replaced with the negative of the image Laplacian −�u.
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Figure 14

Mach bands. (a) The center-surround receptive fields present in the human visual system have both excitatory (center) and inhibitory
(surrounding) regions. Panel adapted from Kramer & Davenport (2015) (CC BY 4.0). (b) This leads our visual system to enhance
changes in contrast by exciting and inhibiting regions in a way similar to the action of the Laplace operator. (c) The Mach bands illusion
is one manifestation of this phenomenon, where (d) the contrast between edges is exaggerated by the our human visual system.

A perhaps not very well-known fact is that the Nobel Prize winner Dennis Gabor studied
this process and determined how to set the best amount to subtract (Lindenbaum et al. 1994).
In fact, Lindenbaum et al. (1994) showed that Laplacian sharpening methods can be interpreted
as approximating inverse diffusion processes—for example, by diffusion according to the heat
equation, but in reverse time. This connection has led to numerous other sharpening methods in
the form of regularized partial differential equations (Buades et al. 2006, Osher & Rudin 1990,
You et al. 1996).

4. COMPOUND FEATURES

A common adage has emerged that aptly describes the age of mobile cameras: The best camera
is the one that is with you. This sentiment expresses that there is no longer any need to carry
a second camera if you have a mobile phone in your pocket that has a camera with nearly the
same functionality. Of course, the key caveat is nearly the same. Some of what we take for granted
in a large-form-factor camera is possible only because of the form factor. To approximate these
functions, we must combine various pieces of technology to emulate the end result.

In this section, we briefly describe how we combine the basic techniques described above to
enable advanced features that not only approximate some functionalities of larger cameras, but also
sometimes even exceed them. For instance, hybrid optical–digital zoom requires state-of-the-art
multiframe merge and single-frame upscaling technologies. Another example is synthetic bokeh
(e.g., synthesizing shallow DoF), which requires both segmentation of the image for depth and
application of different processing to the foreground versus the background.

4.1. Low-Light Imaging

When photographing a low-light or night scene, the goal is often not to capture exactly what
we see, but instead to create a visually pleasing image that also conveys the darkness of the
scene. Therefore, unlike human vision, which becomes scotopic in dim light with limited color
perception (Kelber et al. 2017), smartphone cameras aim to produce photos that are colorful
and noise free. Until relatively recently, high-quality photography in very low-light conditions
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was achievable only on standalone cameras like DSLR cameras, with large enough pixels and
adjustable aperture to enable sufficient light capture. As described in Section 3.3, although the ex-
posure time can be increased synthetically by merging multiple frames, there are other factors that
inherently limit the maximum achievable exposure time. In a ZSL shutter mode (see Section 3.3),
the frames acquired by the camera pipeline are also used to drive the viewfinder display. To
avoid noticeable judder, the viewfinder must achieve a frame rate of at least 15 frames per second
directly, limiting the maximum exposure to 66 ms, which is often insufficient for very low-light
scenes.

To overcome this, smartphones have adopted a new frame capturing strategy known as positive
shutter lag (PSL) in which frames are captured after the shutter press (Levoy & Pritch 2018). By
capturing frames after the shutter press, these so-called night modes can achieve exposure times
well beyond the previous 66 ms limit. However, to operate robustly in the wild, the camera still
needs to automatically adapt to the amount of local and global motion in the scene to avoid the
introduction of motion blur. The Night Sight feature of the Pixel smartphone (Liba et al. 2019)
solves the motion blur problem through real-time temporal motion metering that runs prior to
the shutter press, predicting future scene motion and automatically setting the exposure time and
gain (ISO) accordingly, enabling frame exposure times over 300 ms in cases where there is little
motion.

In addition to the problem of capturing sufficient light, very low-light conditions make tasks
such as AWB challenging. Liba et al. (2019) addressed this through a learning-based approach
to AWB that is trained specifically on night scenes. Liba et al. (2019) also introduced a creative
tone-mapping solution that draws inspiration from artists’ portrayals of night scenes in paintings
by keeping shadows close to black and boosting color saturation (Levoy & Pritch 2018).

Extending the low-light capabilities of photography even further, some smartphones now offer
astrophotography modes. This has been made possible through more sophisticated motion detec-
tion modes that utilize on-device sensors to detect tripod (or nonhandheld) mounting, enabling
synthetic exposure times of over four minutes (Kainz & Murthy 2019).

4.2. Super-Resolution and Hybrid Optical and Digital Zoom

Due to the physical limitations on the camera’s form factor, one of the principal limitations of a
mobile camera is its ability to zoom and focus across a broad range of magnification factors. The
thinness of the device prevents the placement of a lens with a broadly variable focal length in front
of the sensor. As such, the ability to resolve objects in the mid- and far ranges is inherently limited.

To address these limitations, two broad classes of approaches have been developed. First, com-
plex optical hardware designs such as the periscope lens (Lovejoy 2020) have enabled larger focal
length to be implemented inside typically thin mobile devices. These innovative designs have en-
abled true optical magnifications as high as 5–10× to be implemented. However, the focal length
of such telephoto lenses is fixed, and the number of such optical elements is still limited to at most
one or two due to the scarcity of space inside the phone and mechanical limitations. As a result, al-
most regardless of the optical power of the elements available, the overall zoom pipeline inside all
mobile devices has necessarily evolved as a hybrid of optical and digital magnification techniques.

4.2.1. Multiframe super-resolution. An example of a modern mobile zoom pipeline is the
Super Res Zoom pipeline described by Wronski et al. (2019) and used in Google’s Pixel de-
vices, illustrated in Figure 15. This hybrid optical–digital zoom pipeline first implements a burst
processing pipeline that achieves multiframe super-resolution by aligning, merging, and enhanc-
ing a sequence of raw frames with subpixel accuracy. This process circumvents the need for the
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Merge UpscaleEnhance Crop

Figure 15

The full Super Res Zoom pipeline enhances image resolution in two distinct ways: the merge step and the single-frame upscaling step.
Figure adapted from Wronski et al. (2019) (open access).

typical (first) demosaicing step described in Section 3.2. As a result, the high-frequency (and often
aliased) information in the raw frames is used directly in the formation of a full-resolution image
at or near the native resolution of the camera.

This approach implements demosaicing and super-resolution simultaneously, formulating the
problem as the reconstruction and interpolation of a continuous signal from a set of possibly
sparse samples. Namely, the RGB pixels measured individually on each frame are reconstructed
simultaneously onto a common grid. This technique enables the production of highly detailed
images, containing information that would have already been lost in part due to the earlier (and
much more naive) interpolation in the demosaicing step. An additional advantage is that it allows
us to directly create an image with a desired target magnification or zoom factor.

The approach ofWronski et al. (2019) is visualized in Figure 16. Similar to the standardmerge
process described above, first, a burst of raw (CFA Bayer) images is captured. Each captured frame

a   Raw input burst

b   Local gradients

d Alignment
vectors

e   Local statistics

c   Kernels

f Motion
robustness

g   Accumulation h   Merged result

Figure 16

Overview of super-resolution from raw images. (a) A captured burst of raw (Bayer CFA) images is the input to our algorithm. (d) Every
frame is aligned locally to a single frame, called the base frame. (g) We estimate each frame’s contribution at every pixel through kernel
regression. (c) The kernel shapes are adjusted based on (b) the estimated local gradients, ( f ) and the sample contributions are weighted
based on a robustness model. This robustness model computes a per-pixel weight for every frame using (d) the alignment field and
(e) local statistics gathered from the neighborhood around each pixel. (h) The final merged RGB image is obtained by normalizing the
accumulated results per channel. We call the steps depicted in panels b–g the merge step. Figure adapted from Wronski et al. (2019)
(open access).
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is aligned locally with a single key frame from the burst (called the base frame). In the super-
resolution application, however, the accuracy of the alignment must meet a higher standard. For
instance, due to the color subsampling, to super-resolve to even the native sensor grid, the accuracy
of the registration must be at worst one-half pixel. This is a significantly higher burden both
computationally and statistically, making it difficult, if not impossible, to achieve super-resolution
in darker scenes, or at high magnification (beyond 2×).

With high-accuracy alignment, each frame’s local contributions are estimated through ker-
nel regression (Takeda et al. 2007) and accumulated across the entire burst separately per color
plane. To achieve local detail, texture, and geometry recovery, the kernel shapes are adjusted based
on the estimated signal features, and the sample contributions are weighted based on a robust-
ness model (which estimates alignment accuracy). Finally, a per-channel normalization yields the
merged RGB image.

Super-resolution is arguably not an alien process to the HVS. It would appear that the human
brain also processes visual stimuli in a way that allows us to discriminate details beyond the physical
resolution given by optics and retinal sampling alone. This is commonly known as visual hyper-
acuity, as in the work of Westheimer (1975). A possible mechanism of visual super-resolution is
the random eye micromovements known as microsaccades and ocular drifts (Intoy & Rucci 2020,
Rucci et al. 2007).

Interestingly, in the super-resolution work described by Wronski & Milanfar (2018), natural
hand tremors play a similar role to eye movements. A natural, involuntary hand tremor is al-
ways present when we hold any object. This tremor comprises low-amplitude and high-frequency
components consisting of a mechanical-reflex component and a second component that causes
microcontractions in the limb muscles (Riviere et al. 1998).Wronski et al. (2019) showed that the
hand tremor of a user holding a mobile camera is sufficient to provide subpixel movements across
the images in a burst for the purpose of super-resolution. Experimental measurements of such
tremor in captured bursts of images from a mobile device are illustrated in Figure 17.
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Figure 17

Horizontal and vertical angular displacement (excluding translational displacement) measured from
handheld motion across 86 bursts. The red circle corresponds to one standard deviation, or roughly 0.9
pixels. Figure adapted from Wronski et al. (2019) (open access).
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1.0× 1.5× 2.0×

Figure 18

Merging a burst onto different target grid resolutions. From left to right: 1×, 1.5×, 2×. The combination of the Super Res Zoom
algorithm and the phone’s optical system leads to significantly improved results when merged onto a 1.5× grid; small improvements up
to 2× zoom are also noted. Figure adapted from Wronski et al. (2019) (open access).

As illustrated in Figure 18, the merge algorithm alone is able to deliver resolution compa-
rable to roughly a dedicated telephoto lens at a modest magnification factor, no more than 2×.
Of course, the same algorithm can also be applied to the telephoto lens itself, again with typ-
ically even more modest gains in resolution. This suggests that, to have a general solution for
zoom across a broad range of magnifications, a combination of multiframemerge and high-quality
single-frame crop-and-upscale is required (see Figure 15). This upscaling technology is described
below.

4.2.2. Single-frame upscaling. Digital zoom, also known as crop-and-scale, allows the user to
change the field of view (FOV) of the captured photograph through digital postprocessing. This
operation is essential to allow the photographer to zoom even in cameras that have a dedicated
telephoto lens (optical zoom). The operation consists of cropping the image to the desired FOV
and then digitally enlarging the cropped region to obtain the desired zoom factor.

A key challenge of digital zoom lies in performing the upscaling (sometimes also called single-
image super-resolution) in a way that preserves image details. Traditional techniques are based on
the unrealistic assumption that the digital image is generated by sampling a smooth and regular
continuous unknown image. This continuous model allows us to generate arbitrary in-between
samples from the observed ones by means of interpolation. There are different interpolation
schemes that trade off computational cost, quality of the upsampled image (e.g., level of blur
introduced), and other possible artifacts. An interpolation scheme is characterized by an interpo-
lation kernel that specifies how the intermediate subpixel sample is computed from the nearby
ones. Bilinear interpolation is simple to compute but generates intermediate samples that result
in a final image with blurry appearance. At the other extreme, the Lanczos interpolation best ap-
proximates the assumed continuous image model but has a higher computational cost since it uses
a larger context (large kernel). An advantage of this type of linear interpolation is that intermediate
samples can be calculated at arbitrary positions, thus allowing digital zooming of any factor.

An extension of linear interpolation methods that relies on machine learning techniques is
rapid and accurate image super resolution (RAISR) (Romano et al. 2017). This method can be
seen as a double extension of linear methods. On the one hand, the interpolation kernel is learned
from a training data set of pairs of low- and high-resolution images. This is done by finding the
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Figure 19

Visualization of the learned filter sets for 2× and 3× upscaling, indexed by angle, strength, and coherence-based hashing of patch
gradients. Figure adapted from Romano et al. (2017).

best kernel that minimizes the interpolation error for the image pairs in the training data set.
On the other hand, RAISR goes one step further and learns a collection of interpolating kernels,
each one specialized for a certain local structure encoded by the gradient strength, orientation,
and coherence. Examples of such trained filter banks are shown in Figure 19. Per each subset of
filters, the angle varies from left to right; the top,middle, and bottom three rows correspond to low,
medium, and high coherence. It is important to note that the filters at different upscaling factors
are not trivial transformations of one another. For instance, the 3× filters are not derived from the
2× filters—each set of filters carries novel information from the training data. Given the apparent
regularity of these filters, it may also be tempting to imagine that they can be parameterized by
known filter types (e.g., Gabor). This is not the case. Specifically, the phase response of the trained
filter is deeply inherited from the training data, and no parametric form has been found that is
able to mimic this generally.
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Figure 20

The learning and application of a filter that maps a class of LR patches to their HR versions. More generally,
a set of such filters is learned and indexed by local geometric structures, as shown in Figure 19. Figure
adapted from Romano et al. (2017). Abbreviations: HR, high-resolution; LR, low-resolution.

The overall idea behind RAISR and related methods is that well-defined structures, like edges,
can be better interpolated if the interpolation kernel makes use of the specific orientation and local
structure properties. During execution, RAISR scans the input image, defines which kernel to use
on each pixel, and then computes the upscaled image using the selected kernels on a per-pixel
basis. The overall structure of the RAISR algorithm is shown in Figure 20.

RAISR is trained to enlarge an input image by an integer factor (2–4×), but it does not allow
intermediate zooms. In practice, RAISR is combined with a linear interpolation method (bicubic,
Lanczos) to generate the zoom factor desired by the user.

With the advancement of DNNs in recent years, a wide variety of new image upscaling meth-
ods have emerged (Wang et al. 2021). Similar to RAISR, deep-learning-based methods propose
to learn from image examples how to map a low-resolution image into a high-resolution one.
These methods generally produce high-quality results, but they are not as computationally effi-
cient as shallow interpolation methods, such us RAISR, so their use in mobile phones is not yet
widespread. Undoubtedly, deep image upscaling is one of the most active areas of research. Re-
cent progress in academic research, combined with more powerful and dedicated hardware, may
produce significant improvements that could be part of the next generation of mobile cameras.

4.3. Synthetic Bokeh

One of the main characteristics of mobile phone cameras is that the whole image is either in focus
or not. The DoF, defined as the range of depths that are in focus (sharp), is frequently used by
photographers to distinguish the main subject from the background. As discussed in Section 2,
due to the small and fixed aperture used on smartphone cameras, capturing a shallow-DoF image
is virtually impossible.

The range of the DoF is inversely proportional to the size of the camera aperture: A wide
aperture produces a shallow DoF, while a narrow aperture leads to a wider DoF.On mobile phone
cameras, physical limitations make it impossible to have a wide aperture. This implies that captur-
ing images with a shallow DoF is virtually impossible. Although an all-in-focus image retains the
most information, for aesthetic and artistic reasons, users may want to have control of the DoF.

Recently, mobile phone manufacturers have introduced a computational (shallow) DoF effect
called a synthetic bokeh (see Figure 21). An accurate depth map estimate would enable compu-
tationally introducing spatially varying depth blur and simulate the DoF effect. The traditional
solution to estimating a depth map is based on stereo vision and requires two cameras. Adding a
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Figure 21

Shallow depth of field can be computationally introduced by blurring (a) an all-in-focus image using (b) segmentation and (c) depth
estimation. This effect is known as (d) synthetic bokeh. Figure adapted with permission from Wadhwa et al. (2018).

second camera introduces additional costs and increases power consumption and size. An alterna-
tive is to introduce a dedicated depth sensor based on structured light or time-of-flight technolo-
gies. However, these tend to be expensive and mainly work indoors, which significantly restricts
their use. Accurately estimating a depth map from a single image is a severely ill-posed problem
that generally leads to very limited accuracy.

Wadhwa et al. (2018) introduced a system to synthetically generate aDoF effect on smartphone
cameras. The method runs completely on the device and uses only the information from a single
camera (rear or front facing). The key idea is to incorporate a DNN to segment out people and
faces and then use the segmentation to adaptively blur the background. Additionally, if available,
the system uses dual-pixel information now present in many hardware auto-focus systems. The
dual-pixel data provide very small-baseline stereo information that allows algorithmic generation
of dense depth maps.

Meanwhile, the front-facing camera is used almost exclusively to take selfie photos—that is, a
close-up of the face and upper half of the photographer’s body. A neural network trained for this
type of image allows segmenting the main character out from the background. The background
is then appropriately blurred to give the idea of DoF. When using the rear-facing camera, no
prior information about the photograph composition can be assumed. Thus, having dense depth
information becomes crucial.

It is worthmentioning that this computational DoF system does not necessarily lead to a physi-
cally plausible photograph, as would have been taken by a camera with a wider aperture—it merely
suggests the right look. For instance, among other algorithm design choices, all pixels belonging
to the segmentation mask are assumed to be in focus even if they are at different depths.

5. THE FUTURE AND UPCOMING CHALLENGES

Mobile cameras have made significant strides in quality, matching (and even surpassing) the
image quality of so-called micro-4/3 standalone cameras (https://www.dpreview.com/articles/
6476469986/dpreview-products-of-the-year-2018?slide=25). While it seems unlikely that,
absent a major change in form factor, smartphone cameras will equal DSLR quality, much still
remains to be done. In this section, we discuss some promising avenues and new challenges.
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5.1. Algorithmics

The impressive success of neural networks in computer vision has not (yet) been widely repli-
cated in practical aspects of computational photography. Indeed, the impressive progress in mo-
bile imaging has largely been facilitated by methods that are mostly not based on DNNs. Given
the proliferation of DNNs in every other aspect of technology, this may seem surprising. Two ob-
servations may help explain this situation. First, DNNs still have relatively heavy computing and
memory requirements that are mostly outside the scope of current capabilities of mobile devices.
This may change soon. Second, resource limitations aside, DNN-based (particularly the so-called
generative) models still have the tendency to produce certain artifacts in the final images that are
either undesirable or intolerable in a consumer device. Furthermore, such errors are not easily
diagnosed and repaired because, unlike for existing methods, tuning the behavior of deep models
is not easy. These issues too will be remedied in due time.Meanwhile, DNN approaches continue
to be developed with the aim of replacing the entire end-to-end processing pipeline—examples
include DeepISP (Schwartz et al. 2018) and the work of Ignatov et al. (2020), to name just two.

5.2. Curation

Today, nearly everyone who can afford to have a smartphone owns one, and we now take and share
more photos than ever.Given how little cost and effort picture taking entails, we have also evolved
a tendency to capture multiple pictures of the same subject. Yet typically only a few of our many
shots turn out well or to our liking. As such, storage, curation, and retrieval of photographs have
become other aspects of photography that have drawn attention recently and deserve much more
work. Some recent methods (Talebi & Milanfar 2018) have developed neural network models
trained on many images annotated for technical and aesthetic quality, which now enable machine
evaluation of images in both qualitative and quantitative terms. Of course, this technology is in
very early stages of development and represents aggregate opinion that is not yet necessarilymeant
to cater to personal taste. Similar models can also rank photos based on their technical quality—
aspects such as whether the subject is well lit, centered, and in focus. Needless to say, much work
remains to be done in this area.

5.3. Broader Use Cases

The proliferation of cameras and computational photography technology is of course not limited
to the mobile platform. It is indeed not an exaggeration to say that cameras are nearly everywhere.
Many of the techniques developed for the mobile platform may in fact be useful for enhancing
the quality of images derived on other platforms, notably scientific instrumentation, automotive
imaging, satellite imaging, and more. However, caution is warranted, and key differences among
these platforms should be noted.

In particular, it is important to note that the imaging pipelines developed in the context of
mobile photography are specifically tuned for producing aesthetically pleasing images.Meanwhile,
in scientific uses of computational photography, the end goal is not the image itself but rather
certain, and varied, information extracted from the images. For instance, in the medical realm,
the end task may be diagnostic, and this may not be best facilitated by a pretty picture. Instead,
what is required is a maximally informative picture. Correspondingly, cameras on mobile devices
are not built, configured, or tuned to provide such information.5 An interesting case study is the

5For instance, AWB can be counterproductive if the end goal is to make a physical measurement that depends
on color fidelity in a different sense.
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role that cameras have played (or could better have played) in recent environmentally calamitous
events such as the massive wildfires in California. Nearly all cameras, tuned to normal viewing
conditions and biased toward making the pictures pleasing, were largely unable to capture the
true physical attributes of the dark, orange-hued skies polluted with smoke (Beil 2020).

The bottom line is that mobile cameras, properly reimagined and built, can play an even more
useful, helpful, and instrumental role in our lives than they do today.

5.4. Epilogue

The technology behind computational photography has advanced rapidly in the past decade—the
science and engineering techniques that generate high-quality images from small mobile cameras
will continue to evolve. However, so too will our needs and tastes for the types of devices that we
are willing to carry around and the kinds of visual or other experiences that we wish to record and
share.

It is hard to predict with any certainty what the mobile devices of the future will look like.
However, as surely as Ansel Adams would not have seen the mobile phone camera coming, we too
may be surprised by both the form and the vast new uses of these devices in the next decade.
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