1932

Abstract

Throughout Earth's history, CO is thought to have exerted a fundamental control on environmental change. Here we review and revise CO reconstructions from boron isotopes in carbonates and carbon isotopes in organic matter over the Cenozoic—the past 66 million years. We find close coupling between CO and climate throughout the Cenozoic, with peak CO levels of ∼1,500 ppm in the Eocene greenhouse, decreasing to ∼500 ppm in the Miocene, and falling further into the ice age world of the Plio–Pleistocene. Around two-thirds of Cenozoic CO drawdown is explained by an increase in the ratio of ocean alkalinity to dissolved inorganic carbon, likely linked to a change in the balance of weathering to outgassing, with the remaining one-third due to changing ocean temperature and major ion composition. Earth system climate sensitivity is explored and may vary between different time intervals. The Cenozoic CO record highlights the truly geological scale of anthropogenic CO change: Current CO levels were last seen around 3 million years ago, and major cuts in emissions are required to prevent a return to the CO levels of the Miocene or Eocene in the coming century.

  • ▪   CO reconstructions over the past 66 Myr from boron isotopes and alkenones are reviewed and re-evaluated.
  • ▪   CO estimates from the different proxies show close agreement, yielding a consistent picture of the evolution of the ocean-atmosphere CO system over the Cenozoic.
  • ▪   CO and climate are coupled throughout the past 66 Myr, providing broad constraints on Earth system climate sensitivity.
  • ▪   Twenty-first-century carbon emissions have the potential to return CO to levels not seen since the much warmer climates of Earth's distant past.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-082420-063026
2021-05-30
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-082420-063026.html?itemId=/content/journals/10.1146/annurev-earth-082420-063026&mimeType=html&fmt=ahah

Literature Cited

  1. Akhtar AA, Santi LM, Griffiths ML, Becker M, Eagle RA et al. 2020. A record of the δ44/40Ca and [Sr] of seawater over the last 100 million years from fossil elasmobranch tooth enamel. Earth Planet. Sci. Lett. 543:116354
    [Google Scholar]
  2. Aloisi G. 2015. Covariation of metabolic rates and cell size in coccolithophores. Biogeosciences 12:4665–92
    [Google Scholar]
  3. Anagnostou E, John EH, Babila TL, Sexton PF, Ridgwell A et al. 2020. Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse. Nat. Commun. 11:11–9
    [Google Scholar]
  4. Anagnostou E, John EH, Edgar KM, Foster GL, Ridgwell A et al. 2016. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 533:7603380–84
    [Google Scholar]
  5. Arrhenius S. 1896. On the influence of carbonic acid in the air upon the temperature of the ground. Philos. Mag. J. Sci. Ser. 5:41237–76
    [Google Scholar]
  6. Badger MPS, Chalk TB, Foster GL, Bown PR, Gibbs SJ et al. 2019. Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels. Clim. Past 15:2539–54
    [Google Scholar]
  7. Badger MPS, Lear CH, Pancost RD, Foster GL, Bailey TR et al. 2013. CO2 drawdown following the middle Miocene expansion of the Antarctic Ice Sheet. Paleoceanography 28:142–53
    [Google Scholar]
  8. Beerling DJ, Royer DL. 2011. Convergent Cenozoic CO2 history. Nat. Geosci. 4:7418–20
    [Google Scholar]
  9. Bereiter B, Eggleston S, Schmitt J, Nehrbass-Ahles C, Stocker TF et al. 2015. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42:2542–49
    [Google Scholar]
  10. Berner RA. 1991. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291:4339–76
    [Google Scholar]
  11. Berner RA, Caldeira K. 1997. The need for mass balance and feedback in the geochemical carbon cycle. Geology 25:10955–53
    [Google Scholar]
  12. Berner RA, Lasaga AC, Garrels RM. 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283:641–83
    [Google Scholar]
  13. Bidigare RR, Fluegge A, Freeman KH, Hanson KL, Hayes JM et al. 1997. Consistent fractionation of C-13 in nature and in the laboratory: growth-rate effects in some haptophyte algae. Glob. Biogeochem. Cycles 11:2279–92
    [Google Scholar]
  14. Blanco-Ameijeiras S, Stoll HM, Zhang H, Hopkinson BM. 2020. Influence of temperature and CO2 on plasma-membrane permeability to CO2 and HCO3 in the marine haptophytes Emiliania huxleyi and Calcidiscus leptoporus (Prymnesiophyceae). J. Phycol. 56:1283–94
    [Google Scholar]
  15. Boller AJ, Thomas PJ, Cavanaugh CM, Scott KM. 2011. Low stable carbon isotope fractionation by coccolithophore RubisCO. Geochim. Cosmochim. Acta 75:227200–7
    [Google Scholar]
  16. Bolton CT, Hernández-Sánchez MT. 2016. Decrease in coccolithophore calcification and CO2 since the middle Miocene. Nature 7:10284
    [Google Scholar]
  17. Bolton CT, Stoll HM. 2013. Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature 500:558–62
    [Google Scholar]
  18. Boudreau BP, Middelburg JJ, Meysman FJ. 2010. Carbonate compensation dynamics. Geophys. Res. Lett. 37:3L03603
    [Google Scholar]
  19. Boudreau BP, Middelburg JJ, Sluijs A, van der Ploeg R. 2019. Secular variations in the carbonate chemistry of the oceans over the Cenozoic. Earth Planet. Sci. Lett. 512:194–206
    [Google Scholar]
  20. Branson O 2018. Boron incorporation into marine CaCO3. Boron Isotopes H Marschall, G Foster 71–105 Cham, Switz: Springer
    [Google Scholar]
  21. Branson O, Bonnin EA, Perea DE, Spero HJ, Zhu Z et al. 2016. Nanometer-scale chemistry of a calcite biomineralization template: implications for skeletal composition and nucleation. PNAS 113:12934–39
    [Google Scholar]
  22. Brassell SC. 2014. Climatic influences on the Paleogene evolution of alkenones. Paleoceanography 29:3255–72
    [Google Scholar]
  23. Brennan ST, Lowenstein TK, Cendón DI. 2013. The major-ion composition of Cenozoic seawater: the past 36 million years from fluid inclusions in marine halite. Am. J. Sci. 313:8713–75
    [Google Scholar]
  24. Broecker WS. 2013. How to think about the evolution of the ratio of Mg to Ca in seawater. Am. J. Sci. 313:8776–89
    [Google Scholar]
  25. Broecker WS. 2015. Wally's Carbon World Palisades, NY: Eldigio https://www.ldeo.columbia.edu/∼broecker/Carbon%20World%20.pdf
  26. Broecker WS, Peng T-H. 1987. The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Glob. Biogeochem. Cycles 1:115–29
    [Google Scholar]
  27. Burke KD, Williams JW, Chandler MA, Haywood AM, Lunt DJ, Otto-Bliesner BL 2018. Pliocene and Eocene provide best analogs for near-future climates. PNAS 115:5213288–93
    [Google Scholar]
  28. Caldeira K, Wickett ME. 2003. Anthropogenic carbon and ocean pH. Nature 425:365
    [Google Scholar]
  29. Campbell SM, Moucha R, Derry LA, Raymo ME. 2018. Effects of dynamic topography on the Cenozoic carbonate compensation depth. Geochem. Geophys. Geosyst. 19:41025–34
    [Google Scholar]
  30. Caves Rugenstein JK, Ibarra DE, von Blanckenburg F 2019. Neogene cooling driven by land surface reactivity rather than increased weathering fluxes. Nature 571:776399–102
    [Google Scholar]
  31. Chalk TB, Hain MP, Foster GL, Rohling EJ, Sexton PF et al. 2017. Causes of ice age intensification across the Mid-Pleistocene Transition. PNAS 114:5013114–19
    [Google Scholar]
  32. Chen B, Liu H. 2010. Relationships between phytoplankton growth and cell size in surface oceans: interactive effects of temperature, nutrients, and grazing. Limnol. Oceanogr. 55:3965–72
    [Google Scholar]
  33. de la Vega E, Chalk TB, Wilson PA, Bysani RP, Foster GL. 2020. Atmospheric CO2 during the mid-Piacenzian Warm Period and the M2 glaciation. Sci. Rep. 10:11002
    [Google Scholar]
  34. Dean WE, Arthur MA, Claypool GE. 1986. Depletion of 13C in Cretaceous marine organic matter: source, diagenetic, or environmental sigal?. Mar. Geol. 70:1–2119–57
    [Google Scholar]
  35. Dickson AG. 1990. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Res. A Oceanogr. Res. Pap. 37:5755–66
    [Google Scholar]
  36. Dutton A, Carlson AE, Long AJ, Milne GA, Clark PU et al. 2015. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349:6244aaa4019
    [Google Scholar]
  37. Dyez KA, Hönisch B, Schmidt GA. 2018. Early Pleistocene obliquity-scale pCO2 variability at ∼1.5 million years ago. Paleoceanogr. Paleoclimatol. 33:111270–91
    [Google Scholar]
  38. Eberle JJ, Greenwood DR. 2012. Life at the top of the greenhouse Eocene world—a review of the Eocene flora and vertebrate fauna from Canada's High Arctic. Bulletin 124:1–23–23
    [Google Scholar]
  39. Edmond JM, Huh Y 1997. Chemical weathering yields from basement and orogenic terrains in hot and cold climates. Tectonic Uplift and Climate Change WF Ruddiman 329–51 Boston: Springer
    [Google Scholar]
  40. Evans D, Sagoo N, Renema W, Cotton LJ, Müller W et al. 2018. Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry. PNAS 115:1174–79
    [Google Scholar]
  41. Farnsworth A, Lunt DJ, O'Brien CL, Foster GL, Inglis GN et al. 2019. Climate sensitivity on geological timescales controlled by nonlinear feedbacks and ocean circulation. Geophys. Res. Lett. 46:169880–89
    [Google Scholar]
  42. Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA. 2010. Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32:1119–37
    [Google Scholar]
  43. Foote E 1856. Circumstances affecting the heat of the sun's rays. Am. J. Sci. Arts 22:38283
    [Google Scholar]
  44. Foster GL. 2008. Seawater pH, pCO2 and [CO2−3] variations in the Caribbean Sea over the last 130 kyr: a boron isotope and B/Ca study of planktic foraminifera. Earth Planet. Sci. Lett. 271:1–4254–66
    [Google Scholar]
  45. Foster GL, Hoenisch B, Paris G, Dwyer GS, Rae JWB et al. 2013. Interlaboratory comparison of boron isotope analyses of boric acid, seawater and marine CaCO3 by MC-ICPMS and NTIMS. Chem. Geol. 358:1–14
    [Google Scholar]
  46. Foster GL, Lear CH, Rae JWB 2012. The evolution of pCO2, ice volume and climate during the middle Miocene. Earth Planet. Sci. Lett. 341:243–54
    [Google Scholar]
  47. Foster GL, Pogge von Strandmann PAE, Rae JWB 2010. Boron and magnesium isotopic composition of seawater. Geochem. Geophys. Geosyst. 11:8Q08015
    [Google Scholar]
  48. Foster GL, Rae JWB. 2016. Reconstructing ocean pH with boron isotopes in foraminifera. Annu. Rev. Earth Planet. Sci. 44:207–37
    [Google Scholar]
  49. Freeman KH, Hayes JM. 1992. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Glob. Biogeochem. Cycles 6:2185–98
    [Google Scholar]
  50. Gattuso J-P, Epitalon J-M, Lavigne H, Orr J, Gentili B et al. 2015a. seacarb: seawater carbonate chemistry. R. Package Version 3:1 https://hal.u-pec.fr/UMS-829/hal-02345814v1
    [Google Scholar]
  51. Gattuso J-P, Magnan A, Billé R, Cheung WW, Howes EL et al. 2015b. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349:6243aac4722
    [Google Scholar]
  52. Gray WR, Evans D. 2019. Nonthermal influences on Mg/Ca in planktonic foraminifera: a review of culture studies and application to the Last Glacial Maximum. Paleoceanogr. Paleoclimatol. 34:3306–15
    [Google Scholar]
  53. Greene SE, Ridgwell A, Kirtland Turner S, Schmidt DN, Pälike H et al. 2019. Early Cenozoic decoupling of climate and carbonate compensation depth trends. Paleoceanogr. Paleoclimatol. 34:6930–45
    [Google Scholar]
  54. Greenop R, Foster GL, Wilson PA, Lear CH. 2014. Middle Miocene climate instability associated with high-amplitude CO2 variability. Paleoceanography 29:9845–53
    [Google Scholar]
  55. Greenop R, Hain MP, Sosdian S, Oliver KIC, Goodwin P et al. 2017. A record of Neogene seawater δ11B reconstructed from paired δ11B analyses on benthic and planktic foraminifera. Clim. Past 13:149–70
    [Google Scholar]
  56. Greenop R, Sosdian SM, Henehan MJ, Wilson PA, Lear CH, Foster GL. 2019. Orbital forcing, ice volume, and CO2 across the Oligocene-Miocene transition. Paleoceanogr. Paleoclimatol. 34:3316–28
    [Google Scholar]
  57. Gutjahr M, Bordier L, Douville E, Farmer J, Foster GL et al. 2020. Sub-permil interlaboratory consistency for solution-based boron isotope analyses on marine carbonates. Geostand. Geoanal. Res. 41:90–17
    [Google Scholar]
  58. Gutjahr M, Ridgwell A, Sexton PF, Anagnostou E, Pearson PN et al. 2017. Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum. Nature 548:7669573–77
    [Google Scholar]
  59. Hain MP, Foster GL, Chalk T. 2018. Robust constraints on past CO2 climate forcing from the boron isotope proxy. Paleoceanogr. Paleoclimatol. 33:101099–115
    [Google Scholar]
  60. Hain MP, Sigman DM, Higgins JA, Haug GH. 2015. The effects of secular calcium and magnesium concentration changes on the thermodynamics of seawater acid/base chemistry: implications for Eocene and Cretaceous ocean carbon chemistry and buffering. Glob. Biogeochem. Cycles 29:5517–33
    [Google Scholar]
  61. Hansen J, Sato M, Russell G, Kharecha P. 2013. Climate sensitivity, sea level and atmospheric carbon dioxide. Philos. Trans. R. Soc. A 371: 2001.20120294
    [Google Scholar]
  62. Harper DT, Hönisch B, Zeebe RE, Shaffer G, Haynes LL et al. 2020. The magnitude of surface ocean acidification and carbon release during Eocene Thermal Maximum 2 (ETM-2) and the Paleocene-Eocene Thermal Maximum (PETM). Paleoceanogr. Paleoclimatol. 35:2e2019PA003699
    [Google Scholar]
  63. Hausfather Z, Peters GP. 2020. Emissions—the “business as usual” story is misleading. Nature 577:618–20
    [Google Scholar]
  64. Hayes JM, Freeman KH, Popp BN, Hoham CH. 1990. Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes. Org. Geochem. 16:4–61115–28
    [Google Scholar]
  65. Hemming NG, Hanson GN. 1992. Boron isotopic composition and concentration in modern marine carbonates. Geochim. Cosmochim. Acta 56:537–43
    [Google Scholar]
  66. Henderiks J, Pagani M. 2007. Refining ancient carbon dioxide estimates: significance of coccolithophore cell size for alkenone-based pCO2 records. Paleoceanography 22:3PA3202
    [Google Scholar]
  67. Henehan MJ, Edgar KM, Foster GL, Penman DE, Hull PM et al. 2020. Revisiting the Middle Eocene Climatic Optimum “carbon cycle conundrum” with new estimates of atmospheric pCO2 from boron isotopes. Paleoceanogr. Paleoclimatol. 35:62019PA003713
    [Google Scholar]
  68. Henehan MJ, Foster GL, Bostock HC, Greenop R, Marshall BJ, Wilson PA. 2016a. A new boron isotope-pH calibration for Orbulina universa, with implications for understanding and accounting for “vital effects. .” Earth Planet. Sci. Lett. 454:282–92
    [Google Scholar]
  69. Henehan MJ, Hull PM, Penman DE, Rae JWB, Schmidt DN. 2016b. Biogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study. Philos. Trans. R. Soc. B 371: 1694.20150510
    [Google Scholar]
  70. Henehan MJ, Rae JWB, Foster GL, Erez J, Prentice KC et al. 2013. Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction. Earth Planet. Sci. Lett. 364:111–22
    [Google Scholar]
  71. Henehan MJ, Ridgwell A, Thomas E, Zhang S, Alegret L et al. 2019. Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. PNAS 116:4522500–4
    [Google Scholar]
  72. Herbert TD, Lawrence KT, Tzanova A, Peterson LC, Caballero-Gill R, Kelly CS. 2016. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9:11843–47
    [Google Scholar]
  73. Hernandez-Almeida I, Krumhardt KM, Zhang H, Stoll HM. 2020. Estimation of physiological factors controlling carbon isotope fractionation in coccolithophores in photic zone and core-top samples. Geochem. Geophys. Geosyst. 21:11e2020GC009272
    [Google Scholar]
  74. Heureux AMC, Rickaby REM. 2015. Refining our estimate of atmospheric CO2 across the Eocene–Oligocene climatic transition. Earth Planet. Sci. Lett. 409:329–38
    [Google Scholar]
  75. Holtz L-M, Wolf-Gladrow D, Thoms S. 2017. Stable carbon isotope signals in particulate organic and inorganic carbon of coccolithophores—a numerical model study for Emiliania huxleyi. J. Theor. Biol. 420:117–27
    [Google Scholar]
  76. Hönisch B, Eggins SM, Haynes LL, Allen KA, Holland KD, Lorbacher K. 2019. Boron Proxies in Paleoceanography and Paleoclimatology Hoboken, NJ: Wiley & Sons
  77. Hönisch B, Hemming NG. 2005. Surface ocean pH response to variations in pCO2 through two full glacial cycles. Earth Planet. Sci. Lett. 236:1–2305–14
    [Google Scholar]
  78. Hönisch B, Hemming NG, Archer D, Siddall M, McManus JF. 2009. Atmospheric carbon dioxide concentration across the mid-Pleistocene transition. Science 324:59341551–54
    [Google Scholar]
  79. Hönisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ et al. 2012. The geological record of ocean acidification. Science 335:60721058–63
    [Google Scholar]
  80. Hopkinson BM, Dupont CL, Allen AE, Morel FM 2011. Efficiency of the CO2-concentrating mechanism of diatoms. PNAS 108:103830–37
    [Google Scholar]
  81. Horita J, Zimmermann H, Holland HD. 2002. Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporites. Geochim. Cosmochim. Acta 66:213733–56
    [Google Scholar]
  82. Inglis GN, Bragg F, Burls N, Evans D, Foster GL et al. 2020. Global mean surface temperature and climate sensitivity of the EECO, PETM and latest Paleocene. Clim. Past 16:1953–68
    [Google Scholar]
  83. Inglis GN, Farnsworth A, Lunt D, Foster GL, Hollis CJ et al. 2015. Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT distributions. Paleoceanography 30:1000–20
    [Google Scholar]
  84. Isson TT, Planavsky NJ, Coogan LA, Stewart EM, Ague JJ et al. 2020. Evolution of the global carbon cycle and climate regulation on Earth. Glob. Biogeochem. Cycles 34:2e2018GB006061
    [Google Scholar]
  85. Jasper JP, Hayes JM. 1990. A carbon isotope record of CO2 levels during the late Quaternary. Nature 347:6292462–64
    [Google Scholar]
  86. Jurikova H, Gutjahr M, Wallmann K, Flogel S, Liebetrau V et al. 2020. Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations. Nat. Geosci. 13:11745–50
    [Google Scholar]
  87. Jurikova H, Liebetrau V, Gutjahr M, Rollion-Bard C, Hu MY et al. 2019. Boron isotope systematics of cultured brachiopods: response to acidification, vital effects and implications for palaeo-pH reconstruction. Geochim. Cosmochim. Acta 248:370–86
    [Google Scholar]
  88. Kasting JF. 2019. The Goldilocks planet? How silicate weathering maintains Earth “just right. .” Elements 15:4235–40
    [Google Scholar]
  89. Klochko K, Kaufman AJ, Yao W, Byrne RH, Tossell JA. 2006. Experimental measurement of boron isotope fractionation in seawater. Earth Planet. Sci. Lett. 248:1–2276–85
    [Google Scholar]
  90. Kump LR, Brantley SL, Arthur M. 2000. Chemical weathering, atmospheric CO2, and climate. Annu. Rev. Earth Planet. Sci. 28:611–67
    [Google Scholar]
  91. Kürschner WM, Kvaček Z, Dilcher DL 2008. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. PNAS 105:2449–53
    [Google Scholar]
  92. Lacis AA, Schmidt GA, Rind D, Ruedy RA. 2010. Atmospheric CO2: principal control knob governing Earth's temperature. Science 330:6002356–59
    [Google Scholar]
  93. Laws EA, Popp BN, Bidigare RR, Kennicutt MC, Macko SA. 1995. Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: theoretical considerations and experimental results. Geochim. Cosmochim. Acta 59:61131–38
    [Google Scholar]
  94. Lear CH, Elderfield H, Wilson PA. 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287:5451269–72
    [Google Scholar]
  95. Lemarchand D, Gaillardet J, Lewin É, Allègre CJ. 2000. The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH. Nature 408:6815951–54
    [Google Scholar]
  96. Li G, Hartmann J, Derry LA, West AJ, You C-F et al. 2016. Temperature dependence of basalt weathering. Earth Planet. Sci. Lett. 443:59–69
    [Google Scholar]
  97. Lowenstein TK, Hardie LA, Timofeef MN, Demicco RV. 2003. Secular variation in seawater chemistry and the origin of calcium chloride basinal brines. Geology 31:857–60
    [Google Scholar]
  98. Lunt DJ, Farnsworth A, Loptson C, Foster GL, Markwick P et al. 2016. Palaeogeographic controls on climate and proxy interpretation. Clim. Past 12:51181–98
    [Google Scholar]
  99. Martínez-Botí MA, Foster GL, Chalk TB, Rohling EJ, Sexton PF et al. 2015. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518:753749–54
    [Google Scholar]
  100. Mason E, Edmonds M, Turchyn AV. 2017. Remobilization of crustal carbon may dominate volcanic arc emissions. Science 357:6348290–94
    [Google Scholar]
  101. Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J et al. 2018. Global warming of 1.5°C: An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty Rep. World Meteorol. Organ Geneva:
  102. McClelland H, Bruggeman J, Hermoso M, Rickaby R. 2017. The origin of carbon isotope vital effects in coccolith calcite. Nat. Commun. 8:11–16
    [Google Scholar]
  103. McClymont EL, Ford HL, Ho SL, Tindall JC, Haywood AM et al. 2020. Lessons from a high-CO2 world: an ocean view from ∼3 million years ago. Clim. Past 16:41599–615
    [Google Scholar]
  104. McCulloch M, Trotter J, Montagna P, Falter J, Dunbar R et al. 2012. Resilience of cold-water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochim. Cosmochim. Acta 87:21–34
    [Google Scholar]
  105. Meinshausen M, Nicholls Z, Lewis J, Gidden MJ, Vogel E et al. 2019. The SSP greenhouse gas concentrations and their extensions to 2500. Geosci. Model. Dev. Discuss. 2019:1–77
    [Google Scholar]
  106. Mejía LM, Mendez-Vicente A, Abrevaya L, Lawrence KT, Ladlow C et al. 2017. A diatom record of CO2 decline since the late Miocene. Earth Planet. Sci. Lett. 479:18–33
    [Google Scholar]
  107. Middelburg JJ, Soetaert K, Hagens M. 2020. Ocean alkalinity, buffering and biogeochemical processes. Rev. Geophys. 58:3e2019RG000681
    [Google Scholar]
  108. Miller KG, Browning JV, Schmelz WJ, Kopp RE, Mountain GS, Wright JD. 2020. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci. Adv. 6:20eaaz1346
    [Google Scholar]
  109. Misra S, Froelich PN. 2012. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335:6070818–23
    [Google Scholar]
  110. Müller T, Jurikova H, Gutjahr M, Tomašových A, Schlögl J et al. 2020. Ocean acidification during the early Toarcian extinction event: evidence from boron isotopes in brachiopods. Geology 48:121184–88
    [Google Scholar]
  111. Naafs B, Castro JM, De Gea GA, Quijano ML, Schmidt DN, Pancost RD. 2016. Gradual and sustained carbon dioxide release during Aptian Oceanic Anoxic Event 1a. Nat. Geosci. 9:2135–39
    [Google Scholar]
  112. Nir O, Vengosh A, Harkness JS, Dwyer GS, Lahav O. 2015. Direct measurement of the boron isotope fractionation factor: reducing the uncertainty in reconstructing ocean paleo-pH. Earth Planet. Sci. Lett. 414:1–5
    [Google Scholar]
  113. Pagani M. 2002. The alkenone-CO2 proxy and ancient atmospheric carbon dioxide. Philos. Trans. R. Soc. A 360:609–32
    [Google Scholar]
  114. Pagani M, Freeman KH, Arthur MA. 1999. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285:876–79
    [Google Scholar]
  115. Pagani M, Huber M, Liu Z, Bohaty SM, Henderiks J et al. 2011. The role of carbon dioxide during the onset of Antarctic glaciation. Science 334:60601261–64
    [Google Scholar]
  116. Pagani M, Liu Z, LaRiviere J, Ravelo AC. 2010. High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nat. Geosci. 3:127–30
    [Google Scholar]
  117. Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S. 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309:5734600–3
    [Google Scholar]
  118. Palike H, Lyle MW, Nishi H, Raffi I, Ridgwell A et al. 2012. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488:7413609–14
    [Google Scholar]
  119. Palmer MR, Pearson PN, Cobb SJ. 1998. Reconstructing past ocean pH-depth profiles. Science 282:53931468–71
    [Google Scholar]
  120. Pancost RD, Freeman KH, Wakeham SG, Robertson CY. 1997. Controls on carbon isotope fractionation by diatoms in the Peru upwelling region. Geochim. Cosmochim. Acta 61:234983–91
    [Google Scholar]
  121. Paris G, Gaillardet J, Louvat P. 2010. Geological evolution of seawater boron isotopic composition recorded in evaporites. Geology 38:111035–38
    [Google Scholar]
  122. Pearson PN, Foster GL, Wade BS. 2009. Atmospheric carbon dioxide through the Eocene–Oligocene climate transition. Nature 461:72671110–13
    [Google Scholar]
  123. Pearson PN, Palmer MR. 1999. Middle Eocene seawater pH and atmospheric carbon dioxide concentrations. Science 284:1824–26
    [Google Scholar]
  124. Pearson PN, Palmer MR. 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–99
    [Google Scholar]
  125. Penman DE, Caves Rugenstein JK, Ibarra DE, Winnick MJ. 2020. Silicate weathering as a feedback and forcing in Earth's climate and carbon cycle. Earth-Sci. Rev. 209:103298
    [Google Scholar]
  126. Penman DE, Hönisch B, Zeebe RE, Thomas E, Zachos JC 2014. Rapid and sustained surface ocean acidification during the Paleocene-Eocene Thermal Maximum. Paleoceanography 29:5357–69
    [Google Scholar]
  127. Pogge von Strandmann PAE, Forshaw J, Schmidt DN. 2014. Modern and Cenozoic records of seawater magnesium from foraminiferal Mg isotopes. Biogeosciences 11:185155–68
    [Google Scholar]
  128. Popp BN, Takigiku R, Hayes JM, Louda JW, Baker EW. 1989. The post-Paleozoic chronology and mechanism of 13C depletion in primary marine organic matter. Am. J. Sci. 289:4436–54
    [Google Scholar]
  129. Popp BN, Laws EA, Bidigare RR, Dore JE, Hanson KL, Wakeham SG 1998. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim. Cosmochim. Acta 62:169–77
    [Google Scholar]
  130. Rae JWB. 2018. Boron isotopes in foraminifera: systematics, biomineralisation, and CO2 reconstruction. Boron Isotopes H Marschall, G Foster 107–43 Cham, Switz: Springer
    [Google Scholar]
  131. Rae JWB, Foster GL, Schmidt DN, Elliott T. 2011. Boron isotopes and B/Ca in benthic foraminifera: proxies for the deep ocean carbonate system. Earth Planet. Sci. Lett. 302:3403–13
    [Google Scholar]
  132. Raitzsch M, Bijma J, Benthien A, Richter K-U, Steinhoefel G, Kucera M. 2018. Boron isotope-based seasonal paleo-pH reconstruction for the Southeast Atlantic—a multispecies approach using habitat preference of planktonic foraminifera. Earth Planet. Sci. Lett. 487:138–50
    [Google Scholar]
  133. Raitzsch M, Hönisch B. 2013. Cenozoic boron isotope variations in benthic foraminifers. Geology 41:5591–94
    [Google Scholar]
  134. Rau GH, Riebesell U, Wolf-Gladrow D. 1996. A model of photosynthetic 13C fractionation by marine phytoplankton based on diffusive molecular CO2 uptake. Mar. Ecol. Prog. Ser. 133:275–85
    [Google Scholar]
  135. Raymo ME, Kozdon R, Evans D, Lisiecki L, Ford HL. 2018. The accuracy of mid-Pliocene δ18O-based ice volume and sea level reconstructions. Earth-Sci. Rev. 177:291–302
    [Google Scholar]
  136. Raymo ME, Ruddiman WF. 1992. Tectonic forcing of late Cenozoic climate. Nature 359:117–22
    [Google Scholar]
  137. Rees-Owen RL, Gill FL, Newton RJ, Ivanovic RF, Francis JE et al. 2018. The last forests on Antarctica: reconstructing flora and temperature from the Neogene Sirius Group, Transantarctic Mountains. Org. Geochem. 118:4–14
    [Google Scholar]
  138. Ridgwell A. 2005. A Mid Mesozoic Revolution in the regulation of ocean chemistry. Mar. Geol. 217:3–4339–57
    [Google Scholar]
  139. Rohling EJ, Sluijs A, Dijkstra HA, Köhler P, van de Wal R et al. 2012. Making sense of palaeoclimate sensitivity. Nature 491:683–91
    [Google Scholar]
  140. Royer DL. 2016. Climate sensitivity in the geologic past. Annu. Rev. Earth Planet. Sci. 44:277–93
    [Google Scholar]
  141. Sanyal A, Bijma J, Spero HJ, Lea D. 2001. Empirical relationship between pH and the boron isotopic composition of Globigerinoides sacculifer: implications for the boron isotope paleo-pH proxy. Paleoceanography 16:5515–19
    [Google Scholar]
  142. Sanyal A, Hemming NG, Broecker WS, Lea DW, Spero HJ, Hanson GN. 1996. Oceanic pH control on the boron isotopic composition of foraminifera: evidence from culture experiments. Paleoceanography 11:5513–17
    [Google Scholar]
  143. Sarmiento JL, Gruber N. 2006. Ocean Biogeochemical Dynamics. Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  144. Schneider T, Kaul CM, Pressel KG. 2019. Possible climate transitions from breakup of stratocumulus decks under greenhouse warming. Nat. Geosci. 12:3163–67
    [Google Scholar]
  145. Seki O, Foster GL, Schmidt DN, Mackensen A, Kawamura K, Pancost RD. 2010. Alkenone and boron-based Pliocene pCO2 records. Earth Planet. Sci. Lett. 292:1–2201–11
    [Google Scholar]
  146. Sherman E, Moore JK, Primeau F, Tanouye D. 2016. Temperature influence on phytoplankton community growth rates. Glob. Biogeochem. Cycles 30:4550–59
    [Google Scholar]
  147. Sherwood S, Webb MJ, Annan JD, Armour KC, Forster PM et al. 2020. An assessment of Earth's climate sensitivity using multiple lines of evidence. Rev. Geophys. 58:4e2019RG000678
    [Google Scholar]
  148. Sluijs A, van Roij L, Frieling J, Laks J, Reichart G-J. 2018. Single-species dinoflagellate cyst carbon isotope ecology across the Paleocene-Eocene Thermal Maximum. Geology 46:179–82
    [Google Scholar]
  149. Sosdian SM, Greenop R, Hain MP, Foster GL, Pearson PN, Lear CH. 2018. Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy. Earth Planet. Sci. Lett. 498:362–76
    [Google Scholar]
  150. Stewart JA, Christopher SJ, Kucklick JR, Bordier L, Chalk TB et al. 2020. NIST RM 8301 boron isotopes in marine carbonate (simulated coral and foraminifera solutions): inter-laboratory δ11B and trace element ratio value assignment. Geostand. Geoanal. Res. 513:05143–20
    [Google Scholar]
  151. Stoll HM, Guitian J, Hernandez-Almeida I, Mejía LM, Phelps S et al. 2019. Upregulation of phytoplankton carbon concentrating mechanisms during low CO2 glacial periods and implications for the phytoplankton pCO2 proxy. Quat. Sci. Rev. 208:1–20
    [Google Scholar]
  152. Super JR, Thomas E, Pagani M, Huber M, O'Brien CL, Hull PM 2018. North Atlantic temperature and pCO2 coupling in the early-middle Miocene. Geology 46:6519–22
    [Google Scholar]
  153. Takahashi T, Sutherland SC, Chipman DW, Goddard JG, Ho C et al. 2014. Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Mar. Chem. 164:95–125
    [Google Scholar]
  154. Tierney JE, Haywood AM, Feng R, Bhattacharya T, Otto-Bliesner BL 2019a. Pliocene warmth consistent with greenhouse gas forcing. Geophys. Res. Lett. 46:159136–44
    [Google Scholar]
  155. Tierney JE, Malevich SB, Gray W, Vetter L, Thirumalai K. 2019b. Bayesian calibration of the Mg/Ca paleothermometer in planktic foraminifera. Paleoceanogr. Paleoclimatol. 34:122005–30
    [Google Scholar]
  156. Tierney JE, Poulsen CJ, Montanez IP, Bhattacharya T, Feng R et al. 2020a. Past climates inform our future. Science 370:6517eaay3701
    [Google Scholar]
  157. Tierney JE, Zhu J, King J, Malevich SB, Hakim GJ, Poulsen CJ. 2020b. Glacial cooling and climate sensitivity revisited. Nature 584:569–73
    [Google Scholar]
  158. Timofeeff MN, Lowenstein TK, da Silva MAM, Harris NB. 2006. Secular variation in the major-ion chemistry of seawater: evidence from fluid inclusions in Cretaceous halites. Geochim. Cosmochim. Acta 70:81977–94
    [Google Scholar]
  159. Torres MA, Moosdorf N, Hartmann J, Adkins JF, West AJ 2017. Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks. PNAS 114:338716–21
    [Google Scholar]
  160. Tyrrell T, Zeebe RE. 2004. History of carbonate ion concentration over the last 100 million years. Geochim. Cosmochim. Acta 68:173521–30
    [Google Scholar]
  161. Urey HC. 1952. On the early chemical history of the earth and the origin of life. PNAS 38:4351–63
    [Google Scholar]
  162. van Heuven S, Pierrot D, Rae JWB, Lewis E, Wallace DWR 2009. MATLAB program developed for CO2 system calculations, Vol. ORNL/CDIAC-105b. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy https://cdiac.ess-dive.lbl.gov/ftp/co2sys/CO2SYS_calc_MATLAB_v1.1/
    [Google Scholar]
  163. Westerhold T, Marwan N, Drury AJ, Liebrand D, Agnini C et al. 2020. An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science 369:65091383–87
    [Google Scholar]
  164. Wilkes EB, Lee RB, McClelland HL, Rickaby RE, Pearson A. 2018. Carbon isotope ratios of coccolith–associated polysaccharides of Emiliania huxleyi as a function of growth rate and CO2 concentration. Org. Geochem. 119:1–10
    [Google Scholar]
  165. Wilkes EB, Pearson A. 2019. A general model for carbon isotopes in red-lineage phytoplankton: interplay between unidirectional processes and fractionation by RubisCO. Geochim. Cosmochim. Acta 265:163–81
    [Google Scholar]
  166. Witkowski CR, Weijers JW, Blais B, Schouten S, Damsté JS. 2018. Molecular fossils from phytoplankton reveal secular Pco2 trend over the Phanerozoic. Sci. Adv. 4:11eaat4556
    [Google Scholar]
  167. Zachos JC, Dickens GR, Zeebe RE. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:7176279–83
    [Google Scholar]
  168. Zachos JC, Pagani M, Sloan L, Thomas E, Billups K 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–93
    [Google Scholar]
  169. Zeebe RE. 2012. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annu. Rev. Earth Planet. Sci. 40:141–65
    [Google Scholar]
  170. Zeebe RE, Ridgwell A, Zachos JC. 2016. Anthropogenic carbon release rate unprecedented during the past 66 million years. Nat. Geosci. 9:4325–29
    [Google Scholar]
  171. Zeebe RE, Tyrrell T. 2019. History of carbonate ion concentration over the last 100 million years II: revised calculations and new data. Geochim. Cosmochim. Acta 257:373–92
    [Google Scholar]
  172. Zeebe RE, Wolf-Gladrow DA. 2001. CO2 in Seawater: Equilibrium, Kinetics, Isotopes Amsterdam: Elsevier
  173. Zhang YG, Henderiks J, Liu X. 2020. Refining the alkenone-pCO2 method II: towards resolving the physiological parameter ‘b. .’ Geochim. Cosmochim. Acta 281:118–34
    [Google Scholar]
  174. Zhang YG, Pagani M, Henderiks J, Ren H. 2017. A long history of equatorial deep-water upwelling in the Pacific Ocean. Earth Planet. Sci. Lett. 467:1–9
    [Google Scholar]
  175. Zhang YG, Pagani M, Liu Z, Bohaty SM, DeConto R. 2013. A 40-million-year history of atmospheric CO2. Philos. Trans. R. Soc. A 371: 2001.20130096
    [Google Scholar]
  176. Zhang YG, Pearson A, Benthien A, Dong L, Huybers P et al. 2019. Refining the alkenone-pCO2 method I: lessons from the Quaternary glacial cycles. Geochim. Cosmochim. Acta 260:177–91
    [Google Scholar]
  177. Zhu J, Poulsen CJ, Tierney JE. 2019. Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks. Sci. Adv. 5:9eaax1874
    [Google Scholar]
/content/journals/10.1146/annurev-earth-082420-063026
Loading
/content/journals/10.1146/annurev-earth-082420-063026
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error