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m Abstract The phase-field method has recently emerged as a powerful computa-
tional approach to modeling and predicting mesoscale morphological and microstruc-
ture evolution in materials. It describes a microstructure using a set of conserved and
nonconserved field variables that are continuous across the interfacial regions. The
temporal and spatial evolution of the field variables is governed by the Cahn-Hilliard
nonlinear diffusion equation and the Allen-Cahn relaxation equation. With the funda-
mental thermodynamic and kinetic information as the input, the phase-field method is
able to predict the evolution of arbitrary morphologies and complex microstructures
without explicitly tracking the positions of interfaces. This paper briefly reviews the
recent advances in developing phase-field models for various materials processes in-
cluding solidification, solid-state structural phase transformations, grain growth and
coarsening, domain evolution in thin films, pattern formation on surfaces, dislocation
microstructures, crack propagation, and electromigration.

INTRODUCTION

Microstructures are compositional and structural inhomogeneities that arise dur-
ing processing of materials. Microstructure evolution is common in many fields
including biology, hydrodynamics, chemical reactions, and phase transformations.
Materials microstructures may consist of spatially distributed phases of different
compositions and/or crystal structures, grains of different orientations, domains of
different structural variants, domains of different electrical or magnetic polariza-
tions, and structural defects. These structural features usually have an intermediate
mesoscopic length scale in the range of nanometers to microns. The size, shape,
and spatial arrangement of the local structural features in a microstructure play a
critical role in determining the physical properties of a material.

Microstructure evolution takes place to reduce the total free energy that may
include the bulk chemical free energy, interfacial energy, elastic strain energy,
magnetic energy, electrostatic energy, and/or under applied external fields such as
applied stress, electrical, temperature, and magnetic fields. Due to the complex
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and nonlinear nature of microstructure evolution, numerical approaches are often
employed. In the conventional approach to modeling microstructure evolution, the
regions separating the compositional or structural domains are treated as mathe-
matically sharp interfaces. The local interfacial velocity is then determined as part
of the boundary conditions or calculated from the driving force for interface mo-
tion and the interfacial mobility. This involves the explicit tracking of the interface
positions. Although such an interface-tracking approach can be successful in one-
dimensional systems, it becomes impractical for complicated three-dimensional
microstructures. During the past ten years, the phase-field approach has emerged
as one of the most powerful methods for modeling many types of microstructure
evolution processes. It is based on a diffuse-interface description developed more
than a century ago by van der Walls (1, 2) and almost 40 years ago independently
by Cahn & Hilliard (3). The temporal microstructure evolution is described by

a pair of well-known continuum equations, namely, the Cahn-Hilliard nonlinear
diffusion equation (4) and the Allen-Cahn (time-dependent Ginzburg-Landau) (5)
equation. With random thermal noises, both types of equations become stochas-
tic, and their applications to studying critical dynamics have been extensively
discussed (6, 7). Phase-field models describe microstructure phenomena at the
mesoscale and contain the corresponding sharp- or thin-interface descriptions as
a particular limit [see (8) for a recent discussion]. There are basically two types
of applications of phase-field models. In the first type, field variables also called
phase-fields, are introduced for the sole purpose of avoiding tracking the inter-
faces. Essentially all phase-field models of solidification belong to this type. As a
matter of fact, the term phase-field model was first introduced in modeling solid-
ification of a pure melt (9—11). The thermodynamic and kinetic coefficients in a
phase-field model are then chosen to match the corresponding parameters in the
conventional sharp- or thin-interface equations through asymptotic analyses. The
development of phase-field models for solidification has recently been reviewed by
Karma (12) and Ode et al. (13). In the second type, the field variables correspond
to well-defined physical order parameters such as long-range order parameters for
order-disorder transformations and the composition fields for phase separation.
These types of models assume that the microstructure evolution during a given
process is governed by the phase-field equations and, in principle, all the thermo-
dynamic and kinetic coefficients can be related to microscopic parameters. They
have been extensively applied to modeling solid-state phase transformations and
have also been recently reviewed (14, 15). In addition to solidification and solid-
state phase transformations, phase-field models have been proposed for a number
of other important materials processes including grain growth and coarsening
(16-19), microstructure evolution in thin films (20, 21), surface-stress-induced
pattern formation (22), crack propagation (23, 24), crystal growth in the presence
of strain (25, 26), dislocation-solute interactions (27, 28), dislocation dynamics
(29), electromigration (30, 31), and multicomponent interdiffusion (32). The main
purpose of this paper is to give a brief review of the recent applications of the
phase-field method.
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Phase-Field Method

A phase-field model describes a microstructure, both the compositional/structural
domains and the interfaces, as a whole by using a set of field variables. The field
variables are continuous across the interfacial regions, and hence the interfaces in
a phase-field model are diffuse. There are two types of field variables, conserved
and nonconserved. Conserved variables have to satisfy the local conservation con-
dition. In the diffuse-interface description (1-3), the total free energy of an inho-
mogeneous microstructure system described by a set of conserved (. .) and
nonconservedy, n,, . ..) field variables is then given by

n
F = f |:f(Cl,Cg,...,Cn,771, 772,...,77p)+20li (VCi)2
i=1

3 3 p
+ ZZZﬁijVinkvjnk} d’r +/ G(r —r)dd%’, 1.

i=1 j=1 k=1

wheref is the local free-energy density that is a function of field variaglaadn;,

o; andg;j are the gradient energy coefficients. The first volume integral represents
the local contribution to the free energy from short-range chemical interactions.
The origin of interfacial energy comes from the gradient energy terms that are
nonzero only atand around the interfaces. The second integral represents a nonlocal
term that contains the contributions to the total free energy from any one or more
of the long-range interactions, such as elastic interactions, electric dipole-dipole
interactions, electrostatic interactions, etc., that also depend on the field variables.
The main differences among different phase-field models lies in the treatment of
various contributions to the total free energy.

Local Free-Energy Function

One of the key components in a phase-field model is the local free-energy density
function. Many of the phase-field models, particularly in solidification modeling,
use a double-well form for the function, namely,

_ YR
f(¢>)_4Af< 67+ 50 ) 2.

where ¢ is a field variable. The free-energy function has a doubly degenerate
minima represented by = —1 and¢ = +1. For example, in the case of solidi-
fication,¢ = —1 and¢ = +1 represent the liquid and solid states, respectively.
Af is the potential height between the two states with the minimum free energy.
If ¢ represents a conserved composition field, the two minima represent the two
equilibrium phases with different compositions, afflis then the driving force

for the transformation of a single homogeneous phase () to a heterogeneous
mixture of two phases representeddy= —1 and¢ = +1 during isostructural
decomposition. I is a long-range order parameter fiejd= —1 and¢ = +1
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describe two thermodynamically degenerate antiphase domain states. For some
processes, it may be more desirable to have the two minima of the free energy
located atp = 0 andg = 1, then the following functionf (¢) = 4Af¢? (1— ¢)?,
can be employed.

Another free energy function that has sometimes been employed in phase-field
models is the so-called double-obstacle potential,

f(¢) = Af(1—¢%) + 1(9). 3.
where
S if Jo|>1
'@W=10 it pi<1

This potential has a computational advantage that the field variable assumes the
value of—1 and+1 outside the interfacial region, whereas in the case of the double-
well potential (Equation 2), the values of the field variable slowly ge-fioand
+1 away from the interface. The double-obstacle potential was first introduced by
Oono & Puri in their cell-dynamics modeling of pattern evolution during ordering
or phase separation of a quenched system (33). It was later used by Blowey &
Elliot (34) for modeling spinodal decomposition using the Cahn-Hilliard equation.
Recently, this potential has been applied to modeling morphological evolution of
voids in metal interconnects (31).

In their phase-field model for dislocation dynamics, Wang et al. (29) introduced
the following local free-energy function, so-called the crystalline energy,

f(p) = Af sir(n¢). 4.

It has an infinite number of minima located@t= —oo,..., —1, 0,+1,...
+o00, Afis the energy barrier between two neighboring minima. In this case, the
absolute values of the phase field at the potential minima represent the discon-
tinuous relative displacements between the two lattice planes above and below a
slip plane, measured in unit of a given Burgers vector on the slip system, and the
positive and negative signs for the phase field describe the opposite directions of
the Burgers vectors.

In many applications of the phase-field model to real materials processes, it is
often necessary to introduce more than one field variables or to couple one type of
field with another. Even in the phase-field model for solidification of a pure liquid,
the phase field is coupled to a temperature field, and one of the potentials that has
been employed is (35)

_ant( Loz ot ) £ B (6 - 203 4 Tes )T -
f(¢,T)_4Af< >0 +4¢>+ 8<¢ 5¢ +5¢>(T Tw), 5.

whereq is a positive constant, afig, is the equilibrium melting temperature. With
the particular functional dependence of the second term onEquation 5, the
two equilibrium values fop are independent of the undercoolifig£ Ty,). With



PHASE-FIELD MODELS 117

this potential, the driving forceAG,, the free-energy difference per unit volume
between the solid and the liquid, for solidification at a given temperatisgrgiven

by
AG, = f(+L,T) = f(=1,T) = 2o(T — Tpn). 6.

Another example involving coupling between field variables is a phase-field
model for grain growth in which the fields describe the spatial distributions of
grains with different orientations. This involves a simple extension of the double-
well potential to one with an infinite number of minima (16),

1 1
f(pa, ¢, ...) = 4Af (—5 quf + ZZ@“) +a2ijj§¢?¢,~2, 7.
whereq is a positive coefficient, andf is the energy barrier among the minimum
states. Witha > 2Af, the infinite number of minima are located at (1,.0),
0,1,...),(-1,0,...), etc., representing the infinite number of possible orientations
of grains in a polycrystal.

For many solid-state phase transformations, the field variables correspond to
well-defined physical order parameters. In this case, the local free-energy function
is typically expressed as a polynomial of order parameters, using a conventional
Landau-type of expansion. All the terms in the expansion are required to be invari-
ant with respect to the symmetry operations of the high-temperature phase. For
example, for precipitation of an ordered phase,jlftom a face-centered-cubic
(FCC) matrix in a binary alloy, with expansion terms up to the fourth order, the
local free-energy function is given by (36—40)

1 1
F(,n1, 12, m3) = fa (€, T) + S Aale, )02 + 03 +nd) + 3A(C Thmunans

1 1
+ 5 Aa(e. T)(nd + 13 + n3) + 5 A, T)(nin3 + 303 + nnf). 8.

wherefy (¢, T) is the free energy of the disordered phase,Aand\s, A4y, andAy,

are the expansion coefficients that are functions of temperature and composition.
The free-energy function (Equation 8) has quadruple-degenerate minima with
respect to the order parameters A (c, T) < 0, the free energy minima are
located at

(no, m0, n0), (Mo, —n0, —n0), (=10, N0, —1n0), (=10, —1no0, M0), 9.

whereng is the equilibrium long-range parameter at a given composition and tem-
perature. The four sets of long-range order parameters given in Equation 9 describe
the four energetically equivalent antiphase domains of theokdered phase re-
lated by a primitive lattice translation of the parent disordered FCC phase. The
free energy of the ordered phase as a function of composition can be obtained by
substituting order-parameter values from Equation 9 into the free-energy function
(Equation 8).
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The last example is the free-energy function employed in a phase-field model
for domain structure evolution during a cubic to tetragonal ferroelectric phase
transition. In this case, the local electric polarization fieldh, P,, P3) are the
natural field variables that describe a domain structure. Assuming a first-order
phase transition, the free-energy function as a function of polarization is given by
(20, 41-43)

f(Py, P2, Ps) = Ai(PZ + P2 + P2) + Ay (P + P3 + P?)
+ Ai2(P2P3 + P2PZ + PZP2) + Au11(PS + PS + PS)
+ Awl P3(P3 -+ PS) + P(PE + P) + P§(P{ + P3)]
+ A123PZP3P3, 10.

whereA;, Ar1, Ao, Ar11, Ar1p, andAgozare the expansion coefficients. The values

of these coefficients determine the thermodynamic behavior of the bulk paraelec-
tric and ferroelectric phases, as well as the bulk ferroelectric properties, such as
the ferroelectric transition temperature, the stability and metastability of the parent
paraelectric phase, the spontaneous polarization and susceptibility as functions of
temperature, etc. Forexamphg, = 1/(2s0x ), wheres, is the vacuum permittivity,

andy is the dielelectric susceptibility of the material. A negative valueXocor-
responds to an unstable parent paraelectric phase with respect to its transition to the
ferroelectric state. A positiva; value indicates either a stable or metastable parent
phase, depending on the relations am#angA;;, andA;1;. If Ail > 3A1A114, the

parent phase is metastable, otherwise it is stable. This potential has been employed
in modeling the ferroelectric domain evolution in both bulk single crystals (42—44)
and in thin films constrained by a substrate (20).

Gradient Energy

Inherent to microstructures is the existence of interfaces. The excess free energy
associated with the compositional and/or structural inhomogeneities occurring at
interfaces is the interfacial energy. To relate the interfacial energy to the gradient
energy termsin a phase-field model, letus consider a simple system thatis described
by a single field variablep. The total free energy of a microstructure for such a
systemF, is simplified to be (1-3, 45)

F = Fouk + Fint = / [f(d)) + %K¢(V¢)2:|dv, 11.

v

whereFpy andFiy; are the bulk and interfacial energies, respectively, anes

the gradient energy coefficient. For the case ¢hista composition or long-range
order-parameter field, the gradient energy coefficient can be expressed in terms
of pair-wise interatomic interaction energies (3, 46). Using the double-well free-
energy function (Equation 2), it is easy to show that the specific interfacial energy
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(interfacial energy per unit area), is given by

42
y = T\/_‘/Kd)Af. 12.

For systems with more than one field variable, the interfacial energies usually have
to be evaluated numerically.

Interfacial energies are, in general, anisotropic due to the crystalline nature of
solids. The degree of interfacial energy anisotropy can have a significant effect
on the growth morphology and equilibrium shape of particles. A number of ap-
proaches have been proposed to introduce interfacial energy anisotropy in phase-
field models. Because « ,/ky, one of the simplest ways to introduce anisotropy
isto makey and, /k,, have the same directional ¢ /|V¢|) dependence. For exam-
ple, in solidification modeling, a cubic anisotropy of interfacial energy can be intro-
duced by the following directional dependence of the gradient energy coefficient
(47, 48),

Vi(n) =a[l+4b(ng+nj+ny)]. 13.

wheren,, ny, n, are thex, y, andz components of a unit vectar, Numerical treat-

ment of systems with sharp corners owing to interfacial energy anisotropy was
recently discussed by Eggleston et al. (49). It should be pointed out that although
this approach is convenient for introducing the interfacial energy anisotropy using

the orientational dependence of the gradient energy coefficients, it is difficult to

justify physically.

In solid-state phase transformations, the interfacial energy anisotropy can be
introduced naturally through the gradient terms. For example, for the precipitation
of an ordered L1 phase from an FCC matrix, the gradient energy terms can be
written as (38, 39)

3
LIV + 3 3k (BIVimo0V (1) 14
p=1

where the gradient energy coefficiem(sand/ci'} , can be related to the microscopic
interaction energies in a pair-wise interaction model (46):

1 1 ;
Ko = =5 YOrAWE), k()= =5 Y onnWine e,
r r

wherer is the position vector; is the magnitude of, r; is the " component of

r, W(r) is the effective pair interaction energies, aagis the superlattice vector
corresponding to the order paramefgrThe nonzero gradient energy coefficients
satisfy the following relationships,

K11(1) = k75(2) = K33(3) # K2p(1) = kezy(1)
= 171(2) = Ke35(2) = K71(3) = K75(3). 15.
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Finally, to introduce a desired interfacial energy anisotropy, one could also
add higher-order gradient energy terms, although they are also difficult to justify
physically. For example, it would be necessary to introduce fourth-order terms in
order to produce cubic anisotropy (9, 50),

92 92
Kijkl —¢ ¢ , 16.
orj 3!‘] argar,

where the gradient coefficiertjy is a fourth-rank tensor; is the ith component
of the position vector. It is shown that this high-order gradient energy term results
in an interfacial energy that does not exhibit cusps, and hence the equilibrium
particle shapes do not contain planar facets (51). However, the resulting interfacial
energy anisotropy may be sufficient to produce corners in the Wulff shapes.

Elastic Energy, Electrostatic Energy, Magnetic Energy

Phase transformations in solids usually produce coherent microstructures at their
early stages. In a coherent microstructure, the lattice planes and directions are
continuous across the interfaces, and the lattice mismatch between phases and
domains are accommodated by elastic displacements. The elastic energy contri-
bution to the total free energy in a phase-field model can be introduced directly by
expressing the elastic strain energy as a function of field variables or by including
coupling terms between the field variables and the displacement gradients in the
local free-energy function (52). The relationship between the two approaches was
recently discussed (53).

Consider a rather general microstructure described by a conserved composition
field c(r) and a nonconserved order parameter figlg. Let us assume that the
local stress-free strain is linearly proportional to the composition field and has a
quadratic dependence on the order parameter field, i.e.,

£ (r) = i c(r) + & n’(r). 17.

It should be emphasized that the linear dependence of stress-free strain on
composition is assumed simply for convenience. The elastic energy of a system
with a nonlinear dependence of lattice parameter on composition can be obtained
using the same approach (53). The stress-free strain (Equation 17) contains two
pieces of information: One is the microstructure described by the field variables,
c(r) andn(r), and the other is the crystallographic relationship between the phases
or domains in a microstructure through the lattice expansion coefficients with
respect to composition and order parameterefreandei’} . The local elastic stress
in a coherent microstructure is then given by

aij (1) = hijia (e (r) = Aqjia (N[ ewa (r) — el c(r) — efm?(r)]. 18.

whereji (r) is the elastic modulus tensor, which is, in general, spatially depen-
dent, orinhomogeneousy (r) is the total local strain, which is obtained by solving
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the following mechanical equilibrium equation,
d0ij

—0, 19.
3I'j

subject to appropriate mechanical boundary conditions. With the elastic solution,
ek (r), the total elastic energy of a microstructure can be calculated through the
usual expression,

1

E = > / Aijkl (r)siej'sﬂ dv. 20.
\%

In the presence of external stress, the mechanical energy contribution to the

total free energy becomes

1
==3 / M (e dV /"i?(r)eu (r) v, 21,
v v

whereo§ is the applied stress and can be inhomogeneous.

To solve the mechanical equilibrium equation (Equation 19), most existing
phase-field simulations assume homogeneous elasticity where the elastic mod-
ulus difference between different phases is neglected, Xi.g:(r) = constant
(14,15). In this case, the elastic fields can be analytically evaluated for any
arbitrary microstructures as shown by Khachaturyan more than 30 years ago
(46,54). There have been significant efforts in incorporating the elastic inho-
mogeneity through the dependence of the elastic modulus tensor on field vari-
ables. When the elastic inhomogeneity is small, first-order approximations may
be employed (52,55, 56). Recently, it was shown that it is possible to incorpo-
rate high-order approximations for solving the inhomogeneous elasticity equa-
tion using an iterative approach, thus allowing strong elastic inhomogeneity (57).
The unique feature of this iterative approach is the fact that the accuracy can be
successively improved by using increasingly higher-order approximations with-
out a significant increase in the computational time compared with the homo-
geneous approximation. Finally, one can always resolve to use direct numerical
methods for solving the elastic equation using, e.g., a conjugate gradient method
(CGM) (58, 59) or a finite-element method (31). However, such direct numerical
solutions are usually more time consuming than those using more approximate
methods.

For modeling solid-state phase transformations or other processes that involve
charged species or electrical or magnetic dipoles, the electrostatic or magnetic
energy contributions to the total free energy of a microstructure can be evaluated
using an approach similar to that of elastic energy. The electrical or magnetic field
distribution in a microstructure has to be solved first for any distribution of charges
and dipoles, and the total electrostatic or magnetic energy is then expressed as a
functional of the field variables. For example, using the simplest approximation,
i.e., the dielectric or magnetic susceptibility is a constant, the electrostatic or
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magnetic energy of a domain structure is (44, 46, 60)

1 d3g 1 d3g
T 2, ] (27)3 210 J (27)3

whereeg, and i, are the permittivity and permeability of vacuum, respectively.
P(0) and M(g) are the Fourier transformations of the electric and magnetic dipole
distributions, P() and M(), which are the natural field variables for ferroelectric
and magnetic materials. For more general cases in which the dielectric and mag-
netic properties are inhomogeneous, the electrostatic and magnetic equilibrium
equations have to be solved numerically with appropriate boundary conditions.

IP(@) - N> or Emag= IM(g) - n>,  22.

Evolution Equations and Numerical Methods

With the total free energy of a microstructure discussed above, the evolution of
field variables in a phase-field model can be obtained by solving the following
Cahn-Hilliard (5) and Allen-Cahn (4) equations,

ag(r, t SF
(1) =VM;;V——— 23.
ot sci(r,t)

anp(r,t) SF

—_— = - pq—, 24.
ot Sng(r, t)

whereM;; andL 4 are related to atom or interface mobility, c,, . . . are conserved
fields, andy4, 15, ... are nonconserved.

Modeling the microstructure evolution using the phase-field approach is then
reduced to finding solutions to the kinetic Equations 23 and 24. A number of nu-
merical methods have been implemented. Most phase-field simulations employed
the simple second-order finite-difference method on a uniform spatial grid and
explicit time-stepping. It is well known that in such an explicit scheme, the time
step has to be small to keep the numerical solutions stable.

With periodic boundary conditions, one of the techniques often employed is the
fast Fourier transform method, which converts the integral-differential equations
into algebraic equations [see for example (61-63)]. Alternatively, one can first
convert the integral-differential equations to finite difference equations, which
are then transformed to the Fourier space. However, in this case, the accuracy
in the space discretization is only second-order instead of the spectral accuracy.
In the reciprocal space, the simple forward Euler differencing technique can be
employed for the time-stepping. The disadvantage of this single-step explicit Euler
method is that, although the spatial discretization enjoys the spectral accuracy, it
is again only first-order accurate in time, and the numerical stability is still a
concern.

Recently, more efficient and accurate semi-implicit Fourier-spectral algorithms
have been applied to solving phase-field equations, including those with variable
coefficients (64, 65). These algorithms are much more efficient and accurate than
the conventional forward Euler method. The semi-implicit schemes can also be
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efficiently applied to the phase-field equations with Dirichlet, Neumann, or mixed
boundary conditions by using the fast Legendre- or Chebyshev-spectral methods
developed (66, 67) for second- and fourth-order equations. However, because the
spectral method typically uses a uniform grid for the spatial variables, it may be
difficult to resolve extremely sharp interfaces with a moderate number of grid
points. In this case, an adaptive spectral method may be more appropriate.

Real-space adaptive grid algorithms have been developed for solving the phase-
field equations applied to solidification (68, 69). It has been shown that the number
of variables in an adaptive method is significantly reduced compared with those
using a uniform mesh. This allows one to solve the field model in much larger
systems and for longer simulation times. However, such an adaptive method is in
general much more complicated to implement than uniform grids.

Recently, Plapp & Karma proposed an interesting multiscale diffusion Monte
Carlo (DMC) algorithm (70) to evolve the large-scale diffusion field outside a
thin liquid layer surrounding the interface during solidification modeling. Inside
this layer and in the solid, the diffusion equation is solved using a standard fi-
nite difference method that is interfaced with the DMC algorithm using the local
conservation law for the diffusing quantity. Using this algorithm in a phase-field
simulation of solidification of a pure melt, they claimed that it is possible to accu-
rately simulate the three-dimensional dendritic growth at low undercoolings, while
achieving a similar efficiency as the adaptive finite-element method.

APPLICATIONS

Existing phase-field applications have been focused on the three major materi-
als processes: solidification, solid-state phase transformation, and grain growth
and coarsening. Very recently, a number of new phase-field models have been
developed for modeling thin films and surfaces, dislocation dynamics, crack prop-
agation, and electromigration. Examples of existing phase-field applications are
summarized in Table 1.

Solidification Modeling

Solidification is the transformation of a liquid to a crystalline solid when the liquid

is cooled below the equilibrium melting temperatufg)( Its fundamental under-
standing has technological importance in many practical processes such as casting,
crystal growth, and welding. The idea of using a phase-field approach to model-
ing solidification processes was introduced almost 20 years ago (9-11). It was
motivated by the desire to predict the complicated dendritic patterns during solidi-
fication without explicitly tracking the solid-liquid interfaces. Its success was first
demonstrated by Kobayashi (47), who simulated realistic three-dimensional den-
drites using a phase-field model for isothermal solidification of a single-component
melt. Since then, enormous research effort has been devoted to developing phase-
field models for solidifications, and important progress has been made [see (12, 13)
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TABLE 1 Applications of the phase-field method

References

Solidification
Pure liquid
Pure liquid with fluid flow
Binary alloys
Multicomponent alloys
Nonisothermal solidification

Solid-State Phase Transformations
Spinodal phase separation

Precipitation of cubic ordered intermetallic

precipitates from a disordered matrix
Cubic-tetragonal transformations

Hexagonal to orthorhombic transformations

Ferroelectric transformations

Phase transformations under an applied stress

Martensitic transformations in single and
polycrystals

Coarsening and Grain Growth
Coarsening
Grain growth in a single-phase solid
Grain growth in a two-phase solid
Anisotropic grain growth

Other Applications
Phase transformations in thin films
Surface-stress induced pattern formation
Spiral growth
Crystal growth under stress
Solute-dislocation interactions
Dislocation dynamics

Crack propagation
Electromigration

(9-11, 47, 48,109, 113, 192)
(69, 73-84)

(85-96)

(98, 103-107)

(108)

(52,55, 56,61,120)
(39,40,121,122)

(62, 125-129)

(130-133)

(20,42, 43,60, 134)
(40, 136, 138-140)

(135-137)

(56,78, 120, 159, 160)
(16-18, 143, 145, 146, 154)
(148, 161-163, 165)

(155, 156)

(20,21, 27, 166)
(22,167)
(168)
(26,169, 170)
(27,28,173)
(29, 174-177; S.Y. Hu & L.Q. Chen,
unpublished data)
(23,24)
(30,31,179)

for a more detailed summary on phase-field modeling of solidification]).

For example, phase-field models have been developed that can automatically
generate side-branching of dendrites by including thermal noises (71). Figure 1
shows an example of a three-dimensional dendritic structure obtained from a

phase-field simulation of solidification of a pure Ni melt, taking into account
the effect of thermal noises (72). The crystal has a cubic anisotropy with the aniso-
tropic interfacial thermodynamic and Kkinetic parameters from atomistic
simulations. The effect of fluid flow on the dendrite formation has been con-
sidered by many groups (69, 73—-84). A number of phase-field models have been
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proposed for binary alloy systems and have been used in solidification microstruc-
ture modeling (85—-96). The main difference in models for binary alloys is in the
construction of the local free-energy functions. They have been employed to study
the dendrite formation during solidification of a binary meltinto two- or three-phase
mixtures through eutectic (17, 97-100) or peritectic reactions (17,83, 101, 102).
Phase-field models for model ternary alloys (98, 103, 104) and multicomponent
systems have been constructed (103, 105-107). There has also been an attempt
to develop a phase-field model for the nonisothermal solidification of alloys
(108).

Because the sharp-interface equations for solidification are reasonably well es-
tablished, and the purpose of introducing phase-fields is simply to avoid the moving
boundary problem, there have been many efforts to establish the relationship be-
tween the phase-field models and the corresponding sharp-interface descriptions
[for examples, see (86, 96, 97, 109-116)]. In particular, Karma & Rappel (117)
developed a thin-interface analysis (as opposed to the traditional sharp-interface
analysis) by taking into account the temperature field variation across the interfacial
thickness. They showed that, with the phase-field kinetic parameter obtained from
a thin-interface analysis, it is possible to quantitatively model the kinetics of solid-
ification at low undercoolings without a severe restriction on the interfacial width
(113). This thin-interface limit analysis has been extended to phase-field models
of binary and multicomponent alloys by considering the chemical potential vari-
ation across the interface (96, 105,114, 118). A refined thin-interface analysis of
phase-field models for solidification of binary alloys (119) was recently performed
by simultaneously considering the dramatically different diffusion coefficients in
solid and liquid, the interface stretching correction to the heat conservation condi-
tion at the interface, the surface diffusion correction, and the corrections due to the
chemical potential variation over the interfacial region. A method for systemati-
cally deriving the sharp- or thin-interface equations from phase-field models with
more general free-energy functions was recently discussed by Elder et al. (8).

Solid-State Phase Transformations

Phase-field models have been developed for a wide variety of diffusional and dif-
fusionless solid-state phase transformations [for brief reviews, see (14, 15)]. Ex-
amples include isostructural phase separation (52, 55, 56, 61, 120), precipitation of
an ordered intermetallic phase from a disordered matrix (39, 40, 121-124), cubic
to tetragonal transformations (62, 125-129), hexagonal to orthorhombic transfor-
mations (130-133), ferroelectric transformations (20, 42—-44, 60, 134), proper and
improper martensitic transformations in single and polycrystals (135-137), and
phase transformations under an applied stress (40, 136, 138-140). The main idea
behind the phase-field modeling of solid-state phase transformations is to assume
that the free energy of a system can be expressed as a function of physically de-
fined order parameters using Landau-type expansions (see Equations 8 and 10 for
examples), and the evolution of these order parameters follows the Allen-Cahn
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and Cahn-Hilliard equations. As a matter of fact, for the case of diffusional order-
disorder and compositional phase separation processes, it is possible to derive the
phase-field equations from the corresponding microscopic equations (39, 141). A
unique feature to the solid-state phase transformations is the fact that essentially
all microstructures produced from the early stages of a transformation are coherent
microstructures. The formation of coherent microstructures involves the genera-
tion of elastic strain energy whose magnitude depends on the degree of lattice
mismatch, the elastic properties, and the shape and spatial distributions of coher-
ent particles or domains (46). While the bulk chemical free energy depends only
on the volume fraction of each phase, the elastic energy is a function of both the
volume fraction and morphologies of the coexisting phases. Therefore, the elastic
energy often plays a dominant role in the microstructure evolution in coherent
systems. It is not surprising that many of the phase-field applications to solid-
state transformations are concerned with the elastic strain effect. As an example, a
hexagonal-to-orthorhombic transformation is considered (123, 130, 132, 142). The
transformation process is described by a compositional and a three-component
order parameter field. The orthorhombic phase has three orientation variants, all
of which are energetically equivalent and thus have the same probability to form
from the parent phase. Three typical microstructures predicted from the simu-
lations are shown in Figurea2c representing different volume fractions 37,

~67, and 100%) of the orthorhombic phase. In Figuado2four different shades

of gray correspond to variant 1, parent phase, variant 2, and variant 3, respectively,
with decreasing brightness, whereas in Figugtl2e three variants are presented

by different gray levels. There is a significant variation of precipitate morphology
with the volume fraction. For the case of 37% volume fraction of the orthorhombic
phase, the dominant morphology of precipitates is plate-like with spear-like ends.
Here the precipitates prefer to aggregate together forming twin boundaries, which
results in very inhomogeneous spatial distribution. For the 67% volume fraction
(Figure D), most of the precipitates have rectangle/square shapes, although the
interfacial energy is assumed to be isotropic in the simulation. The majority of the
interfaces are interphase boundaries, with very few twin boundaries. Interestingly,
in this case, the parent phase evolves into dispersed polygon-shaped particles (tri-
angles, trapezia, irregular pentagons, or hexagons) connected through corners. For
the single domain structure (Figure)2the domain boundaries between differ-

ent orientation variants are twin boundaries that possess strain compatibility and
minimize the elastic strain energy. It is quite remarkable that the phase-field ap-
proach combining the macroscopic elasticity theories (46, 54) was able to predict
such complex microstructures and their volume fraction dependence, as shown in
Figure 2.

Grain Growth

Both solidification and solid-solid phase transformations are driven by the reduc-
tion in bulk free energy, whereas coarsening and grain growth take place to reduce
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Figure 2 Morphologies of orthorhombic precipitates in a hexagonal matrix at three
representative volume fractions obtained from two-dimensional phase-field simula-
tions (along the basal plane of the hexagonal phase) (1833706 volume fraction;

(b) 67% volume fraction;d) 100% volume fraction, i.e., single-phase orthorhombic
domain structure. Ing) and ), four different shades of gray correspond to variant 1,
parent phase, variant 2, and variant 3, respectively, with decreasing brightness;
(c) the three variants are presented by different gray levels.

the total interfacial free energy of a microstructure. Several phase-field models
have been proposed to describe grain growth. The first model was proposed by
Chen & Yang (16), in which the grains of different crystallographic orientations
are represented by a set of nonconserved order parameter fields. The evolution of
the order parameter fields is described by the Allen-Cahn equations. This model
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has been extensively applied to simulating grain growth kinetics in two- (143-145)
and three-dimensional systems (146). A similar multiorder parameter model, the
so-called multiphase-field model, for grain growth was proposed by Steinbach (17,
147-149). The main difference between the two models is in the fact that the model
in (17) imposes the following constraint for the order parameteisy; = 0, i.e.,

the sum of all order parameters at a given pointis 1.0. The physical interpretation of
this constraint is that the order parameters represent the volume fraction of grains
of different orientations. Recently, an interesting phase-field model was proposed
to study the crystalline grains (19, 150-154). Different from the multiorder pa-
rameter models for grain growth, it uses two order parameters to describe a grain
structure; one represents the crystalline order; the other reflects the predominantly
local orientation of the crystal. Whereas the relaxation of the local orientation
order parameter simulates the grain rotation, which is absent from the multiorder
parameter models, this order parameter is undefined in a disordered liquid state.
Effect of grain boundary energy and mobility anisotropy on grain growth has been
studied (155, 156) by modifying the multiorder parameter model (16). In addition
to grain growth in single-phase materials, phase-field models have been devel-
oped for studying the diffusion-induced grain boundary migration (157), the grain
growth kinetics under the influence of solute drag (158), the coarsening kinetics of
high-volume fraction of a dispersed phase in a continuous matrix (159, 160), and
the kinetics of coupled grain growth and Ostwald ripening in two-phase systems
(161-165).

A sequence of grain structure evolution from a recent three-dimensional simula-
tion is shown in Figure 3 (146). It was obtained using a multiorder parameter free-
energy model (Equation 7) with 25 order parameters. A dynamic grain-orientation
reassignment was developed to minimize the effect of grain coalescence due to the
finite number of order parameters employed in the simulation. The Allen-Cahn
equations were solved on a £a@niform grid using a finite-difference method.

The initial state was generated by assigning small random order-parameter values
{Ingl} < 0.001. This state crystallizes fully within the first few hundred time steps
(~300) to a dense packing of a few thousand grains. With increasing simulation
time, grains are eliminated via boundary migration, and owing to the conserva-
tion of total volume, the average grain size increases steadily. The average size of
grain increases with time with a value for the growth expomeof 2, as expected

for curvature-driven grain boundary migration. With the temporal microstructure
evolution, all the statistical information about the microstructure, such as average
grain size, size distribution, average number of sides, side distribution, and local
topological changes, can be obtained.

Phase Transformations in Thin Films and on Surfaces

There have been a number of applications of the phase-field method to the mor-
phological pattern formation in thin films and on surfaces. For example, Li et al.
developed a phase-field model for predicting the coherent domain evolution in
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(a) (b)
(c) (d)

Figure 3 Atypical grain evolution process obtained from a three-dimensional phase-
field simulation of grain growth assuming isotropic grain boundary energy and isotropic
boundary mobility (146). Twenty-five order parameters were used, and an orientation
reassignment algorithm was implemente) t{ = 250; () t* = 1000; €) t* = 1500;

(d) t* = 2010, wheretis the time in reduced unit.

constrained thin films (20, 166). It employs an analytical elastic solution derived
for a constrained film with arbitrary eigenstrain distributions. The model is able to
predict simultaneously the effects of substrate constraint and temperature on the
volume fractions of domain variants, domain-wall orientations, domain shapes,
and their temporal evolution during a ferroelectric phase transformation. Figure 4
shows examples of domain structures of a PBidgle crystal film with (001)
orientation, coherent-bonded to a (001) cubic substrate. The three drastically dif-
ferent domain structures result from different substrate constraints ranging from
compressive to tensile. Leo & Johnson proposed a phase-field model to study the
microstructure evolution and long-time coarsening behavior of a thin film attached
to a compliant substrate (21). In particular, they studied the spinodal decomposition
and coarsening of a thin-film binary alloy using the Cahn-Hilliard equation. Suo &
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Luinvestigated the self-assembly dynamics of a two-phase monolayer on an elastic
substrate by incorporating an anisotropic surface stress into a phase-field model of
spinodal decomposition (22, 167). The competition between short-range attractive
interactions that are responsible for the interfacial energy and long-range repulsive
elastic interactions that produce the surface stress results in nanoscale morpholog-
ical patterns such as interwoven stripes, parallel stripes, triangular lattice of dots,
and herringbone structures. Karma & Plapp constructed a phase-field model for
spiral surface growth in the step-flow regime where desorption of adatoms is negli-
gible, and the ridge dynamics is governed by the nonlocal diffusion field of adatoms
on the whole surface (168). With this model, it is possible to make quantitative
predictions for the selected step spacing as a function of the deposition flux, as well
as for the dependence of the relaxation time to steady-state growth on the screw
dislocation density. Finally, phase-field models for solid-liquid interfaces under
stress have been proposed (26, 169, 170). Simulations of a solid subject to uniaxial
stress using a phase-field model were able to reproduce the Asaro-Tiller-Grinfeld
instability and a transition to fracture (26).

Dislocation Microstructures

It has long been recognized that structural defects such as dislocations play an
important role in the diffusional processes and phase transformations in solids.
For example, the interaction between composition and a dislocation results in
solute segregation and depletion, leading to the formation of so-called Cottrell
atmosphere (171). The existence of dislocations may promote the nucleation of a
new phase (172). Leonard & Desai were the first to consider the effect of disloca-
tions on the spinodally decomposed two-phase morphologies in a diffuse-interface
context (27). Recently, Hu & Chen proposed a diffuse-interface field model by cou-
pling the Cahn-Hilliard diffusion equation with the elastic fields produced from
coherent compositional inhomogeneities, as well as from more general structural
defects including dislocations (28, 173). This model can easily incorporate elastic
anisotropy and allows arbitrary distribution of composition and dislocations. The
unique feature of this model is that the elastic fields from dislocations and coherent
compositional inhomogeneity are obtained within exactly the same formulation

Figure 4 Three representative domain structures in a (001)-oriented BHTiiCfilm
constrained by a (001)-oriented cubic substrate under different degrees of lattice mis-
match between the film and the substrate (20, 18§ ) lie film is under a compressive
strain (0.002); @) the film is under relatively small tensile strain (0.00&)) the

film is under a large tensile strain (0.016). Only the @@he tetragonal axis is along

the plane of the film) and,a(the tetragonal axis is also along the plane of the film
but perpendicular to that of,@omains are shown. The rest of the film belongs to the
c-domain (the tetragonal axis is along the normal to the film).
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using the concept of eigenstrains in micromechanics, which is different from the
work of Leonard & Desai who directly introduced the analytical elastic solution of

a dislocation (27). A similar model was developed by Rodney et al. (174) who in-
troduced two length scales in the simulations to account for the fact that dislocation
cores are much smaller than the grid spacing. A significant advance in phase-field
modeling of dislocation dynamics was made by Wang et al. (29, 175, 176). They
proposed to describe a multidislocation system using a set of order parameters that
describe the discontinuous relative displacements between the two lattice planes
below and above the slip plane, measured in units of Burgers’ vectors. The evolu-
tion of the order parameter fields is obtained by solving the Allen-Cahn equation
(29, 175, 176). The model not only takes into account the long-range strain-induced
interactions among individual dislocations but also automatically incorporates the
effects of short-range interactions, such as multiplication and annihilation of dis-
locations. Figure 5 shows an example from a phase-field simulation of plastic
deformation of a model FCC alloy under a uniaxial tensile stress. The disloca-
tion generation during deformation was provided by randomly placed Frank-Read
sources in the system. The model has since been extended to polycrystals (177)
and to systems with simultaneously evolving phase and dislocation microstructures
(174; S.Y. Hu & L.Q. Chen, unpublished data).

Crack Propagation

The application of the phase-field approach to the challenging problem of crack
propagation in amorphous solids has recently been explored by Aranson et al. (23)
and Karma et al. (24). A nonconserved phase field is introduced to characterize the
local state of matter, either the local density or the degree of atomic bonds brokenin
the solid. For example, the value of 1 for the phase field represents the solid regions,
and 0 represent the cracks where the density is zero (23) or where all the atomic
bonds are broken (24). At the crack surface, the phase field varies from 0 to 1. The
Allen-Cahn equation for the phase field is coupled to the elastodynamics equation
for the displacement field. While the evolution of the displacement fields is driven
by the applied stress or strain, the evolution of the phase field is determined by
a local criterion: Either the local density is below a certain critical density (23)
or the local strain is above a critical value (24). Simulations of steady-state crack
motion in a strip geometry using the phase-field approach seem to capture the
main phenomenological features of crack propagation observed experimentally,
although the quantitative modeling of the crack propagation dynamics requires
further development.

Electromigration

A phase-field model has been developed to study the motion and evolution of
voids in interconnects by electromigration (30, 179). Electromigration is a process
in which metal ions drift as a result of electron impact when an electrical current
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Figure 5 The stress—strain curve obtained from a three-dimensional phase-field sim-
ulation of an FCC crystal under a uniaxial loading{) (29, 175, 176). Plastic behavior

is reproduced, and the dislocation multiplication with increasing steai) is illus-

trated by the three-dimensional dislocation structures corresponding to different strain
stagesu is the shear modulus of the crystal (courtesy of A. Khachaturyan).

passes through a metal thin film or metal wire. A continuously varying conserved
order parameter is used to describe the metal and void distributions within the
metal film or wire. The time evolution of the metal-void interface is given by two
partial differential equations: the Cahn-Hilliard equation for the conserved order
parameter and the Laplace’s equation for the electrical potential. More recently,
Bhate et al. (31) developed a more comprehensive phase-field model by coupling
the elasticity equation to the phase-field and electrostatic equilibrium equations to
study the void evolution under the simultaneous influence of electrical field and
stress. An asymptotic analysis of the equations demonstrates that the zero-level
set of the order parameter tracks the motion of a void evolving by diffusion under
the coupled effects of stresses and the “electron wind” force.
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ROLE OF PHASE-FIELD APPROACH IN
MULTISCALE MODELING

It is well known that many materials processes take place over a wide range of
length and time scales. Although innovative multiscale modeling approaches have
recently been proposed (180-186) for modeling multiple scale processes in many
complex multicomponent materials systems, the straightforward information pass-
ing from one scale to another is still the main approach in the foreseeable future.
Here the phase-field method can provide the critical link between the atomic level
fundamental calculations and the macroscopic constitutive modeling. A number of
efforts have been made in this direction. For example, a combined first-principles
and phase-field methodology has been applied to the problén(af,Cu) pre-
cipitation in Al alloys (187, 188)9’ precipitates not only occur in binary Al-Cu
alloys but are strengthening precipitates in a wide variety of industrial Al alloys
as well. All the necessary thermodynamic information, including the bulk free
energies of matrix and precipitate phases, the interfacial energy and its anisotropy,
and the lattice mismatch, was obtained from first-principles calculations combined
with cluster expansions. Thus it is possible to predict the precipitate shapes us-
ing a phase-field model with only the thermodynamic information obtained from
first-principles. More quantitative microstructure information, which is useful in
understanding precipitation hardening behavior, can be obtained from these phase-
field simulations. Atomistic calculations have also been employed to obtain the
fundamental properties of solid-liquid interfaces, such as interfacial energies and
mobilities, as well as their anisotropies (189, 190), for input to phase-field simu-
lations (72).

For complex multicomponent systems, a number of efforts have been reported in
connecting phase-field models with existing thermodynamic and kinetic databases
(103, 106, 107). It is possible to directly construct the free-energy function of a
phase-field model from existing databases using the CALPHAD method (191).
The compositional dependence of atomic mobilities from databases can also be
incorporated. However, in order to take into account the effect of elastic energy
in solid-state processes, additional databases, such as the crystallographic lattice
parameters and elastic constants, have to be constructed. With independently as-
sessed reliable databases, it will be possible to predict the microstructure evolution
in complex multicomponent alloys using the phase-field method.

SUMMARY

Phase-field models have been successfully applied to various materials processes
including solidification, solid-state phase transformations, coarsening, and growth
(Table 1). With the phase-field approach, one can deal with the evolution of ar-
bitrary morphologies and complex microstructures without explicitly tracking the
positions of interfaces. This approach can describe different processes such as
phase transformations and particle coarsening within the same formulation, and it
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is rather straightfoward to incorporate the effect of coherency and applied stresses,
as well as electrical and magnetic fields. Future efforts are expected to focus on the
exploration of novel applications of the phase-field method to various materials
problems, e.g., problems involving simultaneous long-range elastic and electric or
magnetic dipole-dipole interactions, low-dimensional systems such as thin films
and multilayer structures, and interactions between phase and defect microstruc-
tures such as random defects and dislocations. There will also be increasing efforts
in establishing schemes to obtain the phase-field parameters directly from more
fundamental first-principles electronic structure or atomic calculations. For prac-
tical applications, significant additional efforts are required to develop approaches
for connecting phase-field models with existing or future thermodynamic, kinetic,
and crystallographic databases.
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Figurel Asnapshotofathree-dimensional dendrite in pure Niwith a cubicinterfacial

energy anisotropy obtained from a phase-field simulation with thermal noises (72)
(courtesy of A. Karma). The interfacial energy and mobility anisotropies were obtained
from atomistic simulations, and they are matched to the kinetic coefficients in the

phase-field model using a thin-interface analysis.



