1932

Abstract

We review the high-resolution spectroscopic approach toward the study of intramolecular dynamics, emphasizing molecular parity violation. Theoretical work in the past decade has shown that parity-violating potentials in chiral molecules are much larger (typically one to two orders of magnitude) than anticipated on the basis of older theories. This makes experimental approaches toward small molecular parity-violating effects promising. The concepts and results of intramolecular dynamics derived from spectroscopy are analyzed as a sequence of symmetry breakings. We summarize the concepts of symmetry breakings (de facto and de lege) in view of parity violation in chiral molecules. The experimental schemes and the current status of spectroscopic experiments on molecular parity violation are established. We discuss the promises of detecting and accurately measuring parity-violating energy differences Δ on the order of 10−11 J mol−1 (approximately 100 aeV) in enantiomers of chiral molecules with regard to their contribution to fundamental physics in the framework of the standard model of particle physics and more speculative future fundamental symmetry tests such as for the combined charge conjugation, parity, and time-reversal (CPT) symmetry violation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.physchem.58.032806.104511
2008-05-05
2024-04-18
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.physchem.58.032806.104511
Loading
/content/journals/10.1146/annurev.physchem.58.032806.104511
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error