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Abstract
Infection by different coronaviruses (CoVs) causes alterations in the
transcriptional and translational patterns, cell cycle, cytoskeleton,
and apoptosis pathways of the host cells. In addition, CoV infection
may cause inflammation, alter immune and stress responses, and
modify the coagulation pathways. The balance between the up- and
downregulated genes could explain the pathogenesis caused by these
viruses. We review specific aspects of CoV-host interactions. CoV
genome replication takes place in the cytoplasm in a membrane-
protected microenvironment and may control the cell machinery
by locating some of their proteins in the host cell nucleus. CoVs
initiate translation by cap-dependent and cap-independent mecha-
nisms. CoV transcription involves a discontinuous RNA synthesis
(template switching) during the extension of a negative copy of the
subgenomic mRNAs. The requirement for base-pairing during tran-
scription has been formally demonstrated in arteriviruses and CoVs.
CoV N proteins have RNA chaperone activity that may help initi-
ate template switching. Both viral and cellular proteins are required
for replication and transcription, and the role of selected proteins is
addressed.
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MHV: mouse
hepatitis virus

BCoV: bovine
coronavirus

eIF: elongation
initiation factor
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INTRODUCTION

Extensive morphological and biochemical
changes occur in coronavirus (CoV)-infected
cells. Infection by different CoVs causes al-
terations in the transcription and translation
patterns, cell cycle, cytoskeleton, and apop-
tosis pathways of the host cell. In addition,
CoV infection may cause inflammation, alter
immune and stress responses, and modify the
coagulation pathways. A few selected changes
are reviewed in this chapter, with a special fo-
cus on biochemical interactions during CoV
replication and transcription.

NOVEL SIGNAL PATHWAY
ALTERATIONS IN CoV
INFECTION

Progress in the study of the effect of CoVs in
the host has been made mostly with the mouse
hepatitis virus (MHV) system and, more re-
cently, with the severe and acute respiratory
syndrome (SARS)-CoV. MHV and SARS-

CoV infections induce mitogen-activated ki-
nases (MAPKs), especially p38 MAPK (5, 82).
In addition, activation of AP-1 and weak in-
duction of Akt signaling pathways were found
after SARS-CoV infection (80, 81). SARS-
CoV N protein has been involved in the in-
duction of these signaling pathways (45, 117).
Special attention has been dedicated to the
study of the cell signaling pathways altered
after CoV infection and to the relationship
between these alterations and the effects on
the host leading to the pathology of disease.

Effect of CoV Infection on Host Cell
Transcription and Translation

CoV infection affects both host cell transcrip-
tion and translation. Interestingly, CoV gives
rise to mRNAs that are structurally similar to
those of their eukaryotic hosts, and this al-
lows CoVs to parasitize the host machinery
to translate the viral mRNA. The compart-
mentalization of CoV synthesis in virus facto-
ries could shield virus replication against the
cell degradation induced by the virus. Alterna-
tively, specific factors that interfere with host
translation or transcription or other factors
that enhance viral-specific synthesis must be
responsible for the increase of virus-encoded
molecules.

Infection by MHV leads to inhibition,
but not a complete shutoff, of host pro-
tein translation (4, 120) that is accompa-
nied by an increase of MHV protein syn-
thesis (5, 62). The mechanism of selective
CoV-specific protein synthesis, which oc-
curs concomitantly with host protein inhibi-
tion in infected cells, is poorly characterized.
Chimeric mRNAs containing bovine coron-
avirus (BCoV) or MHV leader sequences are
translated more efficiently in CoV-infected
cells (104, 120). As N protein binds to this se-
quence, it has been suggested that CoV mR-
NAs bind to N protein, forming a complex
that may act as a strong translation initiation
signal (121). Increased phosphorylation of
elongation initiation factor (eIF)4E in CoV-
infected cells (5, 82) has also been described

212 Enjuanes et al.



ANRV286-MI60-10 ARI 9 August 2006 16:53

as a result of the activation of p38 MAPK.
Phosphorylated eIF4E has a higher affinity
for cap structures and eIF4G, and as a re-
sult, this usually leads to enhanced transla-
tion rates (41). Another possible mechanism
of host cell protein synthesis shutoff in MHV-
infected cells is the specific cleavage of 28S
rRNA, an integral component of the 60S ri-
bosome (4). Finally, specific host mRNAs are
degraded in MHV-infected cells (62), and
similar results were observed after infection
with SARS-CoV, with downregulated genes
involved in the host translational mechanism
(68).

Researchers have monitored on a broad
scale the effect of pathogens on host cell gene
expression programs by using DNA microar-
rays, which clarify the effect of virus infec-
tion on cell transcriptosome. Alteration of
the transcription pattern after CoV infec-
tion has been reported mainly for MHV and
SARS-CoV infection. A comprehensive study
(123) shows a higher perturbation of cellular
gene transcription after SARS-CoV infection
than after infection by human coronavirus
(HCoV)-229E. In addition to the downreg-
ulation of genes involved in host cell trans-
lation and maintenance of cytoskeletal net-
work, the upregulation of genes related to
stress response, proapoptosis, proinflamma-
tion, and procoagulation were observed (68,
86, 123). The balance between the genes up-
and downregulated after CoV infection could
explain the pathogenesis and the differences in
the severity of illness caused by these viruses
(see below).

Effect on Cell Cycle and Apoptosis

In general, viruses use host cell cycle reg-
ulation for their own replication advantage.
Each virus promotes a different pattern of
interference with the host cell cycle. MHV,
infectious bronchitis virus (IBV), transmissi-
ble gastroenteritis virus (TGEV), and SARS-
CoV infection lead to the accumulation of
infected cells in the G0/G1 phase (20, 21,
143). Transcriptional profiling after SARS-

IBV: infectious
bronchitis virus

TGEV:
transmissible
gastroenteritis virus

nsp: nonstructural
protein

CoV and HCoV-229E infection shows alter-
ation in genes involved in cell cycle regula-
tion, including upregulation of genes that can
mediate growth arrest at the G1 phase (123).
An accumulation of hypophosphorylated
retinoblastoma protein has been involved
in the arrest of the cell cycle progression in
the G0/G1 phase after MHV infection. Four
viral proteins, nonstructural protein 1 (nsp1)
from MHV (21), SARS-CoV 3b and 7a pro-
teins (143, 144), and N protein (23, 139), have
been proposed as responsible for cell cycle
arrest.

Many viruses encode proteins that can
modulate apoptosis (7, 9, 97). Induction of
apoptosis in infected cells can contribute di-
rectly to viral pathogenesis, whereas inhibi-
tion of apoptosis can prevent premature death
of the infected cells, allowing the virus to
replicate to a high titer or allowing the estab-
lishment of a persistent infection. Infection by
CoVs, such as TGEV, MHV, and SARS-CoV,
induces apoptosis in certain cells (3, 16, 37, 81,
136). Nevertheless, stimulation of both apop-
totic and antiapoptotic molecules has been
described (68, 80, 81, 86, 123). The delicate
counterbalance of proapoptotic and antiapop-
totic molecules during CoV infection should
ensure cell survival during the early phase
of infection to allow rapid multiplication of
progeny virus before cell lysis occurs. Apopto-
sis induced by CoV infection is tissue specific,
and this observation may explain the pathol-
ogy of the infection and the effects on the
host organism. For instance, the data obtained
show that SARS-CoV infects epithelial cells
of the enteric tract and induces an antiapop-
totic response that may be important to inhibit
or delay destruction of infected enterocytes,
probably leading to an extension of virus pro-
duction and shedding. These findings are con-
sistent with clinical observations demonstrat-
ing a relatively normal endoscopic and micro-
scopic appearance of the intestine in patients
with SARS (69). On the other hand, CoV
infection induces apoptosis in other tissues.
SARS-CoV causes lymphopenia owing to the
depletion of T lymphocytes by apoptosis
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(140) or liver impairment owing to hepato-
cyte apoptosis (19).

Overexpression of several CoV proteins,
such as MHV E protein, induces apoptosis
(3). After SARS-CoV infection, T-cells un-
dergo apoptosis likely owing to the E protein
interacting directly with the antiapoptotic fac-
tor Bcl-xL (141). Protein 7a from SARS-CoV
also induces apoptosis by a caspase-dependent
pathway in several cell lines, including those
derived from lung, kidney, and liver (122).

Effect of CoV Infection on Host
Systems

CoV infection affects several host systems.
Functional grouping of altered genes after
CoV infection showed that more genes in-
volved in inflammation, coagulation, and
stress are upregulated in SARS-CoV than
in HCoV-229E infection (123). Of the four
CoVs known to infect human (HCoV-229E,
HCoV-OC43, HCoV-NL63, and SARS-
CoV), the first three are generally associated
with mild upper respiratory tract infections
such as the common cold in the immunocom-
petent host. In contrast, SARS-CoV causes
respiratory failure in more than 60% of af-
fected persons, with a mortality rate of 10%.
The observed effect on host gene expression
(123) may help to explain the pathologies
caused by these CoVs.

CoV infection leads to the induction of in-
flammation. Several studies have shown that
the proinflammatory response is increased af-
ter SARS-CoV infection (68, 86, 123, 138).
For instance, the upregulation of IL-8 expres-
sion (26, 123), consistent with the increase of
this chemokine in plasma of infected patients
(138), may be of pathogenic importance, as
the level of IL-8 has been positively correlated
with disease severity in pulmonary infection
by respiratory syncytial virus. In fact, a posi-
tive correlation was found between IL-8 levels
in blood and alveolar spaces and the number
of polymorphonuclear neutrophil in bron-
choalveolar lavage of patients with pneumonia
and acute respiratory distress syndrome (138).

Other chemokines upregulated after SARS-
CoV infection may mediate the chemotaxis
of lymphocytes and neutrophils, contributing
to the significant increase in neutrophil firing
in the lung that may account for the localized
nature of the response in SARS patients (86).
Similar results were obtained with MHV, in
which the neurovirulence of the virus corre-
lated with the upregulation of proinflamma-
tory cytokines. This is associated with the re-
cruitment of lymphocytes and macrophages
at the site of the infection, which may lead to
encephalitis (72).

In contrast, despite the upregulation of IL-
8 in intestinal epithelial cells, biopsy speci-
mens taken from the colon and terminal ileum
of patients with SARS failed to demonstrate
any inflammatory infiltrates (69). Neutrophil
infiltration in the intestine of SARS patients
may be limited despite neutrophilia due to
changes of cytokine and chemokine levels in
the intestinal environment. It has been ob-
served that SARS-CoV infection inhibited
production of IL-18 that is constitutively ex-
pressed in intestinal epithelial cells (26). Sup-
pression of IL-18 levels reduced neutrophil
accumulation in liver and lungs (31). The
absence of T lymphocyte infiltration of the
intestine in SARS patients may be a conse-
quence of the profound decline of both CD4+

and CD8+ lymphocytes in the blood (30),
possibly resulting from lymphocyte apopto-
sis. Although macrophage counts were in-
creased in lungs, macrophage infiltration was
absent from the gut of SARS patients. In
agreement with this finding, in Caco-2 cells,
SARS-CoV downregulates migration inhibi-
tion factor (MIF), which is a major factor pro-
duced by intestinal cells in response to micro-
bial infection, regulation of macrophage em-
igration, inflammation, and cell metabolism
(79).

Innate immunity probably is essential to
control CoV infections in vivo. Cytokine pro-
filing after SARS-CoV infection suggested
an early activation of the innate immunity
pathway (86). The same observations were
made after MHV infection (95). IFN-γ is
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critical in resolving MHV infection (91).
IFNs have significant anti-SARS-CoV effects
(25, 43, 78), and only immunocompromised
transgenic mice with impaired IFN responses
are infected with HCoV-229E (65) or SARS-
CoV (51). CoVs have developed strategies to
escape IFN responses. In fact, low levels of
IFN have been found in SARS patients (86)
probably owing to the interference of inter-
feron regulatory factor 3 (IRF-3) activation
(114).

Blood coagulation genes are also affected
by SARS-CoV infection. The upregulation of
several genes has been involved in the acti-
vation of this pathway (86, 123). The result
leads to a procoagulation profile that mim-
ics the pathological observations. In fact, at
autopsy, many SARS patients have unusually
disseminated small vessel thromboses in the
lungs (40). Vascular damage in various tis-
sues has also been reported (33). Activation
of the procoagulation pathway in MHV in-
fection resulting in confluent hepatocellular
necrosis has also been described (32).

INFLUENCE OF VIRAL AND
CELLULAR PROTEINS ON CoV
REPLICATION

Cell Compartment Distribution of
CoV Synthesis

CoV replication employs complex mecha-
nisms that involve viral and cellular proteins.
Similar to other positive-strand RNA viruses,
CoV genome replication takes place in the
cytoplasm in a membrane-protected microen-
vironment that contains all the protein func-
tions required for viral RNA synthesis. Elec-
tron microscopy studies of MHV-infected
cells have shown that these structures consist
of double-membrane vesicles (DMVs) (42)
that are generated possibly by using cellular
autophagy-related processes (94). The cellu-
lar origin of MHV DMVs is under debate.
While some data support that DMVs are de-
rived from late endosomal membranes (131),
other data suggest that DMVs have their ori-

DMV:
double-membrane
vesicle

EAV: equine
arteritis virus

PRRSV: porcine
respiratory and
reproductive
syndrome virus

gin in the endoplasmic reticulum (94, 108).
Structures similar to DMVs have been found
in SARS-CoV (110) and in the equine arteri-
tis virus (EAV) infection (93), suggesting that
CoV and arterivirus have a common replica-
tion strategy. The viral replication complex
associated with these membranes apparently
includes cellular proteins and up to 16 nsps,
most of which are derived from the proteolytic
processing of the replicase polyproteins pp1a
and pp1ab (110).

Although CoV replication essentially takes
place within the cytoplasm, CoVs may con-
trol the cell machinery by locating some of
their proteins in the host cell nucleus. To date,
two CoV proteins (N and 3b) (50, 139, 145)
and another two from arteriviruses (N and
nsp1) (98, 128) have been identified in the
nucleolus of infected cells. The nucleolus has
been implicated in many aspects of cell bi-
ology including functions such as ribosomal
RNA synthesis and ribosome biogenesis, gene
silencing, senescence, and cell cycle regula-
tion (49). Viruses interact with nucleolar anti-
gens, leading to their redistribution during in-
fection (49). N protein from CoV genera α

(TGEV), β (MHV), and γ (IBV) (50, 139) and
also N protein from the arteriviruses porcine
respiratory and reproductive syndrome virus
(PRRSV) and EAV (98, 128) localize within
the nucleolus. This may be a common feature
among all nidovirus N proteins that influence
host cell proliferation (139). However, the as-
sociation of N protein with the nucleus may
be cell dependent, as TGEV N protein has
been identified in the nucleus of LLC-PK1
and Vero cells (139), but not in swine testis
(ST) cells (17).

CoV Translation

Genomes of positive-strand RNA viruses,
such as members of the Coronaviridae, Fla-
viviridae, and Togaviridae families, contain
an m7GpppN-cap structure at the 5′ end
of the mRNA and are presumed to initi-
ate translation in a cap-dependent manner.
Coronavirus mRNAs have a polycistronic
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configuration, except for the mRNA encoded
by the most 3′ end of the genome, but usu-
ally only the 5′-terminal open reading frame
(ORF) on each mRNA is abundantly trans-
lated by a cap-dependent mechanism (64).
Nevertheless, there is evidence indicating that
some of the coronavirus mRNAs are bi-
cistronic (i.e., in SARS-CoV five mRNAs are
functionally bicistronic) (125) or even tri-
cistronic (77). These RNAs are translated by a
variety of cap-independent mechanisms. (a) A
common coronavirus mechanism of –1 ribo-
somal frameshifting generates two polypep-
tides of differing abundance from a mRNA
(6, 12, 13, 47). This mechanism is also used
by members of other virus families (Retroviri-
dae, Astroviridae, and Flaviviridae) (34). (b) In-
ternal ribosome entry onto IBV mRNA 3 (76,
77) and MHV mRNA 5 (67, 126) are mech-
anisms used to synthesize a second protein
of lower abundance from a single transcript.
(c) Scanning mechanisms synthesize less abun-
dant proteins such as the I protein encoded
by an ORF internal to the N gene that is ex-
pressed in a +1 frameshift in relation to the
N ORF (39, 103, 105). (d) Downstream en-
try of ribosomes is an alternative translation
mechanism described to express ORF 3b of
some TGEV strains (87). By way of this mech-
anism the internal entry of ribosomes does
not depend on an immediate upstream inter-
nal ribosomal entry structure (IRES). In this
case, the ribosomes enter close to the ORF
3b start site by a mechanism that resembles
shunting.

Translation can be regulated by viral or cel-
lular factors acting in trans or by cis-acting el-
ements within the 5′ UTR (104). It has been
proposed that preferential translation of viral
mRNA in MHV-infected cells is stimulated
in part by the interaction of N protein with
the tandemly repeated -UCYAA- sequence of
the leader (120, 121), as described above. Pro-
tein synthesis is also dependent upon cellu-
lar translation factors such as the initiation
factor eIF4F (35). CoV infection affects the
phosphorylation of eIF4E, which might influ-
ence the synthesis of viral proteins (see Effect

of CoV Infection on Host Cell Transcription
and Translation, above).

Cellular mRNAs contain the cap structure
at the 5′ end and a poly(A) tail at the 3′ end.
Interaction between the 5′ and 3′ ends of these
mRNAs increases translation efficiency (99).
5′-3′ linkage is mediated by the interaction
of the 5′-end-bound eIF4G and the 3′-end-
bound poly(A) binding protein (PABP) (88).
CoVs also encode mRNAs with 5′ contain-
ing cap structures and 3′ poly(A) tails; there-
fore, they may use a communication between
the 5′ and 3′ mRNA ends for a more efficient
translation. Although PABP binding to CoV
genome 3′-poly(A) affects CoV replication, no
direct effect in translation has been reported
(113).

CoV Genome Replication

CoV replication and transcription possibly
require recognition of RNA genome 5′ and
3′ ends by viral and cellular proteins. Like
all other positive-strand RNA viruses, CoV
genome replication is mediated through the
synthesis of a negative-strand RNA, which
in turn is the template for the synthesis of
progeny virus genomes. Mapping studies with
MHV defective-interfering (DI) RNAs have
indicated that 470 nt from the 5′ end and
436 nt from the 3′ end are required from
DI RNA replication (60, 73). Both ends of
the genome are necessary for positive-strand
synthesis, whereas only the last 55 nt from
the 3′ end and the poly(A) tail are required
for the synthesis of negative-strand (74). Be-
cause during the synthesis of the positive-
strand RNA the 3′ end of the genome is the
last region reached by the viral polymerase,
the replication signal at the 3′ end of the
genome may interact with signals at the 5′ end
to exert its effect on RNA synthesis. On the
basis of this information, it has been postu-
lated that the 5′ and 3′ ends of the genome
interact during RNA replication (54, 63).
Similar observations have been made for the
regulation of MHV subgenomic (sg) mRNA
transcription (75).
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Although there is no apparent sequence
complementarity between the 5′ and 3′ ends
of the CoV genome, a direct interaction
between both ends could be possible, as
predicted for MHV and TGEV RNA
genomes in protein-free media using com-
puter programs (52, 106). However, there
is experimental evidence for MHV (54) and
TGEV (C. Galan, F. Almazan & L. Enjuanes,
unpublished information) supporting the idea
that the cross-talk between the 5′ and 3′ ends
is mediated by proteins through RNA-protein
and protein-protein interactions. Heteroge-
neous nuclear ribonucleoprotein (hnRNP) A1
has been identified as a major protein species
binding to nt 90–170 (strongly) and to nt
260–350 (weakly) from the 3′ end of MHV
RNA. These binding sites are complementary
to the sites on the negative-strand RNA that
bind another cellular protein, polypyrimidine
tract-binding protein (PTB). Furthermore,
hnRNP A1 and PTB also bind to the comple-
mentary strands at the 5′ end of MHV RNA
and together mediate in vitro the formation of
a ribonucleoprotein (RNP) complex involv-
ing the 5′ and 3′ ends of MHV RNA (54, 70,
71, 146). The functional relevance of hnRNP
A1 in MHV replication has been established
by experiments showing that overexpression
of hnRNP A1 facilitates MHV replication,
whereas dominant-negative mutants of hn-
RNP A1 reduce replication (107). Further-
more, mutations of the PTB and hnRNP A1
binding regions also impaired transcription
of subgenomic RNA (53), suggesting a func-
tional role in replication and transcrip-
tion for the interaction between PTB and
hnRNP A1.

CoV N protein forms a RNP com-
plex with genomic RNA. In addition to
its role in virus assembly (38, 96), N pro-
tein likely has a prominent role in CoV
replication and transcription, as it influences
many viral and cellular processes. In fact,
at early times after infection, CoV N pro-
tein colocalizes with the replication complex
in DMVs, the site of CoV RNA synthesis
(11). Furthermore, the presence of N pro-

hnRNP A1:
heterogeneous
nuclear
ribonucleoprotein
A1

PTB:
polypyrimidine
tract-binding protein

tein enhances the rescue of infectious virus
from cDNA clones generated from differ-
ent CoVs, such as IBV (18), HCoV-229E
(101), and TGEV (142), using RNA in vitro
transcripts.

The requirement of N protein for virus
replication and transcription has been under
debate. Certain researchers suggest that N
protein plays a role in CoV RNA synthesis
(8, 27, 61, 66, 85, 115), whereas others using
either CoV (124) or arterivirus systems (84)
claim that N protein is not essential. Using
TGEV- and HCoV-229E-derived replicons,
two groups have shown that only background
levels of CoV RNA synthesis are produced in
the absence of N protein (1, 101). In these sys-
tems, the presence of N protein either in cis
or in trans is required for efficient CoV RNA
synthesis (1). A quantitative analysis of TGEV
replicon activity showed an increase of more
than 100-fold when N protein was provided
in cis, and an increase of more than 1000-
fold when N protein was provided in trans (1).
Whether the effect of N protein is at the level
of replication, transcription, or both remains
to be determined.

Despite the variable size of N protein from
different CoVs, it presents a conserved pat-
tern of secondary structural elements with a
three-domain organization (90) (Figure 1).
N protein domains I and III are the most
unstructured and divergent between CoVs,
while domain II is more conserved and in-
cludes highly conserved alpha helices and a
serine-rich domain (14, 17). Several active N
protein domains have been mapped, such as a
RNA binding domain (66, 85), the oligomer-
ization domain (44, 118), and the M protein
binding domain (46, 57), also involved in N
protein oligomerization. N protein activity
should be a result of its self-interaction and
interaction with other viral and cellular pro-
teins and with virus and host cell nucleic acids.
The phosphorylation state has been proposed
to regulate N protein functions and to cause
conformational changes in N protein struc-
ture (22, 83). TGEV (17) and IBV (22) phos-
phoserine residues have been mapped within
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Figure 1
Scheme of N protein from different CoVs. The organization of N protein from four representative CoVs
of genera α (TGEV), β (MHV and SARS-CoV), and γ (IBV) is indicated. Conserved predicted
structural elements are joined by blue shadowing zones. The three-domain organization proposed for
MHV N protein by P. Masters’ group (90) is indicated as open boxes over MHV N protein (I, II, and III).
P, phosphorylation sites; αc, protein domains with highly conserved alpha structure; AA, amino acid;
NLS, nuclear localization signal; RBD, RNA binding domain; OMD, oligomerization domain; MPBD,
M protein binding domain; S-S, disulfide bridge. The scale at the bottom indicates the approximate
amino acid number.

Transcription-
regulating
sequences (TRSs):
highly conserved
sequences preceding
each Nidovirales gene
controlling the
production of
subgenomic mRNAs

the CoV N protein primary and secondary
structures. SARS-CoV N protein phospho-
rylation has also been demonstrated, but the
precise amino acid residues involved have not
been mapped (116). N protein phosphoryla-
tion could affect its secondary structure with
the introduction of negative charges into a
basic environment, affecting N protein RNA
binding activity.

CoV Transcription

CoV transcription, and in general transcrip-
tion in the order Nidovirales, is an RNA-
dependent RNA synthesis that includes a dis-
continuous step during the production of sg
mRNAs (64, 100). This transcription pro-

cess ultimately generates a nested set of sg
mRNAs that are 5′- and 3′-coterminal with
the virus genome. The common 5′-terminal
leader sequence, which in TGEV has 93 nt, is
fused to the 5′ end of the mRNA coding se-
quence (body) by a discontinuous transcrip-
tion mechanism. Sequences preceding each
gene represent signals for discontinuous tran-
scription of sg mRNAs. These transcription-
regulating sequences (TRSs) include a con-
served core sequence (CS), which in TGEV
is (5′-CUAAAC-3′) identical for all gene
CSs of the mRNA body (CS-B), and the
5′ and 3′ flanking sequences (5′ TRS and
3′ TRS, respectively) that regulate transcrip-
tion (2, 112). As this CS sequence is also
found at the 3′ end of the leader sequence
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(CS-L), it could base-pair with the nascent
minus strand complementary to each CS-B
(cCS-B). In fact, the requirement for base-
pairing during transcription has been formally
demonstrated in arteriviruses (92, 134) and
CoVs (147) by experiments in which base-
pairing between CS-L and the complement of
CS-B was engineered in infectious genomic
cDNAs. The data obtained are compatible
with a transcription model that includes three
steps (Figure 2): (a) formation of transcrip-
tion initiation 5′-3′ complexes in the genomic

RNA, (b) basepair scanning of the nascent
minus-strand RNA by the TRS-L, and
(c) template switching during synthesis of the
negative strand to complete the minus-strand
sgRNA. Template switching takes place after
copying the CS sequence and can be predicted
in silico on the basis of the high base-pairing
score between the nascent minus-strand RNA
and the TRS-L and minimum free energy
(�G) of the duplex formation (112, 147). The
synthesis of sg mRNAs proceeds only when
the CS is located in an optimal sequence

An

  5'–3' complex formationI

Base-pairing scanning

An

Un

II

Template switch

An

Un

Reading throughIII III'

An

Un

Figure 2
Three-step working model of CoV transcription. (I) 5′-3′ complex formation step. Proteins binding the
5′ and 3′ end TGEV sequences are represented by ellipsoids. Leader sequence is indicated with a red bar,
CS sequences are indicated with an orange or yellow bar. An, poly(A) tail. (II) Basepair scanning step.
Minus-strand RNA is light blue, and positive-strand RNA is dark blue. The transcription complex is
represented by the hexagon. Vertical dotted bars represent the base-pairing scanning by the TRS-L
sequence in the transcription process. Vertical solid bars indicate complementarity between the genomic
RNA (gRNA) and the nascent minus strand. Un, poly(U) tail. (III) The synthesis of the negative strand
can continue to make a longer sgRNA (III), or a template switching step can take place (III′) as indicated
in the text. The thick arrow indicates the switch in the template made by the transcription complex to
complete the synthesis of minus-strand sgRNA.
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Hel: helicase

RNA chaperones:
proteins that bind
RNA with broad
specificity and
decrease the
activation energy
required for a
transition between
two states

context (2, 89, 112, 147). Base-pairing be-
tween leader and body beyond the CS is a
determinant regulation factor in CoV tran-
scription (112). In TRS mutants with increas-
ing complementarity between TRS-L and
cTRS-B, a tendency to reach a plateau in �G
values was identified. This observation sug-
gests that a more precise definition of the TRS
limits, consisting of the central CS and around
four nucleotides flanking the 5′ and 3′ ends of
the CS (112), might be proposed.

According to the working model of
transcription proposed by our laboratory
(Figure 2), the first step would be the for-
mation of a complex in which the leader TRS
interacts with a transcription complex formed
by viral and cellular proteins and with the 3′

end of the genome. Candidate proteins po-
tentially forming the transcription complex
have been reported by several laboratories.
On the viral side, essential proteins in tran-
scription should be the RNA-dependent RNA
polymerase (RdRp), the helicase (Hel), and
possibly N protein (see above). Other viral
replicase proteins probably contribute to the
regulation of transcription and are most
likely involved in the formation of this com-
plex. MHV RdRp (nsp12) interacts with
other replicase-encoded products such as nsp4
(3CLpro), nsp8 (p22), and nsp9 (p12) (15).
Biochemical studies have shown that SARS-
CoV nsp9 is a single-stranded RNA binding
protein (36, 119). In addition, MHV nsp10
has been implicated in minus-strand RNA
synthesis (109).

A set of three conserved domains (nsp14,
nsp15, and nsp16) has been identified in
the C-terminal region of pp1ab by Sacha
Gorbalenya bioinformatics analysis. The pre-
dicted activities of these domains are 3′-to-5′

exonuclease, uridylate-specific endoribonu-
clease (NendoU), and S-adenosylmethionine-
dependent ribose 2′-O-methyltransferase
(2′-O-MT) (111, 135). These domains
are conserved in CoVs, toroviruses, and
roniviruses, but only the NendoU domain
is also conserved in arteriviruses. NendoU

may play a role in CoV transcription by
specifically cutting double-stranded RNA
(transcriptive intermediates) generated dur-
ing the synthesis of the nascent RNA of
negative polarity. NendoU nuclease has a
strong preference for cleavage at GU(U) se-
quences in double-stranded RNA substrates
(58). The GU(U) sequence at the 3′ termi-
nus of nascent minus-strand RNAs, which
corresponds to conserved AAC nucleotides
in the core of the CoV gene TRS elements,
might be substrate of this activity. Therefore,
NendoU activity might be involved in the
transcription of sg mRNAs. Data from our
laboratory, in which we analyzed approxi-
mately 90 different sgRNAs generated during
the mutagenesis of a TGEV CS (147), and
from another laboratory (101) support the
functional relevance of the AAC sequence in
transcription, but further studies are required
to provide a direct link to transcription
of enzymes such as the uridylate-specific
endoribonuclease.

In addition, viral and cell proteins most
likely play a role in arterivirus and CoV tran-
scription regulation. EAV nsp1 has been in-
volved in arterivirus transcription (129, 132)
and interacts with cellular p100 (127). This in-
teraction might be important for viral sgRNA
synthesis, either directly or by recruiting a
p100 binding protein to the viral RdRp com-
plex. Both nsp1 and Hel contain zinc bind-
ing domains that could mediate RNA-protein
interactions (129, 133). In fact, mutagenesis
in the nsp1 zinc binding domain affects tran-
scription regulation.

Regulatory regions of CoV genomic RNA
interact with at least three proteins: hnRNP
A1 (71, 107), PTB (53, 70), and viral N protein
(8, 115). These proteins may act as mediators
between the leader TRS and the transcription
complex at the body TRS. In fact, binding be-
tween hnRNPA1 and PTB (54), hnRNP A1
and N protein (137), and PTB and N pro-
tein (24) has been documented. These inter-
actions may be involved in the formation of
RNP complexes that function in CoV RNA
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Figure 3
RNA chaperone involvement in template switching during CoV transcription. Left panel: Scheme of
RNA chaperone activity. Right panel: Template switching step and elements involved. RNA chaperone is
represented by a green ellipsoid.

synthesis. The N protein of MHV binds the
leader RNA and is thought to be involved
in MHV RNA transcription (8, 115). It has
been proposed that the interaction between
hnRNP A1 and N proteins brings the leader
RNA to the CS sequence of the negative-
strand RNA during sg mRNA transcription.
In fact, N protein interacts with hnRNP A1
both in vitro and in vivo (137). Furthermore,
there are data directly involving hnRNP A1
and PTB in CoV transcription. The extent
of hnRNP A1 binding to the complement of
TRS sequences correlated to the transcription
efficiency from those TRSs (146) in the MHV
model. Similarly, binding of PTB to MHV
RNA leader or to sequences complementary
to 3′-UTR regions was related to transcrip-
tion efficiency (53, 70). This finding suggests
that PTB plays a role in regulating viral RNA
synthesis, and thus the interaction of N pro-
tein with PTB could modulate transcription
(24).

Template switching during transcription
represents a displacement of one sequence
in the genome acting as a template RNA by
another template, the leader sequence. RNA
chaperones may help to overcome the en-
ergy barrier threshold associated with these
types of processes. RNA chaperones are pro-

teins that bind RNA with broad specificity and
decrease the activation energy required for a
transition between two states (28, 48, 102).
Template switching during CoV transcription
could be interpreted as a transition between
two states. In the first state, a duplex between
the nascent minus-strand RNA and the ge-
nomic positive-strand RNA used as template
is formed; in the second state, the nascent
minus-strand RNA is paired with the TRS of
the leader sequence (Figure 3). RNA chap-
erones could be involved in template switch-
ing by decreasing the energy required for the
transition from the first to the second duplex.
RNA chaperones are proteins with the high-
est frequency of long intrinsically disordered
regions (59). CoV N proteins also are highly
disordered proteins, and we have shown that
TGEV and SARS-CoV N proteins have RNA
chaperone activity in vitro (148). To date, four
viral RNA chaperones have been described
and all of them are the nucleocapsid protein
from RNA viruses: retrovirus (10, 130), hep-
atitis delta virus (55, 56), hepatitis C virus (29),
and CoVs. The identification of chaperone
activity in CoV, and its potential involvement
in template switching during CoV transcrip-
tion, links thermodynamic and molecular as-
pects of CoV transcription.

www.annualreviews.org • Coronavirus Replication 221



ANRV286-MI60-10 ARI 9 August 2006 16:53

SUMMARY POINTS

1. Infection by different CoVs causes alterations in the transcription and translation pat-
terns, cell cycle, cytoskeleton, and apoptosis and coagulation pathways of the host cell.
CoV infection may also cause inflammation and affect immune and stress responses.
Alteration of gene expression after CoV infection may explain the disease caused by
these viruses.

2. CoV infection is initiated by genome translation, a process that takes place by cap-
dependent and cap-independent mechanisms.

3. CoV replication involves both viral and cellular proteins and takes place in the cy-
toplasm in a membrane-protected microenvironment. CoVs may control the cell
machinery by locating some of their proteins in the host cell nucleus.

4. CoV replication and transcription possibly require cross-talk between the 5′ and 3′

ends, and CoV transcription involves a discontinuous RNA synthesis during the ex-
tension of a negative copy of the sg mRNAs. This process is regulated by TRSs
preceding each gene.

5. A model for CoV transcription involving three steps has been proposed: (a) formation
of 5′-3′ complexes in the genomic RNA, (b) base-pairing scanning of the nascent
minus-strand RNA by the leader TRS, and (c) template switching during synthesis of
the negative strand to complete the minus-strand sgRNA.

6. The requirement for base-pairing during transcription has been formally demon-
strated in arteriviruses and CoVs. CoV N proteins have RNA chaperone activity that
may help initiate template switching.
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