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Abstract
This essay describes in simple terms some of the major concepts of
categorical data analysis (CDA) that have been and will continue to be
useful in the analysis of sociological data, examples of which include
data in the area of social stratification and mobility, and in many
other areas that make use of survey data and/or panel studies data,
and in empirical studies of latent types, latent variables, and latent
structures. The exposition does not make use of any mathematical
formulas, and the only arithmetic used is very simple multiplication,
division, and addition. Simple numerical examples, constructed for
expository purposes, are used as an aid in describing the concepts
of categorical data analysis that are considered in the essay. These
concepts include quasi-independence, quasi-symmetry, symmetric
association, uniform association, and other related concepts useful
in the analysis of mobility tables, and also other concepts that are
useful in other areas of study.
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INTRODUCTION

I would like to thank the Editors of the An-
nual Review of Sociology, Karen Cook and Doug
Massey, and their Editorial Committee, for
having invited me to write the lead article for
the 2007 volume. This essay describes in sim-
ple terms some of the major concepts of cate-
gorical data analysis (CDA), and it does so in
a way that will, I hope, interest ARS readers
ranging from those who have had no interest
in the analysis of categorical data to those who
have had a strong interest in this subject. The
concepts that are considered, or reconsidered,
here have been developed over approximately
the past 50 years. They have helped to change,
in a dramatic way, how categorical data are an-
alyzed now. The development of new related
concepts in categorical data analysis continues
unabated today.

The exposition in this essay does not make
use of any mathematical formulas, and the
only arithmetic used here is some very simple
multiplication, division, and addition. (Even
when log-linear models are considered, loga-
rithms are not used.) Simple numerical exam-
ples, constructed for expository purposes, are
used here as an aid in describing the concepts
under consideration.

When the great Michelangelo was sculpt-
ing his colossal figure of David, he worked un-
der the premise that the image of David was
already in the block of marble that he had se-
lected, and his task was to release the image
from the block. (He worked under this kind
of premise when he was sculpting some of his
other statues as well.) Now, faced with a set of
categorical data of interest, data analysts can
work under the premise that there is an im-
age, or more than one image, embedded in the
set of data, and their task is to release that im-
age, or those images, using suitable tools. The
tools could be the kind developed for categor-
ical data analysis and the kinds of concepts that
are described here.

Because of serious space limitations, this
essay considers only some of the major con-
cepts that have been and continue to be useful

in the analysis of sociological data. Each sec-
tion and subsection here can be viewed as a
new kind of introduction to one of the top-
ics in categorical data analysis—a new intro-
duction to one of the chapters, selected from
a large collection of chapters, in a statistical
autobiography. Reference is made in this es-
say primarily to my work; the work of oth-
ers is cited in the publications included in the
Related Resources section at the end.

THE CONCEPTS OF
QUASI-INDEPENDENCE,
QUASI-SYMMETRY,
SYMMETRIC ASSOCIATION,
UNIFORM ASSOCIATION, AND
RELATED CONCEPTS

I describe here in simple terms the concepts
of quasi-independence, quasi-symmetry, sym-
metric association, uniform association, and
related concepts. For the sake of simplicity,
I describe each of these concepts by noting
how it can be applied in the analysis of data
in a two-way 3 × 3 table of observed frequen-
cies, a table that represents the relationship
between two trichotomous categorical vari-
ables, a row variable and a column variable,
but each of these concepts can also be applied
much more generally. Comments on general-
izations are also included (see On Some Gen-
eralizations, subsection below).

Among the various substantive areas in
which these concepts have been applied is the
field of social stratification and mobility. The
introduction of these concepts, and other re-
lated concepts, in this field has changed the
way that mobility tables are analyzed. In his
description of the work that I have done, us-
ing the concept of quasi-independence and re-
lated concepts, in developing methods for an-
alyzing mobility tables, Duncan (1974, 1975)
wrote as follows:

Goodman’s work on methods for analyz-
ing mobility tables solved a problem that
had plagued research workers in this field
for at least two decades . . . . In solving this

2 Goodman



ANRV316-SO33-01 ARI 29 June 2007 20:33

problem, he rendered a substantial corpus of
previous work . . . obsolete—no softer word
will do.

I now describe in simple terms an index
that would have been calculated in the previ-
ous work rendered obsolete and then the cor-
responding index that can be calculated in the
current work that has replaced it, making use
of this quasi-independence concept.

Independence and
Quasi-Independence

For the sake of simplicity, I consider now the
three two-way tables (Tables 1a, 1b, and 1c)
in Table 1. The first two-way table (Table 1a)
can be viewed as an example of a simplified
mobility table. The column categories might
represent, say, three status categories (Upper,
Middle, Lower) for contemporary male sub-
jects, and the row categories might represent
the corresponding status categories for their

fathers. There are nine cells in the two-way
3 × 3 table, and each cell corresponds to one
of the nine possible combinations of a sub-
ject’s status category and his father’s status cat-
egory. The entry in each cell of the table is the
number (i.e., the frequency) of subjects who
have the corresponding combination of sub-
ject’s status category and father’s status cate-
gory. We see in Table 1a that the entries in
the cells on the main diagonal (i.e., the num-
ber of subjects who are in the same status cat-
egory as their fathers, for categories U, M,
and L) are, in some sense, relatively large; we
can refer to this phenomenon, for lack of a
better term, as “status inheritance.” To mea-
sure the magnitude of the status inheritance in
Table 1a, the previous method, now rendered
obsolete, would have been carried out in two
steps: First, Table 1b would have been calcu-
lated from Table 1a; second, the entries in the
cells on the main diagonal in Table 1a would
have been compared with the corresponding
entries in Table 1b.

Table 1 Examples of the concepts of independence (perfect mobility) and
quasi-independence (quasi-perfect mobility). Comparison of previous
category-inheritance ratios with current category-inheritance ratios (Table 1d ).
(U, Upper; M, Middle; L, Lower)

Table 1a Two-way table 
of observed frequencies 

U M L Total
U 15 3 2 20
M 5 45 10 60
L 4 12 24 40

Total 24 60 36 120

U M L Total
U 4 10 6 20
M 12 30 18 60
L 8 20 12 40

Total 24 60 36 120

U M L Total
U 1 3 2 6
M 5 15 10 30
L 4 12 8 24

Total 10 30 20 60

Previous Current
U 15/ 4 = 3 .75 15/1 = 15
M 45/ 30 = 1 .50 45/15 = 3
L 24/ 12 = 2 .00 24/8 = 3

Table 1b Expected frequencies
under independence model

for Table 1a 

Table 1c Main-diagonal entries
in Table 1a replaced by

independence-model entries 

Table 1d Previous versus current
category-inheritance ratios

for Table 1a 

www.annualreviews.org • Analysis of Categorical Data 3



ANRV316-SO33-01 ARI 29 June 2007 20:33

In the first step, Table 1b would have been
calculated from Table 1a using the row to-
tals (i.e., the row marginal) and column to-
tals (i.e., the column marginal) in Table 1a

to estimate the frequencies that would be ex-
pected under the model in which the column
status variable is independent of the row sta-
tus variable (i.e., the independence model).
Note that the row and column marginals
in Table 1b are equal to the correspond-
ing marginals in Table 1a, and the frequency
distribution in each row of Table 1b is the
same as the frequency distribution in the col-
umn marginal; viz., 0.2, 0.5, 0.3 (i.e., 24/120,
60/120, 36/120), for categories U, M, L, re-
spectively. In other words, the frequency dis-
tribution in each row is independent of the
particular row under consideration. Note also
that, for each 2 × 2 subtable of Table 1b,
the corresponding cross-product ratio (fre-
quently called the odds ratio) is equal to 1.
[For example, for the 2 × 2 subtable formed
from row categories U and M and column cat-
egories U and M of Table 1b, the correspond-
ing cross-product ratio is (4 × 30)/(10 ×
12) = 1.] Whenever the cross-product ratio
in each 2 × 2 subtable of a two-way table is
equal to 1, the independence model holds
true.

In the second step in the previous method
rendered obsolete, as noted above in this sub-
section, the magnitude of the status inheri-
tance in Table 1a would have been calcu-
lated by comparing the entries in the cells on
the main diagonal in Table 1a with the cor-
responding entries in Table 1b. The status-
inheritance ratios in Table 1a thus obtained
are presented in Table 1d, and we see that
they range from 1.50 to 3.75. By contrast,
we also see in Table 1d that the status-
inheritance ratios in Table 1a that would be
calculated in current work range instead from
3.00 to 15.00.

The status-inheritance ratios in Table 1d

that would be calculated in current work are
obtained simply by comparing the entries in
the cells on the main diagonal in Table 1a

with the corresponding entries in Table 1c

(rather than with the corresponding entries
in Table 1b). Table 1c was obtained sim-
ply by deleting the entries in the cells on the
main diagonal in Table 1a and replacing them
with appropriate entries obtained with the in-
dependence model. (Note that the frequency
distribution in each row of Table 1c is the
same as the frequency distribution in the col-
umn marginal for this table. Also note that,
for each 2 × 2 subtable of Table 1c, the cor-
responding cross-product ratio is equal to 1.)
Table 1a fits the quasi-independence model;
i.e., the entries in the cells on the main di-
agonal of Table 1a can be replaced by al-
ternative entries in such a way that the re-
vised table (Table 1c) fits the independence
model.

What do the current status-inheritance
ratios tell us? First note that the 60 individ-
uals in Table 1c fit the model of indepen-
dence (or “perfect mobility”) from father’s sta-
tus category to subject’s status category; the
status categories of these subjects are inde-
pendent of their father’s status categories. We
can view these individuals as having been “per-
fectly mobile.” The individuals who are in the
cells on the main diagonal in Table 1c can be
viewed as those perfectly mobile individuals
who arrived in the same status category as did
their fathers “by chance.” Now note the ad-
ditional 60 individuals who are in the cells on
the main diagonal in Table 1a. These addi-
tional individuals can be viewed as “stayers”
(or “status inheritors”). The current status-
inheritance ratios in Table 1d compare the
total number of individuals in each of the cells
on the main diagonal of Table 1a with the cor-
responding number of perfectly mobile indi-
viduals who arrived in the same status cate-
gory as did their fathers by chance. The ratio
of the number of stayers (or status inheritors)
in each cell on the main diagonal in Table 1a

compared with the corresponding number of
perfectly mobile individuals who arrived in
the same status category as did their fathers
by chance is obtained simply by subtracting
1 from each of the current status-inheritance
ratios in Table 1d.
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Symmetry, Quasi-Symmetry,
and Symmetric Association

For expository purposes, I consider now the
first two two-way tables (Tables 2a and 2b)
in Table 2. Note that the entries in Table 2a

are clearly not symmetric. In other words, the
entries in the cells above the main diagonal
in Table 2a, in the upper-right triangle (viz.,
3, 2, 10), are different from the correspond-
ing entries below the main diagonal, in the
lower-left triangle (viz., 5, 4, 12). Table 2b,
by contrast, is clearly an example of a sym-
metric table. Table 2a is defined as quasi-
symmetric if the table can be transformed
into a symmetric table by row multiplicative
changes and column multiplicative changes
(see, e.g., Caussinus 1966; Goodman 1979a,
2002a). Table 2c illustrates how the asym-
metric Table 2a can be transformed into a

symmetric table like the symmetric Table 2b.
(Note that the entries in the three cells on the
main diagonal of Table 2a have been replaced
by the letters A, B, and C in the first 3 × 3 table
in Table 2c. It is not necessary to make this
replacement, but I have done so here for ex-
pository purposes to illuminate the row mul-
tiplicative changes and column multiplicative
changes. The changes are made in Table 2c

by dividing the entries in the L column by 2,
then multiplying the entries in the U row by
4, and then multiplying the entries in the M
column by 5/12.)

As for the symmetric association concept,
the association in Table 2a is defined as
symmetric if the cross-product ratios in the
four 2 × 2 subtables presented on the left
side of Table 2d are symmetric (see, e.g.,
Goodman 1979a, equation 3.3). Note that
the upper-right cross-product ratio and the

Table 2 Examples of the concepts of symmetry, quasi-symmetry, and symmetric
association

U M L
U A 3 2
M 5 B 10
L 4 12 C

U M L
A 3 1
5 B 5
4 12 C/2

U M L
4A 12 4
5 B 5
4 12 C/2

U M L
4A 5 4
5 5B/12 5
4 5 C/ 2

U M
U 15 3
M 5 45

M 5 45
L 4 12

M L
3 2
45 10

45 10
12 24

U M
U

45
M

M
1/3

L

M L

1/3

9

U M L
U 15 3 2
M 5 45 10
L 4 12 24

U M L
U 15 5 4
M 5 45 5
L 4 5 24

Table 2a Two-way table Table 2b Symmetric two-way table

Table 2c Row and column multiplicative transformations of Table 2a,
with main-diagonal entries deleted

Table 2d Association in 2×2 subtables of Table 2a,
with symmetric cross-product ratios
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corresponding lower-left cross-product ratio
on the right side of Table 2d are equal. The
symmetric association concept and the quasi-
symmetry concept are different concepts, but
they are equivalent. A special case of symmet-
ric association is considered next.

Uniform Association and More
on Quasi-Independence

For expository purposes, I now consider
Tables 3a and 3c in Table 3. The association
in Table 3a is defined as uniform if the cross-
product ratios in the four 2 × 2 subtables pre-
sented on the left side of Table 3c are equal
(see, e.g., Duncan 1979; Goodman 1979a,b).
Note that all the corresponding cross-product

ratios on the right side of Table 3c are equal.
As noted at the end of the preceding sub-
section, the uniform association concept con-
sidered here is a special case of symmetric
association.

Now let us consider Table 3b. As noted
above in the quasi-independence analysis of
Table 1a using Table 1c, Table 3b can
be used in a quasi-independence analysis of
Table 3a. Table 3b was obtained simply by
deleting the entries in the cells on the main
diagonal in Table 3a and replacing them with
appropriate entries obtained with the inde-
pendence model. In this quasi-independence
analysis, the entries on the main diagonal
in Table 3a are compared with the corre-
sponding entries in Table 3b; we see then

Table 3 Examples of the concepts of uniform association and quasi-independence
with category inheritance/disinheritance ratios

U M L
U 16 8 6
M 12 12 18
L 10 20 60

U M L
U 4 8 6
M 12 24 18
L 10 20 15

U M
U 16 8
M 12 12

M 12 12
L 10 20

M L
8 6
12 18

12 18
20 60

U M
U

16/8 = 2
M

M
20/10 = 2

L

M L

18/9 = 2

12/6 = 2

Inheritance/
DisinheritanceCategory

U 16/4 = 4
M 12/24 = 1/2
L 60/15 = 4

Table 3a Two-way table
of observed frequencies

Table 3b Main-diagonal entries
in Table 3a replaced by

independence-model entries

Table 3c Association in 2×2 subtables of Table 3a,
with uniform cross-product ratios

Table 3d Inheritance/disinheritance ratios for Table 3a
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from Table 3d that there is both strong
category-inheritance in the U and L cate-
gories of Table 3a and also strong category-
disinheritance in the corresponding M cate-
gory. So, we see that the quasi-independence
model can be used to study both category-
inheritance and category-disinheritance.

What do the inheritance/disinheritance
ratios in Table 3d tell us? With respect to
the ratios for the U and L categories of
Table 3a, because these ratios in Table 3d

indicate that there is category-inheritance in
these two categories, we can apply to these
ratios the same kind of interpretation of the
category-inheritance ratio that was applied in
the final paragraph of the subsection above on
Independence and Quasi-Independence. The
interpretation was described there in terms
of stayers (or category-inheritors) and the
perfectly mobile. With respect to the ratio
for the M category of Table 3a, because
this ratio in Table 3d indicates that there is
category-disinheritance in this category, a dif-
ferent interpretation is needed. For expository
purposes, the interpretation of this ratio pre-
sented now will be more easily understood if
we modify Table 3a by replacing the entry 12
in the (M,M) cell with 8. With this modified
Table 3a, the corresponding disinheritance
ratio in Table 3d is one-third (rather than
one-half) for the M category. With respect to
this category-disinheritance ratio for the M
category of the modified Table 3a, a differ-
ent interpretation is now introduced, which
is described here in terms of the “changers”
(or the “category-disinherited”) and the “per-
fectly mobile” in the present context: I first
need now to define the “changers” (or the
“category-disinherited”). These are the indi-
viduals in the row M category who are not
in the (M,M) cell and who are not viewed as
“perfectly mobile” individuals who arrived in
the other cells in row M “by chance.”

Now, with the disinheritance ratio of one-
third for the M category of the modified
Table 3a, comparing the number of individ-
uals in each of the cells in row M of the modi-
fied Table 3a with the corresponding number

in Table 3b, we can view one-third of each
number in row M of Table 3b (namely, 4, 8,
6, in columns U, M, L, respectively) as having
been “perfectly mobile;” the additional indi-
viduals in row M of the modified Table 3a

(namely, 8, 0, 12, of them in columns U, M, L,
respectively) can be viewed as “changers” (or
the “category-disinherited”). With the chang-
ers (or the category-disinherited) and the per-
fectly mobile individuals in cells (M,U) and
(M,L), the number of individuals in each of
these two cells is three times the correspond-
ing number of perfectly mobile in that cell.
Note that the 3 (in “three times”) is simply
the reciprocal of one-third, the disinheritance
ratio. The ratio of the number of changers
(or the category-disinherited) in each of these
two cells compared with the corresponding
number of perfectly mobile in that cell can
be obtained simply by subtracting 1 from this
reciprocal.

To further clarify this new interpretation
of the category-disinheritance ratio, I now
present a second example of its application:
If we modify Table 3a by replacing the en-
try 12 in the (M,M) cell with 20, the corre-
sponding disinheritance ratio in Table 3d is
5/6 (rather than 1/2) for the M category. Now,
with the disinheritance ratio of 5/6 for the
M category of this modified Table 3a, com-
paring the number of individuals in each of
the cells of row M of the modified Table 3a

with the corresponding number in Table 3b,
we can view 5/6 of each number in row M
of Table 3b (namely, 10, 20, 15, in columns
U, M, L, respectively) as having been per-
fectly mobile. And the additional individuals
in row M of this modified Table 3a (namely,
2, 0, 3 of them in columns U, M, L, re-
spectively) can be viewed as changers (or the
category-disinherited). With the changers (or
the category-disinherited) and the perfectly
mobile individuals in cells (M,U) and (M,L),
the number of individuals in each of these
two cells is 6/5 times the corresponding num-
ber of perfectly mobile in that cell. Note that
6/5 is simply the reciprocal of 5/6, the dis-
inheritance ratio. The ratio of the number

www.annualreviews.org • Analysis of Categorical Data 7
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of changers (or the category-disinherited) in
each of these two cells compared with the cor-
responding number of perfectly mobile in that
cell can be obtained simply by subtracting 1
from this reciprocal.

On Some Generalizations

The quasi-independence model described us-
ing Tables 1a and 1c can be viewed as fol-
lows: The independence model frequencies
in Table 1c can be expressed as a multiplica-
tive model in which the entry in each cell in
the table is obtained by multiplying a corre-
sponding row effect (viz., 6, 30, 24, for row
U, M, L, respectively) by a corresponding
column effect (viz., 10/60, 30/60, 20/60, for
column U, M, L, respectively). [For exam-
ple, the entry in the (U,U) cell is obtained
by multiplying the corresponding row effect
(viz., 6) by the corresponding column effect
(viz., 10/60).] Thus, the independence model
in the 3 × 3 table has simply three multiplica-
tive row effects and three multiplicative col-
umn effects. The quasi-independence model
frequencies in Table 1a can be expressed sim-
ply as a multiplicative model that has the three
row effects and the three column effects noted
above as well as an additional three multiplica-
tive effects pertaining to the three cells on the
main diagonal [viz., the current inheritance-
ratios in Table 1d—15, 3, 3, for cells (U,U),
(M,M), (L,L), respectively].

The quasi-symmetry and symmetry con-
cepts described in Tables 2a and 2b can also
be expressed in similar terms, as multiplica-
tive models with various kinds of appropriate
multiplicative effects. The uniform associa-
tion model in Table 3a can also be expressed
in similar terms, but one of the appropriate
multiplicative effects in this case is somewhat
more complicated (see, e.g., Goodman 1979b,
equation 14).

For the sake of simplicity, attention has
been focused in the preceding subsections on
the analysis of two-way 3 × 3 tables of ob-
served frequencies, tables that can be viewed
as describing the observed relationships be-

tween two trichotomous variables. Some of
the concepts considered in the preceding sub-
sections can be applied more generally to an
I × J table with I row categories and J column
categories (I = 3,4, . . . ; J = 3,4, . . . ); this table
can be a rectangular table (when I �= J) or a
square table (when I = J). Some concepts can
be applied only to square tables where there
is a one-to-one correspondence between row
categories and column categories. The quasi-
symmetry (symmetric association) model can
be applied only to square tables, and the
quasi-independence model and uniform as-
sociation model can be applied to rectangu-
lar and square tables. As noted above, when
the uniform association model is applied to
the square table, it can be viewed as a spe-
cial case of the symmetric association model.
On the other hand, the former model can also
be applied more generally to rectangular ta-
bles, while the latter model cannot. The quasi-
independence model considered above in the
analysis of the 3 × 3 table simply deleted the
three entries in the cells on the main diagonal
of the table, but this model can also be applied
more generally with the deletion of the entries
in any specified subset of the cells in an I × J
table.

The preceding subsections describe the
concepts considered there in simple terms.
Now, with respect to the statistical methods
that are needed to apply these concepts in the
analysis of categorical data, the methods that
were developed for doing this using the sim-
ple multiplicative quasi-independence model,
in which the deleted entries are in the cells
on the main diagonal in the square I × J table
(with I = J), then led me to be able to see how
to develop the corresponding statistical meth-
ods for the more general multiplicative quasi-
independence model, in which the deleted en-
tries are in any specified subset of the cells in
the I × J table (where I need not be equal to
J). This then led me to be able to see how to
develop the corresponding statistical methods
for many other multiplicative models, includ-
ing the collection of models for survey analysis
in the next section.

8 Goodman
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My work on the simple quasi-
independence model began with an interest
in the analysis of some data that did not
come from the field of social stratification
and mobility (see Goodman 1961; 1963;
1964a,b). Then, with an interest in the
analysis of mobility tables, the concept of
quasi-perfect mobility (later called simple
quasi-independence) was introduced, and
additional multiplicative models together
with the corresponding statistical methods,
also of substantive interest in the study of
mobility, were developed (see, e.g., Goodman
1965; 1969a,b; 1971b; 1972a; 1979b; 1981b;
1982; Goodman & Clogg 1992). In addition,
other multiplicative models together with
the corresponding statistical methods, of
substantive interest in other areas of study,
were also developed (see, e.g., Goodman
1968; 1975; 1979a,c,f; 1981a; 2002a).

Before concluding this subsection, note
should be taken of the fact that the descrip-
tions of a few of the models considered in
some of the references cited above require
the use of terms more complicated than those
used here. This is the case, as was noted above
in this subsection, in the description of the
uniform association model as a multiplicative
model; and a corresponding comment should
also be made, for example, about the RC asso-
ciation model introduced in Goodman 1979a
(see, e.g., equations 4.5b and 4.6b).

CONCEPTS USEFUL IN SURVEY
ANALYSIS: LOGLINEAR MODELS

I describe here in simple terms some con-
cepts useful in survey analysis, using log-linear
models, but without using logarithms. I usu-
ally prefer to use the term multiplicative mod-
els, rather than loglinear models, for the kinds
of models that are described in this section,
but it turns out that the term loglinear models
is a more popular way to describe these mod-
els for now. The general quasi-independence
model, expressed in terms of multiplicative ef-
fects on the expected frequencies (see, e.g.,
Goodman 1968), led me to be able to see

how to develop the still more general multi-
plicative models that are now called loglinear
models (see, e.g., the multiplicative models in
Goodman 1972b,c; 1973a,b; 1979a,b).

In the preceding section, the analysis of
two-way tables is considered. Now, for the
analysis of surveys, the analysis of m-way
tables (for m = 2,3, . . . ) is of interest. In his
description of my work in developing models
for survey analysis, Duncan (1974, 1975)
wrote as follows:

Goodman’s collection of models for survey
analysis . . . has provided for the first time a
set of statistical methods that are adequate
to the tasks posed by the “language of so-
cial research” hitherto associated with the
Columbia school and kindred approaches to
survey analysis. The practiced user of Good-
man’s methods can accomplish with ease ev-
erything that this school attempted, and a
great deal more . . . . It is . . . no doubt por-
tentous that almost any complex body of
data previously analyzed by even a skilled
practitioner of survey analysis yields differ-
ent conclusions by Goodman’s methods . . . .
It is easy, moreover, to see after the fact how
the practitioner fell into . . . error . . . . Many
survey researchers are not yet aware of the
magnitude of the revolution that Goodman’s
methods are producing . . . .

I now describe in simple terms some con-
cepts useful in survey analysis. For the sake
of simplicity, I first consider the three-way ta-
ble {A,B,C} of observed frequencies as noted
on the left side of Table 4a in Table 4. Vari-
ables A, B, and C in this table can pertain,
say, to three different questions in a survey;
each survey respondent’s response can be at
either level 1 or level 2 (e.g., either a Yes re-
sponse or a No response) on each of the three
questions. We see, for example, in Table 4a

that there are 25 respondents whose responses
were at level 1 on all three questions, and there
are 15 respondents whose responses were at
level 1 on questions A and C, and at level 2
on question B. The three-way Table 4a can
be viewed as a cube, with variable A described

www.annualreviews.org • Analysis of Categorical Data 9
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Table 4 An example of a loglinear analysis of data in a three-way table {A,B,C} of
observed frequencies and the corresponding two-way marginal tables, with the
corresponding cross-product ratios

C

1 2
B

1 2

A
1 25 15
2 8 9

B
1 2

A
1 12 16
2 10 25

B
1 2

A
1 37 31
2 18 34

B

1 2
C

1 2

A
1 25 12
2 8 10

C
1 2

A
1 15 16
2 9 25

C
1 2

A
1 40 28
2 17 35

A

1 2
C

1 2

B
1 25 12
2 15 16

C
1 2

B
1 8 10
2 9 25

C
1 2

B
1 33 22
2 24 41

a. [AB|C = 1] = 15/8   =  1.87, [AB|C = 2] = 15/8 = 1.87, [AB] = 2 .25
b. [AC|B = 1] = 125/48  =  2.60, [AC|B = 2] = 125/48 = 2.60, [AC] = 2 .94
c. [BC|A = 1] = 20/9   =  2.22, [BC|A = 2] = 20/9 = 2.22, [BC] = 2 .56

Table 4a

Table 4b

Table 4d The corresponding cross-product ratios

Table 4c

by the row categories, variable B described
by the column categories, and variable C de-
scribed by the layer categories. Similarly, in
the three-way table {A,C,B} in Table 4b, the
row, column, and layer categories in the cube
describe variables A, C, and B, respectively; in
the three-way table {B,C,A} in Table 4c, they
describe variables B, C, and A, respectively.
The corresponding two-way marginal tables
{A,B}, {A,C}, and {B,C} are on the right side
of Tables 4a, 4b, and 4c, respectively.

From Table 4d, we see that, for the
cube on the left side of Table 4a, the cross-
product ratio in the 2 × 2 row by column

table {A,B | C = 1} at layer level 1 is equal to
the corresponding cross-product ratio in the
2 × 2 table {A,B | C = 2} at layer level 2. This
is also the case for the cubes in Tables 4b

and 4c, comparing table {A,C | B = 1} with
table {A,C | B = 2}, and table {B,C | A = 1}
with table {B,C | A = 2}. Thus, we see that
the three-way table {A,B,C} in Table 4
exhibits zero three-factor interaction; i.e.,
the cross-product ratio for any two of the
variables in the cube is unaffected by the level
of the third variable.

Also from Table 4d, we see that for the
two-way table on the right side of Table 4a

10 Goodman
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the cross-product ratio, [AB] = 2.25, is larger
than the corresponding cross-product ratio,
[AB | C] = 1.87. Similarly, we see that the
cross-product ratio [AC] is larger than the cor-
responding [AC | B], and [BC] is larger than
[BC | A]. In any three-way table exhibiting
zero three-factor interaction, the relationship
between the cross-product ratios [AB] and
[AB | C] is completely determined by whether
(1) the two cross-product ratios [AC | B] and
[BC | A] are both larger than 1 or both less
than 1, or (2) one of the two cross-product ra-
tios is larger than 1 and the other is less than 1,
or (3) one or both of the two cross-product ra-
tios is equal to 1 (see Goodman 1972b, 2004).
A similar kind of statement also applies when
comparing [AC] with [AC | B], and [BC] with
[BC | A].

The model of zero three-factor interaction
in the three-way table {A,B,C} is one example
in the collection of models for survey analysis.
All of the models in this collection are mul-
tiplicative models with various kinds of ap-
propriate multiplicative effects. In Figure 1,
a diagram describing the zero three-factor in-
teraction model (Figure 1a), and three other
diagrams describing three other models in the
three-way table (Figures 1b, 1c, 1d ), are pre-
sented. Figure 1b shows the simple model
of conditional independence between vari-
ables B and C, given the level of variable A;
Figure 1c shows the simple model of inde-
pendence between the joint variable AB and
variable C; and Figure 1d shows the simple
model of mutual independence between vari-
ables A, B, and C. There are actually 8 differ-
ent kinds of models in the collection of mod-
els for survey analysis applied to the three-way
table (7 rather simple kinds of models and 1
somewhat less simple), and there are 27 differ-
ent kinds of models that can be applied to the
four-way table (17 rather simple kinds of mod-
els and 10 kinds that are somewhat less simple)
(see Goodman 1970, tables 3 and 4). The col-
lection of models for survey analysis can be
applied to m-way tables, for m = 2,3,4, . . . .

The three-way table {A,B,C} of observed
frequencies on the left side of Table 4a can

A

[AB|C]

B

[BC|A]

C[AC|B]

A

[AB]

B

C[AC]

A

[AB]

B

C

A

B

C

Figure 1a Figure 1b

Figure 1c Figure 1d

Figure 1
Diagrams of four possible relationships among the three variables in a
three-way table {A,B,C}.

be viewed as describing the observed rela-
tionships among the three dichotomous vari-
ables A, B, and C. Table {A,B,C} here is
a 2 × 2 × 2 table, a cube. The multiplica-
tive models considered for the 2 × 2 × 2 table
in this section can be applied more gener-
ally to the I × J × K table (for I = 2,3, . . . ;
J = 2,3, . . . ; K = 2,3, . . . ). The multiplicative
models considered for the m-way table (for
m = 2,3,4, . . . ), describing the observed re-
lationships among m dichotomous variables,
can be applied more generally to the m-
way table describing the observed relation-
ships among m polytomous variables (see, e.g.,
Goodman 1970, 1971a, 1973c).

CONCEPTS USEFUL IN PANEL
ANALYSIS: RECURSIVE MODELS
AND MORE

In a two-wave panel study on two ques-
tions of interest, where each question has two
possible responses, the data of interest can
be described in a two-way 4 × 4 table. The
four row categories in the table represent the
four possible responses to the two questions
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ANRV316-SO33-01 ARI 29 June 2007 20:33

(labeled, say, A and B) in the first wave (at,
say, time 1), and the four column categories
represent the four possible responses to the
same two questions (labeled, say, C and D)
in the second wave (at, say, time 2). The 16
cells of the 4 × 4 tables correspond to the
16 possible response patterns for each of the
panel respondents on items A, B, C, and D;
the entry in each cell of the table is the ob-
served frequency of the corresponding re-
sponse pattern. We let {AB,CD} denote the
two-way 4 × 4 table pertaining to the two-
wave panel data. More generally, for a T-wave
panel study (T = 2,3, . . . ) on m questions of
interest (m = 1,2,3, . . . ), where each question
has two possible responses, the data on the
frequency of the possible response patterns of
the panel respondents can be described in a T-
way 2m × 2m × . . . × 2m table. In his descrip-
tion of my work on developing models for the
analysis of panel data, Duncan (1974, 1975)
wrote as follows:

Goodman has put panel analysis on a sound
footing for the first time and, as a conse-
quence, we can now ignore a substantial
body of misguided literature that provided
erroneous, misleading, or merely useless
procedures for manipulating panel data.

I now describe in simple terms some con-
cepts useful in the analysis of panel data. For
the sake of simplicity, I consider the two-way
4 × 4 table {AB,CD} of observed frequencies
shown in Table 5a of Table 5, describing data
obtained in a two-wave panel study on two
questions, where each question has two pos-
sible responses. In analyzing these data, I first
apply a “recursive” model to the data, with
items A and B viewed as prior to items C and
D, and items A, B, and C viewed as prior to
item D. (Later in this section, I consider a re-
cursive model in which items A and B are prior
to C and D, and items C and D are simulta-
neously posterior to A and B.)

Table 5 An example of the analysis of panel data using a recursive model in analyzing
the observed frequency of response patterns in a two-wave panel study {AB,CD} on
two questions, where each question has two possible responses

AC Tota l
11 243
12 81
21 54
22 162

D
ABC 1 2
111 144 18
112 36 18
121 27 54
122 3 24
211 16 2
212 36 18
221 12 24
222 12 96

[AB] = 4 [AC] = 9
[AB|C = 1] = 4 [AB|C = 2] = 4
[AC|B = 1] = 9 [AC|B = 2] = 9
[BC|A = 1] = 1 [BC|A = 2] = 1

[AD|BC = 11] = 1 [AD|BC = 12] = 1
[AD|BC = 21] = 1 [AD|BC = 22] = 1
[BD|AC = 11] = 16 [BD|AC = 12] = 16
[BD|AC = 21] = 16 [BD|AC = 22] = 16
[CD|AB = 11] = 4 [CD|AB = 12] = 4
[CD|AB = 21] = 4 [CD|AB = 22] = 4

CD
AB 11 12 21 22
11 144 18 36 18
12 27 54 3 24
21 16 2 36 18
22 12 24 12 96

Table 5a

C
AB 1 2
11 162 54
12 81 27
21 18 54
22 36 108

Table 5b

AB Tota l
11 216
12 108
21 72
22 144

Table 5c Table 5d

Table 5e Table 5f Corresponding cross-product ratios
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Consider now Tables 5a,b,c,d, and e.
Tables 5b and 5e can be obtained directly
from Table 5a; and Tables 5c and 5d can be
obtained directly from Table 5b. Tables 5c

and 5d are 4 × 1 tables, {AB} and {AC},
respectively, which can also be viewed as
2 × 2 tables, {A,B} and {A,C}, respectively;
Table 5b is a 4 × 2 table {AB,C}, which can
also be viewed as a three-way table {A,B,C}.
For the 2 × 2 tables {A,B} and {A,C} in
Tables 5c and 5d, we see from Table 5f that
the corresponding cross-product ratios are
[AB] = 4 and [AC] = 9, respectively; for the
2 × 2 × 2 table {A,B,C} in Table 5b, we see
from Table 5f that [AB | C] = 4, [AC | B] = 9,
and [BC | A] = 1. Thus, we also see that the
response on item B and the response on
item C are conditionally independent of each
other, given the response on item A (see,
e.g., Figure 1b presented in the preceding
section).

Now let us focus our attention on
Table 5e, which can be viewed as an 8 × 2
table {ABC,D}. Considering the responses on
items A, B, and C as possible predictors of the
response on item D, we see from Table 5f

that the corresponding cross-product ra-
tios are [AD | BC] = 1, [BD | AC] = 16, and
[CD | AB] = 4. Thus, we also see that, given
the response on items B and C, the response
on item D is conditionally independent of the
response on item A.

Figure 2a in Figure 2 shows the results
obtained above using the recursive model
considered there. Figure 2b illustrates the
results obtained using the recursive model
in which items C and D are simultaneously
posterior to A and B. The relationship be-
tween items B and C included in Figure 2b

is not included in Figure 2a because, in the
three-way table {A,B,C} (as noted above),
the response on item C is conditionally in-
dependent of the response on item B, given
the response on item A. The relationship be-
tween items B and C is included in Figure 2b

because we see from Tables 5a and/or 5e

that the corresponding cross-product ratio is
[BC | AD = 11] = (144 × 3)/(36 × 27) = 4/9,

[AB]

[AC]

[CD|AB]

[BD|AC]
B

A C

D

Figure 2a

[AB]

[AC|BD]

[CD|AB]

[BD|AC]

[BC|AD]

B

A C

D

Figure 2b

Figure 2
Diagrams of two possible relationships among the
variables in a two-wave panel study on two
questions.

and, more generally, that [BC | AD] = 4/9.
The relationship between items A and D is
not included in Figures 2a and 2b because
we see from Table 5f that the corresponding
cross-product ratio is [AD | BC] = 1, and so
the response on item D is conditionally inde-
pendent of the response on item A, given the
response on items B and C.

Figure 2a was obtained by using multi-
plicative models to analyze, in turn, the two-
way 2 × 2 table {A,B}, the two-way 4 × 2 table
{AB,C} (which can also be viewed as the
three-way 2 × 2 × 2 table {A,B,C}), and the
two-way 8 × 2 table {ABC,D} (which can also
be viewed as the four-way 2 × 2 × 2 × 2 table
{A,B,C,D}), whereas Figure 2b was obtained
by using multiplicative models to analyze, in
turn, only the two-way 2 × 2 table {A,B} and
the four-way table {A,B,C,D}. The statistical
methods that were developed earlier to be able
to apply appropriate multiplicative models in
the analysis of survey data then led me to be
able to see how to develop the correspond-
ing statistical methods to be able to apply, in
turn, the corresponding models appropriate
for the analysis of panel data. For additional
models for the analysis of panel data, the in-
terested reader is referred to Goodman (1962;
1973a,b; 1979e) and Duncan (1985).
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Before concluding this section, I include
the following brief comment for those readers
who use a loglinear computer program: The
numerical values for the four cross-product
ratios in Figure 2a, and the additional two
cross-product ratios in Figure 2b, have been
given either in Table 5f or above in this sec-
tion. As discussed above, all these numeri-
cal values were obtained here using very sim-
ple multiplication and division. In contrast to
this very simple arithmetic, a loglinear com-
puter program does something different—
something somewhat more complicated, us-
ing iterative computer algorithms. However,
if we compare the numerical values of the
cross-product ratios obtained here by this
simple arithmetic with the corresponding es-
timated parameters obtained as the output of
the loglinear computer program, we find that
each estimated parameter in this computer
output is simply equal to 0.25 times the natural
logarithm of the corresponding cross-product
ratio.

CONCEPTS USEFUL IN
LATENT-STRUCTURE
ANALYSIS: LATENT-CLASS
MODELS

The statistical methods that were developed
earlier to enable the application of the mul-
tiplicative models for survey analysis also
helped to lead me to be able to see how to
develop the corresponding statistical meth-
ods for latent-structure analysis. As we noted
above in the survey analysis section, the meth-
ods considered there could be applied to an-
alyze the m-way table of observed frequen-
cies, for m = 2,3,4, . . . . Now, for the sake of
simplicity in our description of latent-class
models, we again consider the three-way table
{A,B,C}. The three observed variables (A, B,
and C) pertaining to this table can be referred
to as manifest variables. In latent-class anal-
ysis, the following question is considered: Is
there an unknown latent (unobserved or un-
observable) categorical variable X (a dichoto-
mous or polytomous variable) that can ex-

plain the observed relationships among the
three observed manifest variables (A,B,C) in
the three-way table {A,B,C}? In other words,
is there, for example, a latent dichotomous
variable having two latent categories (latent
classes), which are such that, for those respon-
dents in each of the two latent classes, the re-
sponses on the manifest variables A, B, and
C are mutually independent? We can think
of this question in the following terms: For
the three-way table {A,B,C}, is there a corre-
sponding four-way table {A,B,C,X} in which
the manifest variables A, B, and C are mutu-
ally independent for the respondents in each
category (class) of variable X? Mutual inde-
pendence of the kind described above is called
conditional mutual independence. Recall that
Figure 1b in Figure 1 is a portrait of con-
ditional independence—namely, the condi-
tional independence between variables B and
C, given the level of variable A—which we
can denote as [B⊗C | A] in the three-way table
{A,B,C} (see Goodman 1970, table 3). Now,
in the four-way table {A,B,C,X} considered
above, the multiplicative model of interest can
be described as [A⊗B⊗C | X]. So our task is to
develop a method for determining how many
respondents in the three-way marginal table
{A,B,C} of the four-way table {A,B,C,X} are
in each category of variable X, in such a way
so that the model [A⊗B⊗C | X] is congruent
with the data in the four-way table. In his de-
scription of my work on this subject, Duncan
(1974, 1975) wrote as follows:

Goodman has provided a substantial statisti-
cal foundation for the latent structure model
of Lazarsfeld . . . . It is notorious that for the
25 or 30 years that these models have been
discussed and applied . . . the estimation and
testing procedures suggested for the mod-
els by their inventors and employed, faute
de mieux, by research workers [have not
been satisfactory] . . . . The statistical prob-
lems had defeated . . . some very eminent
statisticians. Now, thanks to Goodman, [by
using the methods presented in his statisti-
cal foundation] we can begin to understand
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correctly what is at stake . . . . Prestidigita-
tion will no longer suffice as a legitimation
for some ad hoc procedure . . . , nor will in-
cantation of a rule of thumb . . . .

I now illustrate, by example, a simple la-
tent structure, a latent-class model that has
two latent classes, applied to a three-way ta-
ble of observed frequencies. Let us consider
the three-way table {A,B,C} of observed fre-
quencies in Table 6a in Table 6. This three-
way table can be viewed as describing how re-
spondents in a survey responded (giving either
response 1 or response 2—e.g., either a Yes re-
sponse or a No response) on questions A, B,
and C. Is it possible that some of these respon-

dents are in one latent (unobserved or unob-
servable) class and the remaining respondents
are in the other latent class, and the three-
way table describing the responses of those
respondents in the first latent class is such
that [A⊗B⊗C | X = 1] and the corresponding
three-way table for the respondents in the sec-
ond latent class is such that [A⊗B⊗C | X = 2]?
The answer to this question is: Yes, it is possi-
ble. Tables 6b and 6c describe the three-way
tables for the respondents in the two latent
classes; Table 6d gives the proportion of re-
spondents in each of the latent classes and the
probabilities of a 1 response or a 2 response
on questions A, B, and C, for the respondents
in each latent class. We see from Table 6d

Table 6 An example of a latent-class analysis of data in a three-way
table {A,B,C} of observed frequencies, with the corresponding
latent-class proportions and response probabilities

C

1 2
B

1 2

A
1 25 15
2 8 9

B
1 2

A
1 12 16
2 10 25

C

1 2

C

1 2
B

1 2

A
1 24 12
2 6 3

B
1 2

A
1 8 4
2 2 1

B
1 2

A
1 1 3
2 2 6

B
1 2

A
1 4 12
2 8 24

.50 .50
 A B C A B C

Probabilities Probabilities
1 .80 .67 .75 .33 .25 .20
2 .20 .33 .25 .67 .75 .80

Table 6a

Table 6b Table 6c

Proportion
Variables
Response

Latent-Class 1 Latent-Class 2

Table 6d Latent-class proportions and response probabilities
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that the respondents in the first latent class
are more likely to give a 1 response (rather
than a 2 response) on each of the three ques-
tions, whereas the reverse is true for those in
the second latent class.

In Duncan’s description of my work on
statistical methods for latent structure anal-
ysis, which was quoted above in this sec-
tion, he was referring implicitly to Goodman
(1974a,b). Readers interested in this gen-
eral topic are also referred to, e.g., Clogg
& Goodman 1984, 1985; Goodman 1979d;
1987a,b; 2002b; 2004; 2005; 2007.

In concluding this section, let me again
note that the three-way table latent-class anal-
ysis presented above in this section is used
here for the sake of simplicity. Latent-class
analysis can be applied, more generally, in the
analysis of an m-way table (for m = 2,3,4, . . . )
of observed frequencies pertaining to m di-
chotomous or polytomous observed (mani-
fest) variables, where there may be one or
more latent (unobserved or unobservable) di-
chotomous or polytomous variables.

CONCLUDING COMMENTS:
MAGIC AND/OR SERENDIPITY?

The idea of looking at a set of data and seeing
the different images embedded in the set, and
releasing them so that they have a compre-
hensible form, seems to me to be magical, al-
though of course not as magical as Michelan-
gelo releasing the form of David from the
block of marble that he had selected. By magi-
cal, I do not mean here something supernatu-
ral, but rather a result obtained as if by magic.

The data analyst’s ability to release a com-
prehensible form or comprehensible forms
from the block of data, using the concepts and
tools of categorical data analysis and/or what-
ever other appropriate concepts and tools that
he or she might have, seems to me quite mag-
ical. For example, we are able to look at, say, a
three-way table of observed frequencies per-
taining to three dichotomous or polytomous
variables and see whether these variables are
related to each other, and if so, how. In addi-

tion, we are able to see whether there might
be a latent (unobserved or unobservable) di-
chotomous or polytomous variable that could
explain, or explain away, the observed rela-
tionships among the three observed variables.
Similarly, we are able to look at an m-way table
pertaining to m dichotomous or polytomous
variables (for m = 2,3,4, . . . ) and see whether
these variables are related to each other, and if
so, how. In addition, we are able to see whether
there might be one or more latent dichoto-
mous or polytomous variables that could ex-
plain, or explain away, the observed relation-
ships among the m observed variables.

Each of the concepts described in this es-
say was introduced in the earlier literature
using a mathematical approach with formu-
las, and the application of these concepts also
required the aid of a computer program con-
structed to apply appropriate iterative com-
puter algorithms. (Strictly speaking, the state-
ment above does not apply to latent-class
analysis, whose initial introduction did use
a mathematical approach with formulas, but
it did not use iterative computer algorithms.
This initial approach turned out to be un-
satisfactory. However, with the later intro-
duction of a different mathematical approach
with different formulas, and an appropriate
iterative computer algorithm, a satisfactory
method of analysis was obtained; see, e.g.,
Goodman 1974a,b; 2002b.) In the descrip-
tion of each of these concepts (including the
latent-class analysis concept) presented in this
essay, by contrast, no use is made of mathe-
matical formulas or iterative computer algo-
rithms. As noted at the beginning of this essay,
the only arithmetic used is very simple multi-
plication, division, and addition. Is this magic,
or serendipity, or both, or neither?

The results obtained by applying the con-
cepts described in this essay to substantive
data of interest sometimes seem magical—the
sudden release of form formerly hidden, em-
bedded in a block of dense data—but per-
haps “serendipity” better describes the way
in which these concepts were developed. In
this essay, I have noted that the information
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to which I was exposed in my work on one
statistical problem, in one substantive area of
interest, then led me to be able to look at a
second substantive area of interest, and then
be able to see what was the statistical problem
that needed to be dealt with there, and how to
proceed with work on it. And the information
to which I was exposed in my work on a sec-
ond statistical problem in a second substantive
area of interest then led me to be able to look
at a third substantive area of interest, and then

be able to see . . . and so forth, and so on. By
a serendipitous result, I do not mean here a
result obtained simply by accident or chance,
but rather a result obtained by an accidental
exposure to information and a prepared mind.

In concluding this section, I refer the
reader interested in topics covered in this es-
say to the list of ten books included in the
Related Resources section at the end, and to
the literature cited in these books. Categorical
data analysis is a growth industry.
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