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INTRODUCTION 

At times the concept of an architecture seems to me entirely too grand for 

psychology at the present stage of theory development. But at other times, it 

seems that I have been seeking an appropriate architecture for cognition 
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during the whole half century of my pr�fessional life. When I entered research 
in psychology in the 1940s, the term architecture was not in use, but there was 
much concern with the problem of establishing a suitable framework for 
theories in the broad area now termed cognition. The nature of the proper 
framework seemed obvious. 

Since propositions concerning psychological events are verifiable only to the extent that 

they are reducible to predictions of behavior under specified environmental conditions, it 
appears likely that greatest economy and consistency in theoretical structure will result 

from statement of all fundamental laws in the form R = f(S) , where Rand S represent 

behavioral and environmental variables, respectively. (Estes 1950:94) 

My, such confidence. Could any future tum of events overturn the insight 
that the stimulus-response architecture is basic to, and indeed sufficient for, 
psychological theory? Such a tum of events was, in fact, not far in the future. 
During the next decade and a half, the focus of my research moved from 
animal learning and conditioning to human visual processing and short-term 
memory, and it is remarkable what a shift of research interest can do for one's 
theoretical outlook. 

[T]he type of theory to which we are evidently being led by a wide range of current 

experimental developments differs in a number of major respects from classical association 
and stimulus-response theories. There is now a large amount of detailed and extensive 
evidence which indicates that theoretical interpretations will gain more than they will lose 

in the way of parsimony by accentuating and sharpening the distinction between the 

processes of learning and response selection. A striking simplification in the interpretation 
of many learning phenomena is achieved at a stroke if we conceive the result of an 
organism's experiencing a sequence of events to be, not simply the strengthening or 

weakening of the constituent stimulus-response connections, but rather the establishment in 

memory storage of a representation of the entire sequence . . . (Estes 1969: 185-86, Ital. 

added) 

That passage appeared at a time when I had one hand still in conditioning 
research while the other was working in information processing. But it wasn't 
long before both hands were at work together in the new framework. 

Just as the physical sciences can be conceived as the study of energy in its many aspects, 
the behavioral and social sciences can be characterized in terms of their concern with the 

processing and transformation of information. The adaptation of living organisms to an 

ever-changing environment depends upon the ability to acquire information about environ­

mental regularities and to use this information as the basis of adaptive response. (Estes 

1975b:l) 

From that time on, although learning continued to be one of my central 
research interests, I viewed it, not as a simple mechanism for strengthening 
and weakening response tendencies, but as a collection of processes responsi­
ble for the building and elaborating of memory structures. I and others who 
bridged the gap between the old and newer paradigms faced the task of 
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discovering how to replace the comfortable but now clearly inadequate stimu­
lus-response framework with a framework, or architecture, capable of 
accommodating the variety of models flourishing in the broad domain of 
information processing. 

TOWARD A COGNITIVE ARCHITECTURE 

The concept of cognitive architecture has at present no generally accepted 
definition and can only be understood by observing it in use. The concept was 
imported into the cognitive literature from computer science, and not only its 
meaning but also its applicability in the new context is unsettled. 

In computer science, architecture refers to the general characteristics of a 
computer that make programming possible. By far the most familiar version is 
the von Neumann architecture, the basis of virtually all digital computers. In 
this architecture, informational units, the physical embodiments of strings of 
binary digits, are stored in locations that can be accessed either by their 
addresses or their contents. The machine carries out its computations by 
sequencing through the stored items and, in effect, applying operators such as 
comparison or logical combination. The informational units take on meaning 
by virtue of their correspondence to familiar symbols like numbers, letters, or 
mathematical operators. Thus, in artificial intelligence, the programming 
languages that enable computers to manifest human-like cognitive functions 
can be characterized as symbol processors. 

In view of the many similarities between the computer and the human 
being, viewed as information processing systems, which have done much to 
spark the development first of artificial intelligence and then of cognitive 
science, it has seemed to many investigators that the symbol-processing 
architecture should carry over from one realm to the other. For cognitive 
science, the architecture would characterize the set of informational (as 
distinguished from neural) structures and symbol-manipulating processing 
that underlies all of the specific cognitive models and theories. This expecta­
tion has in fact been realized for some subdomains of cognition-for ex­
ample, problem solving (Newell & Simon 1972). In other subdomains, 
however, popular lines, of research of the 1970s demanded concepts like 
spreading activation (Collins & Loftus 1975) and automatization (Schneider 
& Shiffrin 1977) that seemed quite out of the spirit of the symbol-processing 
architecture. 

How, then, are we to arrive at a satisfactory characterization of a general 
cognitive architecture? I can see two possible routes, one direct and the other 
indirect. The direct route is for some individual investigator, or possibly 
group of investigators, to develop and present a proposed architecture, just as 
is routinely done for more limited theories. Recently there have been several 
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major proposals of this sort. One of these is the Adaptive Control of Thought 
(ACT*) architecture of Anderson (1983), another the State, Operator, and 
Result (SOAR) architecture of Newell and his associates (Laird et al 1987; 
Newell 1990). Perhaps prematurely, some would include in this category a 
new contender, the parallel, distributed processing (PDP) or "connectionist" 
architecture (McClelland & Rumelhart 1986; Rumelhart & McClelland 
1986a). 

A difficulty with the direct approach is that formulating a whole architec­
ture is an enterprise of such complexity that the large number of decisions 
about details must reflect the preferences and biases of the formulator, and the 
product is very difficult to evaluate. Unlike the situation with experimental 
investigation and limited theory construction, we have no stock of tested 
methods for the construction of whole architectures, nor generally accepted 
standards for accessing their merits. As pertinent evidence, consider that 
Anderson's deservedly influential architecture has run through some half 
dozen versions in a short period of years (Anderson 1976, 1983), the shifts 
often unaccompanied by any empirical developments that appear compelling 
to an outside observer. 

The alternative I see to the direct approach is an indirect one based on the 
idea that if cognitive theory has any general architecture, it must have evolved 
over the last century of research on cognition. If so, then the architecture 
should be discoverable by adapting the standard methods of scientific in­
vestigation, that is, by tracing the development of the lines of theory that have 
been influential over the century, examining their similarities and differences, 
and discovering whether there are commonalities of structure general enough 
to qualify as the basis of an architecture. Whether this inductive approach will 
work is an open question, of course, and I expect this essay to accomplish no 
more than to provide an illustration that may set the stage for discussion. 

In this chapter, I sketch the evolution of the notion of a cognitive architec­
ture over the last half century from my own standpoint as an observer and 
participant; I conclude with a discussion of current issues and prospects. My 
interest in what may seem to be an esoteric concept derives from its relevance 
to my longtime concern with the problem of comparing and testing mathemat­
ical and computer models in psychology (Estes 1975a, 1986a). Verbally 
formulated theories are notoriously difficult to test because of the inadequacy 
of verbal arguments for deriving their implications or even for ascertaining 
when the implications of two such theories differ. But the problem does not 
automatically vanish when theories are cast as mathematical or computer 
simulation models, for superficial differences can mask basic commonalities. 
The task of determining when apparent differences between theories are 
testable requires their examination within a common framework, and for 
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theories of cognition this common framework would be the cognitive archi­
tecture. 

A salient aspect of my personal history is the corresponding of shifts in 
ideas about architecture with shifts in loci of research activity. If we regard a 
research domain-for example, cognition-as a collection of different kinds 
of experimental subdomains, theory construction is relatively straightforward. 
We choose for any given subdomain the concepts that prove most serviceable 
for its interpretation, thus generating what may be termed local architectures 
(�ee Table 1). 

However, suppose we take our task to be, not interpreting various clusters 
of experiments, but interpreting the cognizing organism? Then the ex­
perimental clusters are just the results of looking at the organism from 
different perspectives, and we need some way to fit the interpretations of them 
together in a more comprehensive structure. The question then arises whether 
as ambitious a goal as Newell's "general cognitive architecture" (Newell 
1990) is a feasible target. We cannot foresee whether achieving such a goal is 
possible, but continuing pursuit of that goal may nonetheless be the best way 
to ensure that cognitive science will achieve some generality of theory in spite 
of the enormous complexities of its subject matter and the pressures to settle 
for heuristic principles and local models. 

MEMORY FORMAT: ASSOCIATION OR TRACE 

One essential constituent of a cognitive architecture is a specification of the 
form of information storage in memory. Two more or less parallel approaches 
to this problem have run through the history of memory theory, one centered 
in the tradition of association theory and the other in the concept of a memory 
trace. Though its roots are traceable to the British associationists James Mill 
and David Hume, the concept of association was given its first formulation as 
a theoretical principle with experimental interpretations by Ebbinghaus (1964 

Table 1 Local architectures for subdomains of cognitive research 

Subdomain 

conditioning 

language 

classification 

short-term memory 

perception 

knowledge acquisition 
problem solving 

Local architecture 

stimulus-response 

rules, semantic nets 

array structures 
list structures 

multidimensional space 

propositional networks 
problem spaces, production systems 
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[1885]); its continuing elaboration over the next several decades was thor­
oughly reviewed by Robinson (1932). The central idea was that any form of 
memorization results in the laying down of associations between units, with 
the property that if an association is formed between units A and B, then later 
activation of A tends to lead to reactivation of B. For the earlier association­
ists, the units were vaguely defined ideas; for Ebbinghaus, they were mental 
representations of the elements, usually words or nonsense syllables, of the 
lists he so laboriously studied. Learning consists, not in modifying the units, 
but only of establishing associations between units. 

Almost coextensive with association theory has been the development of 
models of memory based on the concept of a memory trace, or engram, the 
modem version dating from the work of Hollingworth (1913, 1928) and 
Semon (1921). In this tradition, it is assumed that any learning experience 
results in the deposit of a trace in the memory system. Whatever is perceived 
may enter into the trace, which typically takes the form of a sensory image. 
Perceived or learned relationships among objects or events are embodied in 
the trace itself, rather than in associations among units. Memory traces give 
rise to reconstruction or recall of an experience by virtue of the process of 
redintegration, whereby later perception of some portion of the stimulus 
pattern comprising a trace leads to reactivation of the entire pattern, as when a 
glimpse of some portion of a familiar face or scene gives rise to an image of 
the whole. 

As a preliminary to examining architectural properties of current models, I 
give a brief sketch of each of these lines of theory, organized in terms of some 
salient theoretical attributes. 

Association Theory 

On the whole, there has been remarkably little change in the structural 
assumptions of association theory over the last century. Ebbinghaus's 
formulation was based on a single layer of interconnected associative units. 
Following study of a list of items, A, B, C, D, and E, in order (the capital 
letters denoting any type of item), direct pairwise associations would be 
established between a starting signal and A, between A and B, between B and 
C, and so on, providing the basis for subsequent recall of the whole list on 
presentation of the starting signal. This structure would be fragile, however, 
for if the connection between A and B were impaired, the remainder of the list 
would be unrecallable. For this reason and others, Ebbinghaus admitted also 
indirect associations between items such as A and C or A and D that were not 
contiguous during study. The indirect associations are typically weaker than 
the direct ones, but they produce a structure that is less fragile in the face of 
possible interfering factors. 

As research on simple learning, both human and animal, progressed over 
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several decades , it became apparent that the simple association model could 
not explain why learning sometimes occurs on an all-or-none basis but 
sometimes requires many repetitions of an experience or why temporal spac­
ing of learning experiences is a critical factor in retention. The remedy I 
proposed in my first contribution to learning theory was to introduce a layer of 
abstract units (originally termed "stimulus elements," later "memory ele­
ments") that were interposed between stimuli and responses; on a learning 
trial , a sample of these units, corresponding to the stimulus aspects attended 
to by the learner, could become associated with the correct ("reinforced") 
response category (Estes 1950). Also, the units were assumed to fluctuate in 
level of availability over time, providing a mechanism to account for temporal 
aspects of learning and retention (Estes 1955). 

The minimal structural assumptions of classical association and stimulus 
sampling models seemed satisfactory in an age of high concern for parsimony 
and operationism but offered few resources for addressing problems of orga­
nization in memory. This limitation came to be felt acutely when list and 
paired-associate memorization were replaced by free recall as the ex­
perimental paradigm of choice for studies of verbal learning in the 1950s. In a 
standard free recall study, a subject hears or reads a list of words, presented 
singly, then attempts to recall the words in any order. Typically there proves 
to be little correlation between presentation order and recall order; rather, 
words tend to be clustered in recall, with semantically related words tending 
to occur adjacently in recall regardless of their input positions (Bousfield 
1953). This observation gave rise to the idea that associative links may fan out 
from a studied word to a number of others semantically related to it, allowing 
growth of a hierarchical structure of the kind illustrated in Figure 1 (Mandler 
1967); then recall can be effected by proceeding from the topmost node of the 
hierarchy downward , reading out the cluster of words associated with each 
lower-order node as it is encountered. The topmost node may be viewed as 
corresponding to a representation of the list as a unit (hence the common 
designation list marker), the next level of nodes to category labels, especially 
if category labels are supplied by the experimenter prior to recall, and the 
nodes at lower levels to members of categories. However, these identifica­
tions are not essential to the concept of a hierarchical structure, and the upper 
level nodes may be regarded as abstract constituents of the structure, control 
elements in the general hierarchical model of Estes ( l972a), that serve an 
organizational function but have no specific empirical referents. 

This notion of a hierarchical memory structure has been widely extended 
simply by redefining the types of units that correspond to the nodes at various 
levels. Thus, for the purpose of representing the mental lexicon-that is, an 
individual's long-term memory for vocabulary-the nodes are taken to corre­
spond to words and semantic categories (Collins & Quillian 1972); for the 
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INPUT LIST 

iron 
animal 
bird 
pike 
helium 
wren 
gold 
metal 
element 
fish 
canary 
gas 

( list 

HIERARCHICAL ORGANIZATION 

( list) 

/� 
animal (substance) 

/'\ 
bird fish 

/" I 
canary wren pike 

I 
element 

/"'" 
metal gas 

1""- \ 
iron go ld helium 

SAM NETWORK 

Figure 1 Memory for a list of words presented in a hypothetical free-recall experiment is 

represented in hierarchical and nonhierarchical network structures. Widths of lines in the SAM 

diagram signify strengths of associative connections (presumably deriving from different degrees 

of familiarity in the leamer's experience). 

interpretation of factual memory, the nodes are taken to correspond to con­
cepts (Anderson & Bower 1973) or to propositions (Anderson 1976, 1983). 

The Search of Associative Memory (SAM) model of Raaijmakers & Shif­
frin (1981) is perhaps the most general current representative of association 
theory and has certainly yielded the most detailed interpretations of a wide 
variety of phenomena of recall and recognition (Clark & Shiffrin 1987; 
Gillund & Shiffrin 1984; Gronlund & Shiffrin 1986); Shiffrin et aI1989). On 
fIrst encounter, the SAM model seems much more elaborate than any of its 
predecessors. The elaboration has, however, occurred largely through the 
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augmentation of the classical scheme by a variety of control processes, with 
little actual change in the basic structure. In the free recall example, each 
word studied is represented by a node in a memory network, with connections 
between those representing words that were adjacent in the input list or that 
were rehearsed together during study. As shown in the lower part of Figure 1,  
the network resembles the hierarchical structure except that superordinate­
subordinate relationships are not immediately apparent. However, in the 
SAM network, associations differ in strength (shown by light and heavy lines 
in the figures), and the stronger associations would be expected to be general­
ly the same as those represented in the hierarchy. Thus, it appears that the 
differences between the hierarchical model and SAM are at the level of 
process other than at the level of structure. 

This analysis suggests a distinction between the features common to all 
associative models, which may reasonably be taken to comprise the architec­
ture, and the features that distinguish among them. All associative models are 
based on networks of nodes and associative links, the products of learning 
being the establishment of links or the strengthening of already established 
ones. The nodes are units whose function is to enter into associations; they 
may be classified according to the kinds of objects they correspond to in 
empirical interpretations, but they are opaque in that there is no direct access 
to their internal structures. In SAM, the units are referred to as images and 
described as containing clusters of information. In actual implementations of 
the model, however, the information contained in an image is manifest only in 
the probabilities of evocation of the responses, usually words, associated with 
it. 

Trace Theory 

TRACE MODELS FOR MEMORIZATION In the second main type of memory 
theory, the product of a learning experience is the laying down of a memory 
trace, the information accrued being represented in the trace itself rather than 
in connections among traces .  The beginnings of formalization of the concept 
appeared when Hollingworth (19l3) added the notions of a threshold and of 
strength, or degree of familiarity, of a trace, which varied with repetition and 
recency of activation. In Hollingworth's version, a percept that activated a 
stored trace with a strength falling above the threshold would be recognized as 
"old"-that is, as representing a previously experienced pattern of objects or 
events-whereas a strength falling below the threshold would yield 
nonrecognition. Except for some refinements contributed by the importation 
of signal detectability theory (Murdock 1974) , the threshold model has served 
as the canonical interpretation of recognition down to the present. 

The concept of a memory trace was important in gestalt psychology 
(Koffka 1935) , the main new assumption being that a trace is not a static 
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representation but rather one that changes autonomously over time in the 
direction of better conformity to gestalt laws of symmetry, "good figure, " and 
the like. Attempts to adduce experimental support for autonomous processes 
yielded mixed results, however, and the concept has remained a bypath in the 
evolution of present-day memory theory. 

The next major development in trace theory was the introduction of the idea 
that information is stored in a trace in the form of values on a set of attributes 
or dimensions. This concept was formalized by Bower (1967) in his model 
based on a multicomponent memory trace; with a strong boost from an 
influential article by Underwood (1969), :t quickly became the standard 
interpretation. Now a memory trace was conceived as a vector, or list, of 
features, each representing a value on an attribute or dimension (usually, but 
not necessarily, binary). Important assumptions in Bower's version were that 
features could fluctuate in level of availability over time in the manner of 
stimulus sampling theory (Estes 1955) and could be independently lost as a 
consequence of factors responsible for forgetting. Bower showed that trace 
theory, so elaborated, could yield quantitative accounts of numerous phe­
nomena of recognition and simple verbal learning and forgetting. 

RELATIONAL INFORMATION IN TRACE MODELS An important limitation of 
the multicomponent trace model, as of stimulus sampling models, was the 
lack of any principled way of handling relational information. An adequate 
theory must be able to account for the fact that both human learners and higher 
animals readily discriminate between patterns and their components. It is 
trivial, for example, to remember that the number of the hotel room one has 
checked into is 49 even though there are rooms 4 and 9 on the same floor 
assigned to other people, but an unelaborated multitrace model would have to 
predict interference. This problem was a focus of interest for members of my 
Mathematical Psychology Laboratory at Rockefeller University in the 1970s. 
It was one of our group, Douglas Medin, who came up with the insight that 
sensitivity to relations among elements of a pattern need not be based on the 
storage of some kind of special relational information (as relational features) 
in the memory trace but may, rather, emerge in the computations performed 
when perceived patterns are compared to stored representations. In the dis­
crimination model he formulated, features, or attributes, of a stimulus are 
stored in a muIticomponent trace, and the process for accessing stored repre­
sentations is a computation of a multiplicative measure of the similarity of a 
perceived stimulus pattern to each member of the relevant memory array 
(Medin 1975). Any decision called for on the part of the learner is based on 
these similarity measures, and because of the multiplicative character of the 
similarity function, discrimination of patterns from their components can 
occur automatically. The simple but powerful idea that access to stored 
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memories is achieved by a computation based on similarity between perceived 
and stored patterns is embodied in many contemporary theories, among them 
the "resonance" model of Ratcliff (1978) and the "Minerva II" simulation 
model of Hintzman (1986). The outcome of many decades of evolution of 
trace theory seems, then, to be a schema based on the storage of multi­
component memory vectors in partitioned arrays accessible via similarity 
computations--evidently as deserving of the appellation "architecture" as the 
general schema of association theory. 

A Common Architecture for Trace and Association 

Have we at this point arrived at two architectures, one for association and one 
for trace theory? I surmise that actually they are homologous, the familiar 
networks and hierarchical structures of current association theory being just 
graphical depictions of relationships among percepts and memories that are 
common to both kinds of theory. For a simple illustration of the correspon­
dence, consider the memorization of a list of words WI, W2, W3, . . .  Wn. In 
an associative model the memory structure formed could be depicted as 

S' - WI' - W2' - W3' - ... -Wn', 

the units corresponding to the starting context, S, and the words of the list. In 
a trace model the corresponding structure would be a list of vectors whose 
elements are the units of the associative structure. 

(S' WI ') 

(WI' W2') 

(W2' W3') 

(Wn-I' Wn'). 

Now the starting context, S, being most similar to the first trace, would have 
the highest probability of reactivating it when presented, and therefore of 
producing recall of WI; the result of recalling WI would similarly be most 
likely to activate the trace including WI', and so on. A similar analysis has 
been presented by Greeno "et al ( 1978). If the associative scheme were 
interpreted as a particular application of the SAM model and the trace 
structure as a particular application of the exemplar-memory model, even the 
formulas for response probability would be identical in form, one entering 
sums and ratios of associative strengths and the other sums and ratios of 
similarities, both in the manner of Luce' s (1963) choice model. The exemplar 
trace model may be viewed as a special case of the SAM model in which 
associative strengths are constrained to be values on a similarity dimension. 
The set of structural properties common to association and trace models I 
henceforth refer to, for brevity, as the array architecture. 
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Some psychological models that appear very different in form from those 
reviewed above may nonetheless be shown to share the same architecture. An 
important case is the class of geometric models of memory (Cunningham & 
Shepard 1974; Hutchinson & Lockhead 1977). These first appeared in the 
semantic memory literature just when hierarchical network models were 
approaching their peak of popularity. The geometric models did not receive 
wide attention, perhaps in part because their applications were largely limited 
to studies of similarity judgments in the tradition of psychophysical scaling. 
Following the scaling approach, Hutchinson & Lockhead ( 1977) showed that 
words could be assigned to positions in a multidimensional space, consistently 
across different methods of collecting similarity data, and that reaction times for 
discriminations between words were directly related to distances between them. 
Their results suggested that priming effects, a cornerstone of the network models, 
were readily interpretable in the metric framework. 

The geometric model is useful in bringing out relationships between phe­
nomena of semantic memory and psychophysics that would not otherwise be 
apparent, whether or not it exemplifies a unique architecture. Hutchinson & 
Lockhead offered, without a proof, the conjecture that it is actually isomor­
phic to feature and network models. It is not obvious that these classes of 
models are well enough defined to make a general proof possible, but 
Nosofsky ( 1984 ) has shown that the isomorphism does hold for models of 
categorization and identification formulated in the array framework. Building 
on earlier work of Shepard ( 1958) , Nosofsky showed that with similarity 
between memory vectors in an array related to distance between correspond­
ing points in a cognitive space by an exponential function, an exemplar­
memory model is equivalent to a geometric model. The correspondence is not 
unique, for a particular array model can be mapped onto different geometric 
models based on different metrics, but it does seem clear that geometric 
models need not be considered to assume a different architecture from that of 
array models. 

Summary of the Array Architecture 

What is common to all of the models that I have subsumed under the array 
architecture? A central assumption is that memory of any experience with 
objects or events can be stored in the form of a multi component trace, the 
components being features or values on attributes or dimensions. (I use the 
latter two terms interchangeably.) These traces can be viewed as vectors or 
lists, as nodes in a network, or as points in a multidimensional space. When 
any one trace is activated, most commonly by occurrence of an appropriate 
percept (i.e. one with the same feature values or a subset of them), it may in 
tum activate others. The tendency for this activation to occur is interpretable 
as a similarity relation between traces, as strength of an associative link, or as 



COGNITIVE ARCHITECTURES 13 

distance in a cognitive space. A measure of strength of activation in any one 
of these interpretations can be converted into any of the others by a simple 
transformation, so they are not empirically distinguishable. Again, a memory 
array can be partitioned into sub arrays corresponding to categories; a network 
or cognitive space can be similarly divided into regions. 

Nearly all cognitive theories now make a distinction between long-term 
memory and short-term, or working, memory. The former is conceived to be 
of indefinitely large capacity but slow access, the latter of sharply limited 
capacity and rapid access, and also subject to cognitive operations like 
comparison and counting. It does not seem that this distinction need be built 
into the architecture , however. Tn the array framework, for example, we need 
only assume that the temporal-spatial context of a learning experience is 
represented in the memory trace but decays in availability as a function of 
time following the experience. 

COMPOSITE DISTRIBUTED MEMORY 

In array models,  an encoded memory trace is conceived to be stored in a 
distinct, content -addressable location and to preserve its identity, so that it is  
meaningful to speak of carrying out cognitive operations on individual traces. 
In contrast, distributed memory models, which began to appear in the early 
19708, are based on an architecture in which the individual identity of a trace 
is lost. Typically, a percept is encoded as a vector of feature values, as in an 
array model; however, the vector is not stored in a memory location, but is , 
rather , added into a composite trace that represents cumulative memory. In 
the model of Anderson (1973), successively encoded vectors are literally 
added (by matrix addition). Thus, if two successive learning experiences were 
encoded as (1 ,  -1, -1 ,1) and (1, 1, - 1, -I), the composite memory for these 
experiences would be (2,0, -2,0). If the vectors are orthogonal (roughly 
speaking, if their components are uncorrelated) ,  the evocation of a percept 
corresponding to any one of the traces on a later test will revive that trace, 
providing a basis for recognition. Technically, a test vector, say 
( 1,1, -1, - 1) , is applied to the composite memory vector by a form of matrix 
m ultiplication, and the product, multiplied by a scalar if appropriate, is the 
same as the test vector. If the vectors are large, then this result may be 
obtained to a good approximation even if there are departures from 
orthogonality. Thus, in general, the result of a recognition test is not revival 
of a particular stored trace, but, rather, generation of a vector similar to one or 
more stored traces. A model with a very similar mathematical structure has 
been formulated and applied to recall as well as recognition by Pike ( 1984). 

A distributed memory model that has been progressively elaborated and 
applied to many different types of situations is the theory of distributed 
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associative memory (TODAM) of Murdock and his associates (Murdock 
1979, 1982; Murdock & Hockley 1989) and a closely related composite 
holographic associative recall model, CHARM (Eich 1982; Metcalfe & Fisher 
1986). These models differ from those of Anderson (1973) and Pike (1984) in 
using some different mathematical operations. To enter new vectors into the 
composite memory, they employ convolution, a combination of addition and 
multiplication, and to obtain information from the composite memory, 
correlation, the inverse of convolution. 

Two questions immediately come to mind regarding a proposed architec­
ture requiring a mathematical formalism and methods so different from those 
familiar to psychologists in the tradition of trace and association theory: What 
suggested this novel architecture, and how is it faring in current memory 
theory? The prime answer to the first question appears to lie in the intuition of 
some investigators that a distributed, composite memory has properties much 
more congenial to what is known about the brain than those of traditional 
theories (Anderson 1973; Anderson et aI1977). Brain function is conspicuous 
for redundancy, tolerance of noise, and resistance to disturbance from local­
ized damage-all properties that seem out of keeping with localized storage of 
discrete memory traces. Also, trace and association theories that had appeared 
prior to about 1970 had been so austerely simple in structure that they seemed 
to offer little prospect of helping to interrelate and integrate research in 
different paradigms, such as recognition, recall, and classification. In its 
continuing development, the family of composite memory models has shown 
enough promise in this respect to present an interesting alternative to the quite 
different lines of elaboration of classical association theory by Anderson & 
Bower (1973), Estes (1972a), and Raaijmakers & Shiffrin (1981). 

The typically impatient psychologist is likely to ask at this point why, in the 
course of a decade or so of research, no one has carried out an experimental 
test to detennine which type of model is superior. Such tests have been 
attempted, but none has yielded a decision, and I suspect that none is likely 
to. Still, it is possible to say something about evaluation. In the hands of their 
proponents, the composite models appear to be serving about as well as array 
models for instigating instructive experiments and bringing out theoretically 
interesting relationships among different empirical domains (Eich 1982; Met­
calfe & Fisher 1986; Murdock & Lamon 1988; Murdock 1989). The latter 
function is illustrated by the fact that Murdock's convolution model has been 
shown to imply a formal relationship between recall and recognition (Mur­
dock 1989; Murdock & Hockley 1989) comparable in parsimony and ele­
gance to those that have been derived by Gillund & Shiffrin (1984), for 
example, for the SAM model and by Nosofsky (1986, 1988) for the exemplar­
memory model. 
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THE CONNECTIONIST ARCHITECTURE 

Perhaps the only reason why the composite models developed by Metcalfe­
Eich and Murdock are not more widely influential than they currently appear 
to be is that they have been overshadowed somewhat by the sudden flowering 
of what are termed connectionist, or parallel-distributed-processing (PDP) 
models , a family sharing some architectural features with the convolution 
models but stemming from quite different origins. The basic elements of 
connectionist models are nodes and links, as in association models. The nodes 
are , however, simple, homogeneous units that do not, individually, corre­
spond to external referents; their only properties are levels of activity and the 
capability of transmitting activation over the links between nodes. A con­
nectionist network comprises two or more layers of nodes , typically a lowest 
level, in which nodes are activated by inputs from perceptual channels, a 
highest level, in which nodes receive activation from lower levels and in tum 
activate response mechanisms, and one or more intermediate levels of "hid­
den units," which receive input from lower levels and transmit it upward. 
Each link between nodes has an associated weight, which determines the 
strength of transmission over it , and memory resides wholly in the pattern of 
weights, which is modified ("updated") by the inputs to the network on each 
learning experience. The richness of the architecture is greatly amplified by 
the hidden units , which have no direct correspondence to input or output 
nodes but in the course of learning may come to act as feature detectors or 
classifiers. 

Immediate precursors of the current wave of connectionist activity in 
cognitive science include PDP network models of visual processing (Ballard 
et al 1983; Marr 1982), mathematical investigations of feature detection and 
classification in adaptive networks (Grossberg 1976), and development of an 
"interactive activation" network model of processes in reading (McClelland & 
Rumelhart 1981). Some unity was brought to a heterogeneous collection of 
theoretical developments by the imagination and initiative of two leaders of 
the movement within psychology in assembling a two-volume handbook, 
including both summary and tutorial presentations of the formal concepts and 
methods of connectionism and a sampling of applications of PDP models to 
several cognitive domains (McClelland & Rumelhart 1986; Rumelhart & 
McClelland 1986a) . 

The special relevance of connectionist models to my long-term research 
interests and to this essay is that they have offered the promise of rescuing 
learning theory from its near eclipse during several decades in which cogni­
tive research has been dominated by concern with problems of information­
processing, representation in memory, and cognitive operations. Whether we 
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look at research and theory on short-term memory, semantic memory, propo­
sitional networks, or even the earlier distributed memory models, we see 
almost no efforts to interpret in any detail the processes whereby information 
comes to be stored in memory. The connectionist movement, in contrast, 
brings a new emphasis on learning. In traditional information-processing 
models, mechanisms like feature detectors are laid down as part of the 
architecture; items of information from input channels are deposited in mem­
ory buffers or stores to await retrieval; motives and goals may be important in 
the minds of the investigators, but they receive no explicit representation in 
the models. In connectionist models, feature detectors are generated from 
initially "blind and dumb" nodes and links; items of input information gain 
memorial representation by a process of weight adjustment; the capacity to 
recognize and classify perceptual patterns develops by means of a learning 
process that is driven by an overall tendency toward error correction. An 
"error," in this context, is a discrepancy between the current output ("re­
sponse") of a network and a target, or goal, specified by a teaching signal, 
which may be either supplied by the environment or (a critically important 
property) internally generated. Thus, in the connectionist approach, learning 
is not viewed as a subsidiary problem to be left for consideration after the big 
problems are taken care of, but, rather, is a major aspect of the cognitive 
system from the start. For an investigator who grew up scientifically in the 
golden age of learning theory, this renewed emphasis on learning is a wel­
come development. 

We have recently seen an abundance of discussions of general properties of 
learning in connectionist networks and similar architectures (Grossberg 1987; 
Hinton & Sejnowski 1986; Rumelhart & Zipser 1986; Rumelhart et al 1986; 
Stone 1986). As a complement to these, I wish to compare detailed properties 
of representatives of the network and array model families as developed and 
applied in a particular line of research, namely human category learning. 

A COMPARISON OF MODELS FOR 

CATEGORY LEARNING 

Category Learning in Array Models 

Research on the learning of categories has followed two main strands. Histor­
ically prior was what Smith & Medin (1981) called the "classical approach," 
dealing with learning of categories that are sharply delimited by necessary and 
sufficient properties and definable in terms of simple verbal rules, like those 
of formal school subjects like geometry and grammar. In the information­
processing approach dating from Hovland (1952), the standard experimental 
task is classifying multidimensional stimulus patterns into categories defined 
in terms of logical combinations of attributes, the prime research question 
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being how task difficulty is related to complexity of the logical rules (Bourne 
1970; Hunt 1962; Shepard et al 1961). The body of theory generated in this 
tradition took the form of hypothesis-testing models (Hunt 1962; Trabasso & 
Bower 1968). Thus the main focus was on performance, perhaps the reason 
why work in this tradition dwindled as the center of interest for cognitive 
psychologists shifted during the 1970s from problems of performance to 
problems of representation in memory. 

In the other principal strand of research on concept learning, research is 
addressed to acquisition and representation of what may be termed "fuzzy 
sets," that is, categories that do not have sharp boundaries and are best 
definable in terms of family resemblance or probability distributions. This 
approach was a center of attention for me and my associates from the mid 
1950s because it provided an ideal research context for the testing and 
development of models based on stimulus sampling theory (Estes 1950). The 
favorite experimental paradigm of that period is very similar to some that are 
popular today, though the connection has generally been missed by writers of 
introductions to research articles, perhaps largely because the vocabulary used 
to describe it has changed. Studies that would now be characterized in terms 
of classification or categorization were reported in the earlier period under the 
label "discrimination learning," a term now almost wholly confined to the 
animal learning literature. 

In a typical study of that period (Estes et al 1957), subjects viewed a display 
panel containing a row of 12 light bulbs. They were instructed, in effect, that 
on each of a series of trials some subset of the lights would be illuminated and 
that they should try to assign it to one of two alternative categories. Correct 
assignment would be indicated by a feedback signal. Different probability 
distributions defined over the display positions determined the samples of 
lights drawn for the two categories. The collections of samples that occurred 
on the two types of trials would be termed fuzzy sets in modem parlance. The 
stimulus sampling model that the study was intended to test predicted quite 
accurately the asymptotic proportions of correct responses for groups that 
learned with different category base rates as well as transfer performance on 
tests given at the end of the learning series with subsets of lights not 
previously seen. 

The conditions of the 1957 study differed from those characteristic of 
related current work in that the populations of stimulus patterns associated 
with the categories were very large, so that individual patterns would rarely 
have recurred even during a learning series of several hundred trials. It 
occurred to me that the success of the stimulus sampling model might have 
been peculiar to that constraint, so I carried out several followups with similar 
designs but much smaller population sizes (and, in tune with the changing 
tenor of the times, a change from meaningless signal lights to symbols for 
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medical symptoms, or the like, as the component features of category ex­
amplars). The result was that the model in its original form broke down and 
could be brought into accord with the new data only with the added assump­
tion that repeated experience with individual subsets of features led to the 
patterns' being encoded as units (Atkinson & Estes 1963; Estes 1972b; Estes 
& Hopkins 1961). It was apparent that the stimulus sampling model was not 
rich enough in structure to provide a satisfactory linkage between the two 
distinct versions needed to handle learning with large and small categories. It 
was not so apparent how to mend matters. 

The next step forward needed a fresh viewpoint, and one was finally 
supplied by the extension of the discrimination model of Medin (1975) to the 
interpretation of human category learning (Medin & Schaffer 1978). 

Although preserving some of the basic ideas of stimulus sampling theory, 
Medin & Schaffer's model presented a distinctly new look. The subject in a 
category learning experiment was assumed, not to associate individual cues 
with responses, but rather to store in memory on each learning trial a featural 
representation of the perceived exemplar together with its category tag. When 
asked to assign a pattern to a category, the learner was conceived to compare 
it to each of the stored representations, compute the similarity by the multi­
plicative rule, and then generate a choice probability for each category 
proportional to its summed similarity to the test exemplar. This model im­
mediately aroused much interest because it not only yielded predictions of 
transfer effects under some novel experimental routines but also accounted for 
phenomena that had been taken to support prototype models, as, for example, 
the fact that a stimulus pattern corresponding to a category prototype pre­
sented for the first time on a test at the end of learning is likely to be correctly 
categorized with higher probability than patterns that have actually occurred 
during learning (Medin & Schaffer 1978). Numerous applications of various 
special cases of this exemplar-memory model (for which some investigators 
prefer the less mnemonic designation context model) during the next several 
years yielded consistently good accounts of asymptotic learning data and 
transfer to new patterns following learning, and tended to support the ex­
emplar-memory model over prototype models (Busemeyer et al 1984; Estes 
1986b; Nosofsky 1984, 1986). My own related work went further in demon­
strating similarly good accounts of the detailed course of category learning 
over hundreds of trials and brought out the close parallelism between 
categorization and recognition that is implied by the exemplar-memory model 
(Estes 1986b). 

When treading any primrose path, one is likely to run eventually into 
brambles, and this one proved no exception. It would be expected on theoreti­
cal grounds that such closely related processes as identification and classifica­
tion of the same set of stimulus patterns should be predictable by an 
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adequate model without changes in paramater values from one task to the 
other, but a direct test by Nosofsky ( 1984) yielded an apparent negative result 
for the exemplar-memory model. I say "apparently" because, although the 
model provided good fits to both identification and categorization, it was at 
the cost of a drastic change from one situation to the other in the attentional 
weights associated with stimulus dimensions in Medin & Schaffer' s formula­
tion of the model (to reflect a direct relationship between selective attention 
and feature validity) . This finding was not unanticipated by Nosofsky, and he 
accomplished a partial rescue of the model by showing that during categoriza­
tion learning, the values of the attentional weights (estimated from perfor­
mance data) moved systematically in the direction of the values that would be 
optimal for efficient categorization. Thus, it seemed that the exemplar­
memory model plus an auxiliary model for attentional learning might be able 
to account for both identification and categorization. Since no such auxiliary 
model has been formulated, the issue remains open. However, it will be seen 
in the next section that a more elegant solution to the problem than grafting 
mechanisms onto the exemplar-memory model may be Jforthcoming. 

In my own studies related to the exemplar-memory model, I have employed 
only a special case that does not include parameters for dimensional weights, 
in order to simplify the problem of testing hypotheses about storage and 
retrieval processes . This version fared well enough at accounting for the 
details of learning in situations where selective attention would not be ex­
pected to play a significant role (Estes 1986a,b); but, even with this qualifica­
tion met, the model has run into difficulties when called on to predict across a 
change in conditions . In a recent study, for example, I set out to test a 
particular aspect of the model having to do with hysteresis . Subjects were 
given the task of learning to classify artificial words into grammatical catego­
ries, the set of stimulus patterns having different probability distributions in 
each of three categories. For one category, conditions were constant through­
out a 240-trial learning series, but the probability distributions for the other 
two categories were switched after trial 60 for an early-shift group and after 
trial 180 for a late-shift group. According to the exemplar-memory model, 
many more patterns, with their category tags, would be stored in the memory 
array by the point of the shift for the late-shift than for the early shift group; 
and therefore performance would be impaired after the shift until enough 
patterns could be correctly stored to outweigh the ones now incorrectly stored 
in the two shifted categories. The quantitative predictions of the model were 
exactly as advertised, but the predicted post-shiftimpairment for the late-shift 
group was much greater than that observed (Estes 1989). 

Again, the setback for the model is not fatal, of course. In further analyses 
(not yet published), I have found that, as one might expect, the model can be 
brought into line with the shift data by adding the assumption of a decay-like 
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process whereby a stored pattern declines in availability as an exponential 
function of trials following storage, so that, in effect, the retrieval and 
similarity-comparisons of the model only operated on a limited set of recently 
stored patterns.  This assumption seems a quite natural one, and I now regard 
it as part of the "standard equipment" of an updated exemplar-memory model. 
Nonetheless, as in the case of predicting from identification to categorization, 
would it not be fine if the model under test proved able to handle the new 
results without requiring elaboration? The continuing elusiveness of that goal 
for models of the array family prepared me to be immediately much interested 
in the potentialities of connectionist models when they were introduced into 
categorization research.  

Category Learning in PDP Network Models 

A stripped-down PDP model , based on a connectionist architecture but 
lacking hidden units, was developed and applied to categorization learning by 
Gluck & Bower (1988b) . Their model , denoted an "adaptive network," 
includes an input node for each member of the feature set used to generate 
category exemplars in an experiment, an output node for each category, and a 
link, with an associated weight, from each input to each output node. The 
probability of a categorization response is based on the summed output of the 
system to each of the category nodes in response to an input pattern. It is 
assumed that each learning trial comprises presentation of a stimulus pattern, 
which activates a set of feature nodes,  computation of the system's 
categorization response, and presentation of a feedback, or "teaching," signal 
indicating the correct category. Learning is accomplished by a set of functions 
that update the associative weights for each node active on a trial in such a 
way that the weights move toward the target value specified by the teaching 
signal . The functions are similar to the learning functions of stimulus sam­
pling models except that they embody a competitive property in that the 
increment to a weight on any trial is reduced to the degree that other active 
nodes already predict the correct category. Formally, the increment, or 
decrement, is proportional to the difference between the current output of the 
network for the given input pattern and the target output, a property deriving 
from the conditioning model of Rescorla & Wagner (1972) and the "delta 
rule" familiar in adaptive network theory (Stone 1986; Widrow & Hoff 1960) . 

Gluck & Bower noted that even a very simple categorization problem of 
suitable design could yield an interesting test of differing predictions by 
exemplar ("pattern-matching," in their terms) models and their network mod­
el. In their study (Gluck & Bower 1988b, Exp 1), subjects were given a task 
simulating that of a diagnostician. Stimulus patterns were generated from a set 
of four features, labelled as medical symptoms, and subjects were to assign 
each pattern presented (interpreted as the symptom chart of a hypothetical 
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patient) to one of  two disease categories. The two categories, A and B 
occurred with probabilities .25 and . 75, respectively; on each type of trial, the 
features occurred with the probabilities shown in Table 2. Prime interest is in 
the subjects' response to Feature 1 when it was tested alone at the end of the 
learning series and they were asked to estimate the probability of either 
category in its presence. It will be seen that, owing to the unequal category 
probabilities, Feature 1 will be expected to occur equally often in both 
categories over the learning series. Consequently, the prediction of the ex­
emplar-memory model (or a stimulus sampling model) is that the subjects' 
probability estimates for categories A and B should each be equal to .5 on the 
test. In contrast, the network model predicts a large bias for Category A-the 
result observed in Gluck & Bower's study. Shortly after this demonstration, 
Estes et al (1989) replicated this finding and went on to show that the network 
model yielded an account of the detailed course of learning considerably 
superior to that of the exemplar-memory model. 

A major limitation of the simple network model is that it can only learn 
categorizations for situations in which the features of category exemplars 
combine independently-that is, the features are uncorrelated within catego­
ries. Thus the network could not, for example, exhibit learning in Experiment 
2 of Estes ( l986b), where all members of the feature set were invalid (that is, 
occurred equally often in each category) but some pairs of cues were partially 
valid (that is, occurred with different frequencies in the two categories)­
although both the subjects and the exemplar-memory model did exhibit 
significant learning. 

The minimal elaboration of the network needed to get around this difficulty 
is to allow for three levels of nodes, the first level representing individual 
features and the second level patterns of features, with both levels being 
connected to the category nodes at the third level (Estes 1988). In a realization 
of this elaborated network that might be termed the feature/pattern (F/P) 
model, learning of a new categorization begins with the model having only 
the simple network structure, but as each presented exemplar activates its 
feature nodes, a pattern node is added to the network. Henceforth, the pattern 

Table 2 Feature probabilities on trials assigned 

to each category (Gluck & Bower 1988b) 

Category 

Feature A B 

.6 .2 
2 .4 .3 
3 .3  .4  
4 .2  .6  
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node is activated whenever its set of feature nodes is active, thus acting as an 
AND gate in network parlance, and it is linked to nodes at the category level 
just as are the feature nodes. The system is still linear, since the outputs are 
assumed to be summed activations just as in the simple model, but the 
additional structure enables the network to learn problems like that of Estes 
( 1986b, Exp. 2). In fact, on the data of that experiment, the FIP model (with 
one free parameter added to allow for different learning rates on features and 
patterns) closely matches the performance of the neo--exemplar memory 
model, and the same has been true for several sets of unpublished data. An 
important property of the FIP model is that, in a categorization task, the 
network can concurrently learn quite different things about exemplars and 
their features (for example, that presence of a particular pattern points strong­
ly to one category whereas each of its features points to other categories). 
Consequently, the network model may prove significantly more powerful 
than exemplar-memory models for the prediction of transfer phenomena. 

An experiment well designed to tax the capabilities of both the exemplar­
memory and FIP models was conducted by J. B. Hurwitz as part of his 
Harvard dissertation study. The task for his subjects was learning to classify a 
set of strings of four binary features into two categories A or B .  The category 
structure was a bit complex. Two of the string positions were filled with an 
exclusive-OR problem (denoted xORl); the features in those positions were the 
same ( 11  or 22 in binary coding) on Category A and different ( 12 or 2 1 )  on 
Category B trials throughout learning. The other two positions were filled 
with a different problem, xOR2, for which the contingencies were reversed for 
some strings after the second 60-trial training block. By "reversed," I mean 
that if feature pairs 11 and 22 originally occurred in these positions only on A 
trials, after reversal they occurred only on B trials. Programming of exemplar 
and category occurrences was such that optimally efficient learners who 
attended only to the xORl letter positions would move quickly to 100% correct 
responding and remain at that level throughout the series; if they attended only 
to the XOR2 positions, they would approach 100% correct during the first two 
blocks but would revert to chance responding in the third block. This scheme 
sounds complex, but those of Hurwitz's subjects who learned at all moved 
steadily from chance to a level near 100% correct responding with very little 
disturbance from the reversal of the XOR2 problem. The picture was as though 
the subjects were able to do quite well at screening out the xOR2 letter 
positions and attending only to the XORI positions. Exemplar-memory models 
have no mechanism for producing this apparent selective attention, so it is not 
surprising that the neo--exemplar memory model gave only a poor account of 
the data. predicting much too large a drop in performance at the point of 
partial reversal. The network model, even in the FIP version, did little better 
[and the same is true of the "configural-cue" model of Gluck & Bower 
( l988a)). 
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The reason for special interest in Hurwitz's result is not just that it is the 
first massive failure recorded in this line of research for the models consid­
ered, but that Hurwitz went on to show that the data could be well handled by 
an elaboration of the FIP network model that included learning on the weights 
from input to pattern nodes by back-propagation of error signals from the 
output nodes (Rumelhart et aI 1 986) . Thus , at this stage of the current wave of 
research on category learning, an adaptive network model with an architecture 
closer to that of typical connectionist models has proved able to cope with a 
novel and complex learning regime in a way well beyond the capabilities of 
the array models or simpler, linear networks that have been applied in this line 
of research to date. 

PROBLEMS FOR CONNECTIONIST MODELS 

Despite this and other successes , all is not smooth going for connectionist 
models. A disturbing note is sounded by reports that as soon as they are 
extended beyond the task of accounting for the concurrent learning of a set of 
materials ,  as a single categorization task or a single to-be-memorized list, 
they may prove unable to maintain several clusters of successively acquired 
memories simultaneously and therefore exhibit massive interference effects 
on recognition or recall tests (McCloskey & Cohen 1 989; Ratcliff 1 990) . In 
the study of McCloskey & Cohen, for example, simulations of classical 
paired-associate list learning experiments like that of Barnes & Underwood 
( 1 959) yielded interference effects in recall much larger than those shown by 
human subjects , and this interference was not alleviated by any of the obvious 
remedial tactics, such as varying the number of hidden units , giving overtrain­
ing on the first of two successive lists, or including representation of list 
contexts . Further, the ambitious, and in many respects impressive, effort by 
Rumelhart & McClelland ( 1986b) to produce a connectionist model of the 
way children acquire certain linguistic competences has run into heavy criti­
cism (Prince & Pinker 1988) , including a claim that connectionist networks 
cannot, in principle, learn rules of the kind that are basic to language. Thus 
we have a curious situation: Connectionist models are built to learn, but there 
are reasons to question whether they can be made to learn like human beings. 

Of course , these failures of connectionist networks have attracted wide 
attention, and there have already been reports of some results that limit 
somewhat the generality of the massive interference findings. Hetherington & 
Seidenberg ( 1989) have shown that the extremely large interference effects 
manifest when lists of items are learned successively are mitigated to some 
degree under a learning routine intended to be closer to that of vocabulary 
learning by children in a natural environment. Following a somewhat differ­
ent approach, Brousse & Smolensky ( 1989) have found that once a hidden-
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unit network has learned a subset of items from a large combinatorial do­
main, as, for example, strings of six letters, additional items can be learned 
rapidly and the increasingly large memory can be maintained without in­
terference. 

Returning to the more restricted successive list paradigm, which remains at 
the least an annoying pebble in the connectionist shoe, I can add that I have 
run my F/P network model on tasks very similar to those studied by McClos­
key & Cohen ( 1989), including the Barnes & Underwood ( 1959) experiment, 
and have found interference only of the level seen in human subject data. 
There are too many differences between the specific models simulated to 
make interpretation of the different results feasible until the analyses are 
carried further. My model is a linear system, which should not be a critical 
difference in itself; and it has more a priori structure, in that the nodes at the 
second level are mapped onto particular input patterns, rather than having 
stimulus patterns correspond to patterns of activity across a layer of un­
differentiated nodes. A stray thought that comes to mind is that the situation is 
a bit reminiscent of a segment of the history of learning theory. In the learning 
theories of the period 1930-1960, it was assumed that learning processes are 
basically the same at least for all of the higher animals and that learning in the 
individual organism starts from a tabula rasa, the counterpart of a network of 
homogeneous and mutually interconnected nodes. During the next decade, 
however, under the impact of ethology and the beginnings of modem 
neuroscience, the prevalent view shifted to one that recognized biological 
constraints on learning (Estes 1988; Hinde 1973; Shettleworth 1972); and it is 
now quite generally assumed that learning in any organism, human or subhu­
man, builds on a substrate of species-specific predispositions and products of 
previous learning. Implementing this more biologically founded orientation in 
connectionist learning models is a tall order; but the effort will surely have to 
be made sooner or later, and the results may cast some of the current problems 
in a new light. 

REFLECTIONS 

Is memory distributed? I find it hard to doubt that at the neural level the 
answer is yes, at least within the components of modular structures. The 
implication for constructors of cognitive models is not obvious, however, for 
models that differ only in their assumptions about distributed versus localized 
storage may not be differentiable at the behavioral level. The latter comment 
is relevant also to questions about composite memories. Convolution models 
and associative network models appear very different when diagrammed or 
described in words, but it is possible that one type can be mapped onto the 
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other. For example, following a given learning experience. the set of in­
formational patterns recoverable from a composite memory by members of a 

set of recall cues might correspond one-to-one to the set of images stored at 
the nodes of an associative network. Much theoretical work is needed to 
assess the possibilities of such equivalences. 

Are there built-in memory structures? The notion of a cognitive architecture 
may seem to connote a set of permanent memory structures, waiting to 
receive information and constraining the form of storage, as in the models of 
Anderson & Bower ( 1973), Atkinson & Shiffrin ( 1 968), or Norman & 
Rumelhart ( 1 970). But, alternatively, it may be assumed that the cognitive 
system has only very general built-in capabilities and creates memory struc­
tures on-line in response to task demands (Newell 1973). There may well be a 
peripheral-central gradient, with the more peripheral, or modality-specific, 
subsystems, like primary visual and auditory memory, tending to have more 
fixed structures. Examples of reasonably direct evidence for on-line formation 
of memory structures tailored to particular task demands can be found in 
research on ordered recall (Lee & Estes 1 981)  and memory for dates of events 
(Huttenlocher et al 1 988). 

Architecture or architectures? I think pluralism gets the nod, certainly for 
the present and quite possibly for a long way into the future. The complexity 
of the human cognitive system demands approaches from differing per­
spectives, and these must be expected to give rise to successions of limited 
models and restricted architectures. The idea that the connectionist and the 
symbol-processing architecture might fit neatly into the different levels of an 
overall theory (Smolensky 1 988) is attractive, but in my view not ready for 
evaluation. 

Parallel cultivation of symbol-processing and connectionist architectures 
need not imply anything like equality of effort or rate of progress, however. 
The former seems to be lagging in new theoretical development, but remains 
influential because concepts of symbol processing and array representation fit 
the intuitions of the majority of investigators in cognitive science. The 
connectionist approach has the enormous advantage of resonating more 
strongly with the current grounds well of interest in cognitive neuroscience. 
and brings a variety of new concepts, metaphors, and formal tools into 
cognitive theory. Intuitions can change, and they may have to do so if the 
connectionist movement, broadly conceived, continues to gain momentum at 
the rate that now seems likely from my perspective. 
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