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ABSTRACT

Brown adipose tissue is distinguished by its unique capacity for uncoupled
mitochondrial respiration, which is highly regulated by sympathetic nerve
activity. Because of this, energy expenditure in brown fat is capable of ranging
over many orders of magnitude. The fact that the function of brown adipose
tissue is impaired in obese rodents and that transgenic mice with decreased
brown fat develop obesity demonstrates the importance of brown fat in main-
taining nutritional homeostasis. However, the role of brown fat in humans is less
clear.β3-Adrenergic receptors are found on brown adipocytes, and treatment
with β3-selective agonists markedly increases energy expenditure and decreases
obesity in rodents. Whetherβ3-selective agonists will be effective anti-obesity
agents in humans is presently under investigation.

Introduction
White and brown adipose tissue are similar with regard to a number of highly
specialized biochemical functions, including the synthesis and storage of tri-
glycerides (lipogenesis) and the release of unesterified fatty acids (lipolysis).
These processes are mediated by the expression of genes, many of which are
expressed exclusively in white and brown fat. However, despite numerous
biochemical and genetic similarities between white and brown fat, the global



functions of these two tissues are opposite: White fat stores energy and brown
fat dissipates energy. This review focuses on the biochemistry and physiology
of brown adipose tissue, including its regulation byβ3-adrenergic receptors
(β3-ARs) andβ3-adrenergic selective agonists.

Obesity represents excess total body fat and results from a chronic excess of
energy intake over energy expenditure. Total energy expenditure represents
the net sum of calories expended to maintain cellular functions (ion gradients,
enzymatic reactions, etc), calories expended to perform physical activity, and
calories expended in order to modulate energy balance (sometimes referred to
as facultative energy expenditure). This latter category is of great interest as it
is highly regulated and can change dramatically depending on the nutritional
status of the organism. Uncoupled mitochondrial respiration in brown adipose
tissue is thought to contribute importantly to facultative energy expenditure
(1).

Brown Adipose Tissue, Uncoupling Protein, and Uncoupled
Respiration

From a morphologic perspective, white and brown adipose tissue are distinct.
Unlike white fat, brown fat is highly vascular and is intensely innervated by
sympathetic nerves (2). Brown adipocytes are smaller, contain less lipid, and
store triglyceride in multilocular rather than unilocular droplets. In addition,
brown adipocytes possess type-II thyroxine 5′-deiodinase activity (3, 4), which
generates high local concentrations of triiodothyronine. Brown adipocytes also
possess abundant mitochondria, which are distinguished, ultrastructurally, by
the presence of densely packed cristea (5). However, the most unique feature
of brown adipocytes is their expression of uncoupling protein (UCP), a 32-kDa
protein of the inner mitochondrial membrane, which functions to uncouple
mitochondrial respiration (6). In mitochondria of cells other than brown adipo-
cytes, fuel oxidation is tightly coupled to conversion of ADP to ATP. Oxida-
tion of fuels via the electron transfer chain results in extrusion of protons from
mitochondria, creating a significant proton electrochemical gradient. Protons
reenter mitochondria via ATP synthase, the released energy driving conver-
sion of ADP to ATP. If ADP is unavailable, however, protons are unable to
reenter via ATP synthase, increasing the proton gradient and limiting further
electron transfer and fuel oxidation. In contrast, mitochondria of brown adipo-
cytes possess UCP, which dissipates the proton gradient, thereby uncoupling
fuel oxidation from the availability of ADP. Thus, the physiologic conse-
quence of UCP activity is unrestrained oxidation of fuels with the sole bypro-
duct being the generation of heat. Importantly, uncoupled respiration in brown
fat is highly regulated. As a result, energy expenditure in brown fat is capable
of ranging over many orders of magnitude, controlled primarily by sympa-
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thetic stimulation. Increases in uncoupled respiration are mediated by rapid
changes in UCP intrinsic activity (within seconds), increases in the amount of
UCP per cell (within hours), increases in the number of mitochondria per
adipocyte (within days), and finally hyperplasia of brown adipocytes (over
days to weeks).

UCP intrinsic activity, or proton transport mediated by UCP, is highly
regulated. To date, free fatty acids are the only known, physiologically rele-
vant, intracellular regulators of UCP activity (7–9). Studies utilizing isolated
brown adipocyte mitochondria and/or reconstituted UCP-bearing proteo-
liposomes have demonstrated that proton transport, and hence uncoupled res-
piration, is significantly stimulated by increasing concentrations of fatty acids.
Acutely, sympathetic stimulation of brown adipocytes is thought to increase
uncoupled respiration by increasing lipolysis and the intracellular concentra-
tion of free fatty acids. Of note, accumulating evidence indicates that UCP, in
contrast to previous views, is a free fatty acid anion transporter and not a
proton transporter (10, 11). Free fatty acid anions, which are membrane imper-
meable, are transported out of the mitochondria by UCP. These cytoplasmic
free fatty acid anions become protonated and, in this membrane-permeable
state, reenter  the mitochondria, with the net  result being the transport of
protons into the mitochondria. Thus, UCP as a fatty acid anion transporter
allows free fatty acids to function as cycling protonophores, the ultimate result
being uncoupled respiration.

UCP activity is also controlled by effects on UCP gene expression. Mouse
and rat cDNAs and the corresponding genes for UCP have been isolated
(12–16). Sympathetic nerve activity increases UCP mRNA levels, primarily
through effects on gene transcription (17, 18). This response appears to be
mediated  predominantly  byβ-ARs  and cAMP, and to a lesser degree by
α1-ARs. Triiodothyronine also has stimulatory effects on UCP transcription
(19). This is likely to be physiologically relevant since adrenergic activation of
brown adipocytes markedly increases type-II thyroxine 5′-deiodinase activity
(20), increasing intracellular concentrations of triiodothyronine. A number of
investigators are attempting to identify UCP promoter/enhancercis-regulatory
elements andtrans-acting factors, which control UCP gene transcription. So
far, such studies have identified regions that confer brown fat–specific expres-
sion in transgenic mice (21, 22), as well as inducibility of UCP transcription
by cAMP, thyroid hormone, and retinoic acid (23–25).

Sympathetic stimulation of brown fat also contributes to regulation of en-
ergy expenditure by increasing mitochondrial biogenesis and hyperplasia of
brown adipocytes. With regard to hyperplasia, significant advances have been
made and are reviewed in detail elsewhere (1, 26). In contrast, very little
information  exists  regarding the regulation  of mitochondrial biogenesis in
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brown fat. Of note, stimulation byβ3-AR agonists markedly increases mito-
chondrial biogenesis, demonstrating the involvement of cAMP (27). As this
complex response requires increased transcription of numerous gene products
from  two  physically separated genomes  (mitochondrial  and  nuclear), it  is
likely to be regulated by one or a few master mitochondrial biogenesis control
genes. Such genes are likely to play important roles in the regulation of body
fat stores and could possibly represent novel targets for anti-obesity drug
development.

Brown Fat and Regulation of Total Body Fat Stores

It has long been known that exposure to environmental cold produces intense
stimulation of sympathetic nerves, innervating brown adipose tissue and lead-
ing to marked increases in brown fat energy expenditure, of which the bypro-
duct is heat (1). In addition to this thermoregulatory role, evidence has accu-
mulated that brown fat plays an important role in regulating total body fat
stores as well. Brown fat increases in amount in rodents fed palatable diets,
leading to the hypothesis that brown fat functions to protect against diet-in-
duced obesity (28). Also, it has been demonstrated that rodents with genetic
forms of obesity (fa/fa anddb/dbmice, fa/fa rats) or hypothalamic lesion-in-
duced obesity have decreased brown fat sympathetic activity and decreased
brown fat thermogenesis (1). The marked thermogenic capacity of brown fat is
also suggested by the dramatic stimulatory effects ofβ3-AR agonists on en-
ergy expenditure (29).β3-AR are found predominantly on white and brown
adipocytes and selective agonists have been synthesized. Acute treatment of
rodents withβ3-agonists doubles energy expenditure, and chronic treatment of
genetically obese mice reduces obesity. It is likely that these significant effects
on energy expenditure are mediated by stimulation of brown adipose tissue.

To directly evaluate the role of brown adipose tissue in preventing obesity,
we recently generated transgenic mice with decreased brown fat. In this study
(30), the promoter for UCP (21) was used to drive expression of diphtheria
toxin-A chain selectively in brown fat. The resulting transgenic animals were
characterized  by  reduced  brown fat  and marked  obesity. Initially, obesity
occurred in the absence of hyperphagia, indicating a reduction in energy ex-
penditure. However, as obesity advanced (after the age of seven weeks), hy-
perphagia developed, raising the possibility that brown fat might also play an
unexpected role in regulating food intake. More recently, we demonstrated that
transgenic mice with decreased brown fat have glucose intolerance and insulin
resistance (31) and have markedly enhanced susceptibility to diet-induced
obesity and diabetes (32), thus supporting the hypothesis that brown fat pro-
tects against obesity caused by calorically dense diets. Taken together, the data
reviewed in this and the preceding paragraphs strongly support the importance
of brown fat in regulating nutritional homeostasis and body fat stores.
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The functional significance of brown fat in humans, however, is less clear.
Humans have a homologue of the rodent UCP gene (33), and human neonates
possess abundant brown adipose tissue (34). In adults, the amount of identifi-
able brown fat is greatly reduced. Using histological techniques, it was origi-
nally thought that adults lacked brown adipose tissue. However, through the
use of molecular probes for UCP mRNA and antibodies for UCP protein, it is
now evident that adults possess brown fat (35, 36), albeit at levels that are
greatly reduced compared with neonates. Of note, adults with pheochromocy-
tomas (catecholamine secreting tumors) often have abundant brown adipose
tissue, indicating that brown fat in human adults has marked capacity for
expansion (37). Unfortunately, the diffuse anatomical distribution of brown fat
in humans has prevented an analysis of brown fat function in lean versus obese
individuals. Thus, the physiologic importance of brown fat in humans is un-
known. Nevertheless, human brown fat, because of its capacity for expansion,
is a reasonable target for anti-obesity drug development.

Obesity research significantly advanced with the landmark discovery of
leptin, a fat-derived hormone that is lacking inob/ob mice (38). This defi-
ciency leads to increased food intake and decreased energy expenditure, result-
ing in the development of extreme obesity. Leptin appears to function as an
adipostat signal, communicating the status of fat stores to the brain. Recent
studies have demonstrated that leptin gene expression and circulating protein
levels range over many orders of magnitude, correlating closely with increased
or decreased total body fat stores (39–43). Administration of recombinant
leptin to ob/ob mice results in decreased food intake and increased energy
expenditure (44–46), the later effect being mediated at least in part by sympa-
thetic stimulation of brown adipose tissue (47). The brain is the likely target
for leptin, since significantly smaller doses of centrally administered recombi-
nant leptin reduce food intake and body weight (46), and the active form of the
leptin receptor is expressed predominantly in the hypothalamus (48–50). The
neural circuitry responsible for leptin-mediated regulation of food intake and
energy expenditure is presently under intense investigation. It is interesting to
note that brown fat ablation transgenic mice have markedly increased levels of
circulating leptin (42, 51), and that administration of exogenous leptin to these
animals has no effect on food intake or body weight (BB Lowell, JS Flier,
unpublished observation). These findings indicate that transgenic mice with
decreased brown fat are functionally resistant to the anti-obesity actions of
leptin, suggesting that the ability of leptin to reduce food intake and fat stores
requires normal brown fat function.

β3-Adrenergic Receptors
β3-ARs are abundant in white and brown adipose tissue of rodents (52–54). In
contrast,β3-ARs in humans are expressed abundantly in brown adipose tissue
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with fewer or no receptors being found in white adipose tissue (36, 55). A
number of in vivo studies have provided clues regarding the possible physi-
ologic significance ofβ3-ARs. In genetically obesefa/fa rats (53) andob/ob
mice (56),β3-AR mRNA levels are significantly down-regulated, raising the
possibility that decreasedβ3-AR function might contribute to decreased en-
ergy expenditure and the development of obesity in these animals. Of note, it
has recently been reported that a missense mutation of the humanβ3-AR tends
to be associated with obesity, decreased energy expenditure, reduced insulin
sensitivity, and earlier onset of non–insulin-dependent diabetes (57–59). These
observations suggest thatβ3-ARs might also play an important role in humans
as well.

Since expression ofβ3-ARs is relatively restricted, being found predomi-
nately  in brown and  possibly  white adipocytes, it should be possible for
β3-selective agonists to stimulate energy expenditure without producing un-
wanted side effects. Indeed, such agents are being developed as anti-obesity
drugs (50). Earlier compounds were identified using rodent screening systems,
and these drugs effectively treat obesity in rodents (60–62). Unfortunately, as
amino acid sequences of human versus rodentβ3-ARs differ by 10%–20%, the
vast majority of presently available compounds have either low potencies for
the human receptor or imperfect specificity forβ3- versusβ1- andβ2-ARs
(63). Not surprisingly, these earlier compounds have performed poorly in
limited clinical trials (64). Currently, recombinant cell lines expressing human
β3-AR are being used to identify potentially effectiveβ3-selective agonists.

We have recently used gene targeting to investigate a number of issues
relating to the physiology and pharmacology ofβ3-AR (65). Mice that were
homozygous for a disruptedβ3-AR allele had undetectable levels of intact
β3-AR mRNA, lacked functionalβ3-ARs, and had slightly increased fat stores
(females more than males), indicating thatβ3-ARs play a role in regulating
energy balance. Importantly,β1- but notβ2-AR mRNA levels up-regulated in
white and brown adipose tissue ofβ3-AR–deficient mice (brown more than
white), strongly implying thatβ3-ARs mediate physiologically relevant sig-
naling under normal conditions, and that cross-talk exists betweenβ3-AR and
β1-AR gene expression. Finally, acute treatment of wild-type mice with CL
316,243, aβ3-selective agonist, increased serum levels of free fatty acids and
insulin, increased energy expenditure, and reduced food intake (despite reduc-
tions in serum leptin concentrations)  (66).  These effects  were  completely
absent inβ3-AR–deficient mice, proving that these actions of CL are mediated
exclusively byβ3-ARs.β3-AR–deficient mice should be useful as a means to
better understand the physiology and pharmacology ofβ3-ARs.

As discussed above, most availableβ3-selective agonists have low potency
against the humanβ3-AR. To create an improved test-system, and to obtain
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information regarding humanβ3-AR promoter/enhancer activities, we have
transgenically introduced 75 kb of humanβ3-AR genomic DNA (P1
phagemid) into knockout mice lacking functional murineβ3-ARs (67). These
“humanized” mice express humanβ3-AR mRNA in brown adipose tissue but
not in other sites, including white adipose tissue, and do not express murine
β3-ARs. Therefore, these animals should assist in the search for effective
β3-agonists and should be useful as a means of locating human promoter/en-
hancer elements that confer tissue specificity and regulation on humanβ3-AR
gene expression.

Conclusions
Brown fat is a remarkable tissue that plays a critical role in regulating body fat
stores in rodents. Major questions and issues that merit future work include
defining the importance of brown fat in humans, identifying the genes respon-
sible for the morphologic and functional differences between white and brown
adipocytes (in addition to UCP), identifying the brown fat cell determination
gene or genes, delineating the cell lineage of white versus brown adipocytes,
understanding the molecular events that control mitochondrial biogenesis in
brown fat, understanding the pathways and neurotransmitters through which
circulating leptin levels regulate brown fat function, and identifyingβ3-selec-
tive agonists that can potently and selectively stimulate the humanβ3-AR.
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