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Abstract

The eye sends information about the visual world to the brain on over
20 parallel signal pathways, each specialized to signal features such as spec-
tral reflection (color), edges, andmotion of objects in the environment. Each
pathway is formed by the axons of a separate type of retinal output neuron
(retinal ganglion cell). In this review, we summarize what is known about
the excitatory retinal inputs, brain targets, and gene expression patterns of
ganglion cells in humans and nonhuman primates. We describe how most
ganglion cell types receive their input from only one or two of the 11 types
of cone bipolar cell and project selectively to only one or two target regions
in the brain. We also highlight how genetic methods are providing tools to
characterize ganglion cells and establish cross-species homologies.
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1. INTRODUCTION

1.1. Background

Different visual modalities such as color and motion are processed in parallel within the retina
and then sent to higher brain regions via different types of retinal ganglion cells (Wässle 2004).
Ganglion cells receive visual information from photoreceptors via bipolar and amacrine cells
(Figure 1a) and transmit these signals via the optic nerve to different visual centers of the brain.
Ganglion cells vary with respect to their morphology, retinal connectivity, central projections,
and response properties. Traditionally, they have been subdivided based on the morphology and
size of their dendritic tree. For example, the best-studied ganglion cell types in the primate retina,
midget and parasol cells (Figure 1b,c), differ in the size of their dendritic trees, with midget
cells having consistently smaller dendritic trees than parasol cells throughout the retina. Recent
studies have begun to distinguish retinal ganglion cells in human and nonhuman primate retina by
combining molecular methods and histological methods such as single-cell RNA sequencing, viral
transduction, biolistic transfection, fluorescence in situ hybridization, and immunohistochemistry
(Cowan et al. 2020, Hoshino et al. 2017, Jüttner et al. 2019, Peng et al. 2019, Yan et al. 2020).
These advances herald the dawn of a new era for retinal neuroscience, that is, molecular-assisted
comparative retinal anatomy.

1.2. Scope of This Review

We review recent advances in understanding the intraretinal connections and central projections
of primate ganglion cells, together with their more recently revealed molecular characteristics.
The physiological properties of primate ganglion cells have been the subjects of comprehensive
reviews (Crook et al. 2014b, Field & Chichilnisky 2007, Kling et al. 2019, Lee et al. 2010), and
readers are referred to these reviews for details of physiology.

The macaque retina is the traditional model experimental system for primate vision, and phys-
iological and anatomical studies of this model use a variety of techniques ranging from retrograde
labeling (Dacey et al. 2003, Leventhal et al. 1981, Rodieck & Watanabe 1993), to intracellular
recordings in vivo (Lee et al. 1989) and in vitro (Dacey & Lee 1994, Dacey et al. 2005, Manookin
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Figure 1

Vertical view of the retina. (a) Signal flow in the mammalian retina drawn by Ramón y Cajal in 1901 (public
domain). Rods (R) contact rod bipolar cells (RB), and cones (C) contact cone bipolar cells (CB). Cone bipolar
cells contact ganglion cells (G) at different levels of the inner plexiform layer. (b,c) Drawings of Golgi-
impregnated (b) midget and (c) parasol ganglion cells from the central retina in the macaque. Panels b and c
adapted with permission from Polyak (1941).
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et al. 2018, Puller et al. 2015), to in vitro array recordings (Chichilnisky & Baylor 1999, Field
et al. 2010, Li et al. 2015), to in vivo imaging (Gray et al. 2008; McGregor et al. 2020; Yin et al.
2011, 2014). Some of these methods are now being applied to the human retina (Cowan et al.
2020, Jüttner et al. 2019, Liu et al. 2017). Much of what we describe in this review is thus nat-
urally based on studies in the macaque, but we also consider recent results from the human and
marmoset retina.

2. TOPOGRAPHY OF RETINAL GANGLION CELLS IN PRIMATES

2.1. Comparison to Other Mammals

Diurnal (day-active) primates have the largest number of retinal ganglion cells of all mammals.
For example, rabbits have a total of approximately 400,000, and cats have approximately 150,000
to 200,000 ganglion cells, but macaquemonkeys have between 1 and 1.5 million ganglion cells (for
a review, see Masri et al. 2019). Primates also achieve the highest densities of ganglion cells; for
example, macaques have a peak density of approximately 50,000 ganglion cells per mm2, whereas
the peak density of ganglion cells in the cat (Wässle et al. 1981), rabbit (Vaney 1980), and mouse
( Jeon et al. 1998) is around or below 10,000 cells per mm2. The high number of ganglion cells in
diurnal primates is due to the presence of a macula, where ganglion cell bodies occur up to eight
layers deep (Figure 2a). Thus, in foveate primates such as humans, an area of approximately 7%
of the retina contains approximately 50% of the ganglion cells (Curcio & Allen 1990).

2.2. Primate Macular Topography and Comparison to Mice

Comparison of macular topography in three diurnal primates, humans (Figure 2b), macaques
(Figure 2c), and marmosets (Figure 2d), shows that the similarities outweigh the differences. The
peak cone density at the fovea lies between 200,000 (human) and 300,000 (marmoset) cells/mm2.
Ganglion cells connecting to foveal cones via bipolar cells are shifted up to 0.4 mm away from the
cone outer segments by cone Henle fibers and oblique processes of bipolar cells. Furthermore, as
noted above, in the macula, the ganglion cells are stacked up to eight layers deep. Thus, although
peak ganglion cell density is lower than peak cone density, the retinal volume in which these gan-
glion cells are contained is much larger (roughly proportional to the square of distance from the
fovea). The upshot of all of this is that, within the central-most 1–2 mm, the number of ganglion
cells is easily more than double the number of cones that feed them (Masri et al. 2020, Schein
1988,Wässle et al. 1989, Wilder et al. 1996).

The divergent pattern of macular connectivity is common to the three primate species shown
in Figure 2. For example, within 170 μm (radius) of the center of the fovea, almost 9,000 cones
are connected to 21,000 ganglion cells that are located up to 620 μm eccentricity in human retina
(ratio 2.3 ganglion cells/cone; Figure 2b), and the studies cited above have estimated ganglion
cell–to-cone ratios between 2 and 4 for all three species. By contrast, there is numerical conver-
gence from cones to ganglion cells throughout the mouse retina (average ganglion cell–to-cone
ratio of 0.6; Figure 2e), and a fovea-sized region of the mouse retina would house fewer than
1,000 ganglion cells. The foveal specializations in diurnal primates support high behavioral acuity
(30–60 cycles/deg) compared to the modest behavioral acuity of mice (0.5 cycles/deg). Mice, on
the scale of human visual performance, are legally (but not totally) blind.

2.3. Diversity of Primate Ganglion Cells

To date, at least 17 morphological (Dacey 2004, Dacey et al. 2003, Kolb et al. 1992, Masri
et al. 2019, Yamada et al. 2005) and molecular (Peng et al. 2019) types of ganglion cells have been
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Figure 2

Spatial densities of ganglion cells. (a) Confocal image of a vertical section through the human fovea (Masri
et al. 2020). Ganglion cells show RBPMS immunolabeling (green); other cell bodies are labeled with DAPI
(white). (b–d) Spatial density of cone photoreceptors and ganglion cells in the central-most five millimeters of
the (b) human, (c) macaque monkey, and (d) marmoset monkey retina. Data are plotted relative to the cone
peak density. Note that ganglion cells are displaced by up to 400 μm from the cone photoreceptors by Henle
fibers and oblique bipolar cell processes. Data in panel b taken from Curcio & Allen (1990) and Curcio et al.
(1990). Data in panel d taken from Wilder et al. (1996). (e) Spatial density of cone photoreceptors and
ganglion cells across the entire (approximately 5 mm diameter) mouse retina. Data are plotted relative to the
position of the optic disk. Data taken from Jeon et al. (1998).

distinguished in the primate retina. The morphology of these ganglion cell types is comparable
in Old World primates such as humans and macaques, and similar ganglion cell types have been
found in diurnal New World primate species such as marmosets and capuchin monkeys (Ghosh
et al. 1996, Ivanova et al. 2010, Moritoh et al. 2013, Silveira et al. 2004, Yamada et al. 1998).
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Some species-related differences, however, have been found on the molecular level (Table 1). As
detailed below (Section 2.4), the best-understood types are the three so-called classical ganglion
cell types (midget, parasol, and small bistratified), with more recently studied nonclassical or
wide-field types making up the remainder.

2.4. Distribution of Classical and Nonclassical Ganglion Cell Types

There is good agreement among studies that, in the fovea, midget cells make up 80–90% of the
ganglion cells, and parasol cells make up 5–10% (Dacey 1993b, Grünert et al. 1993, Masri et al.
2019, Perry et al. 1984, Silveira & Perry 1991). Midget cells also form the majority of ganglion
cells in the peripheral retina, but their proportion drops to approximately 50% (Crook et al. 2014b,
Masri et al. 2019). Data from two recent molecular analyses estimated an over 70% proportion of
midget cells in the peripheral retina of macaques (Peng et al. 2019) and humans (Yan et al. 2020).

Non-midget, non-parasol ganglion cell types likely make a small contribution to the fovea
(Calkins & Sterling 2007, Calkins et al. 1998, Percival et al. 2013) and a more significant
contribution to the peripheral retina (Dacey 2004, Masri et al. 2019). One of these is the now
well-characterized small bistratified (SBS) ganglion cell type (see Section 4.3), which is estimated
to make up approximately 6% of the ganglion cell population in the peripheral retina. The
remaining nonclassical ganglion cells are low-density ganglion cell types and are also referred
to as wide-field ganglion cells because they have relatively large dendritic fields compared to
midget, parasol, and SBS cells.

3. STRATIFICATION IN THE INNER PLEXIFORM LAYER

In primates, there are 11 types of cone bipolar cells that contact cones and one type of rod
bipolar cell that contacts rods (Boycott & Wässle 1991; Joo et al. 2011; Tsukamoto & Omi
2015, 2016) (Figure 3a,b). The axons of different bipolar types terminate in different strata
of the inner plexiform layer (IPL), where they make synaptic connections with ganglion and
amacrine cells. Bipolar cells are customarily divided into ON types (which are depolarized at
light onset) and OFF types (which are depolarized at light offset) (for a review, see Grünert
& Martin 2020). There are five types of OFF cone bipolar (Figure 3a), six types of ON
cone bipolar, and one type of ON rod bipolar cell (Figure 3b). The axons of OFF bipo-
lar cells terminate in the outer half of the IPL, and the axons of ON bipolar cells terminate
in its inner half (Figure 3a,b). The axonal stratification of specific bipolar cell types has also
been measured using immunohistochemical markers in macaque and marmoset retinas ( Jusuf
et al. 2004, Percival et al. 2013, Weltzien et al. 2015) (Figure 3c–h) and is summarized in a
schematic diagram in Figure 4. The IPL can be subdivided into five strata of equal thickness,
named S1–S5. The outer strata (0–46% depth) contain the axon terminals of the OFF diffuse
bipolar (DB) types DB1–DB3 and flat midget bipolar cells, as well as the processes of OFF star-
burst amacrine cells. The inner strata (48–100%) contain the ON bipolar types DB4–DB6, giant
bipolar, invaginating midget bipolar, and rod bipolar cells as well as the processes of the ON star-
burst amacrine cells. The middle of the IPL is dominated by the processes of wide-field amacrine
cells, whereas narrow-field amacrine cells are found throughout the entire IPL (for a review,
see Grünert & Martin 2020). Amacrine cells usually provide the major synaptic input to all of
the retinal ganglion cells that have been studied to date, but the functional roles of most amacrine
cells remain to be determined. In this review, we focus on the ganglion connectivity with cone
bipolar cells; the amacrine connectivity has been covered in another recent review (Grünert &
Martin 2020). For our present purposes, the starburst amacrine cells, which can be identified with
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Bipolar types in the primate retina. (a,b) Schematic diagrams of the bipolar types in the primate retina. (a) OFF bipolar types. (b) ON
bipolar types. Panels a and b adapted with permission from Boycott & Wässle (1991) and Grünert & Martin (2020). (c–h) Stratification
in the IPL. Micrographs of immunolabeled vertical sections through the marmoset retina are shown. Antibodies against CD15
(magenta) label FMB and DB6 cells, which stratify in S1/2 and S5 (white arrows), respectively. (c,d) Antibodies against calbindin (green)
label cone pedicles, DB3a cells (S2/3; yellow arrow), and a subpopulation of amacrine cells including inner starburst cells (SAC, S4; yellow
arrow). (e, f) Antibodies against ChAT (green) identify inner and outer starburst cells (S2/3 and S4/5; yellow arrows). (g,h) Antibodies
against PKCα (green) label rod bipolar and DB4 cells (yellow arrows) (for details, see Jusuf et al. 2004). Abbreviations: BB, blue cone
bipolar; ChAT, choline acetyltransferase; DB, diffuse bipolar; FMB, flat midget bipolar; GB, giant bipolar; GCL, ganglion cell layer;
IMB, invaginating midget bipolar; INL, inner nuclear layer; IPL, inner plexiform layer; PKCα, protein kinase Cα; OPL, outer
plexiform layer; RB, rod bipolar.
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Schematic diagram of bipolar cell axonal stratification in the primate inner plexiform layer (IPL). The axon terminals of the bipolar
types are shown together with the choline acetyltransferase (ChAT) bands (gray). The diffuse bipolar (DB) types DB1, DB2, DB3a, and
DB3b and the flat midget bipolar (FMB) cell are OFF bipolar cells and stratify in the outer half of the IPL. The DB types DB4, DB5,
and DB6; the giant bipolar (GB) cell; the blue cone bipolar (BB) cell; the invaginating midget bipolar (IMB) cell; and the rod bipolar
(RB) cell are ON bipolar cells and stratify in the inner half of the IPL. The dendritic trees of the bipolar cells have been omitted. Note
that ON bipolar somas tend to lie distal to OFF bipolar somas in the inner nuclear layer (INL).

antibodies, are important because their narrowly stratified processes act as guidelines in the IPL:
ON starburst processes mark stratum S2, and OFF starburst processes mark stratum S4.

4. CLASSICAL GANGLION CELL TYPES

4.1. Midget Ganglion Cells

Midget ganglion cells, which derive their name from their small dendritic fields (Polyak 1941), are
the most numerous ganglion cell type in the primate retina and are unique to primates. Midget
ganglion cells are crucial for high-acuity and red–green color vision.

4.1.1. Morphology and connectivity with bipolar cells. Midget ganglion cells comprise
inner (ON) and outer (OFF) stratifying cells. Foveal midget ganglion cells have very small,
compact dendritic trees (Figure 5a, left), whereas more peripheral midget ganglion cells have
more diffuse dendritic trees (Figure 5a, right). In the central retina, midget ganglion cells make
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midget cell

Peripheral
midget cell

a c
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Figure 5

Midget ganglion cells. (a) Drawings of midget ganglion cells from the marmoset retina. The cell on the left is from the foveal retina.
The cell on the right is from the peripheral retina (4.4 mm eccentricity). (b). The stratification of inner and outer midget cells is shown
with respect to the ChAT bands (gray). The dominant input to outer midget cells derives from FMB cells, and the dominant input to
inner midget cells derives from IMB cells. (c) Composite micrographs of midget ganglion cells from macaque fovea labeled following
horseradish peroxidase injection into the optic tract (P.R. Martin, unpublished data). Abbreviations: ChAT, choline acetyltransferase;
FMB, flat midget bipolar; GCL, ganglion cell layer; IMB, invaginating midget bipolar; INL, inner nuclear layer; IPL, inner plexiform
layer; LGN, lateral geniculate nucleus.
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one-to-one connections with OFF (flat) or ON (invaginating) midget bipolar cells (Figure 5b,c),
which in turn make one-to-one connections with cones. This connectivity, which is the basis for
high-acuity vision and for red–green color vision, is present in Old World (Calkins et al. 1994,
Kolb & DeKorver 1991) and New World primates (Chan et al. 2001, Jusuf et al. 2006b, Telkes
et al. 2008) and emerges during fetal development by a process of refinement of initially less
discriminate connections (Zhang et al. 2020). In the midperipheral retina, midget ganglion cells
receive the large majority of their input from midget bipolar cells in both marmosets ( Jusuf et al.
2006a) and macaques; Tsukamoto & Omi (2015, 2016) reported additional input from DB1 and
DB6 cells to outer and inner cells, respectively.

In the macaque (but not the marmoset) retina, there is morphological and physiological ev-
idence that, in the foveal region, approximately 5% of OFF midget ganglion cells receive in-
put from short-wavelength-sensitive (S) cones via OFF midget bipolar cells (Klug et al. 2003,
Patterson et al. 2019a, Tsukamoto & Omi 2015, Wool et al. 2019). In the peripheral retina of
macaques and humans, midget bipolar cells receiving input from a single cone are found in up
to about 40° of visual angle (Masri et al. 2020, Wässle et al. 1994), but at this eccentricity each
midget ganglion cell receives input from multiple midget bipolar cells, resulting in nonselective
input from all cone types, including S-cones (Diller et al. 2004, Field et al. 2010,Martin et al. 2001,
Wool et al. 2019). Thus, in the peripheral retina, a pure blue-OFF midget ganglion cell type is
not present (for a review, see Grünert & Martin 2020).

The connectivity in themidget pathway in themarmoset retina differs from that ofmacaques in
that, in marmosets, single-cone-contacting midget bipolar cells are restricted to the fovea (Telkes
et al. 2008). Thus, outside the fovea in marmosets, the medium-wavelength-sensitive (M)/long-
wavelength-sensitive (L) cone input to midget ganglion cells is already mixed at the level of the
cone contacts.

4.1.2. Percentage and molecular markers. As noted above, midget ganglion cells have been
estimated to make up 80–90% of the ganglion cells in the fovea and approximately 50% of gan-
glion cells in the peripheral retina of macaques (Crook et al. 2014b, Dacey 2004); comparable
values likely apply for humans (Dacey 1993b) and marmosets (Masri et al. 2019). Recent studies
identified midget ganglion cells at the molecular level and also found genetic differences between
inner and outer midget ganglion cells (Peng et al. 2019, Yan et al. 2020) (Table 1). These studies
also showed that, in marmosets and humans, the somas of outer midget ganglion cells are located
closer to the inner nuclear layer than those of inner midget ganglion cells.

4.1.3. Central projections and physiology. Retrograde labeling studies in macaques
(Leventhal et al. 1981, Perry et al. 1984) and marmosets ( Jusuf et al. 2006a, Szmajda et al. 2008)
have demonstrated that the major input to the parvocellular layers of the dorsal lateral geniculate
nucleus (LGN) derives from midget or (Pβ) ganglion cells. Moreover, there is good evidence that
midget ganglion cells in both species do not target any other brain areas and thus project exclu-
sively to the parvocellular layers of the LGN (Grünert et al. 2021, Kwan et al. 2019, Rodieck &
Watanabe 1993).

Functional properties of midget-parvocellular cells have been discussed in recent reviews and
thus are only briefly summarized in this article. Midget cells show sustained responses to main-
tained illumination and low and nonsaturating contrast sensitivity and have small receptive fields,
consistent with a role in high-acuity vision at high image contrasts (for reviews, see Kling et al.
2019, Lee et al. 2010, Thoreson & Dacey 2019).

In and around the fovea, midget cells show red–green color opponent responses by virtue of
low numerical convergence fromM- and L-cone photoreceptors to the receptive field center and
indiscriminate M/L inhibitory inputs to the surround (Wool et al. 2018; but see also Patterson
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et al. 2019b). Red–green opponent responses deteriorate with greater convergence of M/L cone
inputs at greater eccentricities, with only mild biases toward M- or L-cones in either the center
or surround (Field et al. 2010, Wool et al. 2018).

Over the past decade, the properties of midget-parvocellular cell receptive fields recorded in
whole-animal preparations with intact optics and the properties recorded in vitro from macaque
retina have gradually converged. For example, foveal midget cells recorded in vivo from animals
with intact optics show more sustained responses than their peripheral counterparts (Solomon
et al. 2002), and in vitro measurements show only weak inhibitory inputs to foveal compared to
peripheral midget cells (Crook et al. 2011, Sinha et al. 2017).

Four recent papers reported recordings of midget ganglion cells in in vitro preparations of
human retina. Three of these studies (Cowan et al. 2020, Kling et al. 2020, Soto et al. 2020) found
clear similarities in spatial and temporal properties of human midget receptive fields to previ-
ous studies of macaque and marmoset midget-parvocellular pathway fields (for reviews, see Kling
et al. 2019, Lee et al. 2010, Thoreson & Dacey 2019). The fourth (Reinhard & Münch 2021)
found relatively fewer examples of typical midget-parvocellular-type receptive fields and overall
only mild functional distinctions among recorded receptive fields. Differences in tissue preserva-
tion quality, visual stimulus, and eccentricity of recorded cells could underlie this discrepancy.

4.2. Parasol Ganglion Cells

Parasol cells were named by Polyak (1941, p. 312) for their characteristic morphology
(Figure 1c), which “resembles somewhat an open Chinese umbrella or parasol.” They make up
the second largest population of ganglion cells in the primate retina and play a role in motion
detection and acuity at low image contrasts.

4.2.1. Morphology and connectivity with bipolar cells. Parasol cells have thick primary den-
drites that extend radially from a large soma (Figure 6a). There are inner (ON) and outer (OFF)
stratifying parasol cells, and their dendrites are located close to the center of the IPL (Figure 6b)
(Ghosh et al. 1996,Watanabe & Rodieck 1989). Parasol cells receive approximately 20% of their
input from bipolar cells and approximately 80% from amacrine cells ( Jacoby et al. 1996, Patterson
et al. 2020a). The major bipolar input to outer parasol cells derives fromDB3a cells (Figure 6c) in
macaque (Calkins & Sterling 2007, Jacoby &Marshak 2000, Jacoby et al. 2000,Tsukamoto&Omi
2015) and marmoset retinas (Masri et al. 2016, 2019). In addition, outer parasol cells receive some
input from DB1, DB2, and DB3b cells (Tsukamoto & Omi 2015). The major bipolar input to
inner parasol cells derives from DB4 cells, with additional input from DB5 cells and invaginating
midget bipolar cells (Girresch 2020, Puthussery et al. 2013, Tsukamoto & Omi 2016).

4.2.2. Percentage and molecular markers. Retrograde labeling studies estimated that parasol
(Pα) cells in macaques make up approximately 10% of the retinal ganglion cells in the peripheral
retina (Perry et al. 1984). Similar proportions were obtained using neurofibrillar staining in
macaques (Silveira & Perry 1991) and immunohistochemical staining in the NewWorld monkey
Saimiri (Hughes et al. 1989). In the central retina, immunohistochemical studies using antibodies
against GABAA receptors in the macaque retina estimated that parasol cells make up between
5% and 8% of the ganglion cell population (Grünert et al. 1993). The mosaic properties of inner
and outer parasol cells differ, with inner cell diameters in macaques being approximately 30%
larger than those of their outer counterparts (Dacey & Petersen 1992), suggesting that outer cells
occur at higher densities. According to recent estimates from molecular studies, the proportion
of outer parasol cells is lower in the peripheral than in the foveal retina, but the proportion of
inner parasol cells remains constant (Peng et al. 2019, Yan et al. 2020).
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Figure 6

Parasol cells. (a) Drawing of an inner parasol ganglion cell from the marmoset retina. Drawing provided by K.K. Ghosh. Eccentricity is
6.5 mm. (b) The stratification of inner and outer parasol cells is shown with respect to the ChAT bands (gray). The dominant input to
outer parasol cells derives from DB2 and DB3a cells, whereas inner parasol cells receive most of their input from DB4 and DB5 cells.
Eccentricity is 4.0 mm. (c) Confocal image of calbindin-labeled DB3a axon terminals (magenta). (d) The image in panel c is shown
together with the dendrites of an outer parasol cell (green). The processes of the two cells are closely associated. Abbreviations: ChAT,
choline acetyltransferase; DB, diffuse bipolar; GCL, ganglion cell layer; INL, inner nuclear layer; IPL, inner plexiform layer.

In macaques, parasol cells have been suggested to be immunoreactive to antibodies against
carbonic anhydrase (CA) 8 (Puthussery et al. 2013) and molecular studies found the CA8
gene in outer parasol cells of the macaque (Peng et al. 2019) but not of the human (Yan
et al. 2020) retina. Other molecular markers for parasol cells are listed in Table 1.

4.2.3. Central projections and physiology. Parasol cells were originally suggested to project
preferentially to the magnocellular layers of the LGN, with only a low number projecting to
the superior colliculus (Leventhal et al. 1981, Perry & Cowey 1984, Perry et al. 1984, Rodieck &
Watanabe 1993).More recently, however, it has been established formacaques (Crook et al. 2008b)
andmarmosets (Grünert et al. 2021,Kwan et al. 2019) that a substantial proportion of parasol cells
projects to the superior colliculus.This projection is thought to derive from a branching axon,with
the other branch going to the LGN (Crook et al. 2008b).

Parasol cells show high contrast sensitivity and vigorous, transient responses to rapidly flicker-
ing or moving stimuli. These response properties reflect their functional role of feeding cortical
and subcortical pathways for motion detection (for reviews, see Crook et al. 2014b, Lee et al.
2010). As is the case with midget cells (see above), many results from recent in vitro recordings
have confirmed and extended principles first established in whole-animal recordings with intact
optics. It has been established that parasol cells show nonlinear (Y-like) spatial summation, albeit
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less prominently than do Y/alpha cells in the cat retina, likely reflecting functional subunits corre-
sponding to diffuse bipolar cell inputs (Crook et al. 2008b, 2014a). Recent measurements (Appleby
& Manookin 2020, Manookin et al. 2018, Turner & Rieke 2016) have explored nonlinearities in
parasol cell receptive fields and their manifestation in responses to looming and moving stimuli
and stimuli with frequency spectra emulating natural scenes. The pictures emerging from these
studies are more complex and nuanced than the simplistic summary introduced above that parasol
cells feed motion-detection pathways. However, it could be argued that this summary is still the
best that we have as our understanding of parasol cell function moves forward.

4.3. Small Bistratified Ganglion Cells

SBS ganglion cells are equivalent to Polyak’s shrub cells (see Dacey 1993a). They have dendritic
field sizes comparable to those of parasol cells but show distinctmorphology. SBS cells are involved
in blue–yellow color vision (Dacey & Lee 1994).

4.3.1. Morphology and connectivity with bipolar cells. The morphology of SBS cells was
first described in detail in macaque and human retinas (Dacey 1993a, Rodieck 1991), and cells
with comparable morphology have subsequently been found in diurnal New World monkeys
(Ghosh et al. 1996, Silveira et al. 1999). The dendritic field size of SBS cells is in the same
range as that of parasol cells, but their morphologies are clearly different. SBS cells have a rel-
atively sparse dendritic tree characterized by hooks and thorns (Figure 7a). The inner dendritic
tier is larger than the outer dendritic tier. The inner dendrites stratify in strata S4/S5, whereas
the outer dendrites are located in S2 of the IPL (Figure 7b). Intracellular recordings from SBS
cells in the macaque retina showed that they have blue-ON and yellow-OFF responses (Crook
et al. 2009, Dacey & Lee 1994). Electron microscopic studies confirmed that the inner dendritic
tier of SBS cells receives input from blue cone bipolar cells (Calkins & Sterling 2007; Patterson
et al. 2020b,c; Wool et al. 2019). The input to the outer tier has been suggested to include DB2
and DB3a cells (Calkins et al. 1998, Ghosh et al. 1997), but the proportions of input from the
different types of bipolar cell to the outer ties are not known.

4.3.2. Percentage and molecular markers. Taking dendritic coverage and dendritic field area
into account, the percentage of SBS cells in macaques increases from approximately 1.5% in the
central retina to approximately 6% in the periphery, making it the third most common ganglion
cell type in the primate retina (Dacey 1993a). In the human retina, cells with the morphology of
SBS cells were found to be immunolabeled with antibodies against calretinin (Lee et al. 2016). In
contrast, in the macaque retina, calretinin is not present in ganglion cells of adults (Hendrickson
et al. 2007), and in the marmoset retina, calretinin is expressed by wide-field ganglion cell types
(Chandra et al. 2017).

4.3.3. Central projections and physiology. In the macaque retina, SBS cells were identified
after retrograde labeling from the LGN (Dacey et al. 2003, Rodieck 1991), and it was originally
suggested that they project to the parvocellular layers. More recent tracer studies in marmosets
found that SBS cells target the koniocellular layers of the LGN (Percival et al. 2009, Szmajda et al.
2008), which are located between the parvo- and magnocellular layers. The koniocellular layers
are neurochemically distinct (Goodchild & Martin 1998, Hendry & Yoshioka 1994, Johnson &
Casagrande 1995, Kaas et al. 1978). Consistently, electrophysiological recordings from the konio-
cellular layers inmarmosets (Martin et al. 1997) andmacaques (Roy et al. 2009) have demonstrated
that cells with similar properties to SBS cells (named blue-ON cells) are segregated to the konio-
cellular layers.
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Small bistratified (SBS) and large bistratified (LBS) cells. (a) Drawing of an SBS cell in the marmoset retina
obtained after intracellular injection. The inner dendrites are shown in black; the outer dendrites are shown
in red. Drawing provided by K.K. Ghosh. Eccentricity is 4.4 mm. (b) Stratification and suggested
connectivity. The inner dendrites of SBS cells receive input from blue cone bipolar cells, and the outer
dendrites likely receive input from DB2 and DB3 cells. (c) Drawing of an LBS cell in the marmoset retina
obtained after intracellular injection. Drawing provided by K.K. Ghosh. Eccentricity is 5.2 mm.
(d) Stratification is shown with respect to the ChAT bands (gray) and suggested connectivity with diffuse
bipolar cells. (e) Orthogonal view of a DiI-injected LBS cell together with DAPI-labeled (blue) cell nuclei in
the INL and GCL. Additional abbreviations: ChAT, choline acetyltransferase; DB, diffuse bipolar; GCL,
ganglion cell layer; INL, inner nuclear layer; IPL, inner plexiform layer.

Taken together, the current view is that SBS ganglion cells are part of the koniocellular
pathway, which is considered to be evolutionarily older than the parasol-magnocellular and
midget-parvocellular pathways ( Jones 2001). However, in contrast to parasol cells and to wide-
field ganglion cells, there is no evidence that SBS cells project to other subcortical visual centers
(Dacey 2004, Grünert et al. 2021). The detailed physiological properties of SBS cells have been
discussed in recent reviews (Crook et al. 2014b, Thoreson & Dacey 2019) and are not considered
further in this article.

5. WIDE-FIELD GANGLION CELLS

5.1. Large Bistratified Cells

Large bistratified (LBS) cells have been observed in human, macaque, and marmoset retinas
(Dacey 1993a, Dacey et al. 2003, Masri et al. 2019, Percival et al. 2013, Peterson & Dacey 2000,
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Yamada et al. 2005). In macaque, LBS cells are part of the (collicular-projecting) S-group of cells
(Rodieck & Watanabe 1993), and in the human retina, cells with a similar morphology were
named G17 (Kolb et al. 1992, Lee et al. 2016). LBS cells resemble SBS cells in that they have
relatively sparse dendritic trees (Figure 7c) and stratify in similar regions of the IPL (Figure 7d),
but the dendritic field size of LBS cells is consistently larger than that of SBS cells at comparable
eccentricities (Dacey 1993a, Dacey et al. 2003). Moreover, these studies found that SBS but not
LBS cells are tracer coupled to amacrine cells.

Preliminary electrophysiological recordings from LBS cells in the macaque retina suggested
that they have blue-ON and yellow-OFF responses (Dacey et al. 2003), but a full characterization
of the response properties of LBS cells is still lacking. The synaptic connectivity of LBS cells
has not been studied, but given their stratification and the evidence that they have blue-ON
responses, the inner dendrites likely receive input from blue cone bipolar cells. The diffuse bipolar
types DB2 and DB6 are additional candidates that may provide input to the inner dendrites, but
this possibility needs to be supported by further studies. Although Masri et al. (2019) found some
potential connections of LBS cells with DB3a cells in marmosets, it is unlikely that these cells
provide significant input.

LBS cells are suggested to make up 3% of the ganglion cells in the peripheral retina of the
macaque (Crook et al. 2014b). In marmosets, examples of LBS cells have also been found in the
central retina (Percival et al. 2013), but their proportion has not been determined. In the human
retina, LBS cells, like SBS cells, have been suggested to express the calcium-binding protein cal-
retinin (Lee et al. 2016), and in macaques a bistratified cell type with similar morphology has been
found to express the transcription factor Satb2 (Peng et al. 2019).

As noted above, there is evidence from retrograde tracer studies that LBS cells project to the
superior colliculus (Rodieck & Watanabe 1993). Other studies detected LBS cells after tracer
injections into the LGN (Dacey et al. 2003, Percival et al. 2013) and the pulvinar (Kwan et al.
2019).

5.2. Smooth Monostratified Cells

Smooth monostratified cells (referred to below as smooth cells) resemble parasol cells but have
comparatively larger dendritic trees throughout the retina and have smaller soma and axon di-
ameters. They have been studied in detail in the macaque retina (Crook et al. 2008a), and cells
with similar morphology have also been found in human (Peterson & Dacey 1999) and marmoset
retinas (Grünert et al. 2021, Masri et al. 2019).

5.2.1. Morphology and connectivity with bipolar cells. Smooth cells have relatively thick
primary dendrites radiating from the soma (Figure 8a,c). Analysis of the mosaic properties of
smooth cells in the macaque showed that the somas are regularly spaced, and their dendritic trees
tile the retina with minimal overlap, suggesting that they form independent spatial arrays (Crook
et al. 2008a).

The dendrites of outer and inner stratifying smooth cells are found at the same level as those
of outer and inner parasol cells, suggesting that they may share presynaptic partners. However,
in marmosets, OFF smooth cells do not show the same strong connectivity to DB3a cells as has
been shown for OFF parasol cells (Masri et al. 2016, 2019) (Figures 5c,d and 8c,d), suggesting
that the weighting of the bipolar input differs between the two ganglion cell types. Based on their
stratification, outer smooth cells may receive their major input from DB2 and DB3b cells. The
input to inner smooth cells (Figure 8b) has recently been found to derive predominantly from
DB5 cells, with DB4 and giant bipolar cells also contributing (Girresch 2020).
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Smooth monostratified (SMO) cells. (a) Drawing of an outer SMO cell from the marmoset retina. The cell was obtained after
retrograde labeling from the superior colliculus and intracellular injection (Grünert et al. 2021). Eccentricity is 6.4 mm. (b) Schematic
diagram showing the stratification of inner and outer SMO cells with respect to the ChAT bands (gray) and suggested dominant
presynaptic bipolar input. (c) Confocal image of calbindin-labeled DB3a axon terminals (magenta) (horizontal view). (d) The image in
panel c is shown together with the dendrites of an outer SMO cell. DB3a axons have regions of overlap with SMO cells but are not
closely associated (Masri et al. 2016, 2019). Additional abbreviations: ChAT, choline acetyltransferase; DB, diffuse bipolar; GCL,
ganglion cell layer; INL, inner nuclear layer; IPL, inner plexiform layer.

5.2.2. Central projections and physiology. In macaque and marmoset retinas, smooth mono-
stratified cells were identified after retrograde tracer injections into the superior colliculus and the
LGN (Crook et al. 2008a, Grünert et al. 2021, Percival et al. 2013), but other retrograde labeling
studies targeting the superior colliculus did not report these cells (Rodieck & Watanabe 1993).
The specific layer(s) that these cells target in the superior colliculus and LGN have not been
determined. Taking their mosaic properties into account (see above), it is likely that smooth cells
project to both the superior colliculus and the LGN via branching axons.

Smooth cells show strong Y-like response signatures with frequency-doubled responses to
counterphase gratings, consistent with the presence of rectifying receptive field subunits; have
receptive fields 2–3 times the diameter of parasol cell fields at the same eccentricity; and show
only weak signs of a receptive field surround (Crook et al. 2008a). Smooth cells likely correspond
to the upsilon cells reported in array recordings, as their spatial and temporal response spectra
show heavy overlap (Crook et al. 2008a, Petrusca et al. 2007). Their receptive field centers contain
patches with high contrast sensitivity (Rhoades et al. 2019), but the size of the patches is unrelated
to the local domains of bipolar axon terminals or the nonlinear subunit size (Crook et al. 2008a,
Petrusca et al. 2007).
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5.3. Giant Sparse (Melanopsin-Expressing) Cells

Intrinsically photosensitive ganglion cells containing the photopigment melanopsin are well
characterized in the mouse retina, where they have been split into six types. In the mouse, each
type shows a characteristic pattern of melanopsin expression, morphology, and functional and
molecular properties (Do 2019). Similar diversity has been suggested for primate retina, but
electrophysiological evidence to support such diversity is still emerging.

5.3.1. Morphology. Ganglion cells with very large, sparse dendritic trees have been observed
in various primate retinas, including those of humans (Dacey et al. 2003, Kolb et al. 1992, Rodieck
& Watanabe 1993, Yamada et al. 2005). These cells were named giant sparse cells and are now
known to be equivalent to the intrinsically photosensitive melanopsin-expressing ganglion cells
(Dacey et al. 2005). Because these cells can be immunohistochemically labeled, their distribution
andmorphology are well studied in macaque (Dacey et al. 2005, Liao et al. 2016),marmoset ( Jusuf
et al. 2007), and human (Hannibal et al. 2017, Liao et al. 2016, Nasir-Ahmad et al. 2019) retinas.

In primates, melanopsin-expressing cells comprise at least two types, an inner and an outer
stratifying type (Figure 9a,b). The outer stratifying cells strongly express melanopsin and make
up the majority (approximately 60%) of the melanopsin-expressing cells. At least half of the outer
stratifying cells have their soma displaced to the inner nuclear layer (INL outer cells); the remain-
der have their soma in the ganglion cell layer (GCL outer cells). The dendritic fields of the outer
cells cover the retina independently of their soma location and thus are assumed from one type.
The inner cells usually have weaker melanopsin expression, and their soma is located exclusively in
the ganglion cell layer (GCL inner cells). Bistratified melanopsin-expressing cells have also been
identified.These cells are comparatively rare, and they do not tile the retina. The majority of their
dendrites are located close to the GCL, and their soma is located in the GCL. Thus, bistratified
melanopsin-expressing cells are considered to be part of the inner stratifying population ( Jusuf
et al. 2007, Liao et al. 2016, Nasir-Ahmad et al. 2019).

A recent study in the human retina distinguished outer cells further based on their soma and
dendritic field size and named them M1 and gigantic M1 cells (Hannibal et al. 2017). Like the
other outer stratifying cells, the gigantic M1 cells have their soma in either the INL or GCL,
but their dendritic fields show a large degree of overlap with those of the other outer cells. The
gigantic M1 cells were thus suggested to form independent mosaics, but their spatial distribution
across the retina has not been studied.

The same study split the inner cells into two types based on soma size and slight differences in
stratification and suggested that they are equivalent to the mouse M2 and M4 cells. However, it
has not been determined whether the two types form independent populations and whether they
are physiologically different, as has been reported for mouse M2 and M4 cells (Do 2019).

5.3.2. Connectivity with bipolar and amacrine cells. Melanopsin-expressing cells receive
synaptic input from bipolar and amacrine cells (Grünert et al. 2011, Jusuf et al. 2007, Liao et al.
2016, Nasir-Ahmad et al. 2019). The bipolar input to the outer stratifying cells derives from DB6
cells via en passant synapses, whereas the inner stratifying cells receive DB6 input via their axon
terminals (Figure 9c). The DB6 input to inner stratifying cells in the marmoset retina was es-
timated to make up approximately 30% of the bipolar input to the inner melanopsin-expressing
cells (Grünert et al. 2011). For the macaque parafoveal retina, a recent serial electron microscopic
reconstruction study showed that blue cone bipolar cells provide the large majority of the bipolar
input to a large sparsely branching inner stratifying cell type (presumed to be the inner stratifying
melanopsin cell) (Patterson et al. 2020c). These latter findings suggest that the inner stratifying
cells have blue ON responses, but physiological evidence is still lacking.
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Figure 9

Giant sparse melanopsin-expressing cells. (a) Drawing of an inner stratifying melanopsin-expressing cell in
the marmoset retina. Eccentricity is 4.9 mm. (b) Schematic diagram showing the stratification of inner and
outer stratifying melanopsin-expressing cells with respect to the ChAT bands (gray). Outer stratifying
melanopsin-expressing cells have their soma in either the INL (INL inner cells) or the GCL (GCL outer
cells), whereas inner stratifying melanopsin-expressing cells have their soma in the GCL only (GCL inner
cells). The bipolar cells suggested to provide input are shown. (c) Part of the dendritic tree of the cell shown
in panel a, together with the overlaying DB6 axons. There are some potential points of contact between the
two cell types (Grünert et al. 2011). Drawings in panels a and c provided by P.R. Jusuf. Abbreviations: ChAT,
choline acetyltransferase; DB, diffuse bipolar; GCL, ganglion cell layer; INL, inner nuclear layer; IPL, inner
plexiform layer.

A light microscopic study in the human retina suggested that both inner and outer melanopsin-
expressing cells receive direct input from rod bipolar cells at their soma and proximal dendrites
(Hannibal et al. 2017). Such direct input has not been found in the macaque or marmoset retinas
(Grünert et al. 2011, Jusuf et al. 2007, Liao et al. 2016), but a recent electron microscopic study
reported a single synapse between a rod bipolar axon and a presumedmelanopsin-expressing cell in
the macaque retina (Patterson et al. 2020b).Whether this connectivity is the anatomical substrate
of the rod input to melanopsin-expressing cells found physiologically (Dacey et al. 2005) remains
to be determined.

Patterson and colleagues (2020b) also showed that an amacrine cell type that receives selective
input from blue cone bipolar cells makes synapses with the proximal dendrites of presumed GCL
outer cells and suggested that the S-cone amacrine cell mediates the S-OFF response recorded in
melanopsin cells (Dacey et al. 2005). These findings thus predict that the GCL outer cells differ
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in their response characteristics from the INL outer cells, as the S-cone amacrine cell does not
contact the dendrites of the INL outer cells.

5.3.3. Percentage and molecular markers. The total number of melanopsin-expressing cells
was estimated to be approximately 3,000 cells in the macaque retina (Dacey et al. 2005) and
4,000–7,000 cells in the human retina (Hannibal et al. 2017, Liao et al. 2016), meaning that
melanopsin-expressing cells in macaques would make up between 0.4% and 0.8% of the total gan-
glion cell population. These estimates are consistent with direct counts of melanopsin-expressing
and total ganglion cell density in the human peripheral retina, where melanopsin-expressing cells
make up 1% of the total population (Chandra et al. 2019).Melanopsin-expressing cells are present
in the central retina, but their percentage there has not yet been determined. Interestingly, in the
human retina, GCL inner cells appear to be nearly absent in the midperipheral temporal retina
(Chandra et al. 2019, Hannibal et al. 2017, Nasir-Ahmad et al. 2019), but the significance of this
uneven distribution remains unclear.

Although there are differences in the expression level of melanopsin between inner and outer
cells (Hannibal et al. 2017, Nasir-Ahmad et al. 2019), different types of melanopsin-expressing
cells have not yet been distinguished using other molecular markers in primate retina; however, at
the genetic level, three clusters expressing melanopsin were distinguished in the macaque retina
(Peng et al. 2019), and two clusters were distinguished in the human retina (Yan et al. 2020).

Apart from the expression of melanopsin, both inner and outer melanopsin-expressing cells
in human and macaque retinas have been shown to express the neuropeptide pituitary adenylyl
cyclase–activating polypeptide (Hannibal et al. 2004, 2014), which is essential for sustained pupil
constriction (Keenan et al. 2016). Other studies found expression of calbindin in the inner and
outer melanopsin-expressing cells of human but not marmoset retinas (Chandra et al. 2019).

5.3.4. Central projections and physiology. Retrograde tracer injections into different brain
regions in macaques demonstrated that cells with the morphology of melanopsin-expressing cells
(also named PT-sparse cells) project to the pretectum (Dacey et al. 2003, Rodieck & Watanabe
1993), the LGN (Dacey et al. 2005,Liao et al. 2016), the suprachiasmatic nucleus, and the superior
colliculus (Hannibal et al. 2014). In primates, there is no evidence that different morphological
types ofmelanopsin-expressing cells target different brain regions, as has been found for themouse
visual system (Do 2019).

Melanopsin-expressing ganglion cells contribute to both image-forming (color and pattern) vi-
sion and non-image-forming (sleep–wake cycles,mood regulation) vision in all mammalian species
studied to date. The functional properties of their intrinsic melanopsin transduction pathway and
photoreceptor inputs via bipolar and amacrine cells have been recently reviewed (Thoreson &
Dacey 2019).

5.4. Large Sparse Cells

Large sparse cells are monostratified cells that have been identified in human (Kolb et al. 1992,
Peterson & Dacey 1999), macaque (Dacey et al. 2003, Yamada et al. 2005), and marmoset retinas
(Ghosh et al. 1996, Masri et al. 2019, Moritoh et al. 2013).

5.4.1. Morphology and connectivity with bipolar cells. Large sparse cells have sparse den-
dritic trees and stratify in either the OFF or the ON sublamina of the IPL close to its borders
(Figure 10). Thus, they resemble giant sparse cells, but their dendritic field size is consistently
smaller than that of giant sparse cells, and they do not express melanopsin (Dhande et al. 2019,
Nasir-Ahmad et al. 2021).
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Large sparse (LS) cells. (a) Drawing of an inner stratifying LS cell in the marmoset retina. Eccentricity is
5.6 mm. (b) Schematic diagram showing the stratification of inner and outer stratifying LS cells with respect to the ChAT bands (gray),
together with the potential bipolar input. Additional abbreviations: ChAT, choline acetyltransferase; DB, diffuse bipolar; GCL,
ganglion cell layer; INL, inner nuclear layer; IPL, inner plexiform layer.

Light microscopy suggests that the bipolar input to inner stratifying sparse cells in the mar-
moset retina includes the diffuse bipolar type DB6 (Percival et al. 2011). The latter study found
that most of the DB6 axon terminals lying within the dendritic field of a large sparse cell may
provide input to that cell, but each DB6 axon terminal makes only very few putative contacts, sug-
gesting that other ON bipolar types, e.g., blue cone bipolar cells, also provide input, as has been
found for a similar ganglion cell type in the macaque retina (Patterson et al. 2020c).

5.4.2. Molecular markers. Large sparse cells in macaque and human (but not in marmoset)
retinas were shown to express the transcription factor Satb2 (Dhande et al. 2019, Nasir-Ahmad
et al. 2021). Thus, Satb2 cells in human and macaque retinas differ from those in mouse and rabbit
retinas, where Satb2 was found to be a marker for direction-selective ganglion cells (Dhande et al.
2019, Sweeney et al. 2019), suggesting that transcription factor expression is not conserved within
mammalian species.

5.4.3. Projections and physiology. Retrograde tracer experiments in macaques andmarmosets
suggest that large sparse cells project to the pretectum (Leventhal et al. 1981,Rodieck&Watanabe
1993), as well as to the LGN (Dacey et al. 2003, Percival et al. 2011, Szmajda et al. 2008). In
marmosets, the koniocellular layers of the LGN (Percival et al. 2011, Szmajda et al. 2008), which
house a relatively high proportion of blue-ON/yellow-OFF, as well as blue-OFF/yellow-ON cells,
were identified as specific targets of large sparse cells (Szmajda et al. 2006), and in macaques, an
inner large sparse cell recorded in vitro (Dacey 2004) showed blue-OFF/yellow-ON properties,
but the physiological properties of outer large sparse cells are not known.

5.5. Broad Thorny Cells

Broad thorny cells [also named T-group cells by Rodieck & Watanabe (1993) and hedge cells
by Ghosh et al. (1996)] are characterized by a dense dendritic tree decorated with fine thorns
(Figure 11a).

5.5.1. Morphology, connectivity with bipolar cells, and molecular markers. The dendrites
of broad thorny cells occupy the middle of the IPL, sandwiched between the inner and outer
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Broad thorny (BT) cells. (a) Drawing of a BT cell in the marmoset retina obtained after intracellular injections. Drawing provided by
K.K. Ghosh. Eccentricity is 2.8 mm. (b) Schematic diagram showing the stratification of BT cells between the ChAT bands (gray) and
the potential bipolar types providing input. (c) Orthogonal view of a DiI-injected BT cell (red) together with DAPI-labeled cell nuclei
(blue) in the INL and GCL. Additional abbreviations: ChAT, choline acetyltransferase; DB, diffuse bipolar; GB, giant bipolar; GCL,
ganglion cell layer; INL, inner nuclear layer; IPL, inner plexiform layer.

choline acetyltransferase (ChAT) bands (Figure 11b,c). Thus, the dendrites of broad thorny
cells could potentially make contact with multiple bipolar types, and light microscopic studies
have consistently demonstrated that they receive bipolar input in the ON and OFF sublamina
(Percival et al. 2011). A recent study of a foveal broad thorny cell in the macaque retina found
that these cells receive input from ON and OFF bipolar cells, although the large majority of the
input derived from amacrine cells (Bordt et al. 2021). The specific bipolar types providing the in-
put have yet to be identified. In the marmoset but not in the macaque, broad thorny cells express
the calcium binding protein calretinin (Chandra et al. 2017) and the transcription factor Satb2
(Nasir-Ahmad et al. 2021). The two populations do not overlap completely, suggesting that broad
thorny cells may be subdivided based on their molecular properties.

5.5.2. Projections and physiology. In macaques and marmosets, broad thorny cells project to
the superior colliculus (Kwan et al. 2019, Rodieck & Watanabe 1993) and the LGN (Dacey et al.
2003,Grünert et al. 2021, Percival et al. 2011, Szmajda et al. 2008); additionally, in marmosets, the
koniocellular layers of the LGN were identified as the specific targets of these cells. However, in
marmosets, broad thorny cells were only rarely encountered after LGN tracer injections (Percival
et al. 2011, 2013; Szmajda et al. 2008) compared to the relatively high number obtained after
biolistic labeling (Masri et al. 2019, Moritoh et al. 2013), viral labeling (Ivanova et al. 2010), and
retrograde injections into the superior colliculus (Grünert et al. 2021, Kwan et al. 2019). Thus, it
is likely that the superior colliculus is the major target of broad thorny cells.

The morphology of primate broad thorny cells resembles that of local edge detectors, which
are the smallest and most common ganglion cell type in the rabbit retina (Rockhill et al. 2002, van
Wyk et al. 2006). These cells respond to both light ON and light OFF, and electrophysiological
recordings from broad thorny cells in themacaque retina showed some properties compatible with
properties of local edge detectors in the rabbit retina (for example, strong surround suppression
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Narrow thorny (NT) cells. (a) Drawing of an inner stratifying NT cell in the marmoset retina obtained after retrograde labeling from
koniocellular layer K1 of the LGN. Eccentricity is 4.5 mm. (b) Schematic diagram showing the stratification of inner and outer NT
cells with respect to the ChAT bands (gray) and the suggested bipolar types providing input. (c) Micrograph of retrogradely labeled NT
outer cells obtained after tracer injection into layer K1 of the LGN. Eccentricity is 3.6 mm. (d) Confocal image showing part of the
dendritic tree of an inner NT cell obtained after particle-mediated gene transfer. (e) CD15-labeled DB6 axon terminal. ( f ) Merged
image showing that the processes of the inner NT cell are closely associated with the axon terminal of the DB6 cell. Panels a and c–f
adapted with permission from Percival et al. (2014). Additional abbreviations: ChAT, choline acetyltransferase; DB, diffuse bipolar;
GCL, ganglion cell layer; INL, inner nuclear layer; IPL, inner plexiform layer; LGN, lateral geniculate nucleus.

and ON–OFF responses). The broad thorny cells, however, also differ from local edge detectors
in the details of their temporal response properties, which makes them good candidates to detect
retinal image slip during smooth pursuit eye movements (Puller et al. 2015). Puller et al. (2015)
suggest homology of broad thorny cells to transientON–OFF ganglion cells reported in the rabbit
retina (Sivyer et al. 2011).

5.6. Narrow Thorny Cells

Narrow thorny cells (Dacey et al. 2003) may correspond to the cells named garland cells by Polyak
(1941), maze cells by Rodieck & Watanabe (1993), and G8 and G16 cells by Kolb et al. (1992).
They have fine nonoverlapping dendrites studded with thorns (Figure 12a,c).

5.6.1. Morphology, connectivity with bipolar cells, and molecular markers. The dendrites
of the outer narrow thorny cells partially costratify with the outer ChAT bands, whereas the den-
drites of inner narrow thorny cells are located below the inner ChAT band, close to the GCL
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(Crook et al. 2014b, Masri et al. 2019, Moritoh et al. 2013) (Figure 12b). The inner narrow
thorny cells make strong connections with DB6 bipolar cells (Percival et al. 2014) (Figure 12d–
f ). DB2 and DB3b cells are likely candidates to provide input to the outer narrow thorny cells,
but this question has not been investigated specifically. In marmosets, narrow thorny cells ex-
press a variety of molecular markers, including calretinin (Chandra et al. 2017) and Satb2 (Nasir-
Ahmad et al. 2021), but markers for these cells in macaque and human retinas have yet to be
discovered.

5.6.2. Projections and physiology. The brain targets of narrow thorny cells in both macaques
and marmosets include the LGN (Dacey et al. 2003, Percival et al. 2014), as well as the supe-
rior colliculus (Grünert et al. 2021, Kwan et al. 2019, Rodieck & Watanabe 1993). In marmosets
there is some evidence that narrow thorny cells preferentially target koniocellular layer K1 of the
LGN (Percival et al. 2014). As the K1 layer contains cells that bypass the primary visual cortex
and directly project to the medial temporal cortical area in the brain (Sincich et al. 2004), it can
be speculated that narrow thorny cells contribute to residual visual functions (blindsight) that sur-
vive damage to the primary visual cortex. To date, however, electrophysiological recordings from
narrow thorny ganglion cells are lacking. Similar to the broad thorny cells, the major target of nar-
row thorny cells is suggested to be the superior colliculus (Masri et al. 2019, Rodieck &Watanabe
1993), but this question has not been studied quantitatively.

5.7. Recursive Cells

Recursive bistratified (RBS) cells have moderately dense dendritic trees that are characterized
by small branches curving back toward the soma. Cells with similar morphologies have been
classified as part of the T-group of cells in macaques (Rodieck & Watanabe 1993) and the wide-
field bistratified cells in humans (Peterson & Dacey 1999, 2000). Based on their morphological
resemblance to ON–OFF direction-selective (DS) cells described in the rabbit retina (Vaney
et al. 2012), RBS cells were suggested to be involved with direction selectivity (Dacey 2004); this
suggestion has been confirmed in preliminary recordings (Detwiler et al. 2019). Like the dendrites
of ON–OFF DS cells in rabbits, the dendrites of RBS cells costratify with cholinergic amacrine
cells (Figure 13b,c), suggesting that RBS cells make synaptic connections with cholinergic
amacrine cells (Crook et al. 2014b, Dacey 2004, Moritoh et al. 2013). The bipolar input may
derive from DB2 and DB5 cells, but the exact circuitry of RBS cells in primates has not yet been
studied.

RBS (T-group) cells have been found after retrograde tracer injection into the superior col-
liculus (Dacey 2004, Rodieck & Watanabe 1993), but it cannot be ruled out that they also
project to the LGN, as has been found for ON–OFF DS cells in mice (Huberman et al.
2009).

Recursive monostratified cells resemble RBS cells but are monostratified in the ON sublamina
(Crook et al. 2014b, Masri et al. 2019). An outer variety has not been found in macaques. In the
marmoset retina, an outer recursive monostratified cell has been reported (Moritoh et al. 2013),
but the cell shown in their figure 3 resembles an outer smooth monostratified cell. Very little
is known about the properties of recursive monostratified cells, but if they are functionally ho-
mologous to the ON DS cells in rabbits (Vaney et al. 2012), then they would show ON-type DS
responses. Recursive monostratified cells resemble cells in the S-group, which project to the supe-
rior colliculus (Rodieck & Watanabe 1993), and they may also target the LGN and the accessory
optic system (Dacey 2004).
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Recursive bistratified (RBS) cells. (a) Schematic drawing of an RBS cell from the marmoset retina that was obtained after intracellular
DiI injections of Satb1-labeled cells (Lee et al. 2019). The inner dendrites are shown in black, and the outer dendrites are shown in red.
Eccentricity is 7 mm. (b) Schematic drawing showing costratification of the two dendritic tiers of the RBS cells with the ChAT bands
(gray) and the suggested bipolar input. (c,d) Confocal images of the RBS cell shown in panel a (orthogonal view). The dendrites of the
cell (red) are shown with (c) ChAT-labeled somas and processes (cyan) and (d) with ChAT alone. Additional abbreviations: ChAT, choline
acetyltransferase; DB, diffuse bipolar; GB, giant bipolar; GCL, ganglion cell layer; INL, inner nuclear layer; IPL, inner plexiform layer.

6. CONCLUSIONS AND FUTURE DIRECTIONS

Setting aside the question of cross-species homology in cell types, similar motifs of connectivity
between bipolar and ganglion cells can be identified in the mouse (for a review, see Dunn &Wong
2014) and monkey retina (reviewed above). By this we mean that some bipolar–ganglion cell con-
nections appear to be no stronger than expected by random contacts based on costratification, but
others are more selective. In other words, some bipolar and ganglion populations are connected
like good friends (e.g., connections between midget bipolar and midget ganglion cells, DB3a and
ON parasol cells, and DB6 and narrow thorny inner cells), but other populations make only pass-
ing acquaintance. Interestingly, the foveal tight connectivity in the midget pathway is refined from
a less specific pattern during foveal development (Zhang et al. 2020).

It is obvious from the estimates of ganglion cell proportions given in Table 1 that some gan-
glion cell types may still be missing. However, molecular methods agree with the anatomical es-
timate of approximately 20 ganglion cell types. Thus, the lower number of ganglion cells in the
primate compared to the mouse retina (Baden et al. 2016, Peng et al. 2019) might be a true dif-
ference and indicative of the evolutionarily recent specialization of ganglion cells in primates.

What then does the future hold for studies of ganglion cell anatomy and function? The past
decade has seen deep and broad advances in molecular analyses and retinal array recordings, and
both methods are now firmly established in studies of human and nonhuman primate retinas (for
a review, see Picaud et al. 2019). The future, in our view, lies in the potential to combine these
approaches with more traditional neuroanatomy, as well as with each other. For example, the field
now has 18 fingerprinted ganglion cell molecular clusters, but to date, only a few of them have
been assigned to anatomically and physiologically defined cell types. Through the combination
of genetic markers with single-cell injection and recording, it is now possible to systematically
link the genetic and morphological catalogs. Today, it is not too fanciful to imagine a hybrid
molecular-electrode array, where each electrode surface is capable of simultaneously recording
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and transfecting a recorded ganglion cell. The future for the study of primate ganglion cells looks
bright.
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