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INTRODUCTION 

The passport, a large document 36 by 59 em, was issued in Zurich on 
October 11, 1875. It described the 23 year old passport bearer, Walther 
Grobli, as being 5' 8" tall, with black hair and eyebrows, blue eyes, "average 
size" nose and mouth, and "oval" chin. The passport states the traveler's 
intention of visiting Germany, France, England, and Austria. 

Walther Grobli (later in life he would spell his first name Walter) was 
born in Ober-Uzwil, Switzerland, on September 23, 1852. He was the 
third son of Isaak Grobli, an embroidery and weaving manufacturer, and 
Elisabetha Grobli (nee Grob). Walter had two older brothers, Joseph 
Arnold and Hermann, a younger sister, and four younger brothers who 
died in their infancy. 
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In Uzwil Isaak Grobli ran a small weaving house based on a Jacquard 
loom. In 1863 he invented a mechanical "shuttle embroidering machine." 
For this invention he was awarded a medal of recognition at the Paris 
World Exposition in 1867, but the invention was not scizcd upon for 
commercialization until 1879 . Three years thereafter Isaak Gr6bli was able 
to found his own business in Gossau and achieved a level of financial 
independence. Walter's oldest brother, who in 1876 moved to the United 
States, is credited with inventing automated versions of embroidering 
machines. Our main concern here, however, is with the intellectual con­
tributions of Walter Gr6bli and we thus return to a description of his life. 

Walter spent his first years and attended elementary school in Ober­
Uzwil. He showed great talent, and his perceptive father saw it as a duty 
that he receive a higher education in spite of financial rigors. He completed 
"high school" at the Canton School of St. Gallen, and then, from 1871 to 
1875, enrolled to study mathematics at the Eidgenossisches Po1ytechnikum 
in Zurich, today known as the Eidgen6ssische Technische Hochschule 
(ETH). 

One of Grobli's professors in Zurich was Heinrich Weber. Weber had 
started studies in 1860 in his hometown of Heidelberg. His first academic 
appointment, in 186 9 ,  was at the university there. The next year he moved 
to Zurich, where he remained until 1875. In that year Weber went to 
Konigsberg (now Kaliningrad), where David Hilbert, the towering figure 
in mathematics of the late nineteenth and early twentieth century was one 
of his students. In 1883 Weber moved on to Berlin; in 1884 to Gottingcn; 
in 1892 to Marburg; and in 1895 to Strassburg, where he remained until 
his death in 1913 . Today Weber is best known for his textbook on the 
partial differential equations of theoretical physics, which appeared first 
in 1900 and had many later editions in Germany before 1914. The gen­
eration of physicists that created the upheaval in physics in the mid­
twenties through the formulation of quantum theory was raised on this 
book. It was essentially an act of piety when Weber wrote on the title page 
of his book that this work is based on Riemari�s ideas. He was referring 
to a book based on notes taken in Riemann's course (and compiled by 
Hattendorff), which appeared in 186 9  with the last edition printed in 1883. 
Weber's book became known as "Riemann-Weber." In 1924, von Mises 
intended to continue Weber's act of piety by declaring that Frank-Mises 
was a later edition of Riemann-Weber! Today all three books are classics 
with new printings available. 

The second chair for mathematics at the ETH was held (from 186 9 -
1875) b y  Hermann Amandus Schwarz (1843-1921), whose predecessor 
was Christoffel (the "Schwarz-Christoffel" transformation originates 
here), and whose successor was the algebraist Georg Ferdinand Frobenius 
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(1849-1917). Grobli studied mathematics with Weber and Schwarz, both 
of whom had great influence on his further scientific career. 

Weber would refer to Grobli as the best student he ever had. It is 
apparently Weber who suggested to Grobli that he work on the problem 
of the motion of three vortices, a topic on which he submitted his "diplo­
ma" in the summer of 1875 at the ETH. At that time the diploma was the 
final degree at the ETH and no doctoral degree could be given. Weber was 
leaving for Konigsberg, and Schwarz was leaving for Gottingen. Either or 
both of them suggested to Grobli that he should further his studies in Ber­
lin. It is possible that Weber communicated directly with Gustav Kirchhoff, 
who was professor at Heidelberg from 1854-1875. Hermann von Helm­
holtz was also in Heidelberg from 1858-the year his famous paper on vor­
tex motion appeared-until 1871. In 1875 Grobli headed for Berlin to study 
under Kirchhoff, Helmholtz, and other illustrious mathematicians. 

Hermann Ludwig Ferdinand Helmholtz (1821-1894) is a major figure 
in science of the nineteenth century and several biographies are available. 
Particularly interesting is Margenau's introduction to the 1954 edition of 
Helmholtz' On the Sensations of Tone (Helmholtz 1954), which includes 
a bibliography of this most versatile scientist. Helmholtz may well have 
been preoccupied with matters other than vortex motion and fluid mech­
anics during the period Grobli was a student in Berlin. The fourth (and 
last) edition of Sensations of Tone appeared in 1877, the same year that 
Helmholtz became Rektor of the University of Berlin (a position he held 
for one year). 

Gustav Robert Kirchhoff (1824-1887), whose contributions to the phys­
ics of electrical networks, spectrum analysis, and the thermodynamics of 
radiation are at least as well known as his contributions to fluid mechanics, 
had just been appointed to the chair of mathematical physics in Berlin in 
1875. He had previously been at the University of Berlin as Privatdozent 
for three years starting in 1847. Following a brief period at the University 
of Breslau (now Wroclaw, Poland) he became professor of physics at 
Heidelberg, a post he held from 1854 until the move to Berlin some twenty 
years later. Kirchhoff's major work Vorlesungen iiber mathematische Phy­
sik (Lectures on Mathematical Physics), which figures in our story, was 
first published in 1876. 

Grobli enrolled as a student of the Faculty of Philosophy at the Royal 
Friedrich-Wilhelms-UniversiUit in Berlin for both the first semester 
(October 16, 1875-April 1, 1876) and the second (April 24-August 15, 
1876). During the first semester he took COurses in mathematical optics 
and hydrodynamics from Kirchhoff, and a course on Abelian functions 
from Weierstrass. In the second semester he was instructed in the theory 
of heat by Kirchhoff, in electrodynamics by Helmholtz, in Abelian func-
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tions and the theory of analytical functions by Weierstrass, and in the 
theory of probability by Kummer. He also attended a class offered 
by Helmholtz entitled "The logical principles of experimental science." 
Gr6bli's attendance record from Berlin is available, and a page is 
shown in Figure 1. The classes are listed, various annotations concern­
ing tuition follow, we have his assigned seat in the lecture hall, and the very 
interesting collection of signatures by his professors. 

HELMHOLTZ' 1858 PAPER 

Let us now examine the background and contents of Grobli's main scien­
tific work, his 1877 dissertation Specielle Probleme iiber die Bewegung 
geradliniger paralleler Wirbelfaden (Special problems on the motion of 
rectilinear parallel vortices). The model that Gr6bli investigates had been 
introduced almost two decades earlier in a seminal thirty-page paper by 
Helmholtz entitled Uber Integrale der hydrodynamischen Gleichungen, 

Zweites Semester. Von �I/.� ,18/tV bis /�. � 18/0 
VorJesllngen. Venuerk des Quiswn des ;� .. tzu Eigellhii.mlige Eillzei.chnu.ng dilr I I 

N.mm" I D".m I betreffend das Honorar. Auditorio. des Docenten. Anmeldung. 

Abgelllel<let bei dem 

I 
Datum 

d" 
Docenten. Abmeldung. 

Figure 1 A page from the 1876 University of Berlin attendance record of W. Grobli. The 
courses are mentioned in the text. Note, in particular, the signatures of the instructors. 
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welche den Wirbelbewegungen entsprechen. An English translation, On 
integrals of the hydro-dynamical equations, which express vortex-motion, 
was published by P. G. Tait in Philosophical Magazine in 1867. About the 
translation Tait writes: This "version of one of the most important recent 
investigations in mathematical physics was made long ago for my own 
use, and does not pretend to be an exact translation. Professor Helmholtz 
has been kind enough to revise it; and it may therefore be accepted as 
representing the spirit of the original. A portion of the contents of the 
paper had been anticipated by Professor Stokes . . . but the discovery of 
the nature and motions of vortex-filaments is entirely novel, and of great 
importance." 

The basic results of the investigation, Helmholtz's vorticity theorems, 
are today well known and may be found in most textbooks. One hardly 
needs to consult the original article for this material. However, it is inter­
esting to read Helmholtz's motivation for studying vortical motion in the 
first place. Here is what he says (in Tait's translation): 

Hitherto, in integrating the hydrodynamical equations, the assumption has been made 
that the components of the velocity of each element of the fluid in three directions at right 
angles to each other are the differential coefficients, with reference to the coordinates, of 
a definite function which we shall call the velocity potential. Lagrange 1 no doubt has 
shown that this assumption is lawful if the motion of the fluid has been produced by, 
and continued under, the action of forces which have a potential; and also that the 
influence of moving solids which are in contact with the fluid does not affect the 
lawfulness of the assumption. And, since the greater number of natural forces which 
can be defined with mathematical strictness can be expressed as differential coefficients 
of a potential, by far the greater number of mathematically investigable cases of fluid­
motion belong to this class in which a velocity potential exists. 

Yet Euler2 has distinctly pointed out that there are cases of fluid-motion in which no 
velocity-potential exists, for instance, the rotation of a fluid about an axis when every 
element has the same angular velocity. Among the forces which can produce such 
motions may be named magnetic attractions acting upon a fluid conducting electric 
currents, and particularly friction, whether among the elements of the fluid or against 
fixed bodies. The effect of fluid friction has not hitherto been mathematically defined; 
yet it is very great, and, except in the case of indefinitely small oscillations, produces 
most marked differences between theory and fact. The difficulty of defining this effect, 
and of finding expressions for its measurement, mainly consisted in the fact that no idea 
had been formed of the species of motion which friction produces in fluids. Hence it 
appeared to me to be of importance to investigate the species of motion for which there 
is no velocity potential. 

Towards the end of the paper Helmholtz introduces the model that today 
we would refer to as point vortices (in two dimensions) or parallel line 

1 Lagrange, J.-L. 1815. Mixanique Analytique. Vol. II, second cd., p. 304. Paris. 
2 Euler, L. 1755. Histoire de I'Academie des Sciences de Berlin, p. 292. 
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vortices (in three dimensions). Be considers the problems of one and two 
such vortices and derives the following well-known conclusions: 

I. If there be a single rectilinear vortex-filament of indefinitely small section in a fluid 
infinite in all directions perpendicular to it, the motion of an element of the fluid at 
finite distance from it depends only on the product, m, of the velocity of rotation and 
the section, not on the form of that section. The elements of the fluid revolve about it 
with tangential velocity = mlnr, where r is the distance from the centre of gravity of the 
filament. The position of the centre of gravity, the angular velocity, the area of the 
section, and therefore, of course, the magnitude m remain unaltered, even if the form 
of the indefinitely small section may alter. 

2. If there be two rectilinear vortex-filaments of indefinitely small section in an 
unlimited fluid, each will cause the other to move in a direction perpendicular to the 
line joining them. Thus the length of this joining line will not be altered. They will thus 
turn about their common centre of gravity at constant distances from it. If the rotation 
be in the same direction for both (that is, of the same sign) their centre of gravity lies 
between them. If in opposite directions (that is, of different signs), their centre of gravity 
lies in the line joining them produced . And if, in addition, the product of the velocity 
and thc section be the same for both, so that the centre of gravity is at an infinite distance, 
they travel forwards with equal velocity, and in parallel directions perpendicular to 
the line joining them. 

Several of Helmholtz' contemporaries immediately seized upon the trea­
sures in his paper. William Thompson, the later Lord Kelvin and a lifelong 
friend of Helmholtz, formulated a fundamentally important corollary; his 
well-known theorem is the starting point of a systematic presentation 
in most modern texts. He also became fascinated with the problem of 
configurations of vortices that could move without change of shape (cf 
Thomson 1867), which as one outlet led to Tait's early contributions to 
the theory of knots in topology, and as another led to a long ago discredited 
theory of "vortex atoms." J. J. Thomson, discoverer of the electron, would 
write his Adams Prize Essay of 1883 on vortex rings, including an analysis 
of the conditions for steady configurations to be stable, results that he then 
applied to Kelvin's vortex atom model. James Clerk Maxwell would later 
discuss the dynamics of "molecular vortices" in conjunction with his 
seminal work on electromagnetism and kinetic theory. 

KIRCHHOFF'S LECTURES 

In modern notation the equations of motion for a system of N point 
vortices on the unbounded plane, with vortex IY. = I, . . . , N situated at 
(x"y,) and carrying circulation r" are 

dx. 
dt 

(la) 



where 
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(1 b) 

(lc) 

Except for the convention of working with angular velocity times area, 
rna = ra/2, rather than the circulation, ra, this is precisely the form that 
we find in Kirchhoff's lectures. He goes on to make the important obser­
vation that the equations can be cast in Hamiltonian form, and from this 
to derive the integrals of the motion related to kinetic energy (minus "self 
energy"), linear, and angular impulse: 

These equations [i.e. the point vortex equations ( 1) above) may be written3 

dx! oR dX2 oR 
m! dt = ilYI' m'dt = ily,"" 

(2) 

(3) 

where the sum in question is to be taken over all combinations of two different indices. 4 
Certain integrals of the equations ( I) may be found regardless of how large the number 

of vortices is. The value of H is unchanged when x 10 x" . . . or y 10 y" . . . are incremented 
by the same quantity. From this it follows that 

" oR 
= 0 and 

"oR 
L.. iJ L.. ;;- = 0, 

i.e. 

XI uY I 

(4) 

These equations tell us . . .  that the centroid of the vortices remains in the same place. 5 
If we multiply the equations in the first row of (2) by dYI, dy" . . .  , and those in the 

second by -dxlo -dx2, . . .  , and add the rows, we obtain 

dH = 0, i. e. H = const. (5) 
One finds a fourth integral when one introduces polar in place of Cartesian coordinates 

by the following considerations. We have 

3 Kirchhoff uses the symbol P in place of H. We consistently call the Hamiltonian function 
H. 

4 In modern notation one would have written H = -(lIn:) I moinp logp"p with generic 
"<p 

summation indices. The older notation writes a "typical term" and explains in words how 
the sum is to be carried out. 

5 This centroid of the system of point vortices is also often called the center of vorticity. 
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YI=Plsin.91> Y2=Pzsin.92,·· .. 

The differential equations (2) are transformed by these substitutions into 

dp, oH dP2 oH m,p'di= 0.91
' mZP2di = D.9z

'··· 

d.9, oH d.92 oH mIPI--;[f= - op,' m2P2--;[f= - opz'···· 

(6) 

(7) 

Since H, according to the definition given in (3), is unchanged when the angles .91, 
92, • . • are increased by the same amount, it follows that 

The equations in the top row of (7) then give 

2:m,P�'= const. (8) 

We also derive a conclusion from the lower row of equations (7). If, while keeping 
the angles.9 1> .92, • • •  unchanged, we multiply p" P2, . .. by n, thus adding log n to log 
p" log P2, . . .  , the quantities P'2 will also grow by a factor n, and thus the log P'2 will 
increase by log n. From (3) it then follows that H im;reases by 

From this we get6 

or 

and, thus, from (7) 

(9) 

Kirchhoff went on to discuss the problem of two interacting vortices, 
where he reproduced the solution already given by Helmholtz. The case 
of two opposite vortices translating forward by mutual induction, and the 
"atmosphere" carried along by such a pair, had been discussed in detail 
by Kelvin (see Thomson 1867). 

It is natural next to investigate the motion of more than two point 
vortices, and it does not take long to realize that the solution will be much 
more complicated. The analogous question in the case of gravitating mass 

6 Note that the sums on the right hand sides are double sums. whereas those on the left 
are on a single index (cf footnoteA). 
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points-the famous three-body problem-was to lead, at the hands of 
Henri Poincare and others, to the first glimpses of what we today know 
as chaos in dynamical systems. But the three-vortex problem does not 
display chaos. It belongs to the family of integrable systems. Gr6bli's 
dissertation consisted in establishing this fact and elucidating details of the 
motion for several perceptively chosen triples of vortex strengths. In a 
sense, the three-vortex problem plays the same role in vortex dynamics as 
the two-body Kepler problem in the theory of gravitationally interacting 
mass points. 

In his lectures Kirchhoff describes the solution of the three-vortex prob­
lem thus: 

If three vortices are given, the problem of determining their motion depends on the 
solution of equations and the execution of quadratures. Thus, if we introduce as the 
determining variables p" P2, P3, 82-8" 8,-8, and 8" and if we multiply equations 
(4) first by cos 8" sin 8" then by -sin 8" cos 8" adding them each time, we may solve 
the ensuing equations and equations (5) and (8) for four of the quantities p" P2, P3, 
82-8" .'13-.'1, in terms of the fifth. Assume that the others are all expressed in terms 
of p,. From (9) and the equation 

8H 
m,p,d8, = - -::;-dt, 

up, 

that appears in the system of equations (7), one can find 8, and t in terms of P" 

The 1883 edition of the Lectures contains a footnote: "Cf. Gr6bli, 
Inaugural-Dissertation, G6ttingen 1877." Indeed, while this simple count­
ing of equations and variables shows that a reduction to quadrature can 
be accomplished, actually setting this up and elucidating the physical 
nature of the vortex trajectories is a major task, details of which can still 
give rise to research papers today, more than a century later. Poincare, 
who considered the three-vortex problem in his Theorie des Tourbillons 
(Poincare 1893, Section 77) was even more terse: 

We have thus determined three integrals of our differential equations. These properties 
of the equations allow us to integrate them by quadratures when there are just three 
vortex tubes. 

Indeed, our equations have the form of Hamilton's canonical equations, that may be 
integrated by quadratun:s when they contain 2n variables, and one knows n particular 
integrals. Thus, when there are three vortex tubes, the equations contain the six variables 
x" y" X2, y" X3, Y3, and we have found three particular integrals. 

GROBLI'S DISSERTATION 

The dissertation was an outgrowth of the work that had led to the diploma 
in Zurich. This was reformulated and new investigations were added to it. 
The subject matter was the motion of three vortices, the motion of four 
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vortices assuming the existence of an axis of symmetry, and the motion of 
2n vortices assuming the existence of n symmetry axes. We shall con­
centrate here on the three-vortex work, but should mention that Grobli's 
results on the four-vortex problem are at least as comprehensive as those 
obtained many years later by Love (1894), who does not cite his work. 
Grobli's results on the n-vortex problem are less detailed but overlap with 
the investigation by Greenhill (1878). 

The introduction (Section 1) of the dissertation quickly summarizes the 
results of Helmholtz and Kirchhoff that we have already discussed. The 
very last sentence-"We shall not enter into the determination of the 
motion of fluid particles situated at a finite distance from the vortices"­
is interesting in view of later developments: the motion of a passive particle 
in the flow field of three interacting vortices is, in general, nonintegrable, an 
idea that would have been quite foreign to Gr6bli and his contemporaries. 

To give a sense of the dissertation we follow the discussion in Section 
2, entitled "On the motion of thrce vortices," where the strategy for 
integrating the equations is explained: 

We introduce the somewhat more convenient notation .1'" .1'2, .1', for the distances P23, 
P 3" P 12 between the three vortices. The differential equations (I) that determine the 
motion of the system of three vortices are in Cartesian coordinates 

dx, YI-Yz
+ 

Y3-YI 1fT! = -m2� m, --.;r-

and in polar coordinates [see (6)] 

dp, m2P2sin (91-92) m3P3sin (93-91) 1f - = - + -----"-'-------;c--'--""-
dt s� s� 

(10) 

( l l) 

(12) 
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In these equations 

s; = (X2-X3)2+( Y2-YJ)2 = p�+pi-2p2P3COS(.92-.93) 

s� = (X3-XI)2+(y, -YI)
2 

= ph P;-2P3PI cos (.93-.91) 

si = (x,-x2)'+( Y'-Y2)' = pi+p�-2p'P2COS(.9,-.92)' 

(13) 

(14) 

We assume next that m,+m2+m3 is different from zero. Then, one can make the 
centroid of thc threc vortices the origin of coordinates, and the equations (4) expressing 
that the centroid remains at rest become 

(IS) 

or in polar coordinates 

(16) 

We shall write the third and fourth of the general integrals (8), (3) in the following 
form 

(17) 

(18) 

We multiply the first of equations (16) by sin .9" sin .92, sin .93 and the second by 
-cos .9" -cos .92, -cos .93, adding each time. In this way we obtain three equations 
that are most simply written as 

sin (.9,-.93) sin(.93-.9,) sin (.9,-.92) ------- --- (19) 

Furthermore, if in equations (16) the first term is transferred to the right hand side, 
and both sides are then squared, one obtains the first of the following equations from 
which the two next arise by cyclical permutation of indices 1, 2,3, viz 

mlpl-m�p�-mipi 
2m2m3P2P3 

-m;pl+m�p�-m�p� 
2mJm,p,p, 

-m;PT-m�phmipi 
2m,m2P,P2 

(20) 
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We substitute these expressions for cos (92-93), cos (93-9,), cos (9,-92) in (14), 

and by simultaneously using (17) arrive at the following formulae 

m2mJSr = (m2+m3)C' -m,(m, +m2+m3)pf 

m3m1s� = (m3+m,)C'-m2(m, +m2+m3)p� 

m,m2s� = (m, +m2)C' -m3(m, +m2+m3)p�. 

We introduce a new constant C", related to C' by the equation 

m1m,m,C" = (m,+m2+m,)C'. 

From the previous equations it then follows that 

2 , 2 
�+� +!2. = C. 
Inl n12 In3 

(21) 

(22) 

(23) 

Equations (18) and (23) provide two integrals of the differential equations of our 
problem in which the sides of the triangle of vortices appear. This suggests that it should 
be relatively easy to set up three differential equations, containing only the time and the 
sides s" S2, s, of the triangle, from which the instantaneous triangle shape may be 
determined. To derive these equations we subtract the third equation in both (10) and 
(11) from the second, multiply the first of the equations that thus arises by X2-X3, and 
the second by Yz-h, and add. In this way we get 

n d(si) s�-s� 
-2 -

d = m1-, -,-{y,(
x,-x,)+y,(x,,-x,)+y

,(x,-x2)}. t S2S, 

The quantity in curly brackets on the right hand side of this equation represents twice 

the positive or negative area of the triangle depending on whether the vortices 1, 2, 3 
appear in the clockwise or counter-clockwise sense in the plane. As is well known this 
area may be expressed in terms of the sides of the triangle. If we denote the above 
expression by 21, we obtain the first of the equations (24) below, and from this one the 

other two follow by cyclic permutation of indices 1,2,3. Thus, 

d(sD m, s�-s� 
- =-41 --dt n s�s� 

d(si) = m2
4
/�-si 

dt n s�sf 

d(sD m, si-s� 
- = - 41--

dt n sfs� 

where 1 is given by the equation 7 

1612 = 2s�s� + 2s�s; + 2sfs� -si -si - s�. 

(24) 

(25) 

The already known integrals (18) and (23) arise if equations (24) are divided through 
by m" m" m3, respectively, or by m,s;, m2s�, m3s�, respectively, and added each time. 

To solve the problem of finding the instantaneous shape of the triangle now only 
requires elimination of variables and quadrature. 

The motion is entirely determined if we have one additional equation in which one 

7 This is just Heron's formula for the area of the triangle in terms of the lengths of its sides. 
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or more coordinates and the time appear. Using (20) and (21) equations (13) may be 
transformed so that apart from one of the derivatives 

dB, dB, dB3 
dt' dt' dt 

they only contain the sides s" s" S3' Indeed, we obtain the following system of equations 

2 ( ) , , ,dB, {(' ')2 '( 2+ ')} 2( )' , 2 IT m, +m,+m3 P,S,S3"7it = m,m3 S,-S3 -s, S2 S, + m2+m, S2S3 

2 
( ) " , dB3 {(' ')' '( ' ')} 2( )2 , , 'IT m, + m,+m3 P3S,S2"7it = m,m2 S,-S2 -S3 S, +s, + m, +m2 SIS, (26) 

in which Ph p" p, are related to the quantities s by equations (21), and have only been 
retained here for ease of writing. These differential equations are only valid when we 
assurm: that the centroid is at the origin of coordinates. 

The problem at hand may now be solved in the following way. From equations (17), 
(18), (20), (21) and (23) the nine quantities 

PI, P2, p, 
cos (B2-B3), cos (93-9,), cos (9, -9,) 

can all be determined as functions of a single variable To If these expressions are 
substituted in any of equations (12) or (24), one obtains t as a function of"[ by quadrature, 
and thus" as a function of t. With the help of (13) or (26) one now also obtains the 
quantities 9" 8" 8J as functions of the time . . .. 

In the preceding we have assumed that the centroid of the vortices and the origin of 
coordinates coincide. This assumption is no longer permissible if m, + m2 + m 3 = 0, since 
the centroid is then at infinity. In this case it is best to calculate in Cartesian coordinates. 
One of the axes, for example the x-axis, may be chosen to give the direction to the 
centroid, so that instead of equations (15), we have 

mIx, + m2x,+m,x, = const. 

By a suitable choice of the origin of coordinates we may achieve that the constant C' 

in (17) vanishes . . . .  If the problem is just to find the shape of the triangle, one can use 
equations (24), which are valid for all values of the strengths m, since these equations 
arc independent of any choice of coordinate system. 

Thus concludes Section 2 of Gr6bli's dissertation. A few sentences 
outlining particular cases that he later discusses in detail have been omitted. 
The case of vanishing total circulation receives little attention in the dis­
sertation. From a physical point of view this is somewhat unfortunate. 
The constraint of vanishing total circulation is a most important one in 
view of the divergence-free nature of a full three-dimensional vorticity 
field. If the point vortices in two dimensions are thought of as intersections 
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of a three-dimensional vortex tube with a plane, it follows that the sum of 
circulations must vanish. Fortunately, this particular case is one of the 
simplest, and a direct solution is immediately possible (Rott 1 989, Aref 
1989). Furthermore, for the four-vortex problem an interesting class 
of integrable cases occurs for systems with vanishing total circulation 
(Eckhardt 1988, Rott 1 990) so that in this context the constraint is 
again significant. 

Analyses of Special Cases 

In Sections 3-5 of the dissertation Gr6bli considers the case ml = 

m2 = -m3. This is a very interesting special case, portions of which can 
be recast as a scattering problem in which a pair consisting of two 
opposite vortices (l and 3, say) impinges on a single "target" vortex, and 
the entire problem can be solved in terms of elliptic functions. Gr6bli does 
this and identifies two types of motion: one in which vortices 1 and 3 stay 
together, negotiating vortex 2, and then departing for infinity; another in 
which 3 leaves 1 behind during the interaction, and pairs up with 2. At the 
cross-over points between these two we find a separatrix-type motion in 
which all three vortices become trapped in a (rectilinear or equilateral 
triangle) configuration that rotates as a rigid body (Figure 2a). This case 
of two positive and one negative vortex, all with the same magnitude of 
the circulation, is historically interesting because it was mentioned (without 
giving any analysis) by the Russian aerodynamicist Nikolay Yegorovich 
Zhukovsky (1847-1921) in his lecture given on the occasion of Helmholtz's 
seventieth birthday. It is amusing to compare the illustration in Grobli's 
dissertation with that given by Zhukovsky and with the results of a current 
computation (Figure 2b-d). The undulatory motion of the negative vortex 
was exaggerated in the early plots. 

In Section 6 Gr6bli considers the symmetrical case of identical vortices 
ml = m2 = m3. Again a complete analysis is performed, this time leading 
to hyperelliptic functions. An intuitively appealing geometrical con­
struction is advanced: 

The equations (17) and ( 18) may be written 

pf+p�+p� = 1 (27) 

(28) 

if the unit of length is suitably chosen. Here .Ie is a positive constant that for the time 
being is otherwise arbitrary. 

Equations (21) that establish the connection between the quantities p and s become 

sf = 2-3pT, s� = 2-3p�, s� = 2-3p�. (29) 

If we add these three equations, we get in view of (27) that 
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3 3' 3-
Figure 2 Examples of three-vortex motion for the case m, = ffl2 = -m3 analyzed by Grobli 

in his dissertation. In (a) vortices 1 and 3 are paired initially and approach vortex 2. For this 
particular case, where as l--> - ro vortex 2 is on the bisector of segment 13, the configuration 

settles into a unifonnly rotating, equilateral triangle as t ---t + 00 ("separatrix" motion). Panels 
(b), (c), and (d) depict the same motion; (b) as plotted in Zhukovsky's paper, (c) as plotted 
in Grobli's dissertation, and (d) as computed in a recent simulation. The undulations in the 

path of the outer, negative vortex have been exaggerated in the older works. Panel (e) shows 
a case discussed by Grobli (but not illustrated by him) in which all three vortices propagate 
along parallel, straight lines. 
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sf+s�+si = 3. (30) 

Using equations (28) and (30) we may readily gain an overview of the motion at least 
so far as the shape of the triangle is concerned, and we may establish a classification 
into different possible cases. Let us imagine s" s,. s, as cartesian coordinates of a point 
in space. Then (30) defines a sphere of radius J"3, and (28) describes a surface of third 
order, that has the coordinate planes as asymptotes, and intersects planes parallel to the 
coordinate planes in rectangular hyperbolae. Since the quantities .I' " Sz, .I' j are positive, 
we may limit ourselves to the first octant. The planes 

are symmetry planes of the sphere, as well as for the surface of third order, and, thus, 
also for the oval curve of intersection between the two. Every point of this curve 
corresponds to a certain shape of the triangle of the three vortices. The oval has a highest 

and a lowest point corresponding to the two extreme values between which .1'3 must lie. 
Of course, s, and s, must be within these limits as well. Since the plane s, = s, is a 
symmetry plane, S3 surely attains its maximum and minimum for .1', = S2' Other maxima 

and minima do not occur. If we set s, = S2, we obtain for S3 a cubic equation 

sj-3s,+2A = o. (31) 

One root of (31) is always real, but of no use since it is negative. The two other roots 
give, respectively, the maximum and minimum of .1'" and may be real and different, or 
real and equal, or imaginary, depending on whether the two surfaces intersect, touch or 
do not intersect each other. The surfaces touch when .Ie = 1. The curve of intersection 
then reduces to the point 

(32) 

the three vortices form an equilateral triangle with constant sides. From (29) 

Denoting the common value of m" m" m3 by m, we get from equations (26) that 

d9, d9, d9, 3m 
Tt=Tt=Tt=--;: (33) 

Thus. the triangle of vortices rotates about its midpoint with a constant angular velocity. 
Summarizing the above arguments we have the following results. The sides .1'" S2, .1'3 

of the triangle of vortices must satisfy (28) and (30). In the former.le is a constant between 
o and 1.8 Due to these constraints each side can only vary between finite limits, that are 

the same for all three sides, and are determined as the positive roots of the equation 

s3-3s+2.1e = O. 

If one side has taken on an extremum value, the triangle is isosceles. 
There is still one further observation to be made. Since the vortices form a triangle, 

the sum of two of the sides must be larger than the third. This condition is certainly 
fulfilled when one of the sides, say .1'3, is a minimum: Since the smaller root of the above 
equation is less than 1. the corresponding values of s, and .1'2 are greater than 1 by 
equation (30), thus .1', +.1'2> .1'3' On the other hand, if .1'3 is a maximum, it is larger than 

8 Although Grobli does not mention it, this follows by comparing (28) and (30) using the 
inequality between geometric and arithmetic mean. 
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I, thus S1 and S2 are less than I, and it depends entirely on the value of.le whether S1 +S2 

is greater or less than S3. The limiting case, S1 +S2 = S3, arises for S3 = .j2. The cubic 
equation gives 1/.}2 as the corresponding value of.t In one limit, then, the three vortices 
are on a line, one at the midpoint of the two others. The three equations 

represent the planes through the bisectors of the angles between the coordinate axes. 
These planes intersect the sphere in an equilateral, spherical triangle. The three cases 
A. 2 > 1, A. 2 = 1 and A. 2 < 1 are distinguished by the oval (mentioned previously) being 
enclosed by the triangle, or touching it, or intersecting it. In the last case only one 
isosceles triangle shape can occur. The other limiting case is a degenerate one in which 
the three vortices are on a line, but not with one at the midpoint of the other two. 

The case of identical vortices, in particular the stability of the equilateral 
triangle configuration and the instability of the rectilinear configuration, 
was discussed by Kelvin (see Thomson 1878) in a brief note commenting 
on experiments using floating magnets by Mayer (1878a,b). The geo­
metrical construction was rediscovered almost word for word by Novikov 
(1975) a century later! 

In Section 7 Grobli solves the least interesting of the three special cases 
chosen for discussion, ml = 2m2 = -2m3' 

Geometrically Constrained Motions 

The next five sections of the dissertation discuss three-vortex motions in 
which some simple geometrical feature of the vortex triangle remains 
invariant. Thus, "rigid motions" in which the shape and size of the vortex 
triangle persists are treated in Section 9 .  In Section 10 "self-similar 
motions" in which the shape of the vortex triangle, but not its size, remains 
invariant are addressed. In Section 11 the triangle is assumed to remain 
equilateral. Finally, Section 12 considers cases where the three vortices 
move along parallel lines. 

The most interesting of these is probably the case of self-similar motions 
where the vortices move along logarithmic spirals and can collapse to a 
point (which must be the centroid) in a finite time. Two conditions are 
necessary for self-similar motion to occur: one is that the harmonic mean 
of the circulations vanish; the other is that the constant e", Equation (23), 
vanish. We shall not enter into details of the analysis but simply show 
(Figure 3) Grobli's illustration of this type of motion and a construction, 
given a century later, of how to find initial conditions for collapse to occur 
(Aref 1979). 

The special ease of motion along parallel lines for three vortices with 
ml = m2 = -m3 is probably the simplest solution that can be found of 
the three-vortex equations in which all mutual distances change in time. 
This motion is shown in Figure 2e. 
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Figure 3 Self-similar motion in which the vortex triangle changes its size but not its shape. 

In the example on the left, taken from Griibli's dissertation, a self-similar expansion is shown. 

This figure results for vortices of circulation mj = 3, m, = -2, m3 = 6 (only the ratios are 

important). On the right we show a general construction of all configurations that lead to 

self-similar motion (when the vortex circulations have the appropriate ratios). Vortices 1 and 
3 are assumed of the same sign and are initially located as indicated. The circle is centered I 

on the center of vorticity of vortices 1 and 3 (point C) and is such that triangle 1 P ,3 is 

equilateral. There are four configurations that move without changing either shape or size. 

These arise if vortex 2 is started at any of the four positions P" P" P3 and P4. For any other 

starting point of vortex 2 along the circle a self-similar expansion or collapse of the vortex 

triangle occurs. 

EPILOGUE 

Grobli got his Doctorate in Gottingen. The oral examination was attended 
by Schwarz, who had moved to Gottingen while Grobli was in Berlin, 
and by Johann Benedict Listing (1808-1882), professor of mathematical 
physics and optics. A written discussion and recommendation by Schwarz 
exists. The dissertation was printed in Vierteljahrsschrift der Natur­

forschenden Gesellschaft in Zurich. Grobli returned to Zurich and worked 
for six years as an assistant to Frobenius, who had succeeded Schwarz. 
From 1877-1894 he held the title of Privatdozent at the ETH with an 
official teaching assignment in hydrodynamics. In 1883 he was elected 
professor of mathematics at the Gymnasium in Zurich . 

. We are only aware of one other work by Gr6bli in fluid mechanics. In 
1876 he was awarded a prize for responding to the following University 
of Berlin prize question: "In all cases where the theory of fluid jets has 
been carried through, the rigid walls on which the jets appear are plane. 
Investigate and treat cases in which the walls are curved." The actual work 
is not available. 

P, 
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Did Grobli's dissertation have an impact on contemporary science? The 
answer is clearly affirmative. Kirchhoff mentions it in a footnote in his 
widely used lectures on mathematical physics, and Lamb cites it in his 
classic text Hydrodynamics. In 1898 D. N. Goryachev, a student of Zhu­
kovsky, published a dissertation in which he treated integrable cases of 
four-vortex motion-essentially the cases treated almost a century later 
by Eckhardt (1988) and Rott (1990)! The dissertation (Goryachev 1898) 

is very similar in style to Grobli's, which is cited early on. 
Later, however, Grobli's dissertation was largely forgotten until a 1949 

paper by the Irish mathematician John Lighton Synge addressed what 
was, in essence, the converse problem. Given that the three-vortex problem 
can always be integrated, Synge (1949) inquired about the fundamentally 
different types of motion that the three interacting vortex points can 
execute as one varies the vortex strengths. 

Although Helmholtz and his contemporaries primarily had classical 
fluids in mind when they worked out theories and models of vortex motion, 
the concept of a line vortex has received a range of new applications with 
the discoveries of superfiuidity and superconductivity. Modern interest in the 
dynamics of a few interacting point vortices, in particular the onset of chaos 
in the four-vortex problem, was to a large extent stimulated by Novi­
kov's (1975) paper. But these are rather different stories for another time. 

Why is the published oeuvre of Grobli restricted to his dissertation? We 
can, of course, only speculate. In an obituary he is described as being of 
very modest character, who would present his scientific work in lectures 
without publishing it. Could it be that his contact with eminent scientists 
led him to apply too high a standard to his own work? Another reason, 
no doubt, was his strong passion for the mountains, where he spent most 
of his spare time. Since his first tour in 1877, climbing dominated his life. 
The lecture "Professor Dr. Walter Grobli as mountain climber" given in 
1904 by Dr. A. Luning to the Swiss Alpine Club clearly shows this. Sixteen 
years after Edward Whymper, Grobli climbed the Matterhorn. Sometimes, 
he would hike up to 70 km per day. Even today his name is mentioned in 
guidebooks of the Swiss Alpine Club as having opened the first route on 
the Piz Ela (3339 m) and the first route through the north face of the Todi 
(3620 m). He published several descriptions of regions and mountains that 
he visited. 

One June 26, 1903, Gr6bli and a colleague were conducting a tour with 
16 students, a class from the Gymnasium, to the Piz BIas. They met more 
snow than expected and, due to the warm day, had to change their plans. 
While crossing a south-facing slope they were caught in an avalanche. 
Grobli and three of his students were thrown over a cliff and killed. The 
accident was described in Zurcher Wochenchronik No. 27 (July 4, 1903). 
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Grobli's story intrigues us because of its unique personal aspects, the 
reputation and stature of his teachers and advisors, and the depth and 
significance of his dissertation. Personal matters aside, few doctoral stu­
dents today have the benefit of such stellar facuIty, and, truth be known, 
few will write a thesis that will be the subject of attention a century later. 
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