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Abstract

Gamma oscillations (30–70 Hz) have been hypothesized to play a role in
cortical function.Most of the proposed mechanisms involve rhythmic mod-
ulation of neuronal excitability at gamma frequencies, leading to modula-
tion of spike timing relative to the rhythm. I first show that the gamma band
could be more privileged than other frequencies in observing spike–field in-
teractions even in the absence of genuine gamma rhythmicity and discuss
several biases in spike–gamma phase estimation. I then discuss the expected
spike–gamma phase according to several hypotheses. Inconsistent with the
phase-coding hypothesis (but not with others), the spike–gamma phase does
not change with changes in stimulus intensity or attentional state,with spikes
preferentially occurring 2–4 ms before the trough, but with substantial vari-
ability. However, this phase relationship is expected even when gamma is a
byproduct of excitatory–inhibitory interactions. Given that gamma occurs
in short bursts, I argue that the debate over the role of gamma is a matter of
semantics.
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INTRODUCTION

Brain signals often show rhythmic fluctuations between 30 and 70 Hz, called gamma oscillations,
which are modulated by cognitive processes such as attention (Fries et al. 2001) and have been
hypothesized to play a fundamental role in cortical processing (Fries 2009). In the visual cor-
tex, the focus of this review, both the magnitude and the center frequency of these oscillations
are highly dependent on features of the visual stimulus such as size, contrast, orientation, spatial
frequency, speed, eccentricity, and color (Bartoli et al. 2019; Berens et al. 2008; Friedman-Hill
et al. 2000; Gieselmann & Thiele 2008; Hadjipapas et al. 2007; Jia et al. 2013b; Murty et al.
2018; Ray & Maunsell 2010, 2011a; Shirhatti & Ray 2018; van Pelt & Fries 2013). I and others
have previously suggested that such a strong dependence on low-level stimulus features, as well
as the weak and inconsistent power of gamma rhythm, makes gamma unsuitable for communica-
tion or coding; instead, it could be a useful reflection of underlying cortical processing involving
excitation–inhibition interactions (Bartoli et al. 2020, Ray & Maunsell 2015).

Gamma oscillations are thought to arise due to the involvement of an inhibitory network that
provides rhythmic inhibition to the pyramidal cells (Bartos et al. 2007, Buzsáki & Wang 2012,
Whittington et al. 2000). Most of the hypothesized roles of gamma involve a shift in the timing
of action potentials relative to this rhythm (Fries 2015, Fries et al. 2007, Tiesinga & Sejnowski
2010). This rhythmic modulation in neuronal excitability can be well characterized in the local
field potential (LFP), which is obtained by low-pass filtering of the raw signal recorded from a
microelectrode and is thought to reflect the summed transmembrane currents flowing through the
neurons around the microelectrode (Buzsáki et al. 2012, Einevoll et al. 2013). Spike–LFP phase
relationships are characterized by two factors: the preferred LFP phase at which spikes occur
and the consistency with which spikes occur at that phase. These are typically estimated using
measures such as spike–field coherency (SFC) (Mitra & Pesaran 1999), a complex quantity whose
phase gives the preferred LFP phase and whose magnitude, termed coherence, gives a measure
of phase consistency. Unfortunately, SFC is biased by several factors (discussed below), which
complicates its interpretation. In this review, I discuss some of these issues, focusing especially on
cases where the gamma observed in the LFP is weak or negligible, and then review the expected
and observed spike–LFP phase relationships under various hypotheses.

SPIKE–FIELD COHERENCE IN THE ABSENCE OF GAMMA RHYTHM

Accurate estimation of the LFP gamma phase relative to a spike is fraught with difficulties (Ray
2015). Spikes are associated with several stereotypical fluctuations in the LFP, most prominently
a sharp transient that is well represented by a negative Gaussian with a standard deviation of a
few milliseconds (Martin & Schröder 2016, Rasch et al. 2008, Ray & Maunsell 2011b, Ray et al.
2008; for examples, see Ray 2015, figure 2). This spike-related transient, which may occur due to
fast synaptic events that lead to the spike (Okun et al. 2010) and the low-frequency component of
the spike itself (bleed-through), has energy over a broad frequency range, which can be detected
in the LFP at frequencies as low as approximately 50 Hz [at lower frequencies, it gets masked by
the 1/f power of the LFP (Ray 2015, Ray & Maunsell 2011a, Ray et al. 2008)]. This spike-related
transient affects the gamma phase and can also cause spurious bumps in the gamma range in the
SFC, as illustrated below.

Some studies have shown an absence of a conspicuous peak in the power spectral density
(PSD) of the LFP but a peak in SFC in the gamma range, which has been taken as evidence of
spike–gamma synchronization even when the rhythm is not detected as a peak in the PSD (for
example, the prestimulus period; see Fries et al. 2008, Vinck et al. 2013). This is illustrated in a
recent study (Prakash et al. 2021; Figure 1). In this case, spikes and LFPs were recorded from
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Figure 1

Coherence measures often show a bump in the gamma range even when the power spectral density (PSD) does not. (a) (Top) Average
PSD of 756 electrodes recorded from area V4 across 25 sessions from two monkeys using Utah arrays while two stimuli counterphasing
at 10 Hz were presented. The monkeys attended to the stimulus either inside (blue) or outside (red) the receptive fields (RFs). In a
separate block of trials, the monkeys were cued to both sides (neutral cue; green). The counterphasing stimulus produced salient peaks
at 20 Hz and harmonics. (Bottom) The change in power in the local field potential (LFP) from the neutral condition. Since the PSDs are
plotted on a log scale in the top panel, the change is computed by simply subtracting the green trace from others and multiplying by
10 to get units of decibels. The cyan and magenta shades around the blue and red traces represent standard error of the mean. (b) (Top)
Average field–field pairwise phase consistency (PPC) across 6,646 pairs of electrodes for the three attention conditions. (Bottom) The
difference from the neutral condition, as in panel a (bottom). (c) Spike–field coherence between 14,048 pairs of spike and LFP electrodes,
with the same format as in panel b. Figure adapted from Prakash et al. (2021).

both hemispheres of area V4 of rhesus monkeys who were shown two Gabor stimuli in opposite
hemifields that were counterphasing at 10 Hz. Each stimulus was placed inside the receptive
fields (RFs) of recorded neurons in each hemisphere. The monkeys were instructed to attend
to either one of the two stimuli or both stimuli simultaneously (neutral condition) (for details
of task design, see Mayo & Maunsell 2016). Such counterphasing stimuli produce salient sharp
peaks in the PSDs at twice the fundamental frequency (i.e., at 20 Hz and its harmonics), since lu-
minance change in either the positive or negative direction produces a response. Such peaks were
observed for all three attention conditions, but no other peak in the gamma range was observed
(Figure 1a). However, a suppression of power at low frequencies (<20 Hz) and an enhancement
over a broad frequency range above 30 Hz (with a shallow peak in the gamma range) could be
observed with attention when the change in power was computed relative to the neutral condition
(Figure 1a). To measure phase consistency in the LFPs across electrode pairs, pairwise phase
consistency (PPC), an unbiased estimator of the square of the SFC, was used (Vinck et al. 2010b,
2012). Figure 1b shows the field–field (LFP–LFP) PPC across all pairs of selected electrodes
and the difference in PPC from the neutral condition. In this case, the effect of attention is
more prominent in the gamma range as compared to change in power, as shown in Figure 1a.
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Spike–field PPC (Figure 1c) showed that spikes were tightly locked to the fundamental and
harmonics of the counterphasing stimulus. However, when the neutral condition was subtracted
(Figure 1c), the effect of attention appeared most saliently in the gamma range. Such results
have previously been used to suggest that spike–gamma synchronization can occur even when the
rhythm itself is not detectable in the PSD of the LFP (prestimulus period; see Fries et al. 2008).

The following simulation shows how such an effect could arise in the absence of any genuine
gamma synchronization simply because the SFC itself is insensitive at high frequencies due to
small jitters in spikes across electrodes (as explained below) and at low frequencies due to high
LFP power that is unrelated to spiking. I compute the SFC between spikes from one electrode
and the LFP from a neighboring electrode that is sufficiently far away that the same spike is not
recorded in the neighboring electrode. This is a common approach that is thought to eliminate
the effect of the spike-related transient. However, spiking activity is correlated across electrodes
over several millimeters (Smith & Kohn 2008), which means that when a spike is detected on
one electrode, there is a higher-than-chance probability of spiking (from a different neuron) in
the neighboring electrode as well. Furthermore, spikes on each electrode are associated with their
own spike-related transient that is captured in the LFP of that electrode.

Consider a hypothetical case where each spike is associated with a sharp negative Gaussian in
the LFP, and the LFP has no other contribution from any other source. Furthermore, suppose that
spikes produced by two different neurons near to the two recording electrodes occur in perfect
synchrony. In this case, the simulated LFP of a neighboring electrode (which will be the same as
the LFP recorded from the spike electrode itself ) will show a negative Gaussian for each spike
(Figure 2a). Such sharp transients lead to energy over a large frequency range (Figure 2b) and can
be approximated as a sum of a series of sinusoids with their troughs aligned. The spike-triggered
average of the LFP, obtained by taking short segments of LFP around each spike and averaging
them, yields the original negative Gaussian (Figure 2c). Since this phase relationship is consistent
across trials at all frequencies, the SFC is almost unity at all frequencies (Figure 2d).

Now consider a case where the two neurons fire spikes with a jitter of varying magnitudes.
This could happen due to the stochasticity associated with firing that leads to a cross-correlation
with a broadish peak (Smith & Kohn 2008). This jitter shifts the position of the negative Gaussian
relative to each spike (the jitter of up to ±5 ms is shown in Figure 2a). However, this absolute
time shift corresponds to a progressively larger phase shift for higher-frequency components of the
negative Gaussian,which leads to a smoothing of the spike-triggered LFP average (Figure 2c) and
a reduction in the SFC at progressively higher frequencies (Figure 2d). This produces a natural
low-pass effect.

Figure 2e–h shows the same analysis as Figure 2a–d, but after adding the real LFP signal
recorded during periods of spontaneous activity to the simulated negative Gaussians. Because the
LFP has a characteristic 1/f power law (Figure 2f ), the low-frequency component of the LFP that
is unrelated to the spiking activity (Mitzdorf 1985) masks out the component due to the spike-
related transient at low frequencies, reducing the SFC at low frequencies. This produces a natural
high-pass effect. Together, these two factors combine to yield a band-pass effect, which produces
a distinct bump in the gamma range in the SFC (Figure 2h), even though there is no genuine
gamma rhythm in the LFP.

The SFC is also biased by factors such as firing rates and number of trials, and several methods
have been developed to address some of these concerns (Grasse & Moxon 2010; Li et al. 2016;
Lowet et al. 2016; Ray 2015; Ray &Maunsell 2015; Vinck et al. 2010b, 2012). The issue discussed
above, however, is not a mathematical but a physiological one. As described above, the effect of the
spike-related transient is reduced, but not completely eliminated, by recording the LFP from a
nearby electrode, since spiking activity remains correlated over several millimeters (Smith&Kohn

364 Ray



0 
m

s
1 

m
s

2 
m

s
3 

m
s

4 
m

s
5 

m
s

Fr
eq

ue
nc

y 
(H

z)
Ti

m
e 

(m
s)

Fr
eq

ue
nc

y 
(H

z)
Ti

m
e 

(m
s)

0.
25

0.
50

0.
75–2

00

020
0

–2
00

020
0

a
b

c
d h

f
g

e
10

0
50

0
15

0–10123

Power log(μV2)

10
0

50
0

15
0–10123

Power log(μV2)

LFP (μV) LFP (μV)

0.
25

0.
50

0.
75–2

00

020
0

–2
00

020
0

LFP (μV) LFP (μV)

–1
00

0
–2

0
20

010
0

Spike-triggered average (μV)

–1
00

0
–2

0
20

010
0

Spike-triggered average (μV)

0
50

10
0

15
000.

5

1.
0

Spike–field coherence

0
50

10
0

15
000.

5

1.
0

Spike–field coherence

Fi
gu

re
2

Fa
ct
or
s
le
ad
in
g
to

a
bu

m
p
in

sp
ik
e–
fie

ld
co
he

re
nc

e
in

th
e
ga
m
m
a
ra
ng

e
in

th
e
ab
se
nc

e
of

a
ge
nu

in
e
ga
m
m
a
rh
yt
hm

.(
a)

Si
m
ul
at
io
ns

of
50

tr
ia
ls
of

P
oi
ss
on

-d
is
tr
ib
ut
ed

sp
ik
e
tr
ai
ns

w
ith

a
m
ea
n
fir
in
g
ra
te

of
40

H
z
an
d
du

ra
tio

n
of

1
s.
Sp

ik
e
tim

es
fo
r
on

e
tr
ia
la
re

sh
ow

n
by

gr
ay

ve
rt
ic
al
lin

es
.(
To
p)

T
he

lo
ca
lfi

el
d
po

te
nt
ia
l(
L
FP

)f
or

ea
ch

tr
ia
lw

as
si
m
ul
at
ed

by
co
nv

ol
vi
ng

th
e
sp
ik
e
tr
ai
n
w
ith

a
ne

ga
tiv

e
G
au
ss
ia
n
w
ith

a
st
an

da
rd

de
vi
at
io
n
of

2
m
s
(b
lu
e
tr
ac
e)
.(
Bo
tt
om

)T
he

sp
ik
e
tim

es
w
er
e
fir
st
sh
ift
ed

ra
nd

om
ly

fr
om

a
un

ifo
rm

di
st
ri
bu

tio
n
be

tw
ee
n
[–
5
5]

m
sa

nd
th
en

co
nv

ol
ve
d
w
ith

th
e
ne

ga
tiv

e
G
au
ss
ia
n
to

yi
el
d
th
e
L
FP

(o
ra
ng
et
ra
ce
).
(b
)A

ve
ra
ge

po
w
er

sp
ec
tr
al
de

ns
ity

ac
ro
ss
tr
ia
ls
of

th
e
si
m
ul
at
ed

L
FP

s,
co
m
pu

te
d
be

tw
ee
n
25

0
an

d
75

0
m
sd

ur
at
io
n,

us
in
g
th
e
m
ul
tit
ap
er

m
et
ho

d
w
ith

a
si
ng

le
ta
pe

r
(B
ok

il
et

al
.2
01

0)
.D

iff
er
en

tt
ra
ce
ss
ho

w
di
ff
er
en

ta
m
ou

nt
so

fs
pi
ke

jit
te
r,
as

in
di
ca
te
d
in

th
e
le
ge
nd

.(
c)
Sp

ik
e-
tr
ig
ge
re
d
L
FP

av
er
ag
e,
co
m
pu

te
d
by

ta
ki
ng

a
±2

0-
m
sL

FP
se
gm

en
ta

ro
un

d
ea
ch

sp
ik
e
an
d
av
er
ag
in
g

th
es
e
se
gm

en
ts
.(
d)

Sp
ik
e–
fie

ld
co
he

re
nc

e,
co
m
pu

te
d
us
in
g
th
e
m
ul
tit
ap
er

m
et
ho

d
w
ith

a
si
ng

le
ta
pe

r
(B
ok

il
et

al
.2

01
0)
.(
e–
h)

A
s
in

pa
ne

ls
a–
d,
bu

ta
ft
er

ad
di
ng

1-
s

se
gm

en
ts
of

L
FP

da
ta

(r
ec
or
de

d
fr
om

ar
ea

V
1
of

aw
ak
e
m
on

ke
ys

w
he

n
no

st
im

ul
us

w
as

pr
es
en

te
d)

to
th
e
si
m
ul
at
ed

L
FP

s.
T
he

do
tt
ed

or
an

ge
tr
ac
e
in

pa
ne

lf
is
th
e
sa
m
e

as
th
e
or
an
ge

tr
ac
e
in

pa
ne

lb
to

sh
ow

th
at

re
al
L
FP

po
w
er

be
lo
w
ap
pr
ox
im

at
el
y
50

H
z
fa
r
ex
ce
ed

s
th
e
po

w
er

of
th
e
sp
ik
e-
re
la
te
d
tr
an

si
en

t.
N
ot
e
th
at

th
e
lo
w
-f
re
qu

en
cy

co
m
po

ne
nt

of
th
e
L
FP

th
at

is
no

tp
ha

se
-l
oc
ke
d
to

th
e
sp
ik
es
,a
lth

ou
gh

it
re
du

ce
s
th
e
sp
ik
e–
fie

ld
co
he

re
nc

e
at

lo
w
fr
eq

ue
nc

ie
s,
do

es
no

ta
pp

re
ci
ab
ly

ch
an

ge
th
e

sp
ik
e-
tr
ig
ge
re
d
L
FP

av
er
ag
e.

www.annualreviews.org • Spike–Gamma Phase Relationship in Vision 365



2008). Furthermore, this spike-related transient is difficult to detect when correlation is weak
(Figure 2c,g), although it still has a substantial effect on the SFC (Figure 2d,h). Some studies have
partially addressed this issue by cutting out the spike-related transient by subtracting the mean
waveform before low-pass filtering (Pesaran et al. 2002), interpolating the LFP in a predefined
interval around the spike (Galindo-Leon & Liu 2010), or using a Bayesian framework to estimate
the low-frequency LFP that is free of spike-related transient (Zanos et al. 2011). However, these
methods require predefined interval ranges to work properly, which may change as the correlation
changes (Figure 2c,g). Algorithms such as matching pursuit that use sharp Gaussians of varying
standard deviations as basis functions to represent spike-related transients have been used (Ray
et al. 2008), but these algorithms use a greedy approach that may not completely eliminate the
spike-related transient when the underlying rhythm is weak (Ray 2015).

This simulation illustrates an important issue: Even though the underlying phenomenon has
no genuine rhythmicity, the gamma frequency range could be a more privileged band compared
to nongamma frequencies in observing spike–LFP interactions simply because of the action of the
1/f noise at lower frequencies and higher sensitivity toward small time shifts at higher frequencies.
Consequently, a change in the shape, magnitude, or latency of the spike-related transient could
be more prominently reflected in the gamma range than in other frequency ranges. For exam-
ple, changes in correlation in the neuronal population due to sensory stimulation (Churchland
et al. 2010) or attention (Cohen & Kohn 2011, Cohen & Maunsell 2009) could cause spurious
changes in SFC in the gamma range even in the absence of any genuine gamma rhythmicity. Sim-
ilarly, interactions between two neural assemblies, which could affect the latency and shape of the
spike-related transient, could be partially read out by studying the spike–LFP phase relationship
(Besserve et al. 2015).

In addition to the spike-related transient in the LFP that is associated with each spike, there
are other stereotypical fluctuations in the LFP that are associated with an increase in spiking
activity. For example, the onset of a stimulus increases firing rate but also produces a dip in the
LFP signal that extends to 100–200 ms (for example, see Ray & Maunsell 2010, figure 1a,d,g). In
the frequency domain, such stereotypical fluctuations correspond to low frequencies in the delta
or theta range. This observation is important when studying LFP responses for stimuli such as
natural images or movies, which do not generally produce salient gamma oscillations (Bartoli et al.
2019, 2020; Hermes et al. 2015; Kanth & Ray 2020; Kayser et al. 2003) unless the RF contains a
grating-like feature or long-wavelength hues (Brunet et al. 2013,Kanth&Ray 2020). For example,
Rasch and colleagues (2008) recorded from area V1 of anesthetized and nonanesthetized monkeys
while showing commercial movie clips and used the high-frequency content of the signal to extract
multi-unit activity (MUA).They found a sharp spike-related transient (Rasch et al. 2008, figure 2a)
followed by a low-frequency upswing, which has been shown to be due to the action of the high-
pass filter (Okun 2017) (filtering-related issues are discussed in more detail below). They also
found clustering of spikes near large negative fluctuations in the LFP (Rasch et al. 2008, figure 3),
likely due to sudden changes in stimulus properties in movie scenes.Therefore, the low-frequency
spike–LFP phase relationship conveyed information about the natural images (Montemurro et al.
2008), as did high-frequency LFP activity in the gamma band (Belitski et al. 2008, Rasch et al.
2008).

To summarize, the spike–gamma phase relationship could convey important information about
sensory processing and behavior, even in the absence of any rhythmicity in the gamma range in
the LFP.While these analyses are important to understand the way neural assemblies process in-
formation, care should be taken to distinguish these from the effect of genuine gamma oscillations
that are generated due to the action of specific inhibitory mechanisms (as discussed below) and
are visible as a prominent narrowband bump in the PSD of the LFP.
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GENERATION OF GAMMA RHYTHM

To understand phase locking of spikes with the gamma rhythm observed in the LFP, it is important
to understand both how gamma rhythms are generated and how these mechanisms are reflected in
the LFP.The generation of gamma rhythms has been extensively studied, both experimentally and
usingmodels.While there are several different mechanisms and involvement of different classes of
interneurons (Cardin 2016), the best-studied mechanism involves an inhibitory (I) network con-
sisting of parvalbumin-positive, soma-targeting interneurons that provides rhythmic inhibition to
the excitatory (E) pyramidal cells, with the rhythm sustained either exclusively by the inhibitory
population [I–I or interneuron network gamma (ING) models] or with interaction with pyramidal
cells [E–I or pyramidal–interneuron network gamma (PING) models] (Bartos et al. 2007, Börgers
&Kopell 2008,Buzsáki &Wang 2012,Tiesinga& Sejnowski 2009,Wang 2010,Whittington et al.
2000).While there are some situations in which the I population may fire before the E population
[for example, the phase walkthrough described by Börgers & Kopell (2005)], the most common
scenario is that the I population requires excitation from the E population to fire, the resulting in-
hibition shuts out the entire circuitry, and the cycle repeats when the E population recovers from
the inhibition and fires again. In this model, the E cells fire first (only a subset may participate in
each gamma cycle), and the I cells follow after a few milliseconds. Such a relationship has been ob-
served in several species, including rodents (Csicsvari et al. 2003), ferrets (Hasenstaub et al. 2005),
and monkeys (Vinck et al. 2013).

The default E–I interaction described above could be one mechanism to maintain E–I balance
(Haider et al. 2006, Shu et al. 2003); in this interaction, excitatory and inhibitory inputs change
proportionally to balance each other, with inhibition lagging excitation by 3–4ms (Okun&Lampl
2008,Wehr & Zador 2003). Such E–I balance has been linked to a variety of neural processes such
as modulation of neuronal selectivity (Isaacson & Scanziani 2011, Wehr & Zador 2003) and gain
(Chance et al. 2002, Haider & McCormick 2009), selective gating (Bhatia et al. 2019, Vogels &
Abbott 2009), and efficient coding (Denève & Machens 2016, Zhou & Yu 2018). In this case,
gamma oscillations are a byproduct of this E–I balance mechanism, with its instantaneous center
frequency and amplitude dependent on the instantaneous excitatory and inhibitory conductance
(Atallah & Scanziani 2009, Veit et al. 2017). Below, I discuss other hypotheses involving gamma
oscillations relative to this default hypothesis.

How is the E and I population firing reflected in the LFP? LFPs are thought to reflect
the summed transmembrane currents flowing through the neurons around the microelectrode
(Buzsáki et al. 2012, Einevoll et al. 2013). The transmembrane current has a capacitive part that
is proportional to the first derivative of the membrane potential and an ionic part that is directly
proportional to the membrane potential (Henze et al. 2000). Although the total transmembrane
current flowing through a cell is negligible, separation between the inward (sink) and outward
(source) transmembrane currents leads to a dipole or a higher-order pole, which generates a mea-
surable potential outside of the cell (Buzsáki et al. 2012, Einevoll et al. 2013).The currents flowing
through the pyramidal cells are thought to dominate the LFP, since they are larger than interneu-
rons, and a large fraction of them are aligned perpendicular to the cortical layers, leading to larger
dipoles that are well aligned (Einevoll et al. 2013, Mazzoni et al. 2015, Pesaran et al. 2018).

Mazzoni and colleagues (2015) studied several proxies of the LFP using a leaky integrate-
and-fire (LIF) model. They obtained several outputs of the LIF network, such as firing rates,
membrane potentials, and synaptic currents of both excitatory and inhibitory neurons and tested
which output (or their combination) best represented the ground-truth LFP that they obtained by
injecting the synaptic input currents of the LIF network into a detailed biophysical networkmodel
with realistic morphology. They found that the sum of absolute values of synaptic currents (with
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both excitatory and inhibitory currents weighted nearly equally) served as the best proxy for the
LFP. This is paradoxical because the two types of synaptic currents are of opposite signs and yet
contribute to the LFP with the same sign. This is because the LFP depends on the location of the
current sinks and sources relative to the position of the electrode. In particular, the parvalbumin-
positive interneurons are soma targeting (Bartos et al. 2007, Buzsáki & Wang 2012, Hu et al.
2014), while the excitatory synapses are distributed over the whole surface of pyramidal neurons.
Thus, somatic inhibitory currents can be equivalent to excitatory currents at the apical dendrites.
When each proxy was tested alone, the inhibitory currents outperformed other proxies. Mazzoni
and colleagues (2015) also showed a 180° phase reversal in the LFP signal near the granular layer,
which is also observed in laminar recordings (Kajikawa & Schroeder 2011). In the superficial or
granular layers, which are usually sampled with chronic array recordings (Das & Ray 2018, Jia
et al. 2013b) and where gamma rhythms are most prominent (Buffalo et al. 2011, Xing et al.
2012b), the synaptic currents (both excitatory and inhibitory) produce a downward deflection or
a trough in the LFP signal. Therefore, we expect the excitatory cells to fire a few milliseconds
before the gamma trough in the LFP, with the inhibitory cells lagging by a few milliseconds and
firing nearer the gamma trough, as has been found experimentally (e.g., Hasenstaub et al. 2005).
This phase relationship, however, may be dependent on the recording layer (Welle & Contreras
2016), as well as the type of neurons (Hasenstaub et al. 2016).

SPIKES TEND TO OCCUR NEAR THE TROUGH OF THE GAMMA
RHYTHM IN THE LOCAL FIELD POTENTIAL

In this section, I discuss the spike–gamma phase relationship observed in the visual cortex at both
gamma and nongamma frequencies. Because of the spike-related transient, which can be decom-
posed as a series of sinusoids with their troughs aligned to the spike, the spike–LFP phase angle is
trivially around 180° (where 0° is considered the peak of the rhythm) at all frequencies when there
is no genuine rhythm in the LFP.This is shown in a representative data set (Figure 3) where spikes
and LFP were recorded from the primary visual cortex (area V1) of monkeys while they attended
to a Gabor stimulus of varying contrast (Das & Ray 2018, Ray & Maunsell 2010). These stimuli
produce strong gamma oscillations, whose center frequency increases with contrast (Figure 3a;
for more details, see Ray & Maunsell 2010). In area V1, attention increases the center frequency
of gamma but reduces the magnitude and coherence (Chalk et al. 2010, Das & Ray 2018), un-
like in higher visual areas such as area V4, where attention increases field–field, spike–field, and
spike–spike coherence (Fries et al. 2008). Although the gamma rhythm was localized to a narrow
frequency range, the spike–LFP phase (Figure 3b) was approximately 180° at very low frequen-
cies and slowly increased with frequency. When spikes and LFPs were recorded from the same
electrode, the SFC was higher at all frequencies, and the phase remained closer to 180°, compared
to when spikes and LFPs were recorded from different electrodes. This is because, when using the
same electrode, the spike-related transient is much stronger, which tends to pull the phase toward
180°. The circular standard deviation (Berens 2009), which varies between 0 and

√
2, showed a

distinct reduction in the gamma range, suggesting that the rhythm indeed enhanced phase-locking
with spikes (Figure 3c), although the standard deviation was substantial, and the preferred phase
in the gamma range followed the same trend as nongamma frequencies (Figure 3b). The stan-
dard deviation was lower when spikes and LFPs were taken from the same electrode, again due to
a larger spike-related transient.

The slow increase in phase with increasing frequency is at least in part due to hardware filters
that are used to low-pass filter the raw signal to get the LFP, which is an essential step before
sampling to prevent aliasing. Since these are causal filters, they produce a nonzero delay in the
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signal. In general, different frequency components may get shifted by different durations (called
the group delay, which is a function of frequency), leading to a distortion of the signal. The Black-
rock system used for this recording uses Butterworth filters for low-pass filtering; these filters have
a group delay that is constant over a large frequency range to minimize distortion, but their use
leads to a linear phase shift, as seen in Figure 3b. A high-pass filter that is often used to filter out
the slow drifts in raw signals also produces strong artifacts in the LFP, in particular a large positive
peak lasting several hundred milliseconds in the spike-triggered LFP (Okun 2017). However, the
phase shift in the data is not fully accounted for by the filtering artifact. For example, the spike–
LFP phase in the gamma range was approximately 240° (when using different electrodes for spikes
and LFP), which reduced to approximately 230° when filtering-related shifts were accounted for
(Das & Ray 2018). This approximately 50° shift from 180° for an oscillation at approximately
45 Hz suggests that spikes preferentially occurred (1,000/45) × (50/360) or approximately 3.1 ms
before the gamma trough. It is important to note that in these chronic recordings, the isolation
quality is often poor, and most spikes were actually MUA. Furthermore, it was not possible to
determine whether spikes were generated by E or I cells.

Several studies have reported a similar spike–gamma phase relationship when using stimuli de-
signed to produce strong gamma oscillations. The earliest microelectrode recordings of gamma
oscillations in cats reported the occurrence of spikes near the trough of the rhythm (Eckhorn
et al. 1988, Gray & Singer 1989, Gray et al. 1992), although some spike-triggered LFP traces
show a shift of 4–5 ms from the trough (for example, see Gray & Singer 1989, figure 2d). Chalk
and colleagues (2010), using tungsten-in-glass microelectrodes to record both spikes and LFP,
showed a spike–LFP phase value of –0.65π or –117° (equivalently, 243°) between 36 and 48 Hz,
or approximately 4 ms preceding the trough. Furthermore, they showed that this phase relation-
ship did not change with contrast or attention. Vinck and colleagues (2010a) showed an average
phase of approximately 137° when a preferred orientation was presented, although it changed to
approximately 159° for the nonpreferred orientation. They used a convention where a leftward
shift of the spike relative to the trough decreased the phase, so these results translate to approxi-
mately 223° and approximately 201° per the convention used in this review. However, the shift of
approximately 20° between preferred and nonpreferred orientations could simply be due to the
reduction in actual gamma power for the nonpreferred orientation, which increases the relative
influence of the spike-related transient and pulls the phase toward 180° (Das & Ray 2018). Jia
and colleagues (2013a, figure 2c) also found clustering of spikes near the gamma trough in V1,
although they did not report the exact phase values. Rasch and colleagues (2008, figure 2c–d), who
used natural movies that did not produce strong gamma oscillations, found a preferred spike–LFP
phase of 180° at approximately 10Hz,which slowly increased with frequency, similar to the results
shown in Figure 3 at nongamma frequencies.

Because many of the above-mentioned studies used MUA, one possibility could be that well-
isolated spikes were tightly locked to different phases of the gamma rhythm (Havenith et al. 2011),
but this relationship could not be observed when the single units could not be isolated. To address
this, Martin & Schröder (2016) recorded well-isolated spikes using three very-high-impedance
electrodes and LFP from a lower-impedance electrode from area V1 of an anesthetized cat while
presenting a wide variety of stimuli including gratings, movies, and visual noise. They found a
strong spike-related transient and a similar phase drift (Martin & Schröder 2016, figure 3; note
that in their convention, spikes occurring earlier in the LFP phase had lower phase values). At
50 Hz, the phase was 2 radians, or a shift of π − 2 or 65°, which translates to 3.6 ms of lag at
50 Hz. The results were similar whether the analysis was done at periods of high or low spiking
activity, although the circular standard deviation was lower in the former condition. These results
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show that even when well-isolated single units are considered, the spike–LFP phase relationship
is similar to the relationship observed with MUA.

These studies are consistent with the classic PING-type network behavior described in the
previous section. This mechanism also implies that gamma rhythm in the LFP should have a
steep trough, corresponding to the activation of the inhibitory population, and a relatively broad
peak. Such a nonsinusoidal gamma shape in the LFP has indeed been observed in several ex-
perimental (see Bartoli et al. 2019, figure 2a; Brunet et al. 2013, figure 2; Henrie & Shapley
2005, figure 1; Jia & Kohn 2011, figure 2; Jia et al. 2011, figure 1a; Krishnakumaran et al. 2022,
figure 3; Xing et al. 2012a, figure 2) and theoretical (Mazzoni et al. 2015) studies. Krishnakumaran
and colleagues (2022) have recently shown that the gamma shape can be used to constrain the
models and their operating parameter space. For example, this shape is inconsistent with a model
that considers gamma as filtered noise (Burns et al. 2011, Jia et al. 2013b, Xing et al. 2012a) but
consistent with a simple Wilson-Cowan-based model (Wilson & Cowan 1972) operating in an
inhibition-stabilized network state (Tsodyks et al. 1997), but only when the inhibitory population
operated in a superlinear regime (for details, see Jadi & Sejnowski 2014). The waveform shape
also has important implications related to various coding schemes (for a detailed discussion, see
Cole & Voytek 2017).

While the preferred phase-locking angle is a few milliseconds before the trough on average,
there is considerable variability across sites ( Jia et al. 2013a) because the phase-locking is gen-
erally weak, as reflected in the low coherence values (Figure 3a) and high standard deviation
(Figure 3c). Furthermore, slight differences among the timings are expected depending on the
neuron type (excitatory and inhibitory), the recording layer, or the exact mechanism of gamma
generation within an E–I balance framework.

SPIKE–GAMMA PHASE RELATIONSHIP UNDER DIFFERENT
HYPOTHESES

Binding-by-Synchrony

Gamma oscillations rose to prominence due to a seminal discovery that long continuous bars pro-
duce strong and synchronous gamma oscillations in the visual cortex, and this enhanced synchrony
between neurons was proposed to bind relevant stimulus features into a coherent representation
(for reviews, see Singer 1999, Singer & Gray 1995). These studies showed evidence of zero-lag
synchrony (calculated using cross-correlation between spiking activity recorded from different
sites) that extended over large distances within an area (up to 7 mm in Area 17 of the cat; see
Gray et al. 1989) and across visual areas (Engel et al. 1991b). Zero-lag synchrony was reported
even across homologous cortical areas of the two hemispheres, which was abolished when the
corpus callosum was resected (Engel et al. 1991a). In studies where LFPs were reported, spikes
were found to be near the trough (Eckhorn et al. 1988, Gray & Singer 1989, Gray et al. 1992).
These results indicated the presence of synchronization across parts of visual cortex, consistent
with binding-by-synchrony (BBS) (Gray 1999, Singer 1999) but inconsistent with proposals such
as communication-through-coherence (CTC) (discussed below).

Such a spike–gamma relationship is expected in a scenario where the local gamma networks in
each area become synchronized, a process for which somemechanisms have been proposed (Traub
et al. 1996). However, while the recruitment of such inhibitory networks may lead to enhanced
synchrony in the network, whether this synchrony is used by the brain for computation is a dif-
ferent question. For example, Zandvakili & Kohn (2015) showed that spiking in the input layers
of area V2 was preceded by brief epochs of elevated area V1 synchronization, but this did not
happen for other layers, suggesting that enhanced synchronization in area V1 does not propagate
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across multiple downstream areas; such nonpropagation has also been shown by Schneider and
colleagues (2021).This classic debate over temporal versus rate coding schemes has been discussed
extensively elsewhere (Ainsworth et al. 2012, Shadlen & Movshon 1999, Singer 1999).

Communication-through-Coherence

In CTC, communication between two areas is facilitated if the two neuronal assemblies oscillate
such that their excitabilities are properly aligned, taking into account the conduction delay that
determines the optimal phase difference (Fries 2005, 2015). Some models have shown that such
gamma-based selection can be implemented in simple E–I networks (Börgers & Kopell 2008,
Gielen et al. 2010,Tiesinga& Sejnowski 2010).This hypothesis predicts that when two competing
neural (sender) assemblies in one area want to communicate with a downstream (receiver) area,
the phase angles between the LFPs in the receiver should be well aligned with only one of the two
assemblies. However, spikes in both sender and receiver areas are at the most excitable phase of
their local LFPs (near the trough), so the local spike–gamma phase relationship does not change
in this scheme.

There is evidence both in favor of and against the CTC hypothesis. In support of this pre-
diction, Womelsdorf and colleagues (2007) computed MUA–MUA and MUA–LFP phase angles
and power values across trials, binned trials based on their difference from the mean phase angle
(which they termed good phase relation), and showed that the trials for which the phase angles
were good had stronger correlation in power compared to trials with bad phase relation. The ev-
idence was indirect, since in three out of four data sets, MUA and LFPs were recorded from the
same area. Furthermore, correlations are often difficult to interpret because they are sensitive to
the total response strength (Cohen & Kohn 2011). Since gamma occurs in short bursts (see be-
low), trials with weak gamma would have low power and random phase, while trials with stronger
gamma would have high power and a more well-defined phase. Trials with proper phase relation-
ships may have higher power on average, potentially leading to higher correlation. Furthermore,
since the relationship between correlation and response strength may be nonlinear, it may not be
fully accounted for using regression or partialization.

A more direct test of CTC was done in two studies in which simultaneous recordings were
made from monkey areas V1 and V4 (Bosman et al. 2012, Grothe et al. 2012). Two small stimuli
that activated separate V1 sites but the same V4 recording site were presented, and the monkeys
attended to one of the two stimuli. The authors showed that field–field phase coherence between
areas V1 and V4 was considerably higher for the V1 site that was attended. Bosman and colleagues
(2012) further used Granger causality to show feedforward bottom-up directional influence from
the attended (but not the unattended) V1 site to the V4 site in the gamma range.

While these results show interesting interactions between neural assemblies that depend on
the attentional state, these interactions do not provide unequivocal evidence in favor of CTC,
since the crucial prediction of CTC relates to phase difference, not phase consistency. Specifi-
cally, if the unattended V1 site consistently has a poor phase relationship with the V4 site, then
communication will be hindered, as per CTC, but the coherence (which is a measure of phase
consistency irrespective of the phase difference) will nonetheless be high. The crucial prediction
of CTC is that the two V1 sites should have nonzero phase difference with respect to each other,
and only the attended V1 site should have phase difference with the V4 site that is consistent with
the latency between these two areas. However, these studies did not report phase differences be-
tween the unattended versus attended V1 site and the V4 site. These studies also used different
referencing schemes [bipolar reference (Bosman et al. 2012) versus average reference or single-
electrode reference (Grothe et al. 2012)] to address issues related to volume conduction, but such
referencing distorts both coherence and phase angles (Shirhatti et al. 2016).
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Recently, Rohenkohl and colleagues (2018) showed that the phase relation between areas V1
and V4 can be used to predict behavior: Trials in which the V1–V4 phase angle was closer to the
mean (which they considered good) produced shorter reaction times, but only when the stimulus
was attended. Similar alignment of phase angle with attention has also been reported between the
frontal eye field and area V4 (Gregoriou et al. 2009). However, in these studies, a single stimulus
was presented in the RF, so the key prediction of preferred phase alignment of one (but not the
other) sender area and the downstream receiver area cannot be directly tested. Consider the de-
fault E–I model described above, in which incoming feedforward excitation from the sender area
sets up a local gamma in the receiver area based on its local E–I interactions. In this case as well,
the gamma oscillations in sender and receiver areas are expected to show a latency-dependent
phase relation, which might further be dependent on the attentional state or behavior. Consistent
with this, Schneider and colleagues (2021) have shown that peaks in both coherence and granger
causality spectra can arise when spiking activity in a sending area causes postsynaptic potentials
both in the sender and in the receiver area, suggesting that coherence is not the cause but rather
the consequence of communication. Indeed, changes in coherence can be due to many factors,
such as firing rates and power, independent of a change in oscillatory coupling (Schneider et al.
2021, Srinath & Ray 2014). Furthermore, to achieve selective communication, the target and dis-
tractor networks must satisfy additional constraints, such as differentiability in amplitude, phase,
or frequency of oscillatory modulation (Akam&Kullmann 2012). These studies show that the re-
lationship between communication and coherence is complicated; an increase in coherence does
not necessarily translate to enhanced communication.

Jia and colleagues (2013a) tested for evidence of CTC using simultaneous recordings from
areas V1 and V2. They showed that large visual stimuli produced stronger gamma oscillations in
both areas V1 and V2 compared to smaller stimuli, which led to enhanced pairwise and higher-
order synchrony in the neurons in area V1 and produced stronger V1–V2 spike coupling for pairs
with retinotopically aligned RFs. However, when they computed the probability of a V2 spike
following a V1 spike within the expected delay of approximately 3 ms (estimated using cross-
correlation analysis), this probability varied systematically with the preferred phase of gamma in
area V1 but not in area V2 ( Jia et al. 2013a, figure 7c versus figure 7f ). Therefore, enhanced V1–
V2 coupling arose from enhanced temporal coordination of V1 spiking due to the local gamma in
area V1, but not when the spikes arrived from area V1 at the optimal window set by V2 gamma,
as proposed by the CTC hypothesis.

Gamma Phase-Coding

In gamma phase-coding, sensory information is coded in the timing of the spike relative to the
phase of an ongoing oscillation. This was first proposed by Buzsaki & Chrobak (1995) in the
framework of inhibitory networks, based on the finding that the position of spikes relative to
theta oscillations in the hippocampus of rats carried information about the position of the rat in
the environment (O’Keefe & Recce 1993). Similarly, the low-frequency LFP phase was found to
carry information about the visual stimulus (Montemurro et al. 2008). This concept was later ex-
tended for gamma oscillations by Fries and colleagues (2007). In their work, a neuron receiving
a stronger stimulus is expected to overcome the inhibition earlier and fire earlier in the gamma
cycle compared to neurons receiving weaker stimuli, for which the neuron can only fire near
the trough of the rhythm, when inhibition is lowest. As discussed above, phase difference consis-
tent with this hypothesis has been shown by Vinck and colleagues (2010a), but phase estimates
are likely to be confounded by the differences in absolute gamma power or firing rates among
different conditions. Several other studies (as discussed above) have either failed to observe any
phase shift with stimulus intensity or attention (Chalk et al. 2010) or been able to account for
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the phase differences based on changes in oscillation frequency across conditions (Das & Ray
2018).

Gain Modulation, Selection, and Multiplexing

A variety of (often interrelated) proposals have been made in which gamma oscillations arising
out of E–I interactions modulate the gain of the cortical area (Azouz & Gray 2003, Ni et al. 2016,
Tiesinga et al. 2004), allow a subset of inputs to be selected at the expense of others (Akam &
Kullmann 2010, Börgers & Kopell 2008, Gielen et al. 2010), or allow multiplexing of multiple
inputs at different frequencies (Akam & Kullmann 2014). Unlike BBS and CTC, these proposals
involve the action of gamma within an area (Sohal 2016). As discussed below,many of these mech-
anisms involve basic E–I interactions (Ferguson & Cardin 2020) and can be equivalently framed
in a pro- or antirole fashion, especially when the rhythm itself is of brief duration.

BURSTY NATURE OF GAMMA OSCILLATIONS

In discussions of a potential role of gamma rhythm in cortical processing, an important factor is
the duration of the rhythm. Previous studies have shown that gamma rhythm in the primary visual
cortex occurs in short bursts of 100–200ms duration (Rols et al. 2001,Xing et al. 2012a) and is best
characterized as filtered noise in which bursts simply reflect stochastic fluctuations in amplitude
(Burns et al. 2010, 2011). Such burstiness has also been observed in other rhythms ( Jones 2016,
van Ede et al. 2018), such as the beta rhythm in the striatum and premotor–motor cortex (Feingold
et al. 2015) and prefrontal cortex (Lundqvist et al. 2016), in multiple species, as well as in models
(Sherman et al. 2016). Chandran KS and colleagues (2017) recently showed that the apparent
burstiness could arise due to the variability in spectral estimators, even when the rhythm itself
is not bursty. By using a matching pursuit–based algorithm (Chandran KS et al. 2016, Mallat &
Zhang 1993) that allowed estimation of burst duration in the time domain itself,Chandran KS and
colleagues (2016) showed that the median duration of gamma rhythm was approximately 300 ms.
However, the distribution of gamma bursts (see Chandran KS et al. 2017, figure 7b) still revealed
a clear mode at approximately 100 ms with a heavy tail, suggesting that gamma tends to mainly
appear in short bursts with occasional longer bouts.

Recent models have shown that even though gamma oscillations are bursty, and the instan-
taneous frequency varies considerably, transient epochs of matched frequencies and timing can
be used for flexible routing (Palmigiano et al. 2017). Lowet and colleagues (2017) also showed
that maintenance of phase relations and synchronization required modulations in instantaneous
frequencies and explained these interactions using weakly coupled oscillators. However, the short
duration of gamma rhythmmakes any debate about a functional role largely a matter of semantics.
As described above, the physiological phenomenon is the activation of an inhibitory network re-
cruited by the incoming excitation,which subsequently modulates the excitability of the pyramidal
neurons. A prorole description of this phenomenon would state that the recruitment of inhibitory
neurons generates a transient gamma rhythm,which generates a few alternating epochs of low and
high excitability. An antirole description of the same phenomenon would state that the interneu-
rons hyperpolarize the network, which eventually rebounds back as the inhibition fades away at a
rate corresponding to gamma frequencies and is, therefore, an epiphenomenon of the underlying
E–I interaction. The question of whether the gamma rhythm plays a role in cortical processing is
vague and irrelevant; emphasis should instead be on the physiological mechanisms (Doelling &
Assaneo 2021).

Most of the proposed hypotheses do not require long epochs of gamma. Sensory information
in the visual cortex moves rapidly such that onset latencies between one area and the immediately
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downstream area are on the order of a single gamma cycle (approximately 20 ms), with consider-
able variation in latencies within each area (Schmolesky et al. 1998). For example, Schmolesky and
colleagues reported latencies in areas V1, V2, and V4 (mean ± standard deviation) of 66 ± 10.7,
82 ± 21.1, and 104 ± 23.4 milliseconds, respectively. Sensory excitation and resulting feedback
inhibition within each area would cause at least one cycle of gamma rhythm in each area (whether
to consider this as a rhythm is subjective), and such transient gamma bursts across areas will have
some latency-dependent phase relationship.One interesting question is, since the typical duration
of gamma is >100 ms (at least four cycles), are the subsequent cycles of gamma of any relevance,
or are they mere reverberations? Unfortunately, this question is difficult to address using standard
signal processing techniques because of the time–frequency uncertainty principle (Chandran KS
et al. 2016, Pesaran et al. 2018). Spectral resolution depends on the time interval over which anal-
ysis is done (the so-called Rayleigh frequency is given by 1/T, where T corresponds to the analysis
interval; for a more detailed discussion, see Chandran KS et al. 2016). To get a reasonable spec-
tral resolution, stationarity must be assumed over at least 150–200 ms, and the resulting estimate
of power or phase consistency is essentially the average over that interval. For example, the SFC
evaluated over 200 ms to get a spectral resolution of 5 Hz yields the average phase consistency
over approximately eight gamma cycles.

Regardless of whether gamma oscillations play a role in cortical processing, it is clear that they
provide a unique signature by which to study E–I interactions that can be observed in noninvasive
signals such as electroencephalogram or magnetoencephalogram (Pesaran et al. 2018). These E–I
interactions and gamma oscillations are altered in a variety of mental disorders such as autism,
schizophrenia, and Alzheimer’s disease (Murty et al. 2021; Sohal & Rubenstein 2019; Uhlhaas
& Singer 2010, 2012). This, together with the observation that the gamma band may be more
privileged to capture signatures of neural processes even when these processes do not involve
genuine gamma rhythmicity, makes gamma an important tool to study brain function.
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